Licensed to AMS.

MATHEMATICS OF COMPUTATION
https://doi.org/10.1090/mcom/4126
Article electronically published on July 22, 2025

UNCONDITIONALLY STABLE CONSISTENT SPLITTING
SCHEMES FOR THE NAVIER-STOKES EQUATIONS WITH C°
FINITE ELEMENTS

XU LI AND JIE SHEN

ABSTRACT. We construct in this paper first- and second-order (in time) de-
coupled and unconditionally stable schemes for the Navier—Stokes equations
based on the consistent splitting methods and C? finite elements, where spatial
discontinuity of the gradient of the discrete velocity is treated using a discon-
tinuous Galerkin framework. The challenge for their stability analysis is that
the gradient of discrete velocity is discontinuous so that the estimate on the
continuous Stokes pressure by Liu, Liu, and Pego [Comm. Pure Appl. Math.
60 (2007), pp. 1443-1487] cannot be applied in the space discrete case. We
first extend the estimate on the Stokes pressure to the space discrete case, and
then use it to prove the unconditional stability and carry out an error analysis
for the proposed fully discrete schemes. Numerical results are presented to
validate our analytical results.

1. INTRODUCTION

We consider in this paper numerical approximation of the following incompress-
ible Navier-Stokes equations (NSEs)

(1.1) u—vAu+u-Vu+Vp=f in JxQ,
(1.2) Vou=0 in JxQ,
(1.3) u=0 on [0,7]xT,
(1.4) w(0,0) =u’ in Q,

where the unknowns are velocity w and pressure p, v > 0 denotes the constant
viscosity coefficient, f denotes the unit external body force, u® is a given initial
velocity satisfying V-u® = 0, Q < R? (d = 2, 3) is a bounded and connected domain
with Lipschitz boundary T, and J = (0, T] with a given time 7" > 0.

The main objective of this paper is to construct a class of fully discrete and
decoupled schemes for the NSEs using C° finite element methods in space and the
consistent splitting methods in time [10,25].
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Assuming that the nonlinear term is treated explicitly (resp. semi-implicitly),
decoupled methods for NSEs, such as projection type methods and consistent split-
ting methods [9], only require solving a sequence of Poisson (resp. elliptic) equations
at each time step, thus they are very efficient and can be easily implemented. Over
the years, there has been an enormous amount of work in developing efficient and
accurate decoupled schemes for NSEs, including projection type methods (see, e.g.,
[6L[9LT4HT61 201 241[29,82] ), consistent splitting methods [T0LI8T9,23,25,26,[34] (see
also the Gauge method [B27,[33]), and artificial compressibility methods (see, e.g.,
[I1HI3]), to name just a few.

A main issue with the projection type methods is that only schemes with first-
order pressure (or velocity) extrapolation are proven to be unconditionally stable,
limiting their accuracy to weakly second-order [9]. On the other hand, The con-
sistent splitting methods are based on an equivalent system of NSEs (cf. [I0L25]).
More precisely, the continuity equation ([.2]) is replaced by the following equivalent
pressure-Poison equation

(1.5) (Vp,Vq) = (f —u-Vu—vV xV xu,Vq) VYge H(Q),

which is obtained by testing (1)) with V¢ and using the divergence-free condi-
tion (L2) and the boundary condition ([L3]). It has been observed that decoupled
schemes based on this equivalent formulation do not produce splitting errors and
can be naturally extended to higher order temporal discretizations. In addition,
they do not require the inf-sup condition between velocity and pressure spaces.

The unconditional stability of the first-order semi-discrete consistent splitting
schemes was proved in [10,25]. However, the stability analysis of any second- or
higher-order consistent splitting scheme remained open until very recently Huang
and Shen constructed a generalized BDF2 formula in [I8] which is more stiffly stable
than the usual BDF2 scheme, applied it to construct a new second-order consistent
splitting scheme for the NSEs, and proved its unconditional stability. A main tool
in the stability analysis of consistent splitting methods in [I825] is the following
estimate of the Stokes pressure ps(u) [25]:

(1.6)
IVps(u)|? < (% +&)|Au|? + C|Vu|? for all u e H*(Q) n H(Q), 0Q e C°,
where the Stokes pressure is defined as
Vps(u) = (AP — PA)u,
with P being the Leray-Helmholtz projector from L*(Q) on to H = {v € L*(Q) :

V-v =0, v-n|p = 0}. Then, it is shown in [25] that for a given u € H*(f), we
have

(1.7)
(Vps(u),Vq) = =(V x V x u,Vq) = JFV xu-(Vgxmn)ds VYge H'(Q)/R.

In order to use the estimate ([[Z6)), one has to test the momentum equation (L))
with —Aw for some v € H?(Q). While this is not a problem in space continuous
case, it does create a significant issue for spatial discretization as a conforming
approximation would require C' elements which are not easy to use. In fact, the
fully discrete schemes considered in [25,26] used C* finite elements. To the best of
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our knowledge, there is no unconditionally stable schemes using C° finite elements
and consistent splitting methods.

In this paper, we propose and analyze a class of consistent splitting schemes,
using C? discontinuous Galerkin (DG) finite elements for both velocity and pressure.
More precisely, for the spatial discretization we use the interior penalty strategy
from the DG method (see the review [I]) to penalize the discontinuity of gradient
of the discrete velocity. In particular, this pair of approximation spaces for velocity
and pressure does not require to satisfy the usual inf-sup condition.

However, due to the discontinuity of gradient of the discrete velocity, the stability
and error analyses are very challenging since the estimate (L6 is no longer valid
for C° DG finite elements. Thus, a key in proving the unconditional stability
and deriving an a priori error estimate in the fully discrete case is to extend the
inequality (LB) to the case u € H*(Q) n Hy(Q) + Vi, where V), € H}(Q) is the
discrete velocity space such as the standard (vector-valued) C° Lagrange element
space.

The main contributions of this paper include

e Construction of first- and second-order (in time) consistent splitting fully
discrete schemes with C? finite elements for the NSEs;

e Extension of the estimate ([L6) on the Stokes pressure in the continuous
case to the discrete case (see Theorem [BA): this is a key result for the
analysis of fully discrete consistent splitting schemes;

e Stability and error analysis of the fully discrete consistent splitting schemes
in the absence of nonlinear term. We believe that this is the first stability
and error analysis for fully discrete consistent splitting schemes with C°
finite elements.

As pointed out in [I8], we emphasize that the main difficulty in the stability and
error analysis of consistent splitting schemes is to deal with the Stokes operator.
This is because the analysis related to Stokes pressure is only connected to the
diffusion term and temporal derivative term. Therefore, in order to simplify the
presentation, we limit our attention in the analysis to the unsteady Stokes equa-
tions. But it is expected that our analysis can be extended, albeit tedious, to the
full NSEs.

This paper is organized as follows. In Section Pl we give some background of
the semi-discrete (in time) consistent splitting schemes and propose a class of fully
discrete schemes with pure C° elements for them, where the DG methods are em-
ployed to treat the discontinuity of the gradient of the velocity field. In Section [B]
we extend the estimate (L) on the Stokes pressure in the space continuous case
to the space discrete case. In Sections ] and Bl we consider the unsteady Stokes
problem, and use the estimate of the discrete Stokes pressure to prove unconditional
stability and carry out error analysis, respectively, for the fully discrete schemes. In
Section [l we present some numerical experiments to validate our error estimates.
Finally we make some concluding remarks in Section [7l

Throughout the paper we use C' and &, with or without subscripts, to denote a
generic positive constant and a generic small positive constant, respectively. For
any subdomain D < Q, the inner product and norm in L?*(D) (or L*(D)) are
denoted by (e, )p and | e |p, respectively. When D = €, the subscript is omitted.
For any (d — 1)-dimensional linear manifold F, let | o | and |e |1 p denote the

L2(F) norm and H*2 (F) norms (see, e.g., [8, pp. 6-8]), respectively.
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2. CONSISTENT SPLITTING C° FINITE ELEMENT SCHEMES

In this section, we shall construct consistent splitting C° finite element schemes
for the Navier—Stokes equations.

2.1. Fundamental framework for a class of C° consistent splitting meth-
ods. For the sake of clarity, we start with the following equivalent formulation of
the time dependent Stokes equations:

u—vAu+Vp=f, in JxQ
(2.2) (Vp,Vq) = (f —vV x V xu,Vq) VYge H'(Q).

By integration by parts, one has
(VxV xu,Vq) = —LV xu- (Vg xn)ds.
Therefore (22)) is also equivalent to
(2.3) (Vp,Vq) = (f,Vq) + VL Vxu-(Vgxmn)ds VYge H'(Q).

One can then construct decoupled consistent splitting schemes for ([2I0)—-(2Z2]). For
instance, a first-order consistent splitting scheme is:

n+l _ ,n
(24) u A u _ VAUVH—I _ fnJrl _ vpn7
(2.5)  (Vp"t1,Vq) = (f",Vq) + VJ V xu" . (Vgxmn)ds Yqe HY(Q).
r

The unconditional stability of the above scheme has been proved in [10,25]. How-
ever, the stability of a direct extension to second-order with BDF2 and second-order
extrapolation for the pressure is still an open problem. Recently, a stable second-
order consistent splitting method was constructed using a generalized BDF2 scheme
proposed in [18§],

(28 + Du*! — 4Bu” + (28 — Du"~!
(2.6) 2At

—vA (ﬁu”+1 - (B- 1)u”)
=PV ((B+Dp" - Bp ),

where 8 > 1 is a parameter and the case 8 = 1 reduces to the usual BDF2. It
is shown in [I§] that the scheme (26)-(2.1) is unconditionally stable for 5 > 5.
Below, we shall construct a stable fully discretization of this scheme using C° finite
elements.

To simplify the notations, we introduce two operators dg and Lg such that
dgw™t = ((2B+ 1w —4Buw"+(268—1)w" 1) /2 and Lew™ T = Bu T —(B—1)w"
for arbitrary functions w. Therefore ([2.6]) can be rewritten as

dﬁ’u,""'l

N VALzu™tt = fP L "
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It can be easily shown by Taylor expansion that, for a smooth function ¢(t), one
has

n+1 _ 2
(2.7) dﬂit =g (t""P) + 1=3F 63B g" (") A + O (A),
(2.8) Lagtt =g - 201 (62_ Do (7+8) a1+ 0 (a8%),
(2.9) Lsig" =g"tF — @g" (t"P) AL + O (At?).

Denote by V := H?*(Q) n H}(Q) the solution space of w. To prove the stability
of the above schemes via the estimate (L)), variational formulations obtained by
testing (Z6]) with —Awv are considered in [I§], i.e.,

(2.10)
(Vdgu™t! Vo)
At
Therefore, a straightforward conforming spatial discretization for ([2I0) would re-
quire C! elements for the velocity approximation (see, e.g., [25,26]). Since C*!
elements are cumbersome to use in practice, we shall construct below a C° finite
element scheme.

+ v(ALsu™ L Aw) = (f"1P — VL p", —Av) Yve V.

2.2. Full discretization using C° finite elements. Let 7 be a shape-regular
partition of € (not necessary to be simplicial). The sets of faces, boundary faces and
interior faces are denoted by F, F¢ and F°, respectively. Note that F = F7 u F°.
We use hi and hp to denote the diameter of any K € 7 and F € F, respectively,
and set h := maxger hx and hy € L%(Q) such that hy|x := hy for all K € T. For
m > 0 we define

H™(T) :={qe L*(Q) : q|x € H™(K) for all K € T}.

The space H™(F) can be defined similarly. Like in many DG methods, we in-
troduce the jump operator [o] : H2(T) — H?(F°) and the average operator
{{o}} : H2(T) — H2(FO) as follows. On an interior face F € F° which is shared by
two elements K7 and K5, we define

[l i=alx, —alwr e} = glali, +alicy)

In addition, we extend the definition of [e] and {{e}} to [H?(T)]¢ and [H?(T)]4*4
component-wise. The following well-known identity can be found in [I],

@) N[ mds= ¥ [ oladas+ Y | bliahds+ 3 | pads

KeT FeFo Y F FeFovF FeFo

Denote by V',  H () and Q;, = H'(Q)/R some pair of finite element spaces of
velocity and pressure. They do not need to satisfy the inf-sup condition. Equations
23) and ([Z3) motivate us to use the following scheme to update the pressure: for
given uzﬂ € V), compute pZH € Qp by

(2.12)

(Vopth, Van) = (F7, Van) + ), VJ Vxuptt - (Vg x np)ds  Ygu € Q.
FeFe F
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Next, let us investigate the discretizations of the velocity-updating procedure.
We consider a general form of the momentum equation,

ut+M=0

When M = —vAwu + Vp — f, it is exactly (2I)). Similarly, if we take M =
—vAu + (u - A)u + Vp — f, it becomes the momentum equation (L.

Assume that M = —u, € H?** (). Instead of testing the momentum equation
with Awv for v € V), (since Av is not well-defined on V'3,), we take gradient on both
sides of the above equation first to get

Vut +VM = 0.

Testing the above equation with Vv for any v € V,, integration by parts and using
the identity (ZI1)) give

(Vug, Vo) — (M, Apv) + Z {M}} - ([Vo]nr)ds

FeFo JF
+ Z L[[Mﬂ-({{Vv}}nF) ds + Z L M- (Vong)ds = 0,
FeFo FeFo

where Ay, is the broken Laplace operator, meaning

(M, Apv) = Z (M, Av)g  for any v e Vi,
KeT

and np is a unit normal vector of F. Since M € H%+E(Q) (implying that [M] = 0
on F%) and M = —uy, one has

(Ve Vo) — (M, Apw) + Y] L{{M}}-([{Wﬂnp)ds= D JFut-(anp)ds.

FeFo FeFo

After adding a penalty term which is inspired by DG methods (see [I]), we finally

get
(2.13)
(Vi Vo) — (M, Ayw) + Y J (MY - ([Volnr) ds
FeFo ¥
+ Z—I}:JF([[Vu]]nF)-([[Vv}]np)ds: D ue (Vong)ds,

FeFo FeFo

with yg > 0, F € FY, being the penalty parameters. Note that for functions in V7,
the interior jump of their tangent components vanishes. Therefore one has

J ([Vu]nrg) - ([Vv]ng)ds = J [Vu] - [Vov]ds for all F e F°.
F F
So these two forms are equivalent in the context of our study.

Taking M = —vAu + Vp — f, we can construct fully discrete schemes by com-
bining semi-discretizations in time (see ([2:4)) and (2:0)) and the semi-discretization
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in space (based on (ZI3)). To simplify the notation, we define

arap(u" v) == v(Apu Apw) = YT | {rAu Y ([Volng) ds

FeFo F

— un+1 n Ty v }
Fezf:ofF([[v [np) - {vAnvld

: Fezflo Z—j’ JF([[VU"HHW’F) ([Vv]nr)ds,

and

aLap—p (U™t v) 1= V(AL Lpu" T Apv)

= > | fvAnLpur Y ([Volng) ds

FeFovF

— un+l n My v .
FGZ]-'OJF([[Vﬁﬁ Inp) - {rApvld

’ F;FO Z_I; fF([[v£5+1u"+lﬂ"F) “([Volnr)ds,

where the third terms in the right-hand side of above two formulations are also
artificial terms to guarantee the symmetry of the coefficient matrices. Suppose
that u) € V', is some interpolation of u° and p) is obtained via (212).
Then, a first-order (in time) fully discrete scheme is
Scheme I Given (u},py) € Vi, xQp, find uZ“ € V', such that for any vy, € V,
(2.14)
(Vuptt — Vul, Vuy,)
At

+ aLap(uZ’Ll, vp)

= 3 [ 4= £ (ol ds

FeFo

— (" = VR, Apop) + Z . w (t" ) - (Vopny) ds,
FeF?

and then update pﬁ“ by [2I2)). Similarly, a second-order (in time) fully discrete

scheme is
Scheme II Given (u},p}) € V}, x Qp, with i = n,n — 1, find u}*' € V, such
that for any v, € Vi,

(2.15)
Vdgu?t, Vo
s hAt 2 + arap-p(up ™ vp)
. J UVLsapl — FN - ([Vonng) ds
reFoJF
. (fn+,3 _ £5+1VpZ,Ah’Uh) + 2 J ut(th?) - (Vopnpg)ds,
F

FeFo
and then update pZ’Ll by 212)).

Here u; represents the time derivative of the true velocity solution. Note that
u¢|p is known from the boundary conditions of w (indeed we have ur = 0 for
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8 XU LI AND JIE SHEN

homogeneous boundary conditions) and thus the last terms in (ZI4) and (ZI3)
are computable. If u;|r - n is nonzero, the way updating pressure should also be
modified as follows (cf. [25]):

(VpZH,th) = (f”H,th) + Z 1/‘[ V x uZ“ (Vaqn x np)ds
FeFe UF

- J uy-ngpds Vagn € Qp.
o0

Remark 2.1. The methods (ZI4)) and (ZI5) can be regarded as two continuous
interior penalty (CIP) methods (see, e.g., [2L[7]) for discretizing a formal fourth-
order problem of the velocity w (i.e., —Au;—AM = 0) with the Dirichlet boundary
condition u|r = 0 and Neumann boundary condition M|r = —u|r (indeed it is
also zero here). CIP methods use C finite elements and penalize the interior
continuity of derivatives through a DG framework (see arap and apap—g). For the
penalty term in apap—g, i.e.,

' F;FU Z_li JF([WﬁﬁﬂunH]]nF) ([Vv]nr)ds,

the operator L£41 can also be replaced by either L5 or £ (identity operator, which
is more commonly-used in CIP methods), which only slightly affects the lower bound
requirement for yp in stability analysis (see Section[]). We use L5117 here because
the stability analysis requires testing the discrete problem with v;, = £5+1u2+1,
which resembles the semi-discrete case [I8]. Such a choice can help us simplify the

analysis.

2.3. Extension to the Navier—Stokes equations. For the NSEs, the velocity-
updating procedure for the momentum equation (ILI) can be constructed similarly
by taking M := —vAu+ (u-V)u+Vp— f in [2I3). More precisely, a second-order
fully discrete scheme for the Navier—Stokes equations is

(Vdgu ™, Vuy,)
At
== >0 | HLomup - V)Loaup + VLsaph — F*HR - ([Vor]ng) ds
(2.16) FeFo ot
- (f"“a — (Lgtruy - V)Larruy — L Vpy, Apvp)

+ Z JF w (t"P) - (Vopny) ds;

FeF?

+ aLap—p (g vn)

and
(Vopth Van) = (f"* = (uptt - V)up™!, V)

2.17
( ) + Z Z/J VXUZ+1~(thXnF)dS Yaqn € Qp-
FeFe F
3. ESTIMATE OF THE DISCRETE STOKES PRESSURE

This section extends the estimate of the Stokes pressure (L8) from V' = H?*()
H{(Q) to V() := V + V,. Similarly to the space continuous case (see [I8,25]),
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STABLE CONSISTENT SPLITTING SCHEMES FOR NSES 9

the numerical analysis is limited to domains with C® boundary. We first enlarge
the domain of the Stokes pressure ps as follows: For any u € V (h),

(3.1) (Vps(u),Vq) = Z J Vxu-(Vgxmnp)ds Yge HY(Q)/R.

FeFe
For arbitrary u € V' (h), since (Vps(u),Vq) = 0 for all ¢ € H}(Q) (as Vg x np
also vanishes on all boundary faces), we have Vpg(u) € H(div; Q) and Aps(u) = 0.
Then it follows from a trace theorem (see, e.g., [8 Theorem 2.5]) that a”S—fL") belongs

to H=/2(T"). These imply that pg(u) is a harmonic function satisfying the following
Neumann boundary value problem

Apg(u) =0 in Q, ap;—(u)=—(V><V><u)-n on I,
n

where (V x V x u) -m € H-/?(T") should be understood in the sense that

J(Vxqu)-nqd8=— Z J V xu-(Vgxmn)ds forall ge H(Q)/R.
r reFo l

Let ®(x) := dist(a, ') describe the distance between the point €  and I". For
any s > 0, the set of points « € 2 within distance s from I'" and its complementary
set are denoted by

Qi ={xeQ:P(x) <s} and Qf :=O\Q,,

respectively. We also set I'y = {x € Q: ®(x) = s}. Suppose I' is C*® and compact,
it is pointed out in [25] that ® € C3(Q,,) for some sy > 0 and n(z) = —V® is
exactly the unit outward normal vector to I'y = I'S with s = ®(x).

The proof of Lemma Bl is very similar to [25] Lemma 3.2]. So we omit it.

Lemma 3.1. Let Q < R? be a bounded domain with boundary T of class C?. Let
u € V(h) and suppose that

u) = (I-nnu=u—(u-n)n, u:=nn'u=(u n)n,

in some neighborhood of I'. Then the following are valid:
(i) Ifu=0o0nT, then V-uy =0 onT.
(i) fu-n=0onT, then Vxuy =0 onT.
On the whole domain 2, we define

up=¢ (I- nnT) w, uy:=¢énn'u+ (1-9u,

where ¢ is a cutoff function satisfying £(x) = 1 when ®(x) < 3s and £(x) = 0 when
®(x) > s. Note that & can be C? for small s (see [25, Section 3.4]).

Lemma 3.2. Let 2 be a bounded domain with boundary T of C3, and let uw € V (h)
be arbitrary. Then for any q € H*(Q) satisfying Aq = 0 and € > 0, there evists
C > 0 which scales like e~ such that

(Anuy — Vps(u), Vo) < CChny Y h;lf [Va]nrl ds + <[ Vq|?,
FeFo© F

where Ciny 18 a constant for the inverse inequality.
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Proof. For any u € V(h), there exist w € V and z € V, such that u = w + z.
Define w| and z| in the same way as u). It has been proved in [25] that

(3.2) (Aw) — Vps(w),Vq) =01if g€ H'(Q) satisfies Ag = 0.

For the estimate related to z, a combination of integration by parts, Lemma BIJ(i)
and the fact Ag = 0 gives that

(Ath,Vq) = (=V} x V x z|+ ViV . ZH,V(])
Z J Vxz-(Vgxmn)ds+ Z J[[VXZH]]'(V‘]X"F)dS
F F

FeF? FeFo

+ ) J[[V~z”ﬂ(Vq~np)ds.

FeFoJF

Further, by Lemma B.IJii) one has V x zj = V x z on I', which implies that

(Apz| — Vps(z),Vq) = Z fF[[V xz|]- (Vg xnp)ds

(3.3) FeFo

+ Z fFﬂV -z||(Vq - np)ds.

FeFo

Note that

1
IVal t(aivipy = (IValD + |AqD)? = [Valp,
IV4| £z (eurtpy = (IValh + [V x Va|})? = |Valp,

for arbitrary D € Q. By two trace theorems related to H (div; Q) and H (curl;2)
(see [8, Theorems 2.5 and 2.11]), we arrive at

| Z fF[[V x z|]- (Vg x ngp)ds + Z JF[[V -z [(Vq-np)ds|

FeF° FeFo
< 2 IV xzllsrlVaxnpl_s g +1[V- 2]l £Ve nrl_1 )
(3.4) FeFo
< X IV x zll1 plValxe + 11V - 2015 £ Val xr)
FeFo

<C Y IVali p +elval®,
FeFo

where in the last step an e-scaled Young’s inequality is applied. Since n is uniformly
bounded, it follows from an inverse inequality that

(3.5)
V2113 ¢ < ClIV2IA 5 < CCuh |[V2IE ds = COwehg! [[V2lnplE ds.

Note that Vps(u) = Vps(w) + Vps(z) and u| = w) + z|. A combination of ([B.2)-
1), the triangle inequality, and the fact [Vw]np = 0 over all F € F° (see, e.g.,
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STABLE CONSISTENT SPLITTING SCHEMES FOR NSES 11

[, Eq. (3.6)]) yields
|(Apu — Vps(u), Vq)| < [(Aw) — Vps(w), Vq)| + [(Anz| — Vps(2), V)|
< CCy Y h;lj I[V2]ne|? ds + | Vg2
F

FeFo

— CChy Y h;lj [Vulne[2ds + e|Vq|2.
FeFo F

This completes the proof. (I
Lemma implies that
[Apu|? = |Apuy |? + 2 (Ahul, AhuH) + [Apuy |12
= |ApuL|?* + 2 (Ahul, AhuH) + HAhuH — Vps(u)H2
+2(Anuy — Vps(u), Vps(u)) + |Vps (u)[?
> 2 (Apus, Apuy) + |Apuy — Vps(u)|”

— 2CCinv Z h;lj [[Vulnrp|? ds + (1 — 2¢) HVps(u)HQ.
FeFo F

(3.6)

What remains is to estimate (Apui, Apuy) and |Apuy — Vps(u)|?.

Lemma 3.3. With the same assumption as in Lemma B2, for any ¢ > 0, there
ezists C' such that
(AhUL, AhuH) = —EHA}L’U,HZ — CHV’U,H2,
2 _
HAhu”—Vps(u)H >(1—¢) HVpsHQ—CHVu\P—CCmV Z hFlf [[Vu]nr|? ds.
FeF© 4

Proof. See [25, Claim 1] for the first assertion. Let us prove the second assertion.
Note that

(3.7) Apup=¢(I—nn')Apu+ Ry,

where Rs consists of the terms in which the derivatives of w are at most first order
and therefore it fulfills |Ry| < C|Vu|. Let @ = Vps and b = Aju, and put

a = (I — nnT) a, a = (nnT) a, b = (I — nnT) b, b, = (nnT) b.

So it holds
A= Vps(u)l =la-b*= | laPdzt | las-biPde | Jay-bde
First,

f \aL—bL|2>(1—e)f |al|2—cf b 2.
Qs Qs Qs

Using Lemma B2 and the fact that b vanishes on ¢, one has
a - (al 7bl)d.’13+f a- ((IH 71)“)61.’1}

J a~(afb)dw=J |a|2da:+f
Q Qc Q. s

<CCuy 3, b3t | [[Vulnef?ds + =[Tpsw)l®
FeFo© F
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12 XU LI AND JIE SHEN
which implies

‘[Q ‘CLH — b”‘z + |a”|2 dx > —ZJ; a- (a” — bH) dx

s s

ZQJ- \a|2dw+2j a, -(ay —by)dz
Q¢ Q.

~CCuy 3 b | [Vulnrfds - | Vps(w)?
FeFo© F

>2f \a|2d:1:+(2—5)f \aﬁdm—cj by |2 da
Qg Qg Qg

= CCuy 3 bt | [Valnrf ds - | Vst
FeFo© F

Thus

JQS laj=b|* = (1-¢) L

— CCipy Z h}lj |[[Vuﬂnp|2ds—EHVpS(u)Hz.
FeFO F

\a“|2dw+(2—a)f (|aL|2—|aH\2)dw—CJ b, |2 de
Qg Qs

Collecting the estimates above yields

J\a—b\2>(1—a)f \a|2d:1:+(2—5)f (|al|2—\a”|2)dw—CJ b1 |2 da
Q Q Q Q.

s

—CCh Y h;lf [Vunr]? ds — | Vs (w2
FeF° F

J \bﬁ’:f |n~R2|2<C’J Vul2.
Q Q Q

s s

Then it follows from [25] Lemma 3.1] that
|Apuy = Vps(u)| = (1~ = 2Cos) | Vps(u) |* — C[Vul?

~CCiny Y, h;lf [Vulnr|?ds.
FeFo F

By B, it holds

O
Theorem 3.4. Let Q be a bounded domain with boundary T of C3. For any e > 0,
there exist positive constants Cy and C; such that
(3.8)

1 _
Vp. ()P < (5 + ) AnulP+ColVal?+G 3, b | ([Vulnrfds Yue V(b
F
FeFo

Proof. By (88) and Lemma [33] one has

|Anul® > —2¢|Apu)? ~C| Vul® ~CChuy ) hFJI[WU]]nFI2 ds+(2-3¢) | Vps (u)|”
FeFo F

Then (B8] follows immediately. O
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4. UNCONDITIONAL STABILITY ANALYSIS

This section is devoted to the stability analysis. For simplicity the analysis
will be restricted to simplicial meshes. However, there is no fundamental difficulty
for extension to more general partitions. To emphasize the main idea, we only
consider the Stokes case with f = 0. It seems that the analysis of the full NSEs
does not involve additional essential difficulties (cf. [18]). Then Scheme I (note
that u,|r = 0) is reduced to: Update u} ™' € V), by

(Vujtt — Vul, Vuy,) —

+ arap(uy ", vp)

(4.1) At
=- Z {Vor - ([Vurlnr) ds + (Vg Apvr) Vo, € Vi,
FeroJF
and update pﬁ“ € Qp by
(4.2) (Vopth, V) = Z v Vxupt - (Vg, x np)ds Vg, € Qn.
rere VF

Scheme II is reduced to: Update uZ‘H eV, by
(Vdgujtt, Vuy,)

(4.3) At
== >0 | 4VLseni B - ([Vonlnr) ds + (Ls1 VR, Apvn)  Yop € Vi,
FeFo F

+ aLap—p(up " vn)

and update pﬁ“ € Qn by ([{2).
The discrete Stokes pressure pp g : V(h) — @}, is defined by

(@) (Vs Va) = 3 [ Vxu (Vo< ne)ds Vane Q.
FeFo v F

We derive immediately from the above and (7)) that
[Vpns(@)] < [[Vps(u)].

Let (up, pn) be the discrete solution of ([@I)-@.2]) or (£3)—(#2)). Then the following
holds true:

(4.5) IVoR|? = v?|Vpns(up)|? < v?|Vps(up) [ ¥neN.
Define the semi-norm |||-[||; on V'(h) by
loflff == > h;lf [Vo]nr?ds for all ve V(h).
FeFo© 4

Lemma 4.1. Assume My, is a function salisfying the inverse estimate |My|p <

C’invh;% |IMp|k, for all F e F° and Kr € T with Kp > F. Then it holds for any
€0 >0 that

C2
D] f MY - ([Vo]nr)ds| < eo(d + 1)|My|? + o ol for allve Vy.
FeFo Y F €0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



14 XU LI AND JIE SHEN

Proof. Since there are d+1 faces per simplex, a combination of the Cauchy—Schwarz
inequality, Young’s inequality and the inverse inequality gives

|3 | M (9ol s

FeFo
< D (PO MR R) (hp Cone [Vl | F)
FeFo
<( Z hF mV‘{{Mh}}'F 5 Z h lclnv”[VU]]nF‘F)i
FeFo FeFo
< (X @+ DIMa2)2 (D Rl )?
FeFo FeFo

CI2IIV
fo(d+ DM + 22 o]
0
O

In this paper, the following discrete Gronwall’s inequality is applied; see [I8|
Lemma 2].

Lemma 4.2 (Discrete Gronwall’s lemma). Let ay, by, ¢, and d,, be four nonneg-
ative series such that

m—1 m—1
am—i-TZb Tzoand +TZocn+C m=1,
n n

with C and T being two positive constants. Then it holds
m—1 m—1
am—l—TZb exp(ern><Tch+C>, m = 1.
n=0 n=0
4.1. Stability analysis for the first-order scheme [LI)—(2). Let

= f (VLY - ([Vonln) ds.

FeFo
Lemma [£.1] implies

- n VCiznv 2

(L (vn)| < v~ leo(d + 1) VPR [? + Iey lonlll;
and
ke VC?HV
(4.6) aLap(u}fJrl uﬁ“) > v(l —2ep(d + 1))\|Ahu"+1\|2 +(y— ? }H h+1”|
with v = minpe zo{yr}. Further, one has
[(Vpp, Anvr)| < —HVPhH2 —HAhvhHQ-

Let RHS1(vy) := —Ii(vn) + (Vpf, Apvy) denote the right-hand side of (@1)). By
Theorem B4l and (1), it holds
(4.7
2 1 n| 2 VCi2nv 2
IRHS 1 (vn)] < _”Ahvh” +(eo(d +1)/v + ) VER[™ + == lvalll
14 450
2

v vC:
< | Apup|? + 7oCy | Vup|? + 7oC [llup]l} + §HAhvhH2 + Tgv llonlll? ,
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where

(4.8) 70 = (co(d+ 1) + %)y, . TO(% o).

This implies Theorem [£.3]

Theorem 4.3. Let 19,71 be defined as (IE) cmd Ty = — Bl _ 70C; with

450

v = mingero{yr}. Assume that 'yF > 10Cj + 3%y for oll F e FO with some g, ¢

satisfying (eo(d +1)(5 +¢) + §) < 1 such that both ¥ —2vep(d+1)—71 and 72 are
positive. With the same assumptwn on Q as in Theorem B4, scheme ([@I)-{2)
is unconditionally stable in the sense that

n+1 n+1
IVl + 2At(— —2wgg(d+1) —71) ). [Apup|® + 2A8m Y] muhm
i=1 =1

< exp(2rpCyt™ ) [I\Vu2|\2 + 2087 | Apul | + 2Atr |Huh|||j] :
Proof. Taking v;, = u}'*' and inserting ([@6) and [@7) into (&I yield

n n n 1 n
oz Ve = VUi + [Vuh ™ = Vi |?) + v(5 = 2e0(d + 1)) Apuy ™|

2At
3vC?E
+ (= ) [ <l A + oG Vg + 7

Taking the summation of all time steps up to n + 1 gives

n+1 n+1

n v i i
o IV 2 4 (2 = 2vg(d 1)~ ) 3 [Anh® + 72 3 [
i=1 i=1
< S IVl + AR + 70Cy 3 [V 2+ o
=0
Then ([£9) follows by a discrete Gronwall inequality (see Lemma [2)). This com-
pletes the proof. O

4.2. Stability analysis for the second-order scheme [3)—(&2). For any func-
tions {w’,i € N}, the following identities can be found in [I8, Eqgs. (3.8) & (3.16)],
which will be used to prove the unconditional stability of [@3)) in case 8 = 5.

(Low™, Lo w™) = TH‘CﬁJrlw 2+ EHW 2
4.10
( ) 1 n+12 n|2 n+1 n|2
+ 5 (™7 = ™7+ "™ = w5,
(4.11)
1 9 3 17
(d5wn+1,£6wn+1) 10 (Hwn+1”2 . ”wnHQ) +10 'gwnJrl - 5wn
2 2
1 1
- 10 ng” — %wnfl +90 liwnﬂ —w" + iwnfl
13 9 9
+7Hwn+l_wnH2_5Hwn_wn—1H2+§Hwn+1_2wn+wn—1H2

> E(wn+1> _ E(w”),

Licensed to AMS.
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16 XU LI AND JIE SHEN

where E(e) is defined as

1 3 9
E n+1y _ n+1 2 1 _2.m2 e n+1 n 2.
(W) = S P+ 10 20— Sut? 4 S - |
In addition, the following equality and inequality will be also used in analysis.
[Loarw™ 2 = |Lpw™ ™ + (" —w™)|? = [Low™ |2
(4.12) n+l ny2 L n+1)2 n|2 n+1 n|2
+ Bl = w7+ S (J™ T w7+ T " ).
[Lae10™ 2 = " + Blw T —w™)|?
(4 13) _ Hwn+1H2 + 62Hwn+l _ wnH2 + 2ﬁ(wn+l’wn+1 _ wn)
' = (B+ D" P + B8 + 1wt —w"|* — Bw"|?
< (B+ D™ + (8 + 1w —w"|?.
Let
RHSs(vn) = — ), J {VLaron 1} - ([Vonlnr) ds + (La1 VD, Apvn)

FeFo
denote the right-hand side of (3). Similarly to (&), noting that Lgiip} =
vLg 1 (Phs(uy)) = vpns(Lgi1uy), one has
[RHS2(vn)| < T1|AnLosruh|? + 10Cs |V Lp 1 up |

(414) 2 14 1/02 2
+ 70 [|£geauplly + 51Anon]* + =22 [llox][;
€0

]
Also, Lemma 1] @I2), and @I0) imply

(4.15)

aLap—p(up ' Lo ™) > v(AnLaup ™ AnLpiauy ™)
—veo(d + 1)|\Ah£gu”+1|\2 — V&O(d + D|AnLprul ™2
+ (= ) ILeerun T = =22 s IS

V(Ahﬁguh CARLpul ) = 2veg(d + 1) | ALy ru) T2

C? d+1
= 20 g )+ U g 2 — )
Cc?
([ [ [
/8_1 n+1 2 n+12 n+12 ni2
> V[THAhﬁg_Hu 12+ —HAhu |2+ (HAhu I* = lAnug] )]

n+1 2 Z/Clzmv n+1
— 2veo(d + 1)|AnLosrup P + (v = ) [[[ £ aw |

VEO(d+ 1) w12 Clznv n+1 2
+ 2D (g P | Aw ) + 2 g - )
Theorem 4.4. Let 79,71 be defined as (Im) and Ty =y — % ToCj with
v = minpero{yr}. Assume that ’yF > 10Cj + 3Ciny for all F e F° with some €q, e

satisfying (go(d+1)(3 +€)+ &) < 55 such that both 3 _2veo(d+1)—71 and 2 are
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positive. With the same assumption on  as in Theorem B4, scheme ([@3])-[{E2)
is unconditionally stable for B =5 in the sense that

(4.16)
n+1 I/At n+1
BE(Vup™) + At(— —2veg(d + 1) = 71) ), [AnLeu|® + Z | Anu?
=2
VA n+1)2 ) VCvat n+1
+ YO cofa 4 ) A+ Aty Y [l gui [+ B e
=2

< exp(6079Cyt™) [E(Vu%b) + Atry | AR Leus |? + VTAt(l +eo(d+1))|Apup|?
C(II'IVAt
8ty ot ] + T uf ]

Proof. Tnserting (ZI4) and (ZI5) into [@3), taking v, = Leu) T and using (@II)

yield
1 " 3v " "
(BT ) = B(Vup) + (5 — 2ve0(d + 1) | AnLou ™ + £ A2
v n 7 3VCinv n 2
45 (Ut eo(d + D) (IAn ™2 = 1A ) + (= 2722 | o
VCian n+1 2 2
@(\Huh ||| — wpllf) < mlAnLeur]® + roCellVLeust|* + 7G5 || Lowplf}

Taking the summation of all the time steps from 2 to n + 1 gives

n+1 n+1

1 3 ) )
S E(Vuth) + (f — 2veo(d + 1) = 7) Z | AnLoui | + 2 Z | Apu, |2

v n+1

5(1 +eo(d+ 1) Apup ™7 + 7 D ﬁﬁuhm VO ]H "“H\

(417) 1=2
1
< A—E(VU}J + 71| AnLoup|” + 5(1 +e0(d+1))|Apuy|?
C2

+ T()C Z ‘|VE6Uh‘|2 + ToC }Hﬁguhm + ”| hm

1=1

By (£I3) one has
IV Loy |* < 6 Vg |* + 30|V (uj; — up™)|* < 60E(Vup).
Then (@I6) follows immediately from Lemma 2] O

5. ERROR ESTIMATES

For simplicity we only analyze the second order scheme with 8 = 5 and Lagrange
finite elements on simplicial elements. For the true solution w of (Z1)—(22)-([L3)—
([T4), we assume that u(t,e) € V for all ¢t € [0,T] such that [Vu]nr = 0 over all
FeFo (this means the artificial terms such as the penalty term in ar,ap and arap—g
do not produce consistency errors) and the initial velocity satisfies the compatibility
conditions implied by consistent splitting methods (see, e.g., [25] Theorem 4.1] and
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18 XU LI AND JIE SHEN

[18, Theorem 8]). Let e := u(t,) — uj and ey := p(t,) — pp. Let zj} € Qp be
determined by
(Vz, Van) = (Vp(tn), Van)  Van € Qn,

and let w} be the classical Lagrange element interpolation of u(¢,). We decompose
the errors as

=nn + ¢, = u(t,) — wp + wj —uy,
=10, + ¢y = p(tn) — 2 + 25 — D

They satisfy the following error equations:

e

"I 3

(&

(5.1)
Vvd Z+17 Vv n n
VLT 1 sl o) == 3 [ AV Loradp - (Fonlar) ds
FeFo F
+ (£5+1V¢Z, Ahvh) + R’HS,,(vh), Yo, € Vi,
(5.2)
(V(bgﬂ, Vaqn)= (Vegﬂ, Van)=v Z J Vxelt . (Vg x np)ds VY, € Qn,
FeFo v F
where
n+1
RHS, (vr) = —(Vut(t"J“ﬁ)—VdB%,V'Uh)—I/(Au(t"+5)—Ah£ﬁwZ+1, T
w0 | Ve e - fawo) ds
FeFovF
= 3 2| (AVEanny Top) - ([Vonlnr) ds
FeFo "FJF
+ Z J {vAut"tP) — Vp(t"P) — vALLawi T + VL 120 ]
FeFoJF

([Vop]nrp)ds
+ (Vp(t"™P) — L1 V20, Apop).

Relationships (5.2)) imply that ¢7 = pjs(ei) for all n € N*. Theorem B4 and (.3
imply the following estimate of ¢;.

Lemma 5.1. With the same assumption as in Theorem B4l for any eo > 0 there
ezists C' such that

3 1 n n n
Vo3 1% < v*[(5 + o)l Aner]” + Ce| Ver|” + C llexll;]
1 T n n
<V(5 +et)|Andul? + (Cg + ) [VEL|* + (C + e2) (Al
+ CIARmL + [V + ;]

Proof. The first inequality follows immediately from a combination of Theorem [3.4]
and (LE). The second inequality follows from the following inequality,

1
(a+b)?=a*+2ab+b* < (1+8)a®+(1+ g)bz.

Taking €5 = max{% + ¢, Cg, C;}€ makes the second inequality in the lemma. (I
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Define the semi-norm [|-||, on H* (T) as

22 = A Ll{{z}}|2ds.

FeFo

Note that for any v € V', one has

Vol = (—Apv,v) + Z JF[[V'U'n]} -vds

FeFo

< C (Jarvl? +llolI}) <|v|2+ > b L |v2ds>

FeFo

<C (Janol? + [0l )" ol < € (Janel® + I0lI}) " IVl

where in the last two inequalities an inverse trace inequality and Poincaré’s inequal-
ity are employed. This implies

Vo2 < C(|Apo]® + [Iv]l}) for all v e V.

It can be verified from Young’s inequality and the above inequality that, for any
€3 > 0 there exists C such that

IRHS,, (vp)]
<o (18nwnl? + lfonll?)
+C{IVua("47) = Vdgwp AP + v|Au(" ) - ApLgw)

+ |H£ﬁ+1n:;“|||j2+ [l Au(E™™P) —vALLpwit —Vp((t"F) +vcg+1z;;}}}j

+ V(") = L1V}

The following inequality can translate a face-based norm to cell-based norms (see,

e.g., [ Eq. (4.20)]): for any ¢ € H'(K) and for any face F' = 0K, there exists C
such that

(5.3) lalF < C(hp'lal% +he|Val%) forall KeT.
Let m and m’ (m = 2,m’ > 1) be the polynomial orders of the velocity and pressure
spaces, respectively. Suppose (u, p) € C2([0, T]; H™1(Q)) x C2([0, T]; H™ +1(Q)).

Then a combination of (B.3]) and the approximation errors in time for dg and Lg41
(see ([Z7) and (Z9)), and in space (see, e.g., [3, Theorem 4.4.4]) yields

(RHS, (o) <es (| Anvnl®+ loall} ) + C(AL +pmini2m=22000) 1 Gy (A4 p2m=2),
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Similarly to (£I7), taking v = £g+1¢2+1, one obtains

n 3v n+1 ;
E(Veopt) + (E —2weg(d+1) — 1 —&3) Y, [AnLedh|”
=2

n+1

+z Z |ARehI® + (1 +eo(d + 1) |

n+1

+(m ) Y, [1Lodh} + 2o H\fl’Z“\H

=2

E(V¢),) + i AnLodi|® + (1 +eo(d+1))[Aney | + 10Cs Z IV Loy |2

i=1

1
< —
At

2
+10C; ||| Codh | + ”806 B3I+ Cn( At + pmintem=22m0 o Gy (At + h2m=2).
0

By Lemma [£.2] we have

L n+1 - VAt n+1 )
E(Ve,™) + At(ﬁ —2weg(d+1) — 1 —e3) D, [AnLedh|” + Z [ Ay,
=2
VAL " ‘ AtC
— (L +eo(d +1)[|Angp ! |* + At(ro —£3) Y. |H£6<752|H_]-2 T H\(ﬁﬁ“”\
=2
At
< exp(60moCit")| E(Vp}) + Atr | Loh | + “5(1 + co(d + 1)) Aty |
AtC
+ AtroCy [|Loh; + === [l

+ Ot (At + hmin{?m*ﬂm ) + AL+ 22 .

Assume that the (u},p}) is obtained via (ZI4)-(ZIZ). One can check that it
satisfies the error equation,

(Ver, V) + Atapap(el, v,) = (Ved, Vuy,)
—ar Y J{{veO}} (IVonlnr) ds + ALV, Apvy) + (gAF, Voy)
FeFo

and (5.2) with n = 0, where |gAt?| = O(At?) depicts the truncation error. Thus
it can be proven that

IVonl + At(|Anen] + leill,)
< C(A + p =) 4 |Vl | + At Vel | + |Anel ] + [led];)

Together with the triangle inequality and Lemma [B.1] this implies the following
estimate.

Theorem 5.2. Let m and m' (m = 2,m’ > 1) be the polynomial orders of the
velocity and pressure spaces, respectively. Let (un,pr) be the solution of ([2IH) with
B = 5. Suppose (u,p) € C2([0,T]; H™+1(%2)) x C([0,T); H™'+1(22)) and (u}, p})
is obtained via ZIA)-ZI2). With the same assumption as in Theorem HAl, the
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following holds true:

n+1 ntl
At
sup |V (u(t’) —up)|® + vAt Y [An(u(t) —up)|* + = > V() - i)
2<l<n+1 /=2 Vo5

< CAE 4 pmmem=22m) 1 1ed > 4 AVl + |Anel)? + [[ed])).

With the approximation properties of Lagrange elements (see, e.g., [3, Theorem
4.4.4]) and (&3], it is not hard to see that the right-hand side of above estimate is
O(At4 + hmin{2m—2,2m/}).

6. NUMERICAL EXPERIMENTS

In this section we test the convergence rates of the methods [ZI5)-(2I2]) and
@I6)-@I7) for the Stokes equations and Navier—Stokes equations, respectively.
On Q = (0,1)2, the true solutions are prescribed as

2

u(z,y,t) = %sm(m) < sin(ma)” sin(y) cos(ry) >

— sin(7y)? sin(7z) cos(rx)

1
p(z,y,t) = o sin(mt) cos(mz) cos(my).
7r

The right-hand side f is chosen such that (u,p) solves the instationary (Navier—)
Stokes problem with ¥ = 1. The stabilization parameter vp is set to be 20 for all
Fe FO.

To verify the temporal convergence rates, we use the P4 x P3 Lagrange element
pair on the fourth refinement of a grid with h = 0.25 (see Figure [61]) for spatial
discretization, whose spatial errors should be very small such that the temporal
errors dominate. The initial time step is At = 0.025, and the ending time is
T = 0.5. Some numerical results for = 5 are shown in Figure [6.2] from which
one can see both the schemes for the Stokes equations and Navier—Stokes equations
have second-order convergence rates in time with respect to all the shown norms.

To verify the spatial convergence rates, we try several Lagrange element pairs
with At = 107° and T = 0.1, including the inf-sup stable pairs Py x P; and P35 x Py,
and the non-inf-sup stable equal-order pairs Ps x P, and P3 x P3. The initial grid
is shown in Figure[6.1l Some numerical results can be found in Tables G.IH6.4l The
error tables for the Navier—Stokes equations are not shown here because they are
almost the same as the ones for the Stokes equations.

There are several interesting phenomena. First, the convergence rates of all the
terms are exactly or better than the predicted ones in Theorem Second, for
the convergence rates of the L? errors of velocity, it is only suboptimal for P,
velocity elements but optimal for Pj3 velocity elements. Finally, the non-inf-sup
stable pairs also work for our method and they usually have better convergence
rates with respect to pressure errors, compared to the inf-sup stable pairs with the
same velocity element.
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FIGURE 6.2. Shown above are errors versus time step at 7' = 0.5
by @I8)-@2I2) with S = 5 for the Stokes equations (left) and
EI08)-ET1) with 8 = 5 for the Navier—Stokes equations (right),
respectively. The P4 x P3 element pair is used.
TABLE 6.1. Errors and convergence rates by (ZI5)-(@2I2) using
P, x P finite elements with =5 at T = 0.1 (At = 107°)
h lu—wnl  [V(u—wpn)]| [An(u—un)] [V -un| lp = pal IV(p—pn)l
272 2.66e-3 2.40e-2 3.76e-1 8.64e-3 4.22e-3 5.21e-2
273 8.62e-4 1.63 845e-3 1.51 1.92e-1 0.97 3.98e-3 1.12 2.05¢-3 1.05 2.69e-2 0.96
271 248e-4 1.80 2.59%-3 1.70 9.21e-2 1.06 1.39e-3 1.52 8.09e-4 1.34 1.18e-2 1.18
275 6.64e-5 1.90 7.16e-4 1.86 4.43e-2 1.06 4e-4  1.79 2.5le-4 1.69 4.60e-3 1.36
276 1.70e-5 1.96 1.86e-4 1.95 2.18¢-2 1.03 1.06e-4 1.92 6.83e-5 1.88 1.8%-3 1.28
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TABLE 6.2. Errors and convergence rates by (2ZI5)-(2I2) using

P, x P, finite elements with 8 =5 at T = 0.1 (At = 107°)
h lu—wn]  [V(u—wp)]| [|An(u—un)] [V -un| lp = pal IV —pn)l
2.69e-3 2.42e-2 3.76e-1 8.75e-3 4.70e-3 5.59%-2

2 2

273 8.68e-4 1.63 8.54e-3 1.51 1.92e-1 0.97 4.08e-3 1.10 2.23e-3 1.08 2.81e-2 0.99
274 2.49e-4 1.80 2.6le-3 1.71 9.22e-2 1.06 1.40e-3 1.54 8.26e-4 1.43 1.06e-2 1.40
2 5
2 6

6.64e-5 191 7.17e-4 1.86 4.43e-2 1.06 4.02e-4 1.80 2.5le-4 1.72 3.32e-3 1.68
1.70e-5 1.96 1.86e-4 1.95 2.18e-2 1.03 1.06e-4 1.93 6.77e-5 1.89 9.39e-4 1.82

TABLE 6.3. Errors and convergence rates by (ZI8)-(2I2) using
P3 x P, finite elements with =5 at T = 0.1 (At = 107°)

h Ju—w]  [Vu—w)] [An(u—un)| [V -u] lp=pnl V(P =pn)l
272 9.69¢-5 1.97e-3 7.70e-2 8.84e-4 2.48¢-4 4.98¢-3

273 6.56e-6 3.88 2.48e-4 299 1.98¢-2 196 107e-4 3.04 3.70e-5 2.75 1.15e-3 2.12
271 4.27e-7 3.94 3.0le-h 3.04 4.89e-3 202 1335 3.01 3.44e-6 3.43 2.36e-4 2.29
275 2.73e-8 3.97 3.70e-6 3.03 12le-3 2.02 1.66e-6 3.00 3.02e-7 3.51 5.39e-5 2.13
276 1.82e-9 3.91 4507 3.01 3e4 201 2.07e7 3.00 2.92-8 3.37 1.3le5 2.04

TABLE 6.4. Errors and convergence rates by (ZI0)-(2I2) using
P3 x P; finite elements with 3 =5 at T = 0.1 (At = 107°)

h Ju—w]  [Vu—u)] [Ap(u—up)|  [V-u lp—pnl V(P —pi)l
272 9.69¢-5 1.97¢-3 7.69¢-2 8.8le-4 2.95¢-4 6.52¢-3

273 6.57e-6 3.88 2.48e-4 299 1.98¢-2 196 1.07e-4 3.04 3.89e-5 292 1.29e-3 2.34
271 4.28¢-7 3.94 3.0le5 3.04 4.89e-3 202 1335 3.01 3.4le-6 3.51 2.1Te-d 257
275 2.73e-8 3.97 3.70e-6 3.03 1.2le-3 2.02 166e-6 3.00 2.66e-7 3.68 3.65¢-5 2.57
270 1.82e-9 3.91 4.50e-7 3.01 3ed 201 2.07e7 3.00 28 373 6.28¢-6 2.54

7. CONCLUDING REMARKS

We constructed in this paper first- and second-order (in time) pure C° consistent
splitting finite element schemes for the Navier—Stokes equations, for which one only
needs to solve a sequence of Poisson type equations at each time step, and the inf-
sup condition between velocity and pressure finite element spaces is not required.
To avoid using C' conforming elements, the spatial discretization is constructed in
a discontinuous Galerkin (DG) framework. Therefore, the proposed schemes are
very efficient and easy to implement.

As a key result, we extended the estimate on the Stokes pressure in the space con-
tinuous case to the space discontinuous case with the C° DG finite elements. With
the help of this key estimate, we established unconditional stability and carried out
error analysis for the fully discrete schemes in the absence of nonlinear terms. Fi-
nally, we presented numerical experiments to validate our theoretical analysis with
both inf-sup stable and non-inf-sup stable C° finite elements.

A key assumption for the estimate of the Stokes pressure in (L), which is crucial
for the stability and error analysis, is 0Q € C® which excludes polygonal domains.
Numerical results in this paper and in [I8,26] indicate that the proved stability and
convergence results still hold in rectangular domains. However, it is not clear and
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beyond the scope of this paper whether the proof can be extended to polygonal
domains.

On the other hand, the derivation of error estimates requires the solution to be
sufficiently smooth at ¢ = 0 which requires that the data satisfy certain compati-
bility conditions [31]. It is possible to relax the smoothness assumption at ¢t = 0 by
using the so-called smoothing properties as in [I7,28,80] or with graded variable
time steps near ¢ = 0 [2I,22128], but the process is delicately tedious and beyond
the scope of the current paper.
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