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UNCONDITIONALLY STABLE CONSISTENT SPLITTING

SCHEMES FOR THE NAVIER–STOKES EQUATIONS WITH C0

FINITE ELEMENTS

XU LI AND JIE SHEN

Abstract. We construct in this paper first- and second-order (in time) de-

coupled and unconditionally stable schemes for the Navier–Stokes equations
based on the consistent splitting methods and C0 finite elements, where spatial
discontinuity of the gradient of the discrete velocity is treated using a discon-
tinuous Galerkin framework. The challenge for their stability analysis is that
the gradient of discrete velocity is discontinuous so that the estimate on the
continuous Stokes pressure by Liu, Liu, and Pego [Comm. Pure Appl. Math.
60 (2007), pp. 1443–1487] cannot be applied in the space discrete case. We
first extend the estimate on the Stokes pressure to the space discrete case, and
then use it to prove the unconditional stability and carry out an error analysis
for the proposed fully discrete schemes. Numerical results are presented to
validate our analytical results.

1. Introduction

We consider in this paper numerical approximation of the following incompress-
ible Navier–Stokes equations (NSEs)

ut ´ νΔu ` u ¨ ∇u ` ∇p “ f in J ˆ Ω,(1.1)

∇ ¨ u “ 0 in J ˆ Ω,(1.2)

u “ 0 on r0, T s ˆ Γ,(1.3)

up0, ‚q “ u0 in Ω,(1.4)

where the unknowns are velocity u and pressure p, ν ą 0 denotes the constant
viscosity coefficient, f denotes the unit external body force, u0 is a given initial
velocity satisfying ∇¨u0 “ 0, Ω Ă R

d (d “ 2, 3) is a bounded and connected domain
with Lipschitz boundary Γ, and J “ p0, T s with a given time T ą 0.

The main objective of this paper is to construct a class of fully discrete and
decoupled schemes for the NSEs using C0 finite element methods in space and the
consistent splitting methods in time [10, 25].
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2 XU LI AND JIE SHEN

Assuming that the nonlinear term is treated explicitly (resp. semi-implicitly),
decoupled methods for NSEs, such as projection type methods and consistent split-
ting methods [9], only require solving a sequence of Poisson (resp. elliptic) equations
at each time step, thus they are very efficient and can be easily implemented. Over
the years, there has been an enormous amount of work in developing efficient and
accurate decoupled schemes for NSEs, including projection type methods (see, e.g.,
[6, 9,14–16,20,24,29,32]), consistent splitting methods [10,18,19,23,25,26,34] (see
also the Gauge method [5,27,33]), and artificial compressibility methods (see, e.g.,
[11–13]), to name just a few.

A main issue with the projection type methods is that only schemes with first-
order pressure (or velocity) extrapolation are proven to be unconditionally stable,
limiting their accuracy to weakly second-order [9]. On the other hand, The con-
sistent splitting methods are based on an equivalent system of NSEs (cf. [10, 25]).
More precisely, the continuity equation (1.2) is replaced by the following equivalent
pressure-Poison equation

p∇p,∇qq “ pf ´ u ¨ ∇u ´ ν∇ ˆ ∇ ˆ u,∇qq @q P H1
pΩq,(1.5)

which is obtained by testing (1.1) with ∇q and using the divergence-free condi-
tion (1.2) and the boundary condition (1.3). It has been observed that decoupled
schemes based on this equivalent formulation do not produce splitting errors and
can be naturally extended to higher order temporal discretizations. In addition,
they do not require the inf-sup condition between velocity and pressure spaces.

The unconditional stability of the first-order semi-discrete consistent splitting
schemes was proved in [10, 25]. However, the stability analysis of any second- or
higher-order consistent splitting scheme remained open until very recently Huang
and Shen constructed a generalized BDF2 formula in [18] which is more stiffly stable
than the usual BDF2 scheme, applied it to construct a new second-order consistent
splitting scheme for the NSEs, and proved its unconditional stability. A main tool
in the stability analysis of consistent splitting methods in [18, 25] is the following
estimate of the Stokes pressure pSpuq [25]:

}∇pspuq}
2

ď p
1

2
` εq}Δu}

2
` C}∇u}

2 for all u P H2
pΩq X H1

0pΩq, BΩ P C3,

(1.6)

where the Stokes pressure is defined as

∇pSpuq “ pΔP ´ PΔqu,

with P being the Leray-Helmholtz projector from L2
pΩq on to H “ tv P L2pΩq :

∇ ¨ v “ 0, v ¨ n|Γ “ 0u. Then, it is shown in [25] that for a given u P H2
pΩq, we

have

p∇pSpuq,∇qq “ ´p∇ ˆ ∇ ˆ u,∇qq “

ż

Γ

∇ ˆ u ¨ p∇q ˆ nq ds @q P H1
pΩq{R.

(1.7)

In order to use the estimate (1.6), one has to test the momentum equation (1.1)
with ´Δv for some v P H2

pΩq. While this is not a problem in space continuous
case, it does create a significant issue for spatial discretization as a conforming
approximation would require C1 elements which are not easy to use. In fact, the
fully discrete schemes considered in [25,26] used C1 finite elements. To the best of
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our knowledge, there is no unconditionally stable schemes using C0 finite elements
and consistent splitting methods.

In this paper, we propose and analyze a class of consistent splitting schemes,
using C0 discontinuous Galerkin (DG) finite elements for both velocity and pressure.
More precisely, for the spatial discretization we use the interior penalty strategy
from the DG method (see the review [1]) to penalize the discontinuity of gradient
of the discrete velocity. In particular, this pair of approximation spaces for velocity
and pressure does not require to satisfy the usual inf-sup condition.

However, due to the discontinuity of gradient of the discrete velocity, the stability
and error analyses are very challenging since the estimate (1.6) is no longer valid
for C0 DG finite elements. Thus, a key in proving the unconditional stability
and deriving an a priori error estimate in the fully discrete case is to extend the
inequality (1.6) to the case u P H2

pΩq X H1
0pΩq ` V h, where V h Ă H1

0pΩq is the
discrete velocity space such as the standard (vector-valued) C0 Lagrange element
space.

The main contributions of this paper include

‚ Construction of first- and second-order (in time) consistent splitting fully
discrete schemes with C0 finite elements for the NSEs;

‚ Extension of the estimate (1.6) on the Stokes pressure in the continuous
case to the discrete case (see Theorem 3.4): this is a key result for the
analysis of fully discrete consistent splitting schemes;

‚ Stability and error analysis of the fully discrete consistent splitting schemes
in the absence of nonlinear term. We believe that this is the first stability
and error analysis for fully discrete consistent splitting schemes with C0

finite elements.

As pointed out in [18], we emphasize that the main difficulty in the stability and
error analysis of consistent splitting schemes is to deal with the Stokes operator.
This is because the analysis related to Stokes pressure is only connected to the
diffusion term and temporal derivative term. Therefore, in order to simplify the
presentation, we limit our attention in the analysis to the unsteady Stokes equa-
tions. But it is expected that our analysis can be extended, albeit tedious, to the
full NSEs.

This paper is organized as follows. In Section 2 we give some background of
the semi-discrete (in time) consistent splitting schemes and propose a class of fully
discrete schemes with pure C0 elements for them, where the DG methods are em-
ployed to treat the discontinuity of the gradient of the velocity field. In Section 3,
we extend the estimate (1.6) on the Stokes pressure in the space continuous case
to the space discrete case. In Sections 4 and 5, we consider the unsteady Stokes
problem, and use the estimate of the discrete Stokes pressure to prove unconditional
stability and carry out error analysis, respectively, for the fully discrete schemes. In
Section 6, we present some numerical experiments to validate our error estimates.
Finally we make some concluding remarks in Section 7.

Throughout the paper we use C and ε, with or without subscripts, to denote a
generic positive constant and a generic small positive constant, respectively. For
any subdomain D Ď Ω, the inner product and norm in L2pDq (or L2

pDq) are
denoted by p‚, ‚qD and } ‚ }D, respectively. When D “ Ω, the subscript is omitted.
For any pd ´ 1q-dimensional linear manifold F , let | ‚ |F and | ‚ |˘ 1

2 ,F
denote the

L2pF q norm and H˘ 1
2 pF q norms (see, e.g., [8, pp. 6–8]), respectively.
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4 XU LI AND JIE SHEN

2. Consistent splitting C0
finite element schemes

In this section, we shall construct consistent splitting C0 finite element schemes
for the Navier–Stokes equations.

2.1. Fundamental framework for a class of C0 consistent splitting meth-
ods. For the sake of clarity, we start with the following equivalent formulation of
the time dependent Stokes equations:

ut ´ νΔu ` ∇p “ f , in J ˆ Ω,(2.1)

p∇p,∇qq “ pf ´ ν∇ ˆ ∇ ˆ u,∇qq @q P H1
pΩq.(2.2)

By integration by parts, one has

p∇ ˆ ∇ ˆ u,∇qq “ ´

ż

Γ

∇ ˆ u ¨ p∇q ˆ nq ds.

Therefore (2.2) is also equivalent to

p∇p,∇qq “ pf ,∇qq ` ν

ż

Γ

∇ ˆ u ¨ p∇q ˆ nq ds @q P H1
pΩq.(2.3)

One can then construct decoupled consistent splitting schemes for (2.1)–(2.2). For
instance, a first-order consistent splitting scheme is:

un`1 ´ un

Δt
´ νΔun`1

“ fn`1
´ ∇pn,(2.4)

p∇pn`1,∇qq “ pfn`1,∇qq ` ν

ż

Γ

∇ ˆ un`1
¨ p∇q ˆ nq ds @q P H1

pΩq.(2.5)

The unconditional stability of the above scheme has been proved in [10, 25]. How-
ever, the stability of a direct extension to second-order with BDF2 and second-order
extrapolation for the pressure is still an open problem. Recently, a stable second-
order consistent splitting method was constructed using a generalized BDF2 scheme
proposed in [18],

(2.6)

p2β ` 1qun`1 ´ 4βun ` p2β ´ 1qun´1

2Δt
´ νΔ

`

βun`1
´ pβ ´ 1qun

˘

“ fn`β
´ ∇

`

pβ ` 1qpn ´ βpn´1
˘

,

where β ě 1 is a parameter and the case β “ 1 reduces to the usual BDF2. It
is shown in [18] that the scheme (2.6)–(2.5) is unconditionally stable for β ě 5.
Below, we shall construct a stable fully discretization of this scheme using C0 finite
elements.

To simplify the notations, we introduce two operators dβ and Lβ such that
dβw

n`1 “ pp2β`1qwn`1´4βwn`p2β´1qwn´1q{2 and Lβw
n`1 “ βwn`1´pβ´1qwn

for arbitrary functions w. Therefore (2.6) can be rewritten as

dβu
n`1

Δt
´ νΔLβu

n`1
“ fn`β

´ ∇Lβ`1p
n.
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STABLE CONSISTENT SPLITTING SCHEMES FOR NSES 5

It can be easily shown by Taylor expansion that, for a smooth function gptq, one
has

dβg
n`1

Δt
“ g1

`

tn`β
˘

`
1 ´ 3β2

6
g3

`

tn`β
˘

Δt2 ` O
`

Δt3
˘

,(2.7)

Lβg
n`1

“ gn`β
´

βpβ ´ 1q

2
g2

`

tn`β
˘

Δt2 ` O
`

Δt3
˘

,(2.8)

Lβ`1g
n

“ gn`β
´

βpβ ` 1q

2
g2

`

tn`β
˘

Δt2 ` O
`

Δt3
˘

.(2.9)

Denote by V :“ H2
pΩq X H1

0pΩq the solution space of u. To prove the stability
of the above schemes via the estimate (1.6), variational formulations obtained by
testing (2.6) with ´Δv are considered in [18], i.e.,

p∇dβu
n`1,∇vq

Δt
` νpΔLβu

n`1,Δvq “ pfn`β
´ ∇Lβ`1p

n,´Δvq @v P V .

(2.10)

Therefore, a straightforward conforming spatial discretization for (2.10) would re-
quire C1 elements for the velocity approximation (see, e.g., [25, 26]). Since C1

elements are cumbersome to use in practice, we shall construct below a C0 finite
element scheme.

2.2. Full discretization using C0 finite elements. Let T be a shape-regular
partition of Ω (not necessary to be simplicial). The sets of faces, boundary faces and
interior faces are denoted by F , FB and F0, respectively. Note that F “ FB Y F0.
We use hK and hF to denote the diameter of any K P T and F P F , respectively,
and set h :“ maxKPT hK and hT P L2pΩq such that hT |K :“ hK for all K P T . For
m ą 0 we define

Hm
pT q :“ tq P L2

pΩq : q|K P Hm
pKq for all K P T u.

The space HmpF0q can be defined similarly. Like in many DG methods, we in-

troduce the jump operator �‚� : H2pT q Ñ H
3
2 pF0q and the average operator

tt‚uu : H2pT q Ñ H
3
2 pF0q as follows. On an interior face F P F0 which is shared by

two elements K1 and K2, we define

�q� :“ q|K1
´ q|K2

, ttquu “
1

2
pq|K1

` q|K2
q.

In addition, we extend the definition of �‚� and tt‚uu to rH2pT qsd and rH2pT qsdˆd

component-wise. The following well-known identity can be found in [1],

ÿ

KPT

ż

BK

pq ds “

ÿ

FPF0

ż

F

ttpuu�q� ds `

ÿ

FPF0

ż

F

�p�ttquu ds `

ÿ

FPFB

ż

F

pq ds.(2.11)

Denote by V h Ă H1
0pΩq and Qh Ă H1pΩq{R some pair of finite element spaces of

velocity and pressure. They do not need to satisfy the inf-sup condition. Equations
(2.3) and (2.5) motivate us to use the following scheme to update the pressure: for
given un`1

h P V h, compute pn`1
h P Qh by

p∇pn`1
h ,∇qhq “ pfn`1,∇qhq `

ÿ

FPFB

ν

ż

F

∇ ˆ un`1
h ¨ p∇qh ˆ nF q ds @qh P Qh.

(2.12)
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6 XU LI AND JIE SHEN

Next, let us investigate the discretizations of the velocity-updating procedure.
We consider a general form of the momentum equation,

ut ` M “ 0.

When M “ ´νΔu ` ∇p ´ f , it is exactly (2.1). Similarly, if we take M “

´νΔu ` pu ¨ Δqu ` ∇p ´ f , it becomes the momentum equation (1.1).

Assume that M “ ´ut P H
3
2 `ε

pΩq. Instead of testing the momentum equation
with Δv for v P V h (since Δv is not well-defined on V h), we take gradient on both
sides of the above equation first to get

∇ut ` ∇M “ 0.

Testing the above equation with ∇v for any v P V h, integration by parts and using
the identity (2.11) give

p∇ut,∇vq ´ pM,Δhvq `

ÿ

FPF0

ż

F

ttMuu ¨ p�∇v�nF q ds

`

ÿ

FPF0

ż

F

�M�¨ptt∇vuunF q ds `

ÿ

FPFB

ż

F

M¨p∇vnF q ds “ 0,

where Δh is the broken Laplace operator, meaning

pM,Δhvq :“
ÿ

KPT
pM,ΔvqK for any v P V h,

and nF is a unit normal vector of F . Since M P H
3
2 `ε

pΩq (implying that �M� “ 0
on F0) and M “ ´ut, one has

p∇ut,∇vq ´ pM,Δhvq `

ÿ

FPF0

ż

F

ttMuu ¨ p�∇v�nF q ds “

ÿ

FPFB

ż

F

ut ¨ p∇vnF q ds.

After adding a penalty term which is inspired by DG methods (see [1]), we finally
get
(2.13)

p∇ut,∇vq ´ pM,Δhvq `

ÿ

FPF0

ż

F

ttMuu ¨ p�∇v�nF q ds

`

ÿ

FPF0

γF
hF

ż

F

p�∇u�nF q ¨ p�∇v�nF q ds “

ÿ

FPFB

ż

F

ut ¨ p∇vnF q ds,

with γF ą 0, F P F0, being the penalty parameters. Note that for functions in V h,
the interior jump of their tangent components vanishes. Therefore one has

ż

F

p�∇u�nF q ¨ p�∇v�nF q ds “

ż

F

�∇u� ¨ �∇v� ds for all F P F0.

So these two forms are equivalent in the context of our study.
Taking M “ ´νΔu ` ∇p ´ f , we can construct fully discrete schemes by com-

bining semi-discretizations in time (see (2.4) and (2.6)) and the semi-discretization
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in space (based on (2.13)). To simplify the notation, we define

aLappun`1,vq :“ νpΔhu
n`1,Δhvq ´

ÿ

FPF0

ż

F

ttνΔhu
n`1

uu ¨ p�∇v�nF q ds

´

ÿ

FPF0

ż

F

p�∇un`1�nF q ¨ ttνΔhvuu ds

`
ÿ

FPF0

γF
hF

ż

F

p�∇un`1�nF q ¨ p�∇v�nF q ds,

and

aLap´βpun`1,vq :“ νpΔhLβu
n`1,Δhvq

´

ÿ

FPF0

ż

F

ttνΔhLβu
n`1

uu ¨ p�∇v�nF q ds

´
ÿ

FPF0

ż

F

p�∇Lβu
n`1�nF q ¨ ttνΔhvuu ds

`
ÿ

FPF0

γF
hF

ż

F

p�∇Lβ`1u
n`1�nF q ¨ p�∇v�nF q ds,

where the third terms in the right-hand side of above two formulations are also
artificial terms to guarantee the symmetry of the coefficient matrices. Suppose
that u0

h P V h is some interpolation of u0 and p0h is obtained via (2.12).
Then, a first-order (in time) fully discrete scheme is

Scheme I Given pun
h, p

n
hq P V hˆQh, find un`1

h P V h such that for any vh P V h

(2.14)
p∇un`1

h ´ ∇un
h,∇vhq

Δt
` aLappun`1

h ,vhq

“ ´

ÿ

FPF0

ż

F

tt∇pnh ´ fn`1
uu ¨ p�∇vh�nF q ds

´ pfn`1
´ ∇pnh,Δhvhq `

ÿ

FPFB

ż

F

utpt
n`1

q ¨ p∇vhnF q ds,

and then update pn`1
h by (2.12). Similarly, a second-order (in time) fully discrete

scheme is
Scheme II Given pui

h, p
i
hq P V h ˆ Qh with i “ n, n ´ 1, find un`1

h P V h such
that for any vh P V h

(2.15)
p∇dβu

n`1
h ,∇vhq

Δt
` aLap´βpun`1

h ,vhq

“ ´
ÿ

FPF0

ż

F

tt∇Lβ`1p
n
h ´ fn`β

uu ¨ p�∇vh�nF q ds

´ pfn`β
´ Lβ`1∇pnh,Δhvhq `

ÿ

FPFB

ż

F

utpt
n`β

q ¨ p∇vhnF q ds,

and then update pn`1
h by (2.12).

Here ut represents the time derivative of the true velocity solution. Note that
ut|Γ is known from the boundary conditions of u (indeed we have ut|Γ “ 0 for

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 XU LI AND JIE SHEN

homogeneous boundary conditions) and thus the last terms in (2.14) and (2.15)
are computable. If ut|Γ ¨ n is nonzero, the way updating pressure should also be
modified as follows (cf. [25]):

p∇pn`1
h ,∇qhq “ pfn`1,∇qhq `

ÿ

FPFB

ν

ż

F

∇ ˆ un`1
h ¨ p∇qh ˆ nF q ds

´

ż

BΩ

ut ¨ nqh ds @qh P Qh.

Remark 2.1. The methods (2.14) and (2.15) can be regarded as two continuous
interior penalty (CIP) methods (see, e.g., [2, 4, 7]) for discretizing a formal fourth-
order problem of the velocity u (i.e., ´Δut´ΔM “ 0) with the Dirichlet boundary
condition u|Γ “ 0 and Neumann boundary condition M|Γ “ ´ut|Γ (indeed it is
also zero here). CIP methods use C0 finite elements and penalize the interior
continuity of derivatives through a DG framework (see aLap and aLap´β). For the
penalty term in aLap´β , i.e.,

`
ÿ

FPF0

γF
hF

ż

F

p�∇Lβ`1u
n`1�nF q ¨ p�∇v�nF q ds,

the operator Lβ`1 can also be replaced by either Lβ or L1 (identity operator, which
is more commonly-used in CIP methods), which only slightly affects the lower bound
requirement for γF in stability analysis (see Section 4). We use Lβ`1 here because

the stability analysis requires testing the discrete problem with vh “ Lβ`1u
n`1
h ,

which resembles the semi-discrete case [18]. Such a choice can help us simplify the
analysis.

2.3. Extension to the Navier–Stokes equations. For the NSEs, the velocity-
updating procedure for the momentum equation (1.1) can be constructed similarly
by taking M :“ ´νΔu`pu ¨∇qu`∇p´f in (2.13). More precisely, a second-order
fully discrete scheme for the Navier–Stokes equations is

(2.16)

p∇dβu
n`1
h ,∇vhq

Δt
` aLap´βpun`1

h ,vhq

“ ´

ÿ

FPF0

ż

F

ttpLβ`1u
n
h ¨ ∇qLβ`1u

n
h ` ∇Lβ`1p

n
h ´ fn`β

uu ¨ p�∇vh�nF q ds

´ pfn`β
´ pLβ`1u

n
h ¨ ∇qLβ`1u

n
h ´ Lβ`1∇pnh,Δhvhq

`
ÿ

FPFB

ż

F

utpt
n`β

q ¨ p∇vhnF q ds;

and

(2.17)

p∇pn`1
h ,∇qhq “ pfn`1

´ pun`1
h ¨ ∇qun`1

h ,∇qq

`
ÿ

FPFB

ν

ż

F

∇ ˆ un`1
h ¨ p∇qh ˆ nF q ds @qh P Qh.

3. Estimate of the discrete Stokes pressure

This section extends the estimate of the Stokes pressure (1.6) from V “ H2
pΩqX

H1
0pΩq to V phq :“ V ` V h. Similarly to the space continuous case (see [18, 25]),

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABLE CONSISTENT SPLITTING SCHEMES FOR NSES 9

the numerical analysis is limited to domains with C3 boundary. We first enlarge
the domain of the Stokes pressure pS as follows: For any u P V phq,

p∇pSpuq,∇qq “
ÿ

FPFB

ż

F

∇ ˆ u ¨ p∇q ˆ nF q ds @q P H1
pΩq{R.(3.1)

For arbitrary u P V phq, since p∇pSpuq,∇qq “ 0 for all q P H1
0 pΩq (as ∇q ˆ nF

also vanishes on all boundary faces), we have ∇pSpuq P Hpdiv; Ωq and ΔpSpuq “ 0.

Then it follows from a trace theorem (see, e.g., [8, Theorem 2.5]) that BpSpuq

Bn belongs

to H´1{2pΓq. These imply that pSpuq is a harmonic function satisfying the following
Neumann boundary value problem

ΔpSpuq “ 0 in Ω,
BpSpuq

Bn
“ ´p∇ ˆ ∇ ˆ uq ¨ n on Γ,

where p∇ ˆ ∇ ˆ uq ¨ n P H´1{2pΓq should be understood in the sense that
ż

Γ

p∇ ˆ ∇ ˆ uq ¨ nq ds “ ´

ÿ

FPFB

ż

F

∇ ˆ u ¨ p∇q ˆ nq ds for all q P H1
pΩq{R.

Let Φpxq :“ distpx,Γq describe the distance between the point x P Ω and Γ. For
any s ą 0, the set of points x P Ω within distance s from Γ and its complementary
set are denoted by

Ωs :“ tx P Ω : Φpxq ă su and Ωc
s :“ ΩzΩs,

respectively. We also set Γs “ tx P Ω : Φpxq “ su. Suppose Γ is C3 and compact,
it is pointed out in [25] that Φ P C3pΩ̄s0q for some s0 ą 0 and npxq “ ´∇Φ is
exactly the unit outward normal vector to Γs “ Γc

s with s “ Φpxq.
The proof of Lemma 3.1 is very similar to [25, Lemma 3.2]. So we omit it.

Lemma 3.1. Let Ω Ă R
d be a bounded domain with boundary Γ of class C2. Let

u P V phq and suppose that

u} :“
`

I ´ nnJ
˘

u “ u ´ pu ¨ nqn, uK :“ nnJu “ pu ¨ nqn,

in some neighborhood of Γ. Then the following are valid:

(i) If u “ 0 on Γ, then ∇ ¨ u} “ 0 on Γ.
(ii) If u ¨ n “ 0 on Γ, then ∇ ˆ uK “ 0 on Γ.

On the whole domain Ω, we define

u} :“ ξ
`

I ´ nnJ
˘

u, uK :“ ξnnJu ` p1 ´ ξqu,

where ξ is a cutoff function satisfying ξpxq “ 1 when Φpxq ă
1
2s and ξpxq “ 0 when

Φpxq ą s. Note that ξ can be C3 for small s (see [25, Section 3.4]).

Lemma 3.2. Let Ω be a bounded domain with boundary Γ of C3, and let u P V phq

be arbitrary. Then for any q P H1pΩq satisfying Δq “ 0 and ε ą 0, there exists
C ą 0 which scales like ε´1 such that

|pΔhu} ´ ∇pSpuq,∇qq| ď CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds ` ε}∇q}

2,

where Cinv is a constant for the inverse inequality.
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Proof. For any u P V phq, there exist w P V and z P V h such that u “ w ` z.
Define w} and z} in the same way as u}. It has been proved in [25] that

pΔw} ´ ∇pSpwq,∇qq “ 0 if q P H1
pΩq satisfies Δq “ 0.(3.2)

For the estimate related to z, a combination of integration by parts, Lemma 3.1(i)
and the fact Δq “ 0 gives that

pΔhz},∇qq “ p´∇h ˆ ∇ ˆ z} ` ∇h∇ ¨ z},∇qq

“

ÿ

FPFB

ż

F

∇ ˆ z} ¨ p∇q ˆ nq ds `

ÿ

FPF0

ż

F

�∇ ˆ z}� ¨ p∇q ˆ nF q ds

`

ÿ

FPF0

ż

F

�∇ ¨ z}�p∇q ¨ nF q ds.

Further, by Lemma 3.1(ii) one has ∇ ˆ z} “ ∇ ˆ z on Γ, which implies that

(3.3)

pΔhz} ´ ∇pSpzq,∇qq “
ÿ

FPF0

ż

F

�∇ ˆ z}� ¨ p∇q ˆ nF q ds

`

ÿ

FPF0

ż

F

�∇ ¨ z}�p∇q ¨ nF q ds.

Note that

}∇q}Hpdiv;Dq “ p}∇q}
2
D ` }Δq}

2
Dq

1
2 “ }∇q}D,

}∇q}Hpcurl;Dq “ p}∇q}
2
D ` }∇ ˆ ∇q}

2
Dq

1
2 “ }∇q}D,

for arbitrary D Ď Ω. By two trace theorems related to Hpdiv; Ωq and Hpcurl; Ωq

(see [8, Theorems 2.5 and 2.11]), we arrive at

(3.4)

|

ÿ

FPF0

ż

F

�∇ ˆ z}� ¨ p∇q ˆ nF q ds `

ÿ

FPF0

ż

F

�∇ ¨ z}�p∇q ¨ nF q ds|

ď

ÿ

FPF0

p|�∇ ˆ z}�| 1
2 ,F

|∇q ˆ nF |´ 1
2 ,F

` |�∇ ¨ z}�| 1
2 ,F

|∇q ¨ nF |´ 1
2 ,F

q

ď
ÿ

FPF0

p|�∇ ˆ z}�| 1
2 ,F

}∇q}KF
` |�∇ ¨ z}�| 1

2 ,F
}∇q}KF

q

ď C
ÿ

FPF0

|�∇z}�|
2
1
2 ,F

` ε}∇q}
2,

where in the last step an ε-scaled Young’s inequality is applied. Since n is uniformly
bounded, it follows from an inverse inequality that

|�∇z}�|
2
1
2 ,F

ď C|�∇z�|
2
1
2 ,F

ď CCinvh
´1
F |�∇z�|

2
F ds “ CCinvh

´1
F |�∇z�nF |

2
F ds.

(3.5)

Note that ∇pSpuq “ ∇pSpwq `∇pSpzq and u} “ w} `z}. A combination of (3.2)–

(3.5), the triangle inequality, and the fact �∇w�nF “ 0 over all F P F0 (see, e.g.,
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[4, Eq. (3.6)]) yields

|pΔhu} ´ ∇pSpuq,∇qq| ď |pΔw} ´ ∇pSpwq,∇qq| ` |pΔhz} ´ ∇pSpzq,∇qq|

ď CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇z�nF |
2 ds ` ε}∇q}

2

“ CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds ` ε}∇q}

2.

This completes the proof. �

Lemma 3.2 implies that

(3.6)

}Δhu}
2

“ }ΔhuK}
2

` 2
`

ΔhuK,Δhu}

˘

` }Δhu}}
2

“ }ΔhuK}
2

` 2
`

ΔhuK,Δhu}

˘

`
›

›Δhu} ´ ∇pSpuq
›

›

2

` 2pΔhu} ´ ∇pSpuq,∇pSpuqq ` }∇pSpuq}
2

ě 2
`

ΔhuK,Δhu}

˘

`
›

›Δhu} ´ ∇pSpuq
›

›

2

´ 2CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds ` p1 ´ 2εq }∇pSpuq}

2 .

What remains is to estimate pΔhuK,Δhu}q and }Δhu} ´ ∇pSpuq}2.

Lemma 3.3. With the same assumption as in Lemma 3.2, for any ε ą 0, there
exists C such that

`

ΔhuK,Δhu}

˘

ě ´ε}Δhu}
2

´ C}∇u}
2,

›

›Δhu}´∇pSpuq
›

›

2
ěp1´εq }∇pS}

2
´C}∇u}

2
´CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds.

Proof. See [25, Claim 1] for the first assertion. Let us prove the second assertion.
Note that

Δhu} “ ξ
`

I ´ nnJ
˘

Δhu ` R2,(3.7)

where R2 consists of the terms in which the derivatives of u are at most first order
and therefore it fulfills }R2} ď C}∇u}. Let a “ ∇pS and b “ Δhu}, and put

a} “
`

I ´ nnJ
˘

a, aK “
`

nnJ
˘

a, b} “
`

I ´ nnJ
˘

b, bK “
`

nnJ
˘

b.

So it holds

}Δhu}´∇pSpuq}“}a´b}
2

“

ż

Ωc
s

|a|
2 dx`

ż

Ωs

|aK ´bK|
2 dx`

ż

Ωs

|a}´b}|
2 dx.

First,
ż

Ωs

|aK ´ bK|
2

ě p1 ´ εq

ż

Ωs

|aK|
2

´ C

ż

Ωs

|bK|
2.

Using Lemma 3.2 and the fact that b vanishes on Ωc
s, one has

ż

Ω

a ¨ pa ´ bq dx “

ż

Ωc
s

|a|
2 dx `

ż

Ωs

aK ¨ paK ´ bKq dx `

ż

Ωs

a} ¨ pa} ´ b}q dx

ď CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds ` ε}∇pSpuq}

2,
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which implies
ż

Ωs

|a} ´ b}|
2

` |a}|
2 dx ě ´2

ż

Ωs

a} ¨ pa} ´ b}q dx

ě 2

ż

Ωc
s

|a|
2 dx ` 2

ż

Ωs

aK ¨ paK ´ bKq dx

´ CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds ´ ε}∇pSpuq}

2

ě 2

ż

Ωc
s

|a|
2 dx ` p2 ´ εq

ż

Ωs

|aK|
2 dx ´ C

ż

Ωs

|bK|
2 dx

´ CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds ´ ε}∇pSpuq}

2.

Thus
ż

Ωs

|a}´b}|
2

ě p1´εq

ż

Ωs

|a}|
2 dx ` p2´εq

ż

Ωs

p|aK|
2

´|a}|
2
q dx´C

ż

Ωs

|bK|
2 dx

´ CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds ´ ε}∇pSpuq}

2.

Collecting the estimates above yields
ż

Ω

|a ´ b|
2

ě p1 ´ εq

ż

Ω

|a|
2 dx ` p2 ´ εq

ż

Ωs

p|aK|
2

´ |a}|
2
q dx ´ C

ż

Ωs

|bK|
2 dx

´ CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds ´ ε}∇pSpuq}

2.

By (3.7), it holds
ż

Ωs

|bK|
2

“

ż

Ωs

|n ¨ R2|
2

ď C

ż

Ω

|∇u|
2.

Then it follows from [25, Lemma 3.1] that

}Δhu} ´ ∇pSpuq} ě p1 ´ ε ´ 2C0sq}∇pSpuq}
2

´ C}∇u}
2

´ CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds.

�

Theorem 3.4. Let Ω be a bounded domain with boundary Γ of C3. For any ε ą 0,
there exist positive constants Cg and Cj such that

}∇pspuq}
2

ď p
1

2
` εq}Δhu}

2
`Cg}∇u}

2
`Cj

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds @u P V phq.

(3.8)

Proof. By (3.6) and Lemma 3.3, one has

}Δhu}
2

ě´2ε}Δhu}
2

´C}∇u}
2

´CCinv

ÿ

FPF0

h´1
F

ż

F

|�∇u�nF |
2 ds`p2´3εq }∇pSpuq}

2.

Then (3.8) follows immediately. �
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4. Unconditional stability analysis

This section is devoted to the stability analysis. For simplicity the analysis
will be restricted to simplicial meshes. However, there is no fundamental difficulty
for extension to more general partitions. To emphasize the main idea, we only
consider the Stokes case with f “ 0. It seems that the analysis of the full NSEs
does not involve additional essential difficulties (cf. [18]). Then Scheme I (note
that ut|Γ “ 0) is reduced to: Update un`1

h P V h by

(4.1)

p∇un`1
h ´ ∇un

h,∇vhq

Δt
` aLappun`1

h ,vhq

“ ´

ÿ

FPF0

ż

F

tt∇pnhuu ¨ p�∇vh�nF q ds ` p∇pnh,Δhvhq @vh P V h,

and update pn`1
h P Qh by

p∇pn`1
h ,∇qhq “

ÿ

FPFB

ν

ż

F

∇ ˆ un`1
h ¨ p∇qh ˆ nF q ds @qh P Qh.(4.2)

Scheme II is reduced to: Update un`1
h P V h by

(4.3)

p∇dβu
n`1
h ,∇vhq

Δt
` aLap´βpun`1

h ,vhq

“ ´

ÿ

FPF0

ż

F

tt∇Lβ`1p
n
huu ¨ p�∇vh�nF q ds ` pLβ`1∇pnh,Δhvhq @vh P V h,

and update pn`1
h P Qh by (4.2).

The discrete Stokes pressure ph,S : V phq Ñ Qh is defined by

p∇ph,Spuq,∇qhq “

ÿ

FPFB

ż

F

∇ ˆ u ¨ p∇qh ˆ nF q ds @qh P Qh.(4.4)

We derive immediately from the above and (1.7) that

}∇ph,Spuq} ď }∇pSpuq}.

Let puh, phq be the discrete solution of (4.1)–(4.2) or (4.3)–(4.2). Then the following
holds true:

}∇pnh}
2

“ ν2}∇ph,Spun
hq}

2
ď ν2}∇pSpun

hq}
2

@n P N.(4.5)

Define the semi-norm |||¨|||j on V phq by

|||v|||
2
j :“

ÿ

FPF0

h´1
F

ż

F

|�∇v�nF |
2 ds for all v P V phq.

Lemma 4.1. Assume Mh is a function satisfying the inverse estimate |Mh|F ď

Cinvh
´ 1

2

F }Mh}KF
for all F P F0 and KF P T with KF Ą F . Then it holds for any

ε0 ą 0 that

|

ÿ

FPF0

ż

F

ttMhuu ¨ p�∇v�nF q ds| ď ε0pd ` 1q}Mh}
2

`
C2

inv

4ε0
|||v|||

2
j for all v P V h.
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Proof. Since there are d`1 faces per simplex, a combination of the Cauchy–Schwarz
inequality, Young’s inequality and the inverse inequality gives

|

ÿ

FPF0

ż

F

ttMhuu ¨ p�∇v�nF q ds|

ď
ÿ

FPF0

ph
1{2
F C´1

inv|ttMhuu|F qph
´1{2
F Cinv|�∇v�nF |F q

ď
`

ÿ

FPF0

hFC
´2
inv|ttMhuu|

2
F

˘
1
2

`

ÿ

FPF0

h´1
F C2

inv|�∇v�nF |
2
F

˘
1
2

ď
`

ÿ

FPF0

pd ` 1q}Mh}
2
˘

1
2

`

ÿ

FPF0

C2
inv |||v|||

2
j

˘
1
2

ď ε0pd ` 1q}Mh}
2

`
C2

inv

4ε0
|||v|||

2
j .

�
In this paper, the following discrete Gronwall’s inequality is applied; see [18,

Lemma 2].

Lemma 4.2 (Discrete Gronwall’s lemma). Let an, bn, cn, and dn be four nonneg-
ative series such that

am ` τ
m
ÿ

n“1

bn ď τ
m´1
ÿ

n“0

andn ` τ
m´1
ÿ

n“0

cn ` C, m ě 1,

with C and τ being two positive constants. Then it holds

am ` τ
m
ÿ

n“1

bn ď exp

˜

τ
m´1
ÿ

n“0

dn

¸ ˜

τ
m´1
ÿ

n“0

cn ` C

¸

, m ě 1.

4.1. Stability analysis for the first-order scheme (4.1)–(4.2). Let

I1pvhq :“
ÿ

FPF0

ż

F

tt∇pnhuu ¨ p�∇vh�nF q ds.

Lemma 4.1 implies

|I1pvhq| ď ν´1ε0pd ` 1q}∇pnh}
2

`
νC2

inv

4ε0
|||vh|||

2
j ,

and

aLappun`1
h ,un`1

h q ě νp1 ´ 2ε0pd ` 1qq}Δhu
n`1
h }

2
` pγ ´

νC2
inv

2ε0
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇun`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
(4.6)

with γ “ minFPF0tγF u. Further, one has

|p∇pnh,Δhvhq| ď
1

2ν
}∇pnh}

2
`

ν

2
}Δhvh}

2.

Let RHS1pvhq :“ ´I1pvhq ` p∇pnh,Δhvhq denote the right-hand side of (4.1). By
Theorem 3.4 and (4.5), it holds
(4.7)

|RHS1pvhq| ď
ν

2
}Δhvh}

2
` pε0pd ` 1q{ν `

1

2ν
q}∇pnh}

2
`

νC2
inv

4ε0
|||vh|||

2
j

ď τ1}Δhu
n
h}

2
` τ0Cg}∇un

h}
2

` τ0Cj |||un
h|||

2
j `

ν

2
}Δhvh}

2
`

νC2
inv

4ε0
|||vh|||

2
j ,
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where

τ0 :“ pε0pd ` 1q `
1

2
qν, τ1 :“ τ0p

1

2
` εq.(4.8)

This implies Theorem 4.3.

Theorem 4.3. Let τ0, τ1 be defined as (4.8) and τ2 :“ γ ´
3νC2

inv

4ε0
´ τ0Cj with

γ “ minFPF0tγF u. Assume that γF ą τ0Cj `
3νC2

inv

4ε0
for all F P F0 with some ε0, ε

satisfying pε0pd` 1qp
5
2 ` εq `

ε
2 q ă

1
4 such that both ν

2 ´ 2νε0pd` 1q ´ τ1 and τ2 are
positive. With the same assumption on Ω as in Theorem 3.4, scheme (4.1)–(4.2)
is unconditionally stable in the sense that

(4.9)
}∇un`1

h }
2

` 2Δtp
ν

2
´ 2νε0pd ` 1q ´ τ1q

n`1
ÿ

i“1

}Δhu
i
h}

2
` 2Δtτ2

n`1
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇui
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

ď expp2τ0Cgt
n`1

q

”

}∇u0
h}

2
` 2Δtτ1}Δhu

0
h}

2
` 2Δtτ0Cj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇu0
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

ı

.

Proof. Taking vh “ un`1
h and inserting (4.6) and (4.7) into (4.1) yield

1

2Δt
p}∇un`1

h }
2

´ }∇un
h}

2
` }∇un`1

h ´ ∇un
h}

2
q ` νp

1

2
´ 2ε0pd ` 1qq}Δhu

n`1
h }

2

` pγ ´
3νC2

inv

4ε0
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇun`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
ď τ1}Δhu

n
h}

2
` τ0Cg}∇un

h}
2

` τ0Cj |||un
h|||

2
j .

Taking the summation of all time steps up to n ` 1 gives

1

2Δt
}∇un`1

h }
2

` p
ν

2
´ 2νε0pd ` 1q ´ τ1q

n`1
ÿ

i“1

}Δhu
i
h}

2
` τ2

n`1
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇui
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

ď
1

2Δt
}∇u0

h}
2

` τ1}Δhu
0
h}

2
` τ0Cg

n
ÿ

i“0

}∇ui
h}

2
` τ0Cj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇu0
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
.

Then (4.9) follows by a discrete Gronwall inequality (see Lemma 4.2). This com-
pletes the proof. �

4.2. Stability analysis for the second-order scheme (4.3)–(4.2). For any func-
tions twi, i P Nu, the following identities can be found in [18, Eqs. (3.8) & (3.16)],
which will be used to prove the unconditional stability of (4.3) in case β “ 5.

(4.10)
pLβw

n`1,Lβ`1w
n`1

q “
β ´ 1

β
}Lβ`1w

n`1
}
2

`
1

β
}wn`1

}
2

`
1

2
p}wn`1

}
2

´ }wn
}
2

` }wn`1
´ wn

}
2
q,

(4.11)

pd5w
n`1,L6w

n`1
q “

1

10

´

}wn`1
}
2

´ }wn
}
2
¯

` 10

›

›

›

›

9

5
wn`1

´
3

2
wn

›

›

›

›

2

´ 10

›

›

›

›

9

5
wn

´
3

2
wn´1

›

›

›

›

2

` 90

›

›

›

›

1

2
wn`1

´ wn
`

1

2
wn´1

›

›

›

›

2

`
13

2
}wn`1

´wn
}
2
´
9

2
}wn

´wn´1
}
2

`
9

2
}wn`1

´2wn
`wn´1

}
2

ě Epwn`1
q ´ Epwn

q,
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where Ep‚q is defined as

Epwn`1
q “

1

10
}wn`1

}
2

` 10}
9

5
wn`1

´
3

2
wn

}
2

`
9

2
}wn`1

´ wn
}
2.

In addition, the following equality and inequality will be also used in analysis.

(4.12)
}Lβ`1w

n`1
}
2

“ }Lβw
n`1

` pwn`1
´ wn

q}
2

“ }Lβw
n`1

}
2

` β}wn`1
´ wn

}
2

`
1

2
p}wn`1

}
2

´ }wn
}
2

` }wn`1
´ wn

}
2
q.

(4.13)

}Lβ`1w
n`1

}
2

“ }wn`1
` βpwn`1

´ wn
q}

2

“ }wn`1
}
2

` β2
}wn`1

´ wn
}
2

` 2βpwn`1, wn`1
´ wn

q

“ pβ ` 1q}wn`1
}
2

` βpβ ` 1q}wn`1
´ wn

}
2

´ β}wn
}
2

ď pβ ` 1q}wn`1
}
2

` βpβ ` 1q}wn`1
´ wn

}
2.

Let

RHS2pvhq :“ ´

ÿ

FPF0

ż

F

tt∇Lβ`1p
n
huu ¨ p�∇vh�nF q ds ` pLβ`1∇pnh,Δhvhq

denote the right-hand side of (4.3). Similarly to (4.7), noting that Lβ`1p
n
h “

νLβ`1 pph,Spun
hqq “ νph,SpLβ`1u

n
hq, one has

(4.14)

|RHS2pvhq| ď τ1}ΔhLβ`1u
n
h}

2
` τ0Cg}∇Lβ`1u

n
h}

2

` τ0Cj |||Lβ`1u
n
h|||

2
j `

ν

2
}Δhvh}

2
`

νC2
inv

4ε0
|||vh|||

2
j .

Also, Lemma 4.1, (4.12), and (4.10) imply
(4.15)
aLap´βpun`1

h ,Lβ`1u
n`1
h q ě νpΔhLβu

n`1
h ,ΔhLβ`1u

n`1
h q

´ νε0pd ` 1q}ΔhLβu
n`1
h }

2
´ νε0pd ` 1q}ΔhLβ`1u

n`1
h }

2

` pγ ´
νC2

inv

4ε0
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇLβ`1u
n`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
´

νC2
inv

4ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇLβu
n`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

ě νpΔhLβu
n`1
h ,ΔhLβ`1u

n`1
h q ´ 2νε0pd ` 1q}ΔhLβ`1u

n`1
h }

2

` pγ ´
νC2

inv

2ε0
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇLβ`1u
n`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

νε0pd ` 1q

2
p}Δhu

n`1
h }

2
´ }Δhu

n
h}

2
q

`
νC2

inv

8ε0
p
ˇ

ˇ

ˇ

ˇ

ˇ

ˇun`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
´ |||un

h|||
2
j q

ě ν
”β ´ 1

β
}ΔhLβ`1u

n`1
h }

2
`

1

β
}Δhu

n`1
h }

2
`

1

2
p}Δhu

n`1
h }

2
´ }Δhu

n
h}

2
q

ı

´ 2νε0pd ` 1q}ΔhLβ`1u
n`1
h }

2
` pγ ´

νC2
inv

2ε0
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇLβ`1u
n`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

`
νε0pd ` 1q

2
p}Δhu

n`1
h }

2
´ }Δhu

n
h}

2
q `

νC2
inv

8ε0
p
ˇ

ˇ

ˇ

ˇ

ˇ

ˇun`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
´ |||un

h|||
2
j q.

Theorem 4.4. Let τ0, τ1 be defined as (4.8) and τ2 :“ γ ´
3νC2

inv

4ε0
´ τ0Cj with

γ “ minFPF0tγF u. Assume that γF ą τ0Cj `
3νC2

inv

4ε0
for all F P F0 with some ε0, ε

satisfying pε0pd`1qp
5
2 `εq`

ε
2 q ă

1
20 such that both 3ν

10 ´2νε0pd`1q´τ1 and τ2 are

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABLE CONSISTENT SPLITTING SCHEMES FOR NSES 17

positive. With the same assumption on Ω as in Theorem 3.4, scheme (4.3)–(4.2)
is unconditionally stable for β “ 5 in the sense that
(4.16)

Ep∇un`1
h q ` Δtp

3ν

10
´ 2νε0pd ` 1q ´ τ1q

n`1
ÿ

i“2

}ΔhL6u
i
h}

2
`

νΔt

5

n`1
ÿ

i“2

}Δhu
i
h}

2

`
νΔt

2
p1 ` ε0pd ` 1qq}Δhu

n`1
h }

2
` Δtτ2

n`1
ÿ

i“2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6u
i
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

νC2
invΔt

8ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇun`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

ď expp60τ0Cgt
n

q

„

Ep∇u1
hq ` Δtτ1}ΔhL6u

1
h}

2
`

νΔt

2
p1 ` ε0pd ` 1qq}Δhu

1
h}

2

`Δtτ0Cj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6u
1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

νC2
invΔt

8ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇu1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

j

.

Proof. Inserting (4.14) and (4.15) into (4.3), taking vh “ L6u
n`1
h and using (4.11)

yield

1

Δt
pEp∇un`1

h q ´ Ep∇un
hqq ` p

3ν

10
´ 2νε0pd ` 1qq}ΔhL6u

n`1
h }

2
`

ν

5
}Δhu

n`1
h }

2

`
ν

2
p1 ` ε0pd ` 1qqp}Δhu

n`1
h }

2
´ }Δhu

n
h}

2
q ` pγ ´

3νC2
inv

4ε0
q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6u
n`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

`
νC2

inv

8ε0
p
ˇ

ˇ

ˇ

ˇ

ˇ

ˇun`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
´ |||un

h|||
2
j q ď τ1}ΔhL6u

n
h}

2
` τ0Cg}∇L6u

n
h}

2
` τ0Cj |||L6u

n
h|||

2
j .

Taking the summation of all the time steps from 2 to n ` 1 gives

(4.17)

1

Δt
Ep∇un`1

h q ` p
3ν

10
´ 2νε0pd ` 1q ´ τ1q

n`1
ÿ

i“2

}ΔhL6u
i
h}

2
`

ν

5

n`1
ÿ

i“2

}Δhu
i
h}

2

`
ν

2
p1 ` ε0pd ` 1qq}Δhu

n`1
h }

2
` τ2

n`1
ÿ

i“2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6u
i
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

νC2
inv

8ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇun`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

ď
1

Δt
Ep∇u1

hq ` τ1}ΔhL6u
1
h}

2
`

ν

2
p1 ` ε0pd ` 1qq}Δhu

1
h}

2

` τ0Cg

n
ÿ

i“1

}∇L6u
i
h}

2
` τ0Cj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6u
1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

νC2
inv

8ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇu1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
.

By (4.13) one has

}∇L6u
n
h}

2
ď 6}∇un

h}
2

` 30}∇pun
h ´ un´1

h q}
2

ď 60Ep∇un
hq.

Then (4.16) follows immediately from Lemma 4.2. �

5. Error estimates

For simplicity we only analyze the second order scheme with β “ 5 and Lagrange
finite elements on simplicial elements. For the true solution u of (2.1)–(2.2)-(1.3)–
(1.4), we assume that upt, ‚q P V for all t P r0, T s such that �∇u�nF “ 0 over all
F P F0 (this means the artificial terms such as the penalty term in aLap and aLap´β

do not produce consistency errors) and the initial velocity satisfies the compatibility
conditions implied by consistent splitting methods (see, e.g., [25, Theorem 4.1] and
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18 XU LI AND JIE SHEN

[18, Theorem 8]). Let enu :“ uptnq ´ un
h and enp :“ pptnq ´ pnh. Let znh P Qh be

determined by

p∇znh ,∇qhq “ p∇pptnq,∇qhq @qh P Qh,

and let wn
h be the classical Lagrange element interpolation of uptnq. We decompose

the errors as

enu “ ηn
u ` φn

u “ uptnq ´ wn
h ` wn

h ´ un
h,

enp “ ηnp ` φn
p “ pptnq ´ znh ` znh ´ pnh.

They satisfy the following error equations:
(5.1)

p∇dβφ
n`1
u ,∇vhq

Δt
` aLap´βpφn`1

u ,vhq “ ´

ÿ

FPF0

ż

F

tt∇Lβ`1φ
n
puu ¨ p�∇vh�nF q ds

` pLβ`1∇φn
p ,Δhvhq ` RHSηpvhq, @vh P V h,

p∇φn`1
p ,∇qhq“p∇en`1

p ,∇qhq“ν
ÿ

FPFB

ż

F

∇ˆen`1
u ¨ p∇qh ˆ nF q ds @qh P Qh,

(5.2)

where

RHSηpvhq “ ´p∇utpt
n`β

q´
∇dβw

n`1
h

Δt
,∇vhq´νpΔuptn`β

q´ΔhLβw
n`1
h ,Δhvhq

`

ÿ

FPF0

ż

F

p�∇Lβη
n`1
u �nF q ¨ ttνΔhvuu ds

´

ÿ

FPF0

γF
hF

ż

F

p�∇Lβ`1η
n`1
u �nF q ¨ p�∇vh�nF q ds

`
ÿ

FPF0

ż

F

ttνΔuptn`β
q ´ ∇pptn`β

q ´ νΔhLβw
n`1
h ` ∇Lβ`1z

n
huu

¨ p�∇vh�nF q ds

` p∇pptn`β
q ´ Lβ`1∇znh ,Δhvhq.

Relationships (5.2) imply that φn
p “ ph,Spenuq for all n P N

`. Theorem 3.4 and (4.5)
imply the following estimate of φn

p .

Lemma 5.1. With the same assumption as in Theorem 3.4, for any ε2 ą 0 there
exists C such that

}∇φn
p }

2
ď ν2rp

1

2
` εq}Δhe

n
u}

2
` Cg}∇enu}

2
` Cj |||enu|||

2
j s

ď ν2rp
1

2
` ε ` ε2q}Δhφ

n
u}

2
` pCg ` ε2q}∇φn

u}
2

` pCj ` ε2q |||φn
u|||

2
j

` Cp}Δhη
n
u}

2
` }∇ηn

u}
2

` |||ηn
u|||

2
j s.

Proof. The first inequality follows immediately from a combination of Theorem 3.4
and (4.5). The second inequality follows from the following inequality,

pa ` bq2 “ a2 ` 2ab ` b2 ď p1 ` ε̃qa2 ` p1 `
1

ε̃
qb2.

Taking ε2 “ maxt
1
2 ` ε, Cg, Cjuε̃ makes the second inequality in the lemma. �
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Define the semi-norm |||¨|||a on H
1
2 pT q as

|||z|||
2
a :“

ÿ

FPF0

hF

ż

F

|ttzuu|
2 ds.

Note that for any v P V h, one has

}∇v}
2

“ p´Δhv,vq `

ÿ

FPF0

ż

F

�∇vn� ¨ v ds

ď C
´

}Δhv}
2

` |||v|||
2
j

¯
1
2

˜

}v}
2

`

ÿ

FPF0

hF

ż

F

|v|
2 ds

¸
1
2

ď C
´

}Δhv}
2

` |||v|||
2
j

¯
1
2

}v} ď C
´

}Δhv}
2

` |||v|||
2
j

¯
1
2

}∇v},

where in the last two inequalities an inverse trace inequality and Poincaré’s inequal-
ity are employed. This implies

}∇v}
2

ď Cp}Δhv}
2

` |||v|||
2
j q for all v P V h.

It can be verified from Young’s inequality and the above inequality that, for any
ε3 ą 0 there exists C such that

|RHSηpvhq|

ď ε3

´

}Δhvh}
2

` |||vh|||
2
j

¯

`C
!

}∇utpt
n`β

q ´ ∇dβw
n`1
h {Δt}2 ` ν}Δuptn`β

q ´ ΔhLβw
n`1
h }

2

`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇLβ`1η
n`1
u

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇνΔuptn`β
q´νΔhLβw

n`1
h ´∇pptn`β

q`∇Lβ`1z
n
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

a

` }∇pptn`β
q ´ Lβ`1∇znh}

2
)

.

The following inequality can translate a face-based norm to cell-based norms (see,
e.g., [1, Eq. (4.20)]): for any q P H1pKq and for any face F Ă BK, there exists C
such that

|q|
2
F ď Cph´1

F }q}
2
K ` hF }∇q}

2
Kq for all K P T .(5.3)

Let m and m1 (m ě 2,m1 ě 1) be the polynomial orders of the velocity and pressure

spaces, respectively. Suppose pu, pq P C2pr0, T s;Hm`1pΩqq ˆC2pr0, T s;Hm1
`1pΩqq.

Then a combination of (5.3) and the approximation errors in time for dβ and Lβ`1

(see (2.7) and (2.9)), and in space (see, e.g., [3, Theorem 4.4.4]) yields

|RHSηpvhq|ďε3

´

}Δhvh}
2

`|||vh|||
2
j

¯

`CpΔt4`hmint2m´2,2m1
u
q`CνpΔt4`h2m´2

q.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



20 XU LI AND JIE SHEN

Similarly to (4.17), taking v “ Lβ`1φ
n`1
u , one obtains

1

Δt
Ep∇φn`1

h q ` p
3ν

10
´ 2νε0pd ` 1q ´ τ1 ´ ε3q

n`1
ÿ

i“2

}ΔhL6φ
i
h}

2

`
ν

5

n`1
ÿ

i“2

}Δhφ
i
h}

2
`

ν

2
p1 ` ε0pd ` 1qq}Δhφ

n`1
h }

2

` pτ2 ´ ε3q

n`1
ÿ

i“2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6φ
i
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

νC2
inv

8ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇφn`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

ď
1

Δt
Ep∇φ1

hq ` τ1}ΔhL6φ
1
h}

2
`

ν

2
p1 ` ε0pd ` 1qq}Δhφ

1
h}

2
` τ0Cg

n
ÿ

i“1

}∇L6φ
i
h}

2

`τ0Cj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6φ
1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`
νC2

inv

8ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇφ1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`CnpΔt4`hmint2m´2,2m1

u
q ` CνnpΔt4 ` h2m´2

q.

By Lemma 4.2, we have

Ep∇φn`1
h q ` Δtp

3ν

10
´ 2νε0pd ` 1q ´ τ1 ´ ε3q

n`1
ÿ

i“2

}ΔhL6φ
i
h}

2
`

νΔt

5

n`1
ÿ

i“2

}Δhφ
i
h}

2

`
νΔt

2
p1 ` ε0pd ` 1qq}Δhφ

n`1
h }

2
` Δtpτ2 ´ ε3q

n`1
ÿ

i“2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6φ
i
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

νΔtC2
inv

8ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇφn`1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

ď expp60τ0Cgt
n

q

”

Ep∇φ1
hq ` Δtτ1}ΔhL6φ

1
h}

2
`

νΔt

2
p1 ` ε0pd ` 1qq}Δhφ

1
h}

2

` Δtτ0Cj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇL6φ
1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
`

νΔtC2
inv

8ε0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇφ1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j

` CtnpΔt4 ` hmint2m´2,2m1
u

` νΔt4 ` νh2m´2
q

ı

.

Assume that the pu1
h, p

1
hq is obtained via (2.14)–(2.12). One can check that it

satisfies the error equation,

p∇e1u,∇vhq ` ΔtaLappe1u,vhq “ p∇e0u,∇vhq

´ Δt
ÿ

FPF0

ż

F

tt∇e0puu ¨ p�∇vh�nF q ds ` Δtp∇e0p,Δhvhq ` pgΔt2,∇vhq

and (5.2) with n “ 0, where }gΔt2} “ OpΔt2q depicts the truncation error. Thus
it can be proven that

}∇φ1
h} ` Δtp}Δhφ

1
h} `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇφ1
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j
q

ď CpΔt2 ` hmintm´1,m1
u

` }∇e0u} ` Δtp}∇e0u} ` }Δhe
0
u} `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇe0u
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j
qq.

Together with the triangle inequality and Lemma 5.1, this implies the following
estimate.

Theorem 5.2. Let m and m1 (m ě 2,m1 ě 1) be the polynomial orders of the
velocity and pressure spaces, respectively. Let puh, phq be the solution of (2.15) with

β “ 5. Suppose pu, pq P C2pr0, T s;Hm`1pΩqq ˆ C2pr0, T s;Hm1
`1pΩqq and pu1

h, p
1
hq

is obtained via (2.14)–(2.12). With the same assumption as in Theorem 4.4, the
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following holds true:

sup
2ď�ďn`1

}∇pupt�q ´ u�
hq}

2
` νΔt

n`1
ÿ

�“2

}Δhpupt�q ´ u�
hq}

2
`

Δt

ν

n`1
ÿ

�“2

}∇pppt�q ´ p�hq}
2

ď CpΔt4 ` hmint2m´2,2m1
u

` }∇e0u}
2

` Δtp}∇e0u}
2

` }Δhe
0
u}

2
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇe0u
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

j
qq.

With the approximation properties of Lagrange elements (see, e.g., [3, Theorem
4.4.4]) and (5.3), it is not hard to see that the right-hand side of above estimate is

OpΔt4 ` hmint2m´2,2m1
uq.

6. Numerical experiments

In this section we test the convergence rates of the methods (2.15)–(2.12) and
(2.16)–(2.17) for the Stokes equations and Navier–Stokes equations, respectively.
On Ω “ p0, 1q2, the true solutions are prescribed as

upx, y, tq “
1

2π
sinpπtq

ˆ

sinpπxq2 sinpπyq cospπyq

´ sinpπyq2 sinpπxq cospπxq

˙

,

ppx, y, tq “
1

2π
sinpπtq cospπxq cospπyq.

The right-hand side f is chosen such that pu, pq solves the instationary (Navier–)
Stokes problem with ν “ 1. The stabilization parameter γF is set to be 20 for all
F P F0.

To verify the temporal convergence rates, we use the P 4 ˆP3 Lagrange element
pair on the fourth refinement of a grid with h “ 0.25 (see Figure 6.1) for spatial
discretization, whose spatial errors should be very small such that the temporal
errors dominate. The initial time step is Δt “ 0.025, and the ending time is
T “ 0.5. Some numerical results for β “ 5 are shown in Figure 6.2, from which
one can see both the schemes for the Stokes equations and Navier–Stokes equations
have second-order convergence rates in time with respect to all the shown norms.

To verify the spatial convergence rates, we try several Lagrange element pairs
with Δt “ 10´5 and T “ 0.1, including the inf-sup stable pairs P 2ˆP1 and P 3ˆP2,
and the non-inf-sup stable equal-order pairs P 2 ˆP2 and P 3 ˆP3. The initial grid
is shown in Figure 6.1. Some numerical results can be found in Tables 6.1–6.4. The
error tables for the Navier–Stokes equations are not shown here because they are
almost the same as the ones for the Stokes equations.

There are several interesting phenomena. First, the convergence rates of all the
terms are exactly or better than the predicted ones in Theorem 5.2. Second, for
the convergence rates of the L2 errors of velocity, it is only suboptimal for P 2

velocity elements but optimal for P 3 velocity elements. Finally, the non-inf-sup
stable pairs also work for our method and they usually have better convergence
rates with respect to pressure errors, compared to the inf-sup stable pairs with the
same velocity element.
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Figure 6.1. Initial grid
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Figure 6.2. Shown above are errors versus time step at T “ 0.5
by (2.15)–(2.12) with β “ 5 for the Stokes equations (left) and
(2.16)–(2.17) with β “ 5 for the Navier–Stokes equations (right),
respectively. The P 4 ˆ P3 element pair is used.

Table 6.1. Errors and convergence rates by (2.15)–(2.12) using
P 2 ˆ P1 finite elements with β “ 5 at T “ 0.1 (Δt “ 10´5)

h }u ´ uh} }∇pu ´ uhq} }Δhpu ´ uhq} }∇ ¨ uh} }p ´ ph} }∇pp ´ phq}

2´2 2.66e-3 2.40e-2 3.76e-1 8.64e-3 4.22e-3 5.21e-2
2´3 8.62e-4 1.63 8.45e-3 1.51 1.92e-1 0.97 3.98e-3 1.12 2.05e-3 1.05 2.69e-2 0.96
2´4 2.48e-4 1.80 2.59e-3 1.70 9.21e-2 1.06 1.39e-3 1.52 8.09e-4 1.34 1.18e-2 1.18
2´5 6.64e-5 1.90 7.16e-4 1.86 4.43e-2 1.06 4e-4 1.79 2.51e-4 1.69 4.60e-3 1.36
2´6 1.70e-5 1.96 1.86e-4 1.95 2.18e-2 1.03 1.06e-4 1.92 6.83e-5 1.88 1.89e-3 1.28
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Table 6.2. Errors and convergence rates by (2.15)–(2.12) using
P 2 ˆ P2 finite elements with β “ 5 at T “ 0.1 (Δt “ 10´5)

h }u ´ uh} }∇pu ´ uhq} }Δhpu ´ uhq} }∇ ¨ uh} }p ´ ph} }∇pp ´ phq}

2´2 2.69e-3 2.42e-2 3.76e-1 8.75e-3 4.70e-3 5.59e-2
2´3 8.68e-4 1.63 8.54e-3 1.51 1.92e-1 0.97 4.08e-3 1.10 2.23e-3 1.08 2.81e-2 0.99
2´4 2.49e-4 1.80 2.61e-3 1.71 9.22e-2 1.06 1.40e-3 1.54 8.26e-4 1.43 1.06e-2 1.40
2´5 6.64e-5 1.91 7.17e-4 1.86 4.43e-2 1.06 4.02e-4 1.80 2.51e-4 1.72 3.32e-3 1.68
2´6 1.70e-5 1.96 1.86e-4 1.95 2.18e-2 1.03 1.06e-4 1.93 6.77e-5 1.89 9.39e-4 1.82

Table 6.3. Errors and convergence rates by (2.15)–(2.12) using
P 3 ˆ P2 finite elements with β “ 5 at T “ 0.1 (Δt “ 10´5)

h }u ´ uh} }∇pu ´ uhq} }Δhpu ´ uhq} }∇ ¨ uh} }p ´ ph} }∇pp ´ phq}

2´2 9.69e-5 1.97e-3 7.70e-2 8.84e-4 2.48e-4 4.98e-3
2´3 6.56e-6 3.88 2.48e-4 2.99 1.98e-2 1.96 1.07e-4 3.04 3.70e-5 2.75 1.15e-3 2.12
2´4 4.27e-7 3.94 3.01e-5 3.04 4.89e-3 2.02 1.33e-5 3.01 3.44e-6 3.43 2.36e-4 2.29
2´5 2.73e-8 3.97 3.70e-6 3.03 1.21e-3 2.02 1.66e-6 3.00 3.02e-7 3.51 5.39e-5 2.13
2´6 1.82e-9 3.91 4.59e-7 3.01 3e-4 2.01 2.07e-7 3.00 2.92e-8 3.37 1.31e-5 2.04

Table 6.4. Errors and convergence rates by (2.15)–(2.12) using
P 3 ˆ P3 finite elements with β “ 5 at T “ 0.1 (Δt “ 10´5)

h }u ´ uh} }∇pu ´ uhq} }Δhpu ´ uhq} }∇ ¨ uh} }p ´ ph} }∇pp ´ phq}

2´2 9.69e-5 1.97e-3 7.69e-2 8.81e-4 2.95e-4 6.52e-3
2´3 6.57e-6 3.88 2.48e-4 2.99 1.98e-2 1.96 1.07e-4 3.04 3.89e-5 2.92 1.29e-3 2.34
2´4 4.28e-7 3.94 3.01e-5 3.04 4.89e-3 2.02 1.33e-5 3.01 3.41e-6 3.51 2.17e-4 2.57
2´5 2.73e-8 3.97 3.70e-6 3.03 1.21e-3 2.02 1.66e-6 3.00 2.66e-7 3.68 3.65e-5 2.57
2´6 1.82e-9 3.91 4.59e-7 3.01 3e-4 2.01 2.07e-7 3.00 2e-8 3.73 6.28e-6 2.54

7. Concluding remarks

We constructed in this paper first- and second-order (in time) pure C0 consistent
splitting finite element schemes for the Navier–Stokes equations, for which one only
needs to solve a sequence of Poisson type equations at each time step, and the inf-
sup condition between velocity and pressure finite element spaces is not required.
To avoid using C1 conforming elements, the spatial discretization is constructed in
a discontinuous Galerkin (DG) framework. Therefore, the proposed schemes are
very efficient and easy to implement.

As a key result, we extended the estimate on the Stokes pressure in the space con-
tinuous case to the space discontinuous case with the C0 DG finite elements. With
the help of this key estimate, we established unconditional stability and carried out
error analysis for the fully discrete schemes in the absence of nonlinear terms. Fi-
nally, we presented numerical experiments to validate our theoretical analysis with
both inf-sup stable and non-inf-sup stable C0 finite elements.

A key assumption for the estimate of the Stokes pressure in (1.6), which is crucial
for the stability and error analysis, is BΩ P C3 which excludes polygonal domains.
Numerical results in this paper and in [18,26] indicate that the proved stability and
convergence results still hold in rectangular domains. However, it is not clear and
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beyond the scope of this paper whether the proof can be extended to polygonal
domains.

On the other hand, the derivation of error estimates requires the solution to be
sufficiently smooth at t “ 0 which requires that the data satisfy certain compati-
bility conditions [31]. It is possible to relax the smoothness assumption at t “ 0 by
using the so-called smoothing properties as in [17, 28, 30] or with graded variable
time steps near t “ 0 [21, 22, 28], but the process is delicately tedious and beyond
the scope of the current paper.
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