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Abstract In this paper, we construct efficient schemes based on the scalar auxiliary variable block-centered

finite difference method for the modified phase field crystal equation, which is a sixth-order nonlinear damped

wave equation. The schemes are linear, conserve mass and unconditionally dissipate a pseudo energy. We prove

rigorously second-order error estimates in both time and space for the phase field variable in discrete norms. We

also present some numerical experiments to verify our theoretical results and demonstrate the robustness and

accuracy.
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1 Introduction

The phase field crystal (PFC) model was developed in [3, 4] to model the crystallization process in the

purification of solid compounds. It has been used to model the evolution of the atomic-scale crystal

growth on diffusive time scales. In the PFC model, the phase field variable is introduced to describe the

phase transition from the liquid phase to the crystal phase. The model is versatile and able to simulate

various phenomena, such as grain growth, epitaxial growth, reconstructive phase transitions, material

hardness and crack propagations. Numerical methods and simulations for the PFC model have been

studied extensively, including the finite element method [5], the finite difference method [12, 18, 20], the

local discontinuous Galerkin method [6] and the Fourier-spectral method [10,19].

The modified phase field crystal (MPFC) equation was introduced in [15] to model phase-field crystals

with elastic interactions. The MPFC equation can be viewed as a perturbed gradient flow with respect to

a free energy, and is a sixth-order nonlinear damped wave equation. However, as pointed out in [16], the

original free energy of the MPFC equation may increase in time on some time intervals. Thus, a pseudo

energy is introduced in [16] and shown to be dissipative. There exist a number of works on the numerical
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approximations of the MPFC model. First- and second-order accurate nonlinear convex splitting schemes

have been proposed in [2, 16], and are proved to be unconditionally energy stable and convergent. A

nonlinear multigrid method is used to solve the nonlinear system at each time step [1]. Guo and Xu [7]

developed first- and second-order nonlinear convex splitting schemes and a first-order linear energy stable

scheme, coupled with local discontinuous Galerkin (LDG) methods in space. Very recently, Li et al. [8]

proposed unconditionally energy stable schemes based on the “invariant energy quadratization” (IEQ)

approach for the MPFC model but without the convergence proof. The convergence analysis is challenging

due to the nonlinear hyperbolic nature of the MPFC equation. To the best of our knowledge, there is no

second-order convergence analysis on any linear scheme for the MPFC equation.

The main goals of this paper are to construct linear and unconditionally energy stable schemes based

on the recently proposed scalar auxiliary variable (SAV) approach [13, 14], and to carry out a rigorous

error analysis. More specifically, we construct two SAV block-centered finite difference schemes for the

MPFC equation based on the Euler backward and Crank-Nicolson schemes, respectively, and show that

they are unconditionally energy stable with a suitably defined pseudo energy. In addition, we establish

second-order convergence in both time and space in a discrete L∞(0, T ;H3(Ω)) norm.

The rest of the paper is organized as follows. In Section 2, we describe the MPFCmodel and reformulate

it using the SAV approach. In Section 3, we construct fully discrete schemes for the reformulated MPFC

equation by the block-centered finite difference method, and show that the scheme conserves mass and

is unconditionally energy stable. In Section 4, we derive the error estimate for the MPFC model. In

Section 5, some numerical experiments are presented to verify the accuracy of the proposed numerical

schemes. In Section 6, we give a summary.

2 The MPFC model and its semi-discretization in time

We describe in this section the MPFC model and its reformulation using the SAV approach, construct

a second-order SAV semi-discretization scheme and show that it preserves mass and dissipates a pseudo

energy.

2.1 The MPFC model and its SAV reformulation

Consider the free energy (see [1, 2, 7])

E(φ) =

∫
Ω

{
1

2
(Δφ)2 − |∇φ|2 + α

2
φ2 + F (φ)

}
dx, (2.1)

where Ω ⊂ R
d (d = 1, 2, 3). The phase field variable φ is introduced to represent the concentration field

of a coarse-grained temporal average of the density of atoms. It holds that F (φ) = 1
4φ

4. Here, α = 1− ε

with ε � 1. Then the MPFC model is designed to describe the elastic interactions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2φ

∂t2
+ β

∂φ

∂t
= MΔμ, x ∈ Ω, t > 0,

μ = Δ2φ+ 2Δφ+ αφ+ F ′(φ), x ∈ Ω, t > 0,

φ(x, 0) = φ0(x),

(2.2)

where β > 0. The PFC and MPFC equations have close relationship. However, we should keep in mind

that the original energy (2.1) of the MPFC equation may increase in time on some time intervals. Thus,

it is desirable to introduce a pseudo energy. Besides, we can observe that (2.2) does not satisfy the mass

conservation due to the term ∂2φ
∂t2 . However, it is possible to verify that

∫
Ω

∂φ
∂t dx = 0 with a suitable

initial condition for ∂φ
∂t . In what follows, similar to [1, 8], we can simply set ∂φ

∂t (x, 0) = 0 point-wise so

that
∫
Ω

∂φ
∂t (x, 0)dx = 0 is trivially satisfied.

To fix the idea, we consider the homogeneous Neumann boundary conditions

∂nφ |∂Ω = 0, ∂nΔφ |∂Ω = 0, ∂nμ |∂Ω = 0, (2.3)
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where n is the unit outward normal vector of the domain Ω.

Remark 2.1. The homogeneous Neumann boundary conditions are assumed to simplify the presen-

tation. The algorithm and its analysis also hold for the periodic boundary conditions with very little

modification. One can refer to [17, Lemma 3.6] for more details about the periodic boundary conditions.

While we only present the algorithm and analysis for homogeneous Neumann boundary conditions, we

do present some numerical results with periodic boundary conditions in Section 5.

To introduce an appropriate pseudo energy for the MPFC equation, we need to define the H−1 inner-

product [1]. Let Ω be a bounded domain with the Lipschitz continuous boundary and

u1, u2 ∈
{
f ∈ L2(Ω)

∣∣∣∣
∫
Ω

fdx = 0

}
=: L2

0(Ω).

We define ηui ∈ H2(Ω) ∩ L2
0(Ω) to be the unique solution to the following problem:

−Δηui = ui in Ω, ∂nηui |∂Ω = 0, i = 1, 2. (2.4)

Then we have ηui = −Δ−1ui. Define

(u1, u2)H−1 := (∇ηu1 ,∇ηu2)L2 . (2.5)

By using the integration by parts, we can obtain

(u1, u2)H−1 = −(Δ−1u1, u2)L2 = −(Δ−1u2, u1)L2 = (u2, u1)H−1 . (2.6)

Then we define ‖u‖H−1 =
√
(u, u)H−1 for every u ∈ L2

0(Ω).

In order to construct an efficient scheme for the MPFC equation (2.2), we first reformulate it using the

so-called SAV approach [13]. Introduce two auxiliary functions as follows:

ψ =
∂φ

∂t
, r =

√
E1(φ) :=

√∫
Ω

F (φ)dx. (2.7)

Then the MPFC equation (2.2) can be recast as the following system:

∂ψ

∂t
+ βψ = MΔμ, (2.8a)

μ = Δ2φ+ 2Δφ+ αφ+
r(t)√
E1(φ)

F ′(φ), (2.8b)

rt =
1

2
√

E1(φ)

∫
Ω

F ′(φ)φtdx. (2.8c)

Next, we derive that the MPFC system (2.8) is mass conserving with the initial condition
∫
Ω
ψ(x, 0)dx

= 0. To prove this, integrating (2.8a) over Ω and taking notice of (2.3) lead to

d

dt

∫
Ω

ψ(x, t)dx+ β

∫
Ω

ψ(x, t)dx = M

∫
∂Ω

∇μ · nds = 0. (2.9)

Since (2.9) is actually an ODE system for time, we can easily obtain the solution∫
Ω

ψ(x, t)dx = exp(−βt)

∫
Ω

ψ(x, 0)dx. (2.10)

Thus we can obtain the desired mass conservation∫
Ω

∂φ

∂t
(x, t)dx =

∫
Ω

ψ(x, t)dx = 0 (2.11)

under the condition
∫
Ω
ψ(x, 0)dx = 0.
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Define the pseudo energy

E(φ, r, ψ) =
∫
Ω

(
1

2
(Δφ)2 − |∇φ|2 + α

2
φ2

)
dx+ r2 +

1

2M
‖ψ‖2H−1 , (2.12)

which requires that
∫
Ω
ψ = 0 for well-posedness. As long as ψ = ∂φ

∂t is of mean zero, we can obtain the

following dissipation law:

d

dt
E(φ, r, ψ) =

∫
Ω

μ
∂φ

∂t
dx− 1

M

∫
Ω

Δηψ
∂ηψ
∂t

dx

=

(
μ,

∂φ

∂t

)
− 1

M

(
ψ,Δ−1 ∂ψ

∂t

)

=
β

M
(ψ,Δ−1ψ) = − β

M
‖ψ‖2H−1 � 0, (2.13)

where ηψ = (−Δ)−1ψ.

2.2 The time discretization scheme

Let N > 0 be a positive integer and J = (0, T ]. Set Δt = T/N and tn = nΔt for n � N, where T is the

final time. The second-order semi-discrete scheme based on the Crank-Nicolson method for (2.8) is as

follows:

Assuming φn, ψn and rn are known, we update φn+1, ψn+1 and rn+1 by solving⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψn+1 − ψn + βΔtψn+1/2 = MΔtΔμn+1/2, (2.14)

Δtψn+1/2 = φn+1 − φn, (2.15)

μn+1/2 = Δ2φn+1/2 + 2Δφ̃n+1/2 + αφn+1/2 +
rn+1/2√

E1(φ̃n+1/2)
F ′(φ̃n+1/2), (2.16)

rn+1 − rn =
1

2
√
E1(φ̃n+1/2)

(F ′(φ̃n+1/2), φn+1 − φn), (2.17)

where fn+1/2 = (fn+1 + fn)/2 and f̃n+1/2 = (3fn − fn−1)/2 for any function f . For the case where

n = 0, we can compute φ̃1/2 by the first-order scheme.

Theorem 2.2. The scheme (2.14)–(2.17) is mass conserving, i.e.,
∫
Ω
φn+1dx =

∫
Ω
φndx for all n,

and unconditionally stable in the sense that

Ẽ(φn+1, rn+1, ψn+1)− Ẽ(φn, rn, ψn) � − β

M
Δt‖ψn+1/2‖2H−1 , (2.18)

where Ẽ(φn, rn, ψn) = E(φn, rn, ψn) + 1
2‖∇φn −∇φn−1‖2.

Proof. Taking the inner products of (2.14) with 1 leads to

(ψn+1 − ψn, 1) + βΔt(ψn+1/2, 1) = MΔt(Δμn+1/2, 1). (2.19)

Similarly, by taking the inner products of (2.15) with 1, we can obtain

(φn+1 − φn, 1) = Δt(ψn+1/2, 1). (2.20)

By using the integration by parts, the term on the right-hand side of (2.19) can be transformed into

MΔt(Δμn+1/2, 1) = −MΔt(∇μn+1/2,∇1) = 0. (2.21)

Then (2.19) can be recast as follows:(
1 +

β

2
Δt

)
(ψn+1, 1) =

(
1− β

2
Δt

)
(ψn, 1). (2.22)
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Combining (2.22) with the condition on the initial condition (ψ0, 1) = 0 leads to (ψn+1, 1) = 0 for all

n � 0. Recalling (2.20), we have (φn+1, 1) = (φn, 1).

Next, we prove (2.18). Taking the inner products of (2.15) with μn+1/2 gives

Δt(ψn+1/2, μn+1/2) = (φn+1 − φn, μn+1/2). (2.23)

Taking the inner products of (2.16) with φn+1 − φn, we have

(μn+1/2, φn+1 − φn) = (Δ2φn+1/2, φn+1 − φn) + 2(Δφ̃n+1/2, φn+1 − φn)

+ α(φn+1/2, φn+1 − φn) +

(
rn+1/2√

E1(φ̃n+1/2)
F ′(φ̃n+1/2), φn+1 − φn

)
. (2.24)

The first three terms on the right-hand side of (2.24) can be estimated with the help of the integration

by parts:

(Δ2φn+1/2, φn+1 − φn) =
1

2
(‖Δφn+1‖2 − ‖Δφn‖2), (2.25)

2(Δφ̃n+1/2, φn+1 − φn)

= −‖∇φn+1‖2 + ‖∇φn‖2 + 1

2
(‖∇φn+1 −∇φn‖2 − ‖∇φn −∇φn−1‖2)

+
1

2
‖∇φn+1 − 2∇φn +∇φn−1‖2 (2.26)

and

α(φn+1/2, φn+1 − φn) =
α

2
(‖φn+1‖2 − ‖φn‖2). (2.27)

Multiplying (2.17) by (rn+1 + rn) leads to

(rn+1)2 − (rn)2 =

(
rn+1/2√

E1(φ̃n+1/2)
F ′(φ̃n+1/2), φn+1 − φn

)
. (2.28)

Combining (2.24) with (2.23) and (2.25)–(2.28), we have

1

2
(‖Δφn+1‖2 − ‖Δφn‖2)− ‖∇φn+1‖2 + ‖∇φn‖2 + |rn+1|2 − |rn|2

+
1

2
(‖∇φn+1 −∇φn‖2 − ‖∇φn −∇φn−1‖2)

+
1

2
‖∇φn+1 − 2∇φn +∇φn−1‖2 + α

2
(‖φn+1‖2 − ‖φn‖2)

= Δt(ψn+1/2, μn+1/2). (2.29)

Recalling (2.14), we can derive

1

2M
(‖ψn+1‖2H−1 − ‖ψn‖2H−1) =

1

M
(ψn+1 − ψn, ψn+1/2)−1

= − 1

M
(ψn+1 − ψn,Δ−1ψn+1/2)

= − β

M
Δt‖ψn+1/2‖2H−1 −Δt(μn+1/2, ψn+1/2). (2.30)

Finally, combining (2.29) with (2.30) gives the desired result.

Since the scheme (2.14)–(2.17) is linear, one can also show that it admits a unique solution, and can

be efficiently implemented. For the sake of brevity, we shall provide the details only for the fully discrete

scheme presented in the next section.
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3 Fully discrete schemes and their properties

In this section, we construct two linear SAV block-centered finite difference schemes for the SAV refor-

mulated MPFC equation (2.8).

3.1 Fully discrete schemes based on the block-centered finite difference method

First, we describe briefly the block-centered finite difference framework that we will employ to define and

analyze our schemes. To fix the idea, we set Ω = (0, Lx) × (0, Ly), although the algorithm and analysis

presented below can be also applied to the one- and three-dimensional rectangular domains.

We begin with the definitions of grid points and difference operators. Let Lx = Nxhx and Ly = Nyhy,

where hx and hy are grid spacings in x and y directions, and Nx and Ny are the number of grids along

the x and y coordinates, respectively. The grid points are denoted by

(xi+1/2, yj+1/2), i = 0, . . . , Nx, j = 0, . . . , Ny

and
xi = (xi− 1

2
+ xi+ 1

2
)/2, i = 1, . . . , Nx,

yj = (yj− 1
2
+ yj+ 1

2
)/2, j = 1, . . . , Ny.

Define
[dxg]i+ 1

2 ,j
= (gi+1,j − gi,j)/hx,

[dyg]i,j+ 1
2
= (gi,j+1 − gi,j)/hy,

[Dxg]i,j = (gi+ 1
2 ,j

− gi− 1
2 ,j

)/hx,

[Dyg]i,j = (gi,j+ 1
2
− gi,j− 1

2
)/hy,

[Δhg]i,j = Dx(dxg)i,j +Dy(dyg)i,j .

Define the discrete inner products and norms as follows:

(f, g)m =

Nx∑
i=1

Ny∑
j=1

hxhyfi,jgi,j ,

(f, g)x =

Nx−1∑
i=1

Ny∑
j=1

hxhyfi+ 1
2 ,j

gi+ 1
2 ,j

,

(f, g)y =

Nx∑
i=1

Ny−1∑
j=1

hxhyfi,j+ 1
2
gi,j+ 1

2
.

Lemma 3.1. Let qi,j , w1,i+1/2,j and w2,i,j+1/2 be any values such that w1,1/2,j = w1,Nx+1/2,j =

w2,i,1/2 = w2,i,Ny+1/2 = 0. Then

(q,Dxw1)m = −(dxq, w1)x, (q,Dyw2)m = −(dyq, w2)y.

Next, we define the discrete H−1 inner product. Suppose ηφi ∈ {f | (f, 1)m = 0} =: H to be the

unique solution to the following problem:

−Δhηφi = φi, (3.1)

where ηφi satisfies the discrete homogenous Neumann boundary condition{
(ηφi)0,j = (ηφi)1,j , (ηφi)Nx+1,j = (ηφi)Nx,j , j = 1, 2, . . . , Ny,

(ηφi)k,0 = (ηφi)k,1, (ηφi)k,Ny+1 = (ηφi)k,Ny , k = 1, 2, . . . , Nx.
(3.2)

We define the bilinear form

(φ1, φ2)−1 = (dxηφ1 , dxηφ2)x + (dyηφ1 , dyηφ2)y
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for any φ1, φ2 ∈ H. Then we can obtain that (φ1, φ2)−1 is an inner product on the space H. Moreover,

we have

(φ1, φ2)−1 = −(φ1,Δ
−1
h φ2)m = −(Δ−1

h φ1, φ2)m.

Then we can define the discrete H−1 norm ‖φ‖−1 =
√
(φ, φ)−1.

Hereafter, we use C with or without a subscript to define a positive constant, which could have different

values at different appearances.

Let us denote by {Zn,Wn, Rn,Ψn}Nn=0 the finite difference approximations to {φn, μn, rn, ψn}Nn=0.

The second-order scheme defined by the Crank-Nicolson method for (2.8) is as follows:

Set the boundary condition as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z0,j = Z1,j , ZNx+1,j = ZNx,j , j = 1, 2, . . . , Ny,

Zi,0 = Zi,1, Zi,Ny+1 = Zi,Ny , i = 1, 2, . . . , Nx,

W0,j = W1,j , WNx+1,j = WNx,j , j = 1, 2, . . . , Ny,

Wi,0 = Wi,1, Wi,Ny+1 = Wi,Ny , i = 1, 2, . . . , Nx,

ΔhZ0,j = ΔhZ1,j , ΔhZNx+1,j = ΔhZNx,j , j = 1, 2, . . . , Ny,

ΔhZi,0 = ΔhZi,1, ΔhZi,Ny+1 = ΔhZi,Ny , i = 1, 2, . . . , Nx.

(3.3)

We find {Zn+1,Wn+1, Rn+1,Ψn+1}N−1
n=0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψn+1 −Ψn + βΔtΨn+1/2 = MΔtΔhW
n+1/2, (3.4)

ΔtΨn+1/2 = Zn+1 − Zn, (3.5)

Wn+1/2 = Δ2
hZ

n+1/2 + 2ΔhZ̃
n+1/2 + αZn+1/2 Rn+1/2√

Eh
1 (Z̃

n+1/2)
F ′(Z̃n+1/2), (3.6)

Rn+1 −Rn =
1

2
√
Eh

1 (Z̃
n+1/2)

(F ′(Z̃n+1/2), Zn+1 − Zn)m, (3.7)

where fn+1/2 = (fn+1 + fn)/2, f = W,Ψ, R, Z̃n+1/2 = (3Zn − Zn−1)/2, and the discrete form of

E1(Z̃
n+1/2) is defined as follows:

Eh
1 (Z̃

n+1/2) =

Nx∑
i=1

Ny∑
j=1

hxhyF (Z̃
n+1/2
i,j ).

3.2 Efficient implementation

A remarkable property about the above schemes is that it can be solved very efficiently. We demonstrate

the detailed procedure to solve the second-order SAV scheme (3.4)–(3.7). Indeed, we can eliminate Ψn+1,

Wn+1 and Rn+1 from (3.4)–(3.7) to obtain(
2

Δt
+ β

)
Zn+1 − Zn

Δt
− 2

Δt
Ψn

= M

(
1

2
Δ3

hZ
n+1 +

1

2
Δ3

hZ
n + 2Δ2

hZ̃
n+1/2 +

α

2
ΔhZ

n+1 +
α

2
ΔhZ

n

)

+M
ΔhF

′(Z̃n+1/2)√
Eh

1 (Z̃
n+1/2)

(
Rn +

(
F ′(Z̃n+1/2)

4
√
Eh

1 (Z̃
n+1/2)

, Zn+1 − Zn

)
m

)
. (3.8)

Let bn = F ′(Z̃n+1/2)√
Eh

1 (Z̃n+1/2)
. Then the above equation can be transformed into the following:

AZn+1 − M

4
(bn, Zn+1)mΔhb

n = fn, (3.9)
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where A = ( 2
Δt2 + β

Δt )I − M
2 Δ3

h − M
2 αΔh and the term on the right-hand side satisfies

fn =
2

Δt
Ψn +

((
2

Δt2
+

β

Δt

)
I +

M

2
Δ3

h +
M

2
αΔh

)
Zn

+ 2MΔ2
hZ̃

n+1/2 +M

(
Rn − 1

4
(bn, Zn)m

)
Δhb

n.

In order to solve the above equation, we should determine (bn, Zn+1)m first. To this end, multiply-

ing (3.9) by A−1 leads to

Zn+1 − M

4
(bn, Zn+1)mA−1Δhb

n = A−1fn. (3.10)

Multiplying (3.10) by bni,jhxhy and making summation on i and j for 1 � i � Nx and 1 � j � Ny, we

have

(bn, Zn+1)m =
(bn,A−1fn)m

1− M
4 (A−1Δhbn, bn)m

. (3.11)

Since M > 0 and for α, β � 0, A−1Δh is negative definite, (bn, Zn+1)m can be uniquely determined from

above. Finally, we can get Zn+1 by (3.10). Since the scheme is linear, the above procedure shows that it

admits a unique solution.

In conclusion, the second-order SAV scheme (3.4)–(3.7) can be effectively implemented in the following

algorithm:

Give Ψn, Zn, Rn and bn.

Step 1. Compute (A−1Δhb
n, bn)m. This can be accomplished by solving a sixth-order equation with constant coefficients.

Step 2. Calculate (bn, Zn+1)m using (3.11), which requires solving another sixth-order equation A−1fn with constant

coefficients.

Step 3. Update Zn+1 by Zn+1 = M
4
(bn, Zn+1)mA−1Δhb

n +A−1fn.

While the second-order scheme above is suitable in most situations, there are cases, e.g., when only

steady state solutions are desired, where a first-order scheme is preferred. For the readers’ convenience,

we list the first-order SAV scheme below:

We find {Zn+1,Wn+1, Rn+1,Ψn+1}N−1
n=0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψn+1 −Ψn + βΔtΨn+1 = MΔtΔhW
n+1, (3.12)

ΔtΨn+1 = Zn+1 − Zn, (3.13)

Wn+1 = Δ2
hZ

n+1 + 2ΔhZ
n + αZn+1 +

Rn+1√
Eh

1 (Z
n)

F ′(Zn), (3.14)

Rn+1 −Rn =
1

2
√
Eh

1 (Z
n)

(F ′(Zn), Zn+1 − Zn)m. (3.15)

3.3 The mass conservation and unconditional energy stability

Define the discrete pseudo energy

Ed(Zn, Rn,Ψn) =
1

2
‖ΔhZ

n‖2m − ‖∇hZ
n‖2 + α

2
‖Zn+1‖2m +R2 +

1

2M
‖Ψn‖2H−1 , (3.16)

where ‖∇hZ‖ =
√
(dxZ, dxZ)x + (dyZ, dyZ)y.

Theorem 3.2. The scheme (3.4)–(3.7) admits a unique solution, which is mass conserving, i.e.,

(Zn+1, 1)m = (Zn, 1)m for all n, and unconditionally stable in the sense that

Ẽd(Zn+1, Rn+1,Ψn+1)− Ẽd(Zn, Rn,Ψn) � − β

M
Δt‖Ψn+1/2‖2H−1 , (3.17)

where Ẽd(Zn, Rn,Ψn) = Ed(Zn, Rn,Ψn) + 1
2‖∇hZ

n −∇hZ
n−1‖2.
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Proof. Since the scheme (3.4)–(3.7) is linear, the algorithm described in Subsection 3.2 indicates that

it admits a unique solution. The proof for the mass conservation and energy dissipation is essentially the

same as that for the semi-discrete case. For the readers’ convenience, we still provide the details below.

Summing (3.4) on i and j for 1 � i � Nx and 1 � j � Ny leads to

(Ψn+1 −Ψn, 1)m + βΔt(Ψn+1/2, 1)m = MΔt(ΔhW
n+1/2, 1)m. (3.18)

Similarly, by summing (3.5), we can obtain

(Zn+1 − Zn, 1)m = Δt(Ψn+1/2, 1)m. (3.19)

By noticing Lemma 3.1 and the boundary condition (3.3), the term on the right-hand side of (3.18) can

be transformed into

MΔt(ΔhW
n+1/2, 1)m = −MΔt((dxW

n+1/2, dx1)x + (dyW
n+1/2, dy1)y) = 0. (3.20)

Then (3.18) can be estimated as follows:(
1 +

β

2
Δt

)
(Ψn+1, 1)m =

(
1− β

2
Δt

)
(Ψn, 1)m. (3.21)

Combining (3.21) and (Ψ0, 1) = 0 leads to (Ψn+1, 1)m = 0 for all n � 0. Recalling (3.19), we have

(Zn+1, 1)m = (Zn, 1)m.

Next, we prove (3.17). Multiplying (3.5) by W
n+1/2
i,j hxhy and making summation on i and j for

1 � i � Nx and 1 � j � Ny, we have

Δt(Ψn+1/2,Wn+1/2)m = (Zn+1 − Zn,Wn+1/2)m. (3.22)

Multiplying (3.6) by (Zn+1
i,j −Zn

i,j)hxhy and making summation on i and j for 1 � i � Nx and 1 � j � Ny,

we have

(Wn+1/2, Zn+1 − Zn)m

= (Δ2
hZ

n+1/2, Zn+1 − Zn)m + 2(ΔhZ̃
n+1/2, Zn+1 − Zn)m

+ α(Zn+1/2, Zn+1 − Zn)m +

(
Rn+1/2√

Eh
1 (Z̃

n+1/2)
F ′(Z̃n+1/2), Zn+1 − Zn

)
m

. (3.23)

The first three terms on the right-hand side of (3.23) can be dealt with the help of Lemma 3.1 and the

boundary condition (3.3), i.e.,

(Δ2
hZ

n+1/2, Zn+1 − Zn)m =
1

2
(‖ΔhZ

n+1‖2m − ‖ΔhZ
n‖2m), (3.24)

2(ΔhZ̃
n+1/2, Zn+1 − Zn)m

= −‖∇hZ
n+1‖2 + ‖∇hZ

n‖2 + 1

2
(‖∇hZ

n+1 −∇hZ
n‖2 − ‖∇hZ

n −∇hZ
n−1‖2)

+
1

2
‖∇hZ

n+1 − 2∇hZ
n +∇hZ

n−1‖2, (3.25)

α(Zn+1/2, Zn+1 − Zn)m =
α

2
(‖Zn+1‖2m − ‖Zn‖2m). (3.26)

Multiplying (3.7) by (Rn+1 +Rn) leads to

(Rn+1)2 − (Rn)2 =

(
Rn+1/2√

Eh
1 (Z̃

n+1/2)
F ′(Z̃n+1/2), Zn+1 − Zn

)
m

. (3.27)

Combining (3.23) with (3.22) and (3.24)–(3.27), we have

1

2
(‖ΔhZ

n+1‖2m − ‖ΔhZ
n‖2m)− ‖∇hZ

n+1‖2 + ‖∇hZ
n‖2 + (Rn+1)2 − (Rn)2
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+
1

2
(‖∇hZ

n+1 −∇hZ
n‖2 − ‖∇hZ

n −∇hZ
n−1‖2)

+
1

2
‖∇hZ

n+1 − 2∇hZ
n +∇hZ

n−1‖2 + α

2
(‖Zn+1‖2m − ‖Zn‖2m)

= Δt(Ψn+1/2,Wn+1/2)m. (3.28)

Recalling (3.4), we can derive

1

2M
(‖Ψn+1‖2H−1 − ‖Ψn‖2H−1) =

1

M
(Ψn+1 −Ψn,Ψn+1/2)−1

= − 1

M
(Ψn+1 −Ψn,Δ−1

h Ψn+1/2)m

= − β

M
Δt‖Ψn+1/2‖2H−1 −Δt(Wn+1/2,Ψn+1/2)m. (3.29)

Finally, combining (3.28) with (3.29) gives the desired result.

4 An error analysis

In this section, we carry out a rigorous error analysis for the second-order scheme (3.4)–(3.7).

Set
enφ = Zn − φ(tn), enψ = Ψn − ψ(tn),

enμ = Wn − μ(tn), enr = Rn − r(tn).

We start by proving the following lemma which will be used to control the backward diffusion term in

the error analysis.

Lemma 4.1. Suppose that φ and Δhφ satisfy the homogeneous Neumann boundary conditions. Then

we have

‖Δhφ‖2m � 1

3ε2
‖φ‖2m +

2ε

3
‖∇h(Δhφ)‖2. (4.1)

Proof. The proof for the homogeneous Neumann boundary condition is essentially the same as that

for the periodic boundary condition. One can refer to [18, Lemma 3.10] for more detail.

Theorem 4.2. Assume that

φ ∈ L∞(J ;W 8,∞(Ω)) ∩W 2,∞(J ;W 4,∞(Ω)) ∩W 3,∞(J ;W 3,∞(Ω)) ∩W 4,∞(J ;L∞(Ω)).

Let Δt � C(hx + hy). Then for the discrete scheme (3.4)–(3.7), there exists a positive constant C

independent of hx, hy and Δt such that

‖Zk+1 − φ(tk+1)‖m + ‖∇h(ΔhZ
k+1)−∇h(Δhφ(t

k+1))‖+ ‖ΔhZ
k+1 −Δhφ(t

k+1)‖m + |Rk+1 − r(tk+1)|
� C(‖φ‖W 4,∞(J;L∞(Ω)) + ‖φ‖W 2,∞(J;W 4,∞(Ω)) + ‖φ‖W 3,∞(J;W 3,∞(Ω)))Δt2

+ C‖φ‖L∞(J;W 8,∞(Ω))(h
2
x + h2

y), ∀ 0 � k � N − 1. (4.2)

Proof. Subtracting (2.8a) from (3.4), we obtain

en+1
ψ − enψ

Δt
+ βe

n+1/2
ψ = MΔhe

n+1/2
μ + T

n+1/2
1 , (4.3)

where

T
n+1/2
1 =

∂ψ

∂t

∣∣∣∣
t=n+1/2

− ψ(tn+1)− ψ(tn)

Δt
+M(Δh −Δ)μn+1/2

� C‖ψ‖W 3,∞(J;L∞(Ω))Δt2 + ‖μ‖L∞(J;W 4,∞(Ω))(h
2
x + h2

y). (4.4)



Li X L et al. Sci China Math October 2022 Vol. 65 No. 10 2211

Recalling (2.7) and (3.5), we have

e
n+1/2
ψ =

en+1
φ − enφ

Δt
+ T

n+1/2
2 , (4.5)

where

T
n+1/2
2 =

φ(tn+1)− φ(tn)

Δt
− ∂φ

∂t

∣∣∣∣
t=n+1/2

� C‖φ‖W 3,∞(J;L∞(Ω))Δt2. (4.6)

Subtracting (2.8b) from (3.6) leads to

en+1/2
μ = Δ2

he
n+1/2
φ + 2Δhẽ

n+1/2
φ + αe

n+1/2
φ +

Rn+1/2√
Eh

1 (Z̃
n+1/2)

F ′(Z̃n+1/2)

− rn+1/2√
E1(φn+1/2)

F ′(φn+1/2) + T
n+1/2
3 , (4.7)

where

T
n+1/2
3 = Δ2

hφ(t
n+1/2)−Δ2φ(tn+1/2) + 2Δhφ̃(t

n+1/2)− 2Δφ(tn+1/2)

� C(‖φ‖L∞(J;W 6,∞(Ω)) + ‖φ‖L∞(J;W 4,∞(Ω)))(h
2
x + h2

y)

+ C‖φ‖W 2,∞(J;W 2,∞(Ω))Δt2. (4.8)

Subtracting (2.8c) from (3.7) gives that

en+1
r − enr

Δt
=

1

2
√

Eh
1 (Z̃

n+1/2)

(
F ′(Z̃n+1/2),

Zn+1 − Zn

Δt

)
m

− 1

2
√
E1(φn+1/2)

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx+ T

n+1/2
4 , (4.9)

where

T
n+1/2
4 = r

n+1/2
t − r(tn+1)− r(tn)

Δt
� C‖r‖W 3,∞(J)Δt2. (4.10)

Multiplying (4.3) by e
n+1/2
ψ,i,j hxhy and making summation on i and j for 1 � i � Nx and 1 � j � Ny, we

have (
en+1
ψ − enψ

Δt
, e

n+1/2
ψ

)
m

+ β‖en+1/2
ψ ‖2m = M(Δhe

n+1/2
μ , e

n+1/2
ψ )m + (T

n+1/2
1 , e

n+1/2
ψ )m. (4.11)

The first term on the left-hand side of (4.11) can be transformed into the following:

(
en+1
ψ − enψ

Δt
, e

n+1/2
ψ

)
m

=
‖en+1

ψ ‖2m − ‖enψ‖2m
2Δt

. (4.12)

Noticing (4.7), we can write the first term on the right-hand side of (4.11) as

M(Δhe
n+1/2
μ , e

n+1/2
ψ )m = M(Δ3

he
n+1/2
φ , e

n+1/2
ψ )m + 2M(Δ2

hẽ
n+1/2
φ , e

n+1/2
ψ )m

+M

(
Rn+1/2√

Eh
1 (Z̃

n+1/2)
ΔhF

′(Z̃n+1/2)− rn+1/2√
E1(φn+1/2)

ΔhF
′(φn+1/2), e

n+1/2
ψ

)
m

+Mα(Δhe
n+1/2
φ , e

n+1/2
ψ )m +M(ΔhT

n+1/2
3 , e

n+1/2
ψ )m. (4.13)

Using Lemma 3.1, the boundary condition (3.3) and (4.5), we can write the first and second terms on

the right-hand side of (4.13) as

M(Δ3
he

n+1/2
φ , e

n+1/2
ψ )m
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= −M(∇h(Δhe
n+1/2
φ ),∇h(Δhe

n+1/2
ψ ))

= −M
‖∇h(Δhe

n+1
φ )‖2 − ‖∇h(Δhe

n
φ)‖2

2Δt
−M(∇h(Δhe

n+1/2
φ ),∇h(ΔhT

n+1/2
2 ))

� −M
‖∇h(Δhe

n+1
φ )‖2 − ‖∇h(Δhe

n
φ)‖2

2Δt
+ C‖∇h(Δhe

n+1/2
φ )‖2

+ C‖φ‖2W 3,∞(J;W 3,∞(Ω))Δt4, (4.14)

2M(Δ2
hẽ

n+1/2
φ , e

n+1/2
ψ )m

= M(Δh(3e
n
φ − en−1

φ ),Δhe
n+1/2
ψ )m

=
M

Δt

(
‖Δhe

n+1
φ ‖2m − ‖Δhe

n
φ‖2m − 1

2
(‖Δhe

n+1
φ −Δhe

n
φ‖2m − ‖Δhe

n
φ −Δhe

n−1
φ ‖2m)

)

− M

2Δt
‖Δhe

n+1
φ − 2Δhe

n
φ +Δhe

n−1
φ ‖2m +M(Δh(3e

n
φ − en−1

φ ),ΔhT
n+1/2
2 )m. (4.15)

The third term on the right-hand side of (4.13) can be estimated by

M

(
Rn+1/2√

Eh
1 (Z̃

n+1/2)
ΔhF

′(Z̃n+1/2)− rn+1/2√
E1(φn+1/2)

ΔhF
′(φn+1/2), e

n+1/2
ψ

)
m

= Mrn+1/2

(
ΔhF

′(Z̃n+1/2)√
Eh

1 (Z̃
n+1/2)

− ΔhF
′(φ̃n+1/2)√

Eh
1 (φ̃

n+1/2)
, e

n+1/2
ψ

)
m

+Mrn+1/2

(
ΔhF

′(φ̃n+1/2)√
Eh

1 (φ̃
n+1/2)

− ΔhF
′(φn+1/2)√

E1(φn+1/2)
, e

n+1/2
ψ

)
m

+Men+1/2
r

(
ΔhF

′(Z̃n+1/2)√
Eh

1 (Z̃
n+1/2)

, e
n+1/2
ψ

)
m

. (4.16)

Below we shall first assume that there exist three positive constants C1, C2 and C3 such that

‖Zn‖L∞(Ω) � C1, ‖∇hZ
n‖L∞(Ω) � C2, ‖ΔhZ

n‖L∞(Ω) � C3, ∀ 0 � n � N, (4.17)

which will be verified later in the proof.

Applying Lemma 4.1, the first term on the right-hand side of (4.16) can be controlled similar to the

estimates in [17] by

Mrn+1/2

(
ΔhF

′(Z̃n+1/2)√
Eh

1 (Z̃
n+1/2)

− ΔhF
′(φ̃n+1/2)√

Eh
1 (φ̃

n+1/2)
, e

n+1/2
ψ

)
m

� C(‖enφ‖2m + ‖Δhe
n
φ‖2m) + C(‖en−1

φ ‖2m + ‖Δhe
n−1
φ ‖2m) + C‖en+1/2

ψ ‖2m
� C(‖enφ‖2m + ‖∇h(Δhe

n
φ)‖2) + C(‖en−1

φ ‖2m + ‖∇h(Δhe
n−1
φ )‖2) + C‖en+1/2

ψ ‖2m, (4.18)

where C is dependent on ‖r‖L∞(J), ‖Zn‖L∞(Ω) and ‖∇hZ
n‖L∞(Ω).

The second term on the right-hand side of (4.16) can be handled by

Mrn+1/2

(
ΔhF

′(φ̃n+1/2)√
Eh

1 (φ̃
n+1/2)

− ΔhF
′(φn+1/2)√

E1(φn+1/2)
, e

n+1/2
ψ

)
m

= Mrn+1/2

(
ΔhF

′(φ̃n+1/2)√
Eh

1 (φ̃
n+1/2)

− ΔhF
′(φn+1/2)√

Eh
1 (φ̃

n+1/2)
, e

n+1/2
ψ

)
m

+Mrn+1/2

(
ΔhF

′(φn+1/2)√
Eh

1 (φ̃
n+1/2)

− ΔhF
′(φn+1/2)√

E1(φn+1/2)
, e

n+1/2
ψ

)
m
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� C‖en+1/2
ψ ‖2m + C‖φ‖2W 2,∞(J;W 2,∞(Ω))Δt4 + C‖φ‖2L∞(J;W 3,∞(Ω))(h

4
x + h4

y). (4.19)

The last term on the right-hand side of (4.16) can be directly controlled by the Cauchy-Schwarz

inequality

Men+1/2
r

(
ΔhF

′(Z̃n+1/2)√
Eh

1 (Z̃
n+1/2)

, e
n+1/2
ψ

)
m

� C‖en+1/2
ψ ‖2m + C|en+1/2

r |2, (4.20)

where C is dependent on ‖Zn‖L∞(Ω), ‖∇hZ
n‖L∞(Ω) and ‖ΔhZ

n‖L∞(Ω). Applying the estimates (4.18)–

(4.20) yields

M

(
Rn+1/2√

Eh
1 (Z̃

n+1/2)
ΔhF

′(Z̃n+1/2)− rn+1/2√
E1(φn+1/2)

ΔhF
′(φn+1/2), e

n+1/2
ψ

)
m

� C(‖enφ‖2m + ‖∇h(Δhe
n
φ)‖2) + C(‖en−1

φ ‖2m + ‖∇h(Δhe
n−1
φ )‖2)

+ C‖en+1/2
ψ ‖2m + C(en+1/2

r )2 + C‖φ‖2W 2,∞(J;W 2,∞(Ω))Δt4

+ C‖φ‖2L∞(J;W 3,∞(Ω))(h
4
x + h4

y). (4.21)

By recalling Lemma 4.1, the fourth term on the right-hand side of (4.13) can be transformed into

Mα(Δhe
n+1/2
φ , e

n+1/2
ψ )m

� C‖en+1/2
ψ ‖2m + C‖Δhe

n+1/2
φ ‖2m

� C‖en+1
φ ‖2m + C‖∇h(Δhe

n+1
φ )‖2 + C‖enφ‖2m + C‖∇h(Δhe

n
φ)‖2 + C‖en+1/2

ψ ‖2m. (4.22)

The last term on the right-hand side of (4.13) can be estimated by

M(ΔhT
n+1/2
3 , e

n+1/2
ψ )m � C‖en+1/2

ψ ‖2m + C‖φ‖2W 2,∞(J;W 4,∞(Ω))Δt4

+ C(‖φ‖2L∞(J;W 8,∞(Ω)) + ‖φ‖2L∞(J;W 6,∞(Ω)))(h
4
x + h4

y). (4.23)

Combining (4.11) with (4.12)–(4.23) leads to

‖en+1
ψ ‖2m − ‖enψ‖2m

2Δt
+ β‖en+1/2

ψ ‖2m +M
‖∇h(Δhe

n+1
φ )‖2 − ‖∇h(Δhe

n
φ)‖2

2Δt

+
M

2Δt
(‖Δhe

n+1
φ −Δhe

n
φ‖2m − ‖Δhe

n
φ −Δhe

n−1
φ ‖2m)

� C(‖en+1
φ ‖2m + ‖∇h(Δhe

n+1
φ )‖2) + C(‖enφ‖2m + ‖∇h(Δhe

n
φ)‖2)

+ C(‖en−1
φ ‖2m + ‖∇h(Δhe

n−1
φ )‖2) + C‖en+1/2

ψ ‖2m + C|en+1/2
r |2

+
M

Δt
(‖Δhe

n+1
φ ‖2m − ‖Δhe

n
φ‖2m) + C‖φ‖2L∞(J;W 8,∞(Ω))(h

4
x + h4

y)

+ C(‖φ‖2W 4,∞(J;L∞(Ω)) + ‖φ‖2W 2,∞(J;W 4,∞(Ω)) + ‖φ‖2W 3,∞(J;W 3,∞(Ω)))Δt4. (4.24)

Next, we give the error estimate of the auxiliary function r. Multiplying (4.9) by en+1
r + enr leads to

|en+1
r |2 − |enr |2

Δt
=

e
n+1/2
r√

Eh
1 (Z̃

n+1/2)
(F ′(Z̃n+1/2), dtZ

n+1)m

− e
n+1/2
r√

E1(φn+1/2)

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx+ T

n+1/2
4 · (en+1

r + enr ). (4.25)

The first two terms on the right-hand side of (4.25) can be transformed into

e
n+1/2
r√

Eh
1 (Z̃

n+1/2)
(F ′(Z̃n+1/2), dtZ

n+1)m − e
n+1/2
r√

E1(φn+1/2)

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx
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=
e
n+1/2
r√

E1(φn+1/2)

(
(F ′(φn+1/2), dtφ

n+1)m −
∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx

)

+ en+1/2
r

(
F ′(Z̃n+1/2)√
Eh

1 (Z̃
n+1/2)

− F ′(φn+1/2)√
E1(φn+1/2)

, dtφ
n+1

)
m

+
e
n+1/2
r√

Eh
1 (Z̃

n+1/2)
(F ′(Z̃n+1/2), dte

n+1
φ )m, (4.26)

which can be handled in a similar way to that in [11]. Thus we have

e
n+1/2
r√

Eh
1 (Z̃

n+1/2)
(F ′(Z̃n+1/2), dtZ

n+1)m − e
n+1/2
r√

E1(φn+1/2)

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx

� C|en+1/2
r |2 + C‖φ‖2W 1,∞(J;L∞(Ω))(‖enφ‖2m + ‖en−1

φ ‖2m)

+ C‖en+1/2
ψ ‖2m + C‖φ‖2W 1,∞(J;W 2,∞(Ω))(h

4
x + h4

y). (4.27)

Substituting (4.27) into (4.25) and applying the Cauchy-Schwarz inequality, we can obtain

|en+1
r |2 − |enr |2

Δt
� C|en+1/2

r |2 + C‖φ‖2W 1,∞(J;L∞(Ω))(‖enφ‖2m + ‖en−1
φ ‖2m)

+ C‖en+1/2
ψ ‖2m + C‖φ‖2W 1,∞(J;W 2,∞(Ω))(h

4
x + h4

y) + C‖r‖2W 3,∞(J)Δt4. (4.28)

Combining (4.24) with (4.28) and multiplying by 2Δt, summing over n (n = 0, 1, . . . , k), we have

‖ek+1
ψ ‖2m + β

k∑
n=0

Δt‖en+1/2
ψ ‖2 +M‖∇h(Δhe

k+1
φ )‖2 + 2|ek+1

r |2

� 2M‖Δhe
k+1
φ ‖2m + C

k+1∑
n=0

Δt‖enφ‖2m + C
k+1∑
n=0

Δt‖∇h(Δhe
n
φ)‖2m + C

k+1∑
n=0

Δt‖enψ‖2

+ C

k+1∑
n=0

Δt|enr |2 + C(‖φ‖2L∞(J;W 8,∞(Ω)) + ‖φ‖2L∞(J;W 6,∞(Ω)))(h
4
x + h4

y)

+ C(‖φ‖2W 4,∞(J;L∞(Ω)) + ‖φ‖2W 2,∞(J;W 4,∞(Ω)) + ‖φ‖2W 3,∞(J;W 3,∞(Ω)))Δt4. (4.29)

To carry out further analysis, we should give the following inequality first. Recalling (4.5), we have

ek+1
φ = e0φ +

k∑
l=0

Δte
l+1/2
ψ +

k∑
l=0

ΔtT
l+1/2
2 ,

and using the Cauchy-Schwarz inequality, we obtain

‖ek+1
φ ‖2m � 2‖e0φ‖2m + 2

∥∥∥∥
k∑

l=0

Δte
l+1/2
ψ

∥∥∥∥
2

m

+ 2

∥∥∥∥
k∑

l=0

ΔtT
l+1/2
2

∥∥∥∥
2

m

� 2‖e0φ‖2m + 2T

k∑
l=0

Δt‖el+1/2
ψ ‖2m + 2T

k∑
l=0

Δt‖T l+1/2
2 ‖2m. (4.30)

By applying Lemma 4.1 and (4.30), the first term on the right-hand side of (4.29) can be transformed

into

2M‖Δhe
k+1
φ ‖2m � C‖ek+1

φ ‖2m +
M

2
‖∇h(Δhe

k+1
φ )‖2

� C
k+1∑
l=0

Δt‖elψ‖2m + C
k+1∑
l=0

Δt‖T l
2‖2m +

M

2
‖∇h(Δhe

k+1
φ )‖2. (4.31)
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Then by using the discrete Gronwall inequality and Lemma 4.1, (4.29) can be estimated as follows:

‖ek+1
ψ ‖2m + ‖ek+1

φ ‖2m + ‖Δhe
k+1
φ ‖2m + ‖∇h(Δhe

k+1
φ )‖2 + |ek+1

r |2

� C(‖φ‖2W 4,∞(J;L∞(Ω)) + ‖φ‖2W 2,∞(J;W 4,∞(Ω)) + ‖φ‖2W 3,∞(J;W 3,∞(Ω)))Δt4

+ C‖φ‖2L∞(J;W 8,∞(Ω))(h
4
x + h4

y), ∀ 0 � k � N − 1. (4.32)

It remains to verify the hypothesis (4.17). Actually, this part of the proof follows a similar procedure

to that in our previous works [9, 11]. For the readers’ convenience, we still provide a detailed proof for

‖Zn‖L∞(Ω) � C1 in the following two steps by using the mathematical induction.

Step 1 (Definition of C1). Using the scheme (3.4)–(3.7) for n = 0 and applying the inverse assumption,

we can get the approximation Z1 with the following property:

‖Z1‖L∞(Ω) � ‖Z1 − φ1‖L∞(Ω) + ‖φ1‖L∞(Ω)

� ‖Z1 −Πhφ
1‖L∞(Ω) + ‖Πhφ

1 − φ1‖L∞(Ω) + ‖φ1‖L∞(Ω)

� Ch−1(‖Z1 − φ1‖m + ‖φ1 −Πhφ
1‖m) + ‖Πhφ

1 − φ1‖L∞(Ω) + ‖φ1‖L∞(Ω)

� C(h+ h−1Δt2) + ‖φ1‖L∞(Ω) � C,

where h = max{hx, hy} and Πh is a bilinear interpolant operator with the following estimate:

‖Πhφ
1 − φ1‖L∞(Ω) � Ch2. (4.33)

Thus we can choose the positive constant C1 independent of h and Δt such that

C1 � max{‖Z1‖L∞(Ω), 2‖φ(tn)‖L∞(Ω)}.

Step 2 (Induction). By the definition of C1, it is trivial that the hypothesis ‖Zl‖L∞(Ω) � C1 holds true

for l = 1. Supposing that ‖Zl−1‖L∞(Ω) � C1 holds true for an integer l = 1, . . . , k+1 with the aid of the

estimate (4.32), we have ‖Zl − φl‖m � C(Δt2 + h2). Next, we prove that ‖Zl‖L∞(Ω) � C1 holds true.

Since

‖Zl‖L∞(Ω) � ‖Zl − φl‖L∞(Ω) + ‖φl‖L∞(Ω)

� ‖Zl −Πhφ
l‖L∞(Ω) + ‖Πhφ

l − φl‖L∞(Ω) + ‖φl‖L∞(Ω)

� Ch−1(‖Zl − φl‖m + ‖φl −Πhφ
l‖m) + ‖Πhφ

l − φl‖L∞(Ω) + ‖φl‖L∞(Ω)

� C4(h+ h−1Δt2) + ‖φ1‖L∞(Ω). (4.34)

Let Δt � C5h and a positive constant h1 be small enough to satisfy C4(1 + C2
5 )h1 � C1

2 . Then for

h ∈ (0, h1], we derive from (4.34) that

‖Zl‖L∞(Ω) � C4(h+ h−1Δt2) + ‖φl‖L∞(Ω) � C4(h1 + C2
5h1) +

C1

2
� C1.

This indicates that ‖Zn‖L∞(Ω) � C1 for all n. The proof for the other two inequalities in (4.17) is

essentially identical with the above procedure so we skip it for the sake of brevity.

5 Numerical results and discussions

In this section, we carry out some numerical experiments with the proposed scheme for the MPFC

equation. We first verify the order of convergence. Then we plot evolutions of the original energy as well

as the pseudo energy to show that the pseudo energy is indeed dissipative while the original energy is

not. Finally, we conclude this section by applying our constructed scheme to the problem of long time

simulation.
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5.1 Accuracy test

We take Ω = (0, 1)× (0, 1), T = 0.5, ε = 0.25, M = 0.001 and the initial solution φ0 = cos(2πx) cos(2πy)

with the homogenous Neumann boundary conditions. We use the second-order scheme (3.4)–(3.7) and

measure the Cauchy error since we do not know the exact solution. Specifically, the error between two

different grid spacings h and h
2 is calculated by ‖eζ‖ = ‖ζh − ζh/2‖. We take the time step to be Δt = T

N

with N = Nx = Ny, and list the results in Tables 1 and 2 with different β. For simplicity, we define

‖ef‖∞ = max0�l�k ‖elf‖. We observe a solid second-order convergence rate, which are consistent with

the error estimates in Theorem 4.2. It can be easily obtained that our constructed scheme (3.4)–(3.7) is

robust with respect to β, in particular, as β → 0.

5.2 Energy stability test

In this example, we set Ω = (0, 128)× (0, 128), M = 1, ε = 0.025, β = 0.1, and consider the MPFC model

with the periodic boundary conditions. The initial condition is taken as follows [1, 7]:

φ0(x, y) = 0.07− 0.02 cos

(
2π(x− 12)

32

)
sin

(
2π(y − 1)

32

)
+ 0.02 cos2

(
π(x+ 10)

32

)

× cos2
(
π(y + 3)

32

)
− 0.01 sin2

(
4πx

32

)
sin2

(
4π(y − 6)

32

)
. (5.1)

We evolve the system to the final time T = 100. The evolutions of the discrete original energy and the

pseudo energy using the second-order scheme with Δt = 0.05 are plotted in Figure 1(a). We observe that

the discrete original energy may increase on some time intervals, while the pseudo energy is non-increasing

at all times, which is consistent with our analysis. To demonstrate the robustness of our constructed

second-order scheme (3.4)–(3.7), we present the modified SAV pseudo energy evolutions for different time

sizes Δt equaling 0.1, 1, 2, 5 and 10 (see Figure 1(b)), which indicates that the constructed second-order

scheme (3.4)–(3.7) is energy stable even for large time steps.

5.3 Long time simulation

As a final example, following Baskaran et al. [1], we show a long time simulation of the MPFC model with

the homogenous Neumann boundary conditions. We set Ω = (0, 128)×(0, 128) with a random initial data

φi,j = φ0 + ηi,j , where φ0 = 0.1 and ηi,j is a uniformly distributed random number satisfying |ηi,j | � 0.1.

The other parameters are M = 1, ε = 0.025, β = 0.5 and h = 1. We present the evolutions of the density

field φ using the second-order scheme with different Δt equaling 0.5, 1, 4 and 10 in Figure 2, where we

compare numerical results using different time steps at the same discrete modified pseudo energy, rather

than at the same time, i.e., we have the same pseudo energy associated with each column in Figure 2.

Table 1 Errors and convergence rates for the scheme (3.4)–(3.7) with β = 0.9

Nx ×Ny ‖eφ‖∞,m Rate ‖∇h(Δheφ)‖∞ Rate ‖er‖∞ Rate

20× 20 1.15E−1 – 79.6E−0 – 2.15E−2 –

40× 40 3.15E−2 1.87 22.0E−0 1.85 6.62E−3 1.70

80× 80 8.02E−3 1.97 5.62E−0 1.97 1.28E−3 2.38

160× 160 2.11E−3 1.93 1.48E−0 1.93 2.32E−4 2.46

Table 2 Errors and convergence rates for the scheme (3.4)–(3.7) with β = 0.01

Nx ×Ny ‖eφ‖∞,m Rate ‖∇h(Δheφ)‖∞ Rate ‖er‖∞ Rate

20× 20 1.41E−1 – 97.8E−0 – 2.61E−2 –

40× 40 3.91E−2 1.85 27.4E−0 1.84 9.19E−3 1.51

80× 80 9.99E−3 1.97 7.01E−0 1.96 1.90E−3 2.28

160× 160 2.63E−3 1.93 1.85E−0 1.93 3.72E−4 2.35
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Figure 1 (Color online) (a) The discrete original energy and the pseudo energy plotted as functions of time; (b) Modified

SAV pseudo energy evolutions for different time sizes

Figure 2 (Color online) Snapshots of the phase function φ using the second-order scheme with different Δt equaling

0.5, 1, 4 and 10 in each row, respectively in Subsection 5.3. The plots in the same column have the same modified pseudo

energy
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6 Summary

We construct in this paper two efficient schemes for the MPFC model based on the SAV approach and

block-centered finite difference method. Since the original energy of the MPFC equation may increase in

time on some time intervals, we introduce a pseudo energy that is dissipative for all times. It is shown

that our schemes conserve mass and are unconditionally energy stable with respect to the pseudo energy.

We also establish rigorously second-order error estimates in both time and space for our second-order SAV

block-centered finite difference method. Finally, some numerical experiments are presented to validate

our theoretical results.
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