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Abstract. An efficient numerical scheme based on the scalar auxiliary variable (SAV) and
marker and cell (MAC) scheme is constructed for the Navier—Stokes equations. A particular feature of
the scheme is that the nonlinear term is treated explicitly while being unconditionally energy stable.
A rigorous error analysis is carried out to show that both velocity and pressure approximations
are second-order accurate in time and space. Numerical experiments are presented to verify the
theoretical results.
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1. Introduction. We consider in this paper the following incompressible Navier—
Stokes equations:

(1.1a) g—?+u~Vu—uAu+Vp:f in  x J,
(1.1b) V-u=0 inQxJ
(1.1c) u=0 ondQxJ,

where  is an open bounded domain in R?, J = (0,77, (u,p) represent the unknown
velocity and pressure, f is an external body force, v > 0 is the viscosity coefficient,
and n is the unit outward normal of the domain €.

Numerical solution of the Navier—Stokes equations plays an important role in
computational fluid dynamics, and an enormous amount of work has been devoted to
the design, analysis, and implementation of numerical schemes for the Navier—Stokes
equations; see [23, 5, 6] and the references therein.

One of the main difficulties in numerically solving Navier—Stokes equations is the
treatment of the nonlinear term. There are essentially three types of treatment:
(i) fully implicit, which leads to a nonlinear system to solve at each time step;
(ii) semi-implicit, which needs to solve a coupled elliptic equation with variable coeffi-
cients at each time step; and (iii) explicit, which only has to solve a generalized Stokes
system, or even decoupled Poisson-type equations, at each time step but suffers from
a CFL time step constraint at intermediate or large Reynolds numbers.
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From a computational point of view, it would be ideal to be able to treat the
nonlinear term explicitly without any stability constraint. In a recent work [12], Lin,
Yang, and Dong constructed such a scheme by introducing an auxiliary variable. The
scheme was inspired by the recently introduced scalar auxiliary variable (SAV) ap-
proach [22, 20, 21] which can lead to linear, second-order, unconditionally energy
stable schemes that require solving only decoupled elliptic equations with constant
coefficients at each time step for a large class of gradient flows. The scheme con-
structed in [12] for Navier—Stokes equations requires solving two generalized Stokes
equations (with constant coefficient) plus a nonlinear algebraic equation for the auxil-
iary variable at each time step. Hence, it is very efficient compared with other existing
schemes. Ample numerical results presented in [12] indicate that the scheme is very
effective for a variety of situations.

However, the nonlinear algebraic equation for the auxiliary variable has multiple
solutions, and it is not clear whether all solutions converge to the exact solution or how
to choose the right solution. This question can only be fully answered with a rigorous
convergence analysis. But due to the explicit treatment of the nonlinear term and the
nonlinear algebraic equation associated to the auxiliary variable, its convergence and
error analysis cannot be obtained using a standard procedure. More precisely, two of
the main difficulties for convergence and error analysis are (i) deriving a uniform L*°
bound for the numerical solution from the modified energy stability, and (ii) dealing
with the nonlinear algebraic equation for the auxiliary variable.

In this paper, we shall construct a fully discrete SAV scheme for the Navier—
Stokes equations with the marker and cell (MAC) method [24, 26] for the spatial
discretization. The MAC scheme has been widely used in engineering applications
due to its simplicity while satisfying the discrete incompressibility constraint as well
as locally conserving the mass, momentum, and kinetic energy [15, 16]. The stability
and error estimates for the MAC scheme have been well studied; see, for instance,
[4, 1, 8, 7] and the references therein. Most of the error estimates are only first order
for both the velocity and the pressure, although Nicolaides [14] pointed out that
numerical results suggest that the velocity is second-order convergent without proof.
Inspired by the techniques in [19, 13] for Darcy—Forchheimer and Maxwell’s equations,
Rui and Li established the discrete LBB condition for the MAC method and derived
second-order error estimates for both the velocity and the pressure in discrete L2
norms for the Stokes equations in [18, 11] and for the Navier—Stokes equations in [10].

The main purposes of this paper are (i) to construct a SAV-MAC scheme for
the Navier—Stokes equations, establish its energy stability, and present an efficient
algorithm for solving the resulting system which is weakly nonlinear; and (ii) to carry
out a rigorous error analysis for the SAV-MAC scheme. In particular, at each time
step, our SAV-MAC scheme leads to two discrete MAC schemes for the generalized
Stokes system that can be efficiently solved by using the usual techniques developed
for the MAC scheme, and to a quadratic algebraic equation for the auxiliary variable.

The main contribution of this paper is a rigorous error analysis with second-
order error estimates in time and space for both the velocity and pressure. This
is achieved by using a bootstrap argument to establish the uniform bound for the
approximate solution, followed by a sequence of delicate estimates. Our results show,
in particular, that at least one solution of the quadratic algebraic equation for the
auxiliary variable will converge to the exact solution. To the best of our knowledge,
this is the first rigorous error analysis for an unconditionally energy stable scheme for
the Navier—Stokes equations where the nonlinear term is treated explicitly.

The paper is organized as follows. In section 2, we present the semidiscrete
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SAV scheme and fully discrete SAV-MAC scheme, establish the energy stability. and
show how to numerically solve them efficiently. In section 3, we carry out a rigorous
error analysis to establish second-order error estimates for the fully discrete SAV-
MAC scheme. Numerical results are presented in section 4 to validate our theoretical
results.

We now present some notation and conventions used in what follows. Throughout
the paper we use C, with or without subscript, to denote a positive constant, which
could have different values at different places. )

1/m

Let L™ (€2) be the standard Banach space with norm |[v||Lm ) = ([, [v/™dQ) ",
and set [[v]|oe = [|v]| L2 (). We denote by (f,g) = [, fgdx the L?(Q2) inner product,

and set ||f|| = (f, f)2. Let W} () be the standard Sobolev space

WD) = {9+ llgllws < oo}
where

1/p

(1.2) lgllweey = [ S 10912,

|| <k

We shall use the notation W} (.J; W/(£2)) to represent the space with functions f(¢,x)
with ¢ € J and x € Q such that f(t,) € W/(Q) for a.e. t € J, and [|f(t,")|lwa(o) €
WP (J).

2. The SAV-MAC scheme. In this section, we construct the second-order
MAC scheme based on the SAV approach for the Navier—Stokes equation.
Define the scalar auxiliary variable ¢(t) by

(2.1) q(t) =V E(u)+9,

where E(u) = [, 3|ul? is the total energy of the system, and 4 is an arbitrarily small
positive constant. Then we have

@_1 ou

1
=— | — udx+ ——=
dt 2q QO ot 2 E(u) +9Ja

Following [12], we rewrite the governing system in the following equivalent form:

(2.2) u- Vu - udx.

du q(t)
2.3 A LY 4. Vu—vAu+Vp=*
23) ot " JE(w) 1o b
dgq 1 ou 1 /
2.4 —=_— | = udx+ ——— [ u-Vu-udx,
(2.4) dt  2q Jq Ot 2\/E(u)+46 Ja

(2.5) V-u=0.

Remark 2.1. Note that in the case of inhomogeneous Dirichlet boundary condi-
tion u|spn = g, (2.4) should be replaced by
(2.6)

dg 1 Ju

1 1
— = — — - udX + ——— /u~Vu-udx—/ n-g)-— 2ds>.
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2.1. The semidiscrete case. For the reader’s convenience, we shall first con-
struct a second-order semidiscrete SAV scheme based on the Crank—Nicolson method,
although we are mainly concerned with the analysis of a fully discrete scheme in this

paper.
Set
At =T/N, t" =nAt forn <N,
and define ; et ; frt
n __ fn— n + n
d n _ n+1/2 — )
] a0 2
Then the SAV scheme based on the Crank—Nicolson method is
n+1 n n+1/2
27) u *At—u n gt gntl/2
E(ﬁn+1/2) +5
vartl/2 — yAun /2 4o ypntl/2 = g2
qn+1 _ qn _ 1 un+1 —_u” un+1/2
At 2qnt1/2 At
(2.8) + ! (ﬁn+1/2 vantl/?) un+1/2),
) E(ﬁn+1/2)+6
(2.9) V.ou"tt =0,

where 0"*1/2 = (3u™ —u""1)/2 with n > 1, and we compute @'/? by the following
simple first-order scheme:
al/? —uo

(2.10) 72

_|_ uO . vuo _ I/Aﬁl/2 _|_ vpl/Z — f1/2,

which has a local truncation error of O(At?).

Remark 2.2. In the case of inhomogeneous Dirichlet boundary condition u|so =
g, (2.8) should be replaced by

(2.11)
qn+1 _ qn _ 1 un+1 —u" un+1/2
At 2¢nt1/2 At
n 1 ((ﬁn+1/2 . vﬁn+1/27un+1/2) . / (n- gn+1/2) ) 1|gn+1/22d8) _
2 E(ﬁn"rl/Q) +6 o0 2

The above scheme enjoys the following stability result.

THEOREM 2.1. Let f=0. The scheme (2.7)—(2.8) is unconditionally energy stable
in the sense that
" TP = [ = —Atv|| Va2 7.

Proof. We recall that for u € H := {u € L*(2) : V-u = 0, u-nlpg = 0}, we
have the identity

(2.12) (u-v,v)=0 VYveH(Q).

Taking the inner products of (2.7) and (2.8) with u”*/2 and 2¢"'/2, respectively,
and summing up the results and using the above identity, we obtain immediately the
desired result. 0
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We now describe how to solve the semidiscrete-in-time scheme (2.7)—(2.9) effi-
ciently. Inspired by the work in [12], we denote
(2.13)

Sn+1 — q

/E(ﬁn+1/2) +6

Plugging the above into (2.7) and (2.9), we find that

n+1/2
n+1 — ﬁn+1 + Sn+1ﬁn+17 pn+1 :ﬁn+1 _ Sn+1]5n+l.

u

An+1 n

u v u v
2.14 — AT vpn 2 = 2 L C A
( ) A7 ;A + Vp + Al + 5 Au”,
(2.15) v-a"tt =,

artt

(2.16) W _ §Aﬁn+l _ Vﬁn+1/2 — _ﬁn+1/2 . Vﬁn+1/2,
(2.17) V-u"tt =0,

which are linear systems that can be solved independently of S™*1!
It remains to determine S™*!. Taking the inner product of (2.7) with u”+/2, we
have

un+1 —u”

(2.18) (At

(fn+1/2’ un+1/2)'

7un-i-1/2> +V||Vun+1/2||2 + Sn+1(ﬁn+l/2 . vﬁn+1/27un+1/2)

Taking the inner product of (2.8) with 2¢"+/2 leads to
(2.19)

(¢"T1)% — (¢")? (U”Jrl —u” +1/2> +lgntl/2 yggntl/2 1/2
— ,u” + St @n /2 yantl/2 gntl/2),
At At

Combining (2.18) with (2.19) results in

n+1\2 _ n\2

(220) (q )At (q ) + 1/||Vu"+1/2||2 _ (fn+1/2,u"+1/2)_
Recalling (2.13), we find that
(2.21) Xl,n+1 (Sn+1)2 + X2,n+1sn+1 + Xg,n+1 =0,
where

Xi s = = (B@"1/2) 4 6) + 2| var+|

bt TOAL 4 ’
v 1 n -1 4q" ~n41/2 1 +1/2 ~n+1
X27n+1:§(V(u +u"),Vu )_E E(u )+§—§(fn ,a" ),

1
X3 py1 = %HV(ﬁn'H + un)HZ . 5(erJrl/Q’un i ﬁ""‘l).

Note that (2.21) is a quadratic equation for S"*! which can be solved directly by
using the quadratic formula. Once S™t! is known, we can obtain u”*! and pt+1/2
through (2.13).

Remark 2.3. The nonlinear quadratic equation (2.21) has two solutions. Since
the exact solution is 1, we should choose the root which is closer to 1. In fact, to
make sure that (2.8) makes sense, i.e., ¢"*/2 # 0, we need to fix a constant x € (0, 1)
and choose a root satisfying ¢"t1/2 > k.
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2.2. Fully discrete case. We describe below the finite difference method on
the staggered grids, i.e., the MAC scheme, for the spatial discretization of (2.7)—
(2.9). To fix the idea, we consider a two-dimensional rectangular domain in R? i.e.,
Q = (Liz, Lrz) % (Liy, Lry). We refer the reader to the appendix for detailed notation
about the finite difference method on the staggered grids.

Given {U*, P* Q*}7_, approximations to {u*, p* ¢*}7_,, we find {U™ ! pr+l
Q"*1} such that

n+1/2
ntl Q 2 nt1/2 nt1/2 nt1/2
UL + s (O 2D (PaOT %) 4 P03 24, (PO 1))
(222) v Da(dU)" Y2 — vy (Dy U )" 2 o [D P2 = 2,
n+1/2 . .
Un+1 g — (,PhUn+1/2 Un+1/2) + U +1/2Dy(77hU2 +1/2)>
(2.23) vDy( Uo)" ™ = vdy (D Us)" /2 4 (D, P2 = 12,
n ~ n+1/2 ~ n41/2 "
d Q +1 _ QB,H_l/Q( Vh(PhU ),U +1/2)l2
1 n n
(2.24) g @U LU,
d UM +d, Uyt =0,
(2.25)
where B+1/2 = /B, (0"?) 4 6 with B,(0"?) = o™ )2, and

n+1/2 ~ n+1/2 n
Vi (PnU ), Ut/

_ (U{‘“”Dw(mﬁf“”) + PR UL 24, (P, TR, U"“/Q)

(P,U

12, T,M
+ (PuOT 2y (PLOE Y2 + 052D, (PO /%), 05™12)

here Py, is the bilinear interpolation operator.
The boundary and initial conditions are

Lojt12 =Uln, j412=0, 0<j<Ny,—1,
Uio=Ulin, =0, 0<1< N,
(2.26) Uso,; =Usn, j_O OSjSNy7
' U21+1/20_U21+1/2N =0, 0<i<N;-—
Ul Ji,541/2 u?lj+1/27 0<i<N;,0<j< Ny,
Ug,i+1/2,3 = Ug,z+1/2,]a 0<i<N,,0<j5< N,

where u’ = (u,u9) is the initial condition.

Note that the above fully discretized scheme can be efficiently solved using exactly
the same procedure as in the semidiscrete case for (2.7)—(2.9).

For the reader’s convenience, we still give the implementation of the fully discrete
scheme (2.22)—(2.25). Denote
(2.27)
Kn—i—l Qn+1/2

Bn+1/2 )

untl — ﬂ”*‘l n KT pr+l — prdl _ pendl pntl
, .
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The discrete scheme (2.22)—(2.25) can be recast as

U{“rl v N LA A Nl Ain1/2
Ar g Pa(delU)" = 5dy(Dy U™ + [De ]
n U v n v n
(2.28) = g Ap T g Pa(deln)" + 5dy(DyUL)",
U;H v J 1 J 1 pIn+1/2
A~ g Du(dyU2)" " = dyp (DoUn)" ! + (D P Y
n U3 v n 14 n
(2.29) = g A7 T g Du(dyU2)" + S (DeUa)",
2.30 d UM 4 d, U5 =0
1 yv2
and
Un—i—l v . v 5 3
1At - §Dw(da:U1)n+1 - §dy(DyU1)n+1 — [Dﬁp]n+1/2
(2.31) - (ﬁfH/QD@.(PthH/Q) n Ph0;+1/2dy(P}L01rL+1/2)> ’
Un—i—l v . 5 3
A~ 3 Do) = da(DaU2)" ! — [D, P2
(2.32) = — (PO 2, (PO %) + 032Dy (PUTS%)),
(2.33) d U+ d, Uyt = 0.

The above two discrete generalized Stokes systems can be efficiently solved thanks to
the structure of the MAC scheme [17]. Next we can determine K"*! from (2.24) by
solving a quadratic algebraic equation. Finally, we obtain (U™!, P"*1) from (2.27).

As in the semidiscrete case in Remark 2.3, we should only be concerned with the
roots satisfying

(2.34) Q™ >k

for a given k € (0,1) and choose the root which is closer to the exact solution 1.

2.3. Energy stability. In this section, we will demonstrate that the second-
order fully discrete scheme (2.22)—(2.25) is unconditionally energy stable. The energy
stability of the semi-discrete scheme (2.7)—(2.9) can be established similarly.

THEOREM 2.2. In the absence of the external force f, the scheme (2.22)—(2.25) is
unconditionally stable, and the following discrete energy law holds for any At:

(2.35) Q"2 — |Q™ ] = —vAt| DU 2|2 wn > 0.
Proof. Multiplying (2.22) by Ufj;ﬁ/zhk, making summation on ¢,j for 1 <1 <
N, —1, 0<j5 <Ny, —1, and recalling Lemma A.1, we have

(2.36)
n n+1/2 n+1/2 n+1/2
(U U722 g + v doUF 2R o+ | DU

n+1/2 , 5 ) ]
e (T 2D PUT 2 4 PO, (PO, U7 2)

— (P2 d, U oy =

s

+
12,7,M

+1/2 +1/2
T2 0P ) e oo
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Similarly, multiplying (2.23) by U;Zrll//%jhk, and making summation on i, j for
0<i<N;—1,1<j<N,—1, we can obtain
(2.37)
(@ U3 U3 ) e+ vlldy U3 P g+ 01| DaU3 2,
Qn+1/2

+ Bn+1/2

- (Pn+1/27dyU2n+1/2)l2,M = (fy2, U2n+1/2)12,M,T-

rn+1/2 rn+1/2 rn+1/2 rn+1/2 n+1/2
(PulT Y 2a,(PuTG %)+ O3 2Dy (PTG %), 03 2)
Multiplying (2.24) by 2Q"*+1/? yields

1 n QntY?  _nt1)2
E(|Q"+1|2 - Q") = W(PhU

+ (d, U™ U2y,

. _[~J_7L+1/2 Un+1/2 ,
(2.38) VaPu ’ )i

Combining (2.38) with (2.36) and (2.37) and noting (2.25) lead to

|Qn+1|2 _ |Qn|2 + VAt”DUnJrl/Z”Q

(2.39)
:At(ffﬂ/z, U1n+1/2)12,T,M + At(f2n+1/27 U2n+1/2)l2,M,T;

which implies the desired result (2.35). O

3. Error estimates. In this section we carry out a rigorous error analysis for
the fully discrete scheme (2.22)—(2.25). More precisely, we shall prove the following
main result: In what follows, (u™,p™, ¢") represents the exact solution of (2.3)—(2.5)
at time t".

THEOREM 3.1. Assume that the exact solution (u,p) of (2.3)—(2.5) is sufficiently
smooth such that w € W2 (J; WL (Q))%, p € W3 (J; W2 (Q)). Denote (u™,p",q") =
(u(t™),p(t™), q(t™)), where q is defined as in (2.1). Then for the fully discrete scheme
(2.22)—(2.25) satisfying (2.34) for given k € (0,1), there exists C > 0 such that for

h = min(h, k) sufficiently small with At < C.h, we have the following error estimates:

(31)  Nlda(U" = i)z ns + Iy (U3" = u5") 1200 < C(AL? + % +K%),  m <N,

m 1/2
U™ = u™ ||z + (Z At[| P12 _pl1/2||l22,M> +1Q™ —q™|

(3.2) —

<C(AP +Rr*+ K, m<N,
(3-3) 1Dy (U = w2z, < C(AE +1* + k), m <N,
(3.4) ID2(U3" = ug) iz 7, < C(AE + 1%+ k%),  m <N,

where the positive constant C' is independent of h, k, and At.

Remark 3.1. The above error estimates show, in particular, that at least one
root of the nonlinear algebraic equation (2.21) will converge to the exact solution
q(t)

IO = 1. The numerical result presented in Figure 1 clearly verifies this assertion.
u
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The proof of Theorem 3.1 involves several major steps. First, we shall define an
auxiliary problem in the next subsection and recall an existing result in [18, 9] for
the part of the error corresponding to the time-dependent Stokes problem. Then, we
shall derive error estimates in section 3.3 depending on the bound

(3.5) L, = max IU" || Lo

Finally, we show in section 3.4 that L,, can be uniformly bounded to complete the
proof of Theorem 3.1.

3.1. An auxiliary problem. We consider first an auxiliary problem which will
be used in what follows.
Set g =f—u-Vu. We recast (1.1) as
Ju .
(3.6a) E—VAu—i—Vp:g in QxJ,
(3.6b) Vu=0 inQxJ

and consider its approximation by the MAC scheme: For each n =0,...,N — 1, let
Wi W o), and {H2E) } be such that

1,i,j4+1/2 2,i+1/2,j i+1/2,j+1/2
AW, - z/DI(dgcwl);fjj{f2 - de(Dle)Z;j{?z 1 [DmH]ij{jQ
(3.7) =gt 1<i<N, -1, 0<j<N, -1,
AW o = Dy (dy W) H L = vdy (DL W) 4 Dy H
(3.8) =Gty 0Si<N,—1, 1<j<N, -1,
(3.9) AW AW =0, 0<i<N,—1, 0< <N, -1,

where the boundary and initial approximations are the same as in (2.26).
By following closely the same arguments as in [18, 9], we can prove the following.

LEMMA 3.2. Assuming that uw € W2 (J; WL (Q))%, p e W3 (J; W3 (Q)), we have
the following results:

(310) s (Wi — i) e ag + [y (W5 — w5 ™) 2 ar < O(AP + B2 4 K2),

" 1/2
(3.11) (Z At|d (W — ul+1)||l22> + | W — w2 < O(AL2 + B2 + K,
=0

(3.12) Dy (WP — w121, < O(AE + B2 4+ K3/2),
(3.13) | Dy (Wt —ud ™) |2 1, < O(AE? + B3/ 4 E?),
N 1/2
(3.14) (Z At||(H — p)l_1/2|122’M> < O(A + h* + k7).
=1
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3.2. Discrete LBB condition. In order to carry out our error analysis, we
need the discrete LBB condition.
Here we use the same notation and results as Rui and Li [18, Lemma 3.3]. Let

b(v,q):—/ qV-vdx, veV, qgeW,
Q
where
V = H}(Q) x Hi(Q), W:{qeL2(Q):/qd:z::O}.
Q

We construct the finite-dimensional subspaces of W and V by introducing three
different partitions 7y, 7711, 7712 of 2. The original partition d, x ¢, is denoted by 7.
The partition 7, is generated by connecting all the midpoints of the vertical sides of
Qiy1/2,5+1/2 and extending the resulting mesh to the boundary I'. Similarly, for all
Qit1/2,j+1/2 € Th we connect all the midpoints of the horizontal sides of ;1,3 j11/2
and extend the resulting mesh to the boundary I'; then we obtain the third partition,
which is denoted by ’Th2

Corresponding to the quadrangulation 7, define W, a subspace of W,

Wy, = {qh . qn|r = constant VT € T, and/ qdx = 0} .
Q
Furthermore, let V), be a subspace of V such that V,=S} x S,QL, where

Séb = {g € C(O)(ﬁ) : g|Tl € Ql(Tl) VTZ € 7—hl and glF :O}a l= 1,2,

and )7 denotes the space of all polynomials of degree < 1 with respect to each of the
two variables x and y.
We introduce the bilinear forms

ba(Vh,qn) = — > / anlln(V - vp)de, vi, € Vi, qn € Wh,
Qit1/2,541/2€Tn 7 Hit1/2.0+1/2
where
Hh : O(O)(§i+1/2’j+1/2) — QO(Qi+1/2,j+1/2) such that
(Hh@)i+1/2,j+1/2 = Pi+1/2,5+1/2 v Qi+1/2,j+1/2 € Th-
Then, we have the following result [18].
LEMMA 3.3. There is a constant 8 > 0 independent of h and k such that

bn(vp,
(3.15) sup 2O ) S gy Vg, € W

onev, |[Donl

We also define the operator I, : V — Vj, such that
(3.16) (V- -Ipv,w) = (V- -v,w) Yw € Wy,
with the following approximation properties [2]:

(3.17) IV =Tuv| < Clvlws @b,
(3.18) IV (v = Inv)l < CIIV - Viiwg s
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and the inverse inequality
(3.19) |U* —Tu”|| < CR7HUY —Tu”|, V1<k<N,

where h = max{h, k}, and the positive constant C' is independent of h.
In addition, by the definition of I, v and the midpoint rule of integration, the L>°
norm of the projection is obtained by

(3.20) IV =Tnvloo < Cllvliwz )b
Furthermore, we have the following estimate [3]:

(3.21) v — I < Ch2.

3.3. A first error estimate with bound depending on L,,,. For simplicity,
we set

ey = (U = W)+ (W" —u") :=£" + 7",
(3.22) ey = (P" = H") + (H" = p") :==n" + (",
eq = Q" —q".

The main result of this subsection is as follows.

PROPOSITION 3.1. Assuming u € W2 (J;WL(Q)2, p € W3 (J;W2,(Q)), we
have

m m
€7 +E + D7 Atldig™ % + IDE™HE + 30 At oy + et

n=0 n=0

< C(Lp)(At* + b + kY,

(3.23)

where 0¥, €*, and e’qc are defined as in (3.22), and the positive constant C(L,,) is
independent of h, k, and At but dependent on L,,.

We shall prove Proposition 3.1 through a sequence of lemmas below.
First we prove the boundedness of the discrete velocity in the discrete L? norm
by using the energy stability.

LEMMA 3.4. Let {U*} be the solution of (2.22)-(2.25). We have
(3.24) 1T iz < C(Lin),

where C(L,,) is independent of h, k, and At but dependent on L, .
Proof. Multiplying (2.22) by d,U"'} hk, making summation on ¢,j for 1 <

Lij+1/2
i< Ny,—1, 0<j5 <Ny —1, and recalling Lemma A.1, we have
(3.25)
T 4 n n
I UM o + g (U e g = IdaUT N g + 1D UF e 1, — 1D, U1 7,)
QMY i1 ~ndl/2 ~nl/2 ~nt1/2
+ i (O DL (PO %) + POy 2, (P ),dtU{L“)lz,T,M

— (P2 dpds U g = (A2, U e
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Similarly, multiplying (2.23) by dtU;f_:l /2,; 1tk and making summation on i, j for
0<i<N,—1,1<5 <N, —1, we can obtain
(3.26)
4T3 B i + 55 (Hd U3 "M ar = IdyUR 7o o + 1D=U3 7o 1, = 1 DU I 1,)
Q”H/2 ~n41/2 ~n41/2 ~n41/2 ~n41/2 n
Bn+1/2 (PhUl / du(PaUy ! )+ U ! Dy (PuUs ! ) iUy H)lz M,T

_ (Pn+1/2,dydtU2n+1>12,M — ( ;+1/2 d; Un+1)l2}M,T.

Combining (3.25) with (3.26) results in

(3.27)
U™ + S (IDU™ P — [ DU )
" nt1/2 ~ n+1/2 nt1/2 n
= (fn+1/2,dtU +1)l2 - W( h . V (PhU ) dtU +1)12

Recalling (2.39) and using the Cauchy—Schwarz and Poincaré inequalities, we obtain

|Qn+1|2 |Q0 2 + I/ZAtHDUk+1/2H2 ZAt +1/2 Uk+1/2)

(3.28) k=0 h=0
< ZAtHDU’C“/?H?+CZAt||f’f+1/2||l .
k=0
which implies
(3.29) Q" <C.

Using (3.29), the last term on the right-hand side of (3.27) can be estimated by

Qnt1/2 12

n+1/2
- Bn+1/2( h

- Viu(PrU ), d; U™ )

(3.30) ,
< C(La)(IDU" [ + DU ) + [l U™

Combining (3.27) with (3.30) and using the Cauchy—Schwarz inequality, we have

ld U™ 7 + o (DU = [|DU™ %)

2At (

(3.31) n)2 n—iy2y , L ni1y2 , Lient1/2)2
< O(L)(IDU P + DU ) + 2|0 3 + 22

Multiplying (3.31) by 2At, summing over n from 0 to m, and applying the Gronwall
inequality give that

(3:32) DU < O(L) 3 AdE2 R
n=0

Thus, we get the desired result (3.24) by applying the discrete Poincaré inequality. O
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LEMMA 3.5. Assuming w € W2 (J; WL (Q))2, pe W3 (J;W2(Q)), we have

1. ., U —
SIE™ I + 5 D ALDE | et
n=0

1
ni2 n+12
(3.33) < C(Ly) ;Atllé I+ ;At\ldtﬁ [

1 " 1
- Lm A n+1|2 - Lm At4 h4 4
+~C( )Y Atleit? + —C(Ln) (A" + B+ EY),

n=0

where €F and e} are defined in (3.22),  is the constant in (2.34), and the positive
constant C'(Ly,) is independent of h, k, and At but dependent on Ly, .

Proof. Subtracting (3.7) from (2.22), we obtain

1 n+1/2 n+1/2

(3.34) di&y' 75112 = V(o) s — vy (Dy&1); 71

: n+1/2  mtl/2

+ [Dwn]i,j+1/2 =4y

where

n+1/2 Qn+1/2 rn—+1/2 Frn+1/2 n+1/2 n+1/2
T = = s (O17 P Da (PO ) + P 24, (PUTT %))

(3.35) g2 uy Duy \ /2

E(unt1/2) 46 <ulax +u28y> .

Subtracting (3.8) from (2.23), we obtain

n 1/2 n+1/2
A€yl o —vDy(dy&) s — vda(Data) ),

i+1/2,5 i+1/2,5
(3.36)
n+1/2 _ pn+1/2

+ [Dy”]i+1/2,j = 2,+1/2,5
where

n+1/2 . ~n ~n Fn

T2n+1/2 - gn+1/2 (PhUl +1/2dw(PhU2 +1/2) + U, H/ZD?/(PhUZ H/Q))

(3.37)

qn+1/2 <u %+u auQ>n+1/2
E(un+1/2)+5 1 Oz 2 ay .

Subtracting (2.4) from (2.24), we obtain

3
" 1 ~ n+1/2 ~n+1/2 . n
(3.38) dt€q+1 = W(PhU Vi (PrU ), € +1/2)l2 + Z Sk+1/2’
k=1
where
nitj2 dgntl/? n
S1Jr 2= T —diq H,
n 1 ~ n+1/2 ~ n+1/2 n
iV = (PO R, w2,
_ 1 / u71,+1/2 . Vun+1/2 . u7z+1/2dx
2/E(t172) + 6 Jo ’
n+1/2
nttjz 1 ntl prdljey L ourtlZ )
Ss = 72@”“/2 (U™, U )iz CYTEEYER M u dx.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/09/20 to 128.210.107.25. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2478 XIAOLI LI AND JIE SHEN

Multiplying (3.34) by ffﬁﬁmhk, making summation on ¢,j for 1 <i < N, —1, 0 <

j < N, —1, and applying Lemma A.1, we have

1/2 1/2 1/2
(&7 &) s + v a2 0y + VI DYET PR

(3.39)
_ (nn+1/2,dm§{t+1/2 T1n+1/27 ;z+1/2)

)12,M = ( 12,7,M-

Multiplying (3.36) by f;j_&{?zjhk, making summation on ¢,j for 0 <i < N, —1, 1 <

j < Ny — 1, and applying Lemma A.1 lead to

n n+1/2 n+1/2 n+1/2
(3.40) (de 2“7 2 / iz + vlldyés / ||l22,JVI+V||DI 2 / Hl22,TI
n+1/2 d n+1/2 {1—,2n+1/27 ;erl/Q)

—(n y AyGo )P,M = ( 12, M,T-

Multiplying (3.38) by (el ! + e}!) leads to

(enth)2 — (en)? ent1/2 ~ n+1/2 ~nt1l/20
: At 1= = Bqn+1/2 (PL,U -V (PrU ), €M)
(3.41) 5
+23 St Reptt/2,
k=1

Combining (3.39) with (3.40), we have

(A", €7 FY2) 2 4 || DETY22 — (Y2 AT 4 d TP e

3.42
( ) _ (Tn+1/27€n+1/2)l27

where T = (T3, T»). Subtracting (3.9) from (2.25), we obtain

(3.43) A& 4 dyet™ =0, 0<i< N, -1, 0<j<N,—1.
Thus we have

(3.44) (2, Y 4 g )0 = 0.

The term on the right-hand side of (3.42) can be recast as

n+1/2 ~ n4+1/2

~n+1/2 ) vh(PhU

(Tn+1/27£n+1/2)l2 _ (PhU

a Bqn+1/2 ), €2

n+1/2
q ~ n+1/2
~ poria (iU
n+1/2
+ q / (un+l/2 . Vun+1/2’£n+1/2)lz'
E(unt1/2) + 5

(3.45) V(P TR g2y,

The last two terms on the right-hand side of (3.45) can be transformed into the
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following:

g2 nt1/2 n+1/2 gntl/2
E(un+1/2) + 6(u Vu 4 e
qn+1/2

- Bn+1/2( h

~ n+1/2 ~n+1/2

Vi (P, U

)7 £n+1/2)l2

< (W2 pan /2 gnti/oy, g2 g
(3.46) - /E(un+1/2)_|_5 Bn+1/2

n+1/2

_ én+1/2( . ~ n+1/2 ) vh(,Phﬁn—i-l/Q) _ un+1/2 . Vun+1/2’€n+1/2)12
n+1/2 - nt1/2 -

a Jq9n+1/2 (PR U™ (P T), €
n+1/2 ~ nt1/2 .

a gn+1/2 (PUO" 2, (PLE12), 602,

Recalling the midpoint approximation property of the rectangle quadrature formula
and using the Cauchy—Schwarz and Poincaré inequalities, the first term on the right-
hand side of (3.46) can be estimated as

(3.47)

(W2 gtz gtz < q _ qnti/? )
VB 15 BrP
< Cq 2 2o | By (T - B2
< Olg (€2 [T 4w 2 O w2 s O 4 k)
< ZIDEIE + C(La) (€71 + €™ )
+ CLa) (1 + 7" %) + C(La) (A + B+ k).

n+1/2

Using the Cauchy—Schwarz and Poincaré inequalities, we see that the second term on
the right-hand side of (3.46) can be estimated as

(3.48)
/2 - nt1/2 }
_gn+1/2( h n . vh(Phun+1/2) _ un+1/2 . vun+1/2,€n+1/2)l2
n+1/2 o
= — % ((’PhU +1/2 . un+1/2) . vh(fphﬁn—l-l/Q),énJrl/Q)lz
qn+1/2

(un+1/2 X (vhphﬁnJrl/Q o vun+1/2),£n+1/2)l2

- pn+1/2
v n n n—
< 5lpg N2+ O(Ln) (167117 + 11€7172)

+ C(Ln) (V"I + 7M7) + CL) [ VaPu" 2 = VP a1/ 2

+ C(Ly)[|VPRa" Y2 = Va2 )12 4 (L) Va2 — v )2
v n n n—

< QIDE AR + O(La) (€7 + 1€ 1)

+ O(La)(I7™M2 + 7" HIR) + C(La) (At + B + &),

Recalling Lemma A.1 and using the Cauchy—Schwarz inequality, we see that the third
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term on the right-hand side of (3.46) can be controlled by

n+1/2 g1)2

d P, 0

_W( 'vh(Ph':)/n+l/2);€n+1/2)l2
(349) < (L) [(Va(PrF™H12), €74112)
< SIDE 2R+ (L) (AF + b 4 k).

Using Lemma A.1 and the Cauchy—Schwarz inequality, the last term on the right-hand
side of (3.46) can be bounded by

qn+1/2 ng1/2

(PLU Vi (Pr€ /%), enH1/2),

(3.50) - Bl
v n n n—
< glipg 2124 (L) (1€ 117 + 1€ 17)-

Combining (3.42) with (3.43)—(3.50) results in

(3.51)
£n+1 2 €n 2 . €”+1/2 - n+1/2 ~ n+1/2 n
et 21 s pgrre 4 St (T P

< (L) (I3 + €™ 1E) + C(La) (" I + Iy~ )
+ ZIDE 4+ O(Ly) (At + bt + 1),

Next we estimate the last term, which is a sum of three terms, on the right-hand side
of (3.41):

(3.52) 287 2ep 12 < O(len 2 + e ?) + Clalidys () At
1/ 6n-‘r1/2 - t1)2 _
285 212 = (PLU™T W (P (€M 4 ), W)
n+1/2
3.53 qi/ f;”“/? v GrH1/2y Witl/2
(3.53) + Bnri/z (P, n(Pra ), )iz

n+1/2
€q
— u
JE@172) 14 Jo

The analysis of the first term on the right-hand side of (3.53) can be carried out with
the help of Lemmas A.1 and 3.2:

n+1/2 Vun+1/2 . u7z+1/2dx

n+1/2 12

(PrU Vi (Pp (€712 4 nH1/2)) Wnt1/2),

< C(Ln)leg ™2 |(Tn(Pr (€2 3712 W2 s
< C(Ln)|eg+l/2|”£n+l/2 + 5/“+1/2||12||Dwn+1/2”

< Cleg™ 212 + C(L) (€71 + 1€ 1)

+ C(Ly) (At + h* + k%),

e’ S
Bn+l/2

(3.54)

where, thanks to Lemma 3.2, we used the fact that |[DW"+/2|| < C.
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The last two terms on the right-hand side of (3.53) can be handled similarly to
(3.47):

1/2
n+l/ n1/2

PhU vh(Phﬁn+1/2),Wn+l/2)l2

1/2
€Z+ / n+1/2 n+1/2 n+1/2
— u -Vu -u dx

(3.55) VE /2y + 5 Ja

< C(L) (€717 + €7 172) + Clep /2
W) (Y + I HIE)
2 (A + R+ kY,

qi(
Bn+1/2

C(L
+C(L
where, with the aid of Lemma 3.2, we use the fact that [[W"*/2||,» < C. Recalling
Lemma 3.4 and using the Cauchy—Schwarz inequality, we have

(3.56)
n+1/2 n+1/2 n41/2
n+1/2 n+1/2 _ €q n+1 yn+l/2 €q du n+1/2
283 €q / _Qn+1/2 (dtU U / )l2 o qn+1/2 /Q ot u ax
n+1/2 n+1/2
_ & / n+1 n+1 n+1/2 €q+ / n+l gn+1/2 n+1/2
- Qn+1/2 (df(s + Y )7 U )12 + Qn+1/2 (dtu 75 + Y )l2
n+1/2 n+1/2 n+1/2
€q n+l . n+1/2y € du Cn+1/2
+ Qn+1/2 (deu™%, w5 q’l’b+1/2/Q ot u"/ dx

< —C(Laeg 2R 4 SN + (L) lder™

1
+CIEHE + Clly™ IR + ~C (L) (At! 4 A% + KY).
Combining (3.41) with (3.52)—(3.56) leads to

~n+1/2

n+1\2 _ (,n)\2 n+1/2
(eq ) (eq) e Vi (PrU

q q
At < Bn+1/2
1
(3.57) + C(Ln)(leg ™7 + 1eg ) + 5 €™ 1
+ C(La)(IE™ 17 + €7 (I)
+ O(Ly) (At + h* + k%),

~ n41/2

(P,U ), €M H1/2)

Then by combining (3.51) with (3.57), we can obtain

1€ — 1€ 11
20t

(egt)? — (el)?
At
n n— 1 n
< C(Ln)(1€"117 + 16" 1) + 5 1™ 12
+ C(Ln) (e T + [ef?) + C(La) (At + h* + k*).

+ S DEm 2P 4
(3.58)

Then we can obtain the desired result (3.33) by multiplying (3.58) by At and summing
over n from 0 to m. O
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LEMMA 3.6. Assuming u€ W2 (J; WL (Q))2, p € W2 (J; W2 (2)), we then have

(3.59)
ZAtHd B+ 5 ||D£m+1||2 < O(L ZAtnsnulzw ZAtle"“/“
n=0 n=0

m) > ALIDE|* + C(Lm)(At* + h* + kY,
n=0

where € and e} are defined as in (3.22), and the positive constant C(Ly,) is inde-
pendent of h, k, and At but dependent on L,,.

Proof. Multiplying (3.34) by dtffj;ﬂ/zhk, making summation on ¢, j for 1 <i <

Ny -1, 0<j5 <N, —1, and applying Lemma A.1, we have

(3.60)

+1
a2 LY [l ds f?“sz v — a2 117 LV D&Y II?z,Ty - IIDyﬁ?IIﬁ,T’J
BTM T g At 2 At

= (2, ded i 0 = (T 8

Multiplying (3.36) by d.&2 ! hk, making summationon i, j for0 <i < N,—1, 1 <

2,i+1/2,5
j < Ny — 1 and applying Lemma A.1 lead to
(3.61)
e Bt Idy &3 172 ar — Idy&8 1172 ar LV 1D2&" 7 7, = 123 M7,
12,M,T

5 Al 9 At
= ("2, dydi e g = (T i€ e

Combining (3.60) with (3.61), we have

v |[DE"H? — || D€ |I?

3.62 12,
(3.62) lde&™ Iz + 5 At

_ (Tn+1/2, thn—Q—l)l?.

The right-hand side of (3.62) can be estimated as
(3.63)

n+1/2 n+ly q _
(5 ™ e ( B2y 1o B2

n+1/2 Qn+1/2

)(un—i-1/2 . thn+1/2, dt£n+1>l2

n+1/2 ~ n+1 ) )
gn-u/z (PLU / SV Put 2 gt/ Va2, A€ 2
nt+1/2 ~ n+1/2 ~
- gnﬂ/z (PrU / VPRETY2, di€" 2
n+1/2 5
_ gnﬂ/z (PhUn+1/2 vhfph,?n+1/2’dt£n+1>l2
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The first term on the right-hand side of (3.63) can be handled similarly to (3.47):
(3.64)

n+1/2 n+1/2
q Q n41/2 n+1/2 n+1
( B12) 15 Bn+1/2>(“ A

Qn+1/2 qn+1/2 w12 i1 .
- ( E(u1/2) 15 Bn+1/2>(u -Viyu LA€7
e;L+1/2

(un+1/2 . vhun+1/27 dt£n+l)l2

T pn+1/2
1 T n—
< 5||dt€"+1llf2 +C(Ln)(II€" 17 + 1€ ]I72)

+ CLn) (" 117 + ") + C (L) T2
+ O(Ly) (At + h* + k%),

Using (3.29) and the definition of Pp,, we can estimate the second term on the right-
hand side of (3.63) as

Qn+1/2

~ n+1/2
7Bn+1/2(

P, U SV Ppat T2 g tl/2, th”H/Q, A€ h) 2

3.65 n n— Lo en
(36 < O + 18" + gldg™

+ C(La) ("l + "7 HIE) + C(La) (A" + A% + EY).

Applying the Cauchy—Schwarz inequality, the third term on the right-hand side of
(3.63) can be controlled by

Qnt1/2 ~ n+1/2

~ i (PO VPR g

(3.66) < O(L)(IDE? + |1DEP) + ¢ €™

+ C(Lp)(h* + k).
Combining (3.62) with (3.63)-(3.66) yields

v |[DE"H? — || DE"|?
2 At

Qn+1/2 ~ nt1/2
S - Bn+1/2 (PhU

1 n n n—
(3.67) + 5 ldeg™E + C(La) (€717 + 1€ 1)

+CLn) (VN7 + I ) + C(Ln)ep /22
+C(La) (|1 DE™ ) + || DE"1|1?)
+ O(Ly) (At + h* + k%),

lde€" 17 +

VPRV A
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Multiplying (3.67) by 2At and summing over n from 0 to m, we have

D A|dg | + | DEMH?
n=0
n+1/2 n
_22Atgn+1/2 PrU e VPR 2 g e
(3.68)

m

ZAtllﬁ"lllz +C(Lm) Y Atlept!/2?

n=0

+ C(Ly,) Z AL|DE™||? 4+ C (L) (At* + h* + kY.
n=0

From the discrete-integration-by-parts, the first term on the right-hand side of (3.68)
can be transformed into

Qn+1/2 ng1)2

-2 ZAtB —i75(PnU VPR AT )

< (L)l S AUV 12 i)

n=0
(3.69) < C(Ln) (V1 PRy™ /2, €m 1), — Z ALV pd PRy, €7 e |
n=1
ZAtHd ~n+1/2||22 +C(L7n) ZAt”DEnHQ
n=1

+ SIDE™ R 4 C(Lin) (A + B+ k.

Substituting (3.69) into (3.68) leads to

m
v
> Atlldig" M E + SllDem T

n=0

(3.70) < C(Lm) Y AH|E"|E + C(Lm) > Atlent/22
n=0 n=0

+C(Lm) > At|DE"|]* + C(Lm)(At* + h* + k*). 0
n=0

LEMMA 3.7. Assuming u € W2 (J; W2 ()% and p € W3 (J; W3,(Q)), we have

DA TRy < O(Lim) Y At de™ 7
n=0

n=0
m

(3.71) +C Zmupgnﬂ”nhc Zmngnnlz

n=0

+C(Lm) Y Atlep T2 + C(Lyn ) (At* + B + k),
n=0
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where n*, €%, and e’; are defined as in (3.22), and the positive constant C(L,,) is
independent of h, k, and At but dependent on L,,.

?jjlfl /2} such that vi;;ﬁ /2
(3.34) by U;j,;fl/zhk and making summation for 4,5 with ¢ = 1,...,N, — 1, j =
0,...,Ny — 1, and recalling Lemma A.1 lead to

(3.72)
(e oy ™) poar + ()2 Aol ) ap (D2 Dyl T g,

Proof. For a discrete function {v loo = 0, multiplying

N T AT A

- (77 12,M = 12,7,M-

Similarly, in the y direction we can obtain
(3.73)
1/2 1/2 1/2 1/2 1/2
(dtgg/-l-l’,ug'f‘ / )12,M,T +V(dy ;H_ / 7dyv;l+ / )lQ,M +V(Dac ;H_ / ,vang / )ZQ,TI

n+1/2 d v7z+1/2

1/2 1/2
—(n s Ay g )ZQ,M:(T;H_ / vy / )

12,M,T-
Combining (3.72) with (3.73) results in

(dt£n+17vn+1/2)l2 + V(D€n+1/27Dvn+1/2)
(3.74) = (2 A oy T g
— (T7L+1/2,Vn+1/2)l2.

Using Lemma 3.3, (3.45), and the discrete Poincaré inequality, we can obtain

(nn+1/2’ dx,U;H'l/? + dyU;H_l/Q)P,M
[ Dvnt172]|
(3.75) < Cllde&™ M2 + CIDE 2| + C (L) (1€" |12 + €7 ]1i2)
+ C(La)leg ™21+ C(Ln) (V" i + 7™ li2)
+ C(L,)(At? + h? + K.

Bln™ 2|2 0 < sup
veVy

Then we can obtain the desired result (3.71). ad

We are now in position to prove Proposition 3.1.
Proof of Proposition 3.1. Combining the above results, we obtain the following
under the I2°(L>°) bound assumption: Combining (3.33) with (3.59), we have

SIE™ R + 5 S Atldgm % + 2| DEMHP + et

n=0

(3.76) < C(Lm) Y AL|EM7 + C(Lm) > Atlep™?

n=0 n=0
m

+C(Lm) Y AL|DE"|]? + C (L) (A* + h* + k).

n=0

Then applying the discrete Gronwall inequality, we arrive at

(B.77) €™M 7+ Y Atlldg™ |+ |DE™ P ey < O(Lin) (At 41+ ).

n=0
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Recalling (3.71), we have
(3.78)

m

DAL TRy < O(Lim) Y At[d€™ |7 4+ C(Lin) Y A]€772
n=0

n=0 n=0

+ C(Lim) Y Atep 2 + C(Lm) Y At|DE™2|2 + C(Ly ) (At* + h* + kY
n=0 n=0

< C(Lp) (At + 2 + EY),

which, together with (3.77), completes the proof of Proposition 3.1. ]

3.4. Uniform bound on L,,. It remains to show that L,, in (3.5) can be
uniformly bounded.

 LeEMMA 3.8. Assume that the assumptions of Theorem 3.1 hold and suppose that
h is sufficiently small. Then there exists a positive constant C, such that At < Cih,
and we have

(3.79) |U™|oo <C1 VO<m<N=T/At,

where h = max{h, k}, and C; is a positive constant independent of h, k and At.
Proof. We proceed with the following two steps using a bootstrap argument.
Step 1 (definition of C7). Using the scheme (2.22)—(2.25) for n = 0, Proposition
3.1, the properties of the operator I;, and the inverse inequality (3.19), we can get
the approximation U and the following property:
”Ul”oo = HUl - Ihulnoo + HIhul - u1||oo + ”ulHoo
< Ch YU =Tyl + [ Thu" — oo + [0
< CR(IE" + 4 |z + [Tnu! = ulfli2) + [Tpu' = ! floo + 0|
< Ch (AR +h2) + |lu| < C,

where h and At are selected such that 2~ A#? is sufficiently small.
Thus define the positive constant C; independent of h and At such that

Cy > maX{||U1||oo,2||u\|Loo(Loc)}.

Step 2 (induction). We can easily obtain that hypothesis (3.79) holds true for
m = 1 by the definition of C. Assuming that [|[U™| o < C; holds true for an integer
m=1,...,N — 1 and using Proposition 3.1, we obtain

1€ iz < C(Lin)(AE + 1?).
Next, we prove that |[U™!||o, < C} holds true since
[0 e = U T ™ g+ ™ — a7 g
< CRTL(E™H 4+ 4™ ™ — w1 s)

L™ — o + ™ o

< Coh Y (AL + 52) + 0" | s

(3.80)
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Let At < C.h, and let a positive constant h, be small enough to satisfy

Then for h € (0, h,], (3.80) can be controlled by

[0 o < Cah™ (A2 +12) + [0
(3.81) . C
< Cy(1+ C)h + 71 < (.

Then the induction hypothesis (3.79) is proved. 0
Proof of Theorem 3.1. Combining Proposition 3.1 and Lemma 3.8 leads to

m m
€7+ + D Atldig™ % + IDE™HE + D0 A2 oy + et

(382) n=0 n=0
< C(At* + h* + k).
Recalling Lemma 3.2 and (3.22), we arrive at the conclusions of Theorem 3.1. d

4. Numerical experiments. In this section, we provide some numerical results
to verify the accuracy of the proposed numerical scheme.

We take Q = (0,1) x (0,1), T=1,v =1, and 6 = 0.1, and set At = h = k. We
denote

lexllooz = max ekl
m ) 1/2
||ep||272 = (Z At Hpn+1/2 _pn+1/2||l2 M) 7
n=0 ’
— n __ M
leglloe = onax Q™ —¢"|,

where X = u,dyui, Dyu.

Example 1. The right-hand sides of the equations are computed according to the
analytic solution given as

p(l‘,y,t) = exp(t)(x?’ - 1/4)7
ur(z,y,t) = —exp(t)a?(z — 1)%y(y — 1)(2y — 1)/256,
ua(w,y,t) = exp(t)z(z — 1)(2x — 1)y?(y — 1)?/256.

The numerical results for Example 1 are presented in Tables 1 and 2. We observe
that the results are consistent with the error estimates in Theorem 3.1.

Ezxample 2. The right-hand sides of the equations are computed according to the
analytic solution given as

p(l‘, Y, t) = exp(t)(sin(ﬂy) - 2/71'),
ui(z,y,t) = exp(t) sin? (7z) sin(27y),
ug(z,y,t) = —exp(t) sin(2mz) sin® (1y).
The numerical results for Example 2 are presented in Tables 3 and 4. We observe

uniform second-order convergence for all quantities, including Dyu, for which The-
orem 3.1 predicts only 3/2-order convergence. This is due to the fact that for this
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TABLE 1
Convergence rates of the velocity for Example 1.

Nz X Ny lleulloo,2 Rate led, us lloo,2 Rate ||€Dyu1 loo,2 Rate

2T x 21 1.05E-6 — 2.78E-6 — 8.71E-6 —

25 x 25 2.59E-7 2.02 6.82E-7 2.03 3.21E-6 1.44

26 % 26 6.41E-8 2.01 1.65E-7 2.04 1.16E-6 1.47

27 x 27 1.59E-8 2.01 4.01E-8 2.05 4.16E-7 1.48
TABLE 2

Convergence rates of the pressure and auziliary variable for Example 1.

Nz x Ny llepll2,2 Rate lleglloo Rate

2% % 2% 1.01E-3 — 5.10E-11 —

2% x 25 2.52E-4 2.00 1.36E-11 1.90

26 x 26 6.30E-5 2.00 3.44E-12 1.99

27 x 27 1.57E-5 2.00 8.57E-13 2.00

; ; %u” _ _ _ 2uY

particular exact solution, we have T = 0fory=0and y =1 and %5 = 0 for
z =0 and « = 1, which lead to a super-convergence for Dyu; (see related results in

[18, 10]).
Note that we only presented the results for u; in both examples since the results
for uy are similar.

Ezample 3. We take the initial condition to be u{(z,y) = sin®(rx)sin(27y),
uy(z,y) = sin(2rz) sin®(7y), and f = 0.

In Figure 1 we present the time evolutions of the two approximate solutions of
(2.21) for Example 3 as At = 1/N — 0 in (2.21). We clearly observe that one solution
of (2.21) converges to the exact solution 1, while the other solution converges to zero.

Appendix A. Finite difference discretization on the staggered grids. To
fix the idea, we consider Q = (Liy, Lyz) X (Lyy, Lyy). Three-dimensional rectangular
domains can be dealt with similarly.

The two-dimensional domain §? is partitioned by £, x Q,, where

Op Ly =20 < 271 < <N, -1 < TN, = Ly,
Qy : Lly =y <y << YN, —1 < Yn, = Lry~

For simplicity we also use the following notation:

T_1/2 = To = Ly, TN,+1/2 = TN, = Ly,
(A.1)

Y-172 =Y = Ly, Yn,+1/2 = YN, = Lry.
For possible integers 7,7, 0 < ¢ < Ng, 0 < j < Ny, define

Ti + Tit1
Tiv12= "5 hiti/2 = Tiy1 — T, h= max hiti2,

hivi/2+hi—1/2
hi =xip172 — Tic12 = RADL L

2 9
Yi + Yj+1
Yj+1/2 = % R e
kjpi2 +kj_1/2
kj = Yis1j2 — Yj_1/2 = %

Qit1/25+1/2 = (@i, Tix1) X (Y5, Yj41)-
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TABLE 3
Convergence rates of the velocity for Example 2.

Nz X Ny lleulloo,2 Rate led,u; lloo,2 Rate llepyuy lloo,2 Rate

2T x 21 2.15E-2 — 4.94E-2 — 9.53E-2 —

25 x 25 5.21E-3 2.05 1.28E-2 1.94 2.31E-2 2.04

26 % 26 1.28E-3 2.02 3.29E-3 1.96 5.70E-3 2.02

27 x 27 3.18E-4 2.01 8.20E-4 2.01 1.41E-3 2.01
TABLE 4

Convergence rates of the pressure and auziliary variable for Example 2.

Nz X Ny llepll2,2 Rate lleglloo Rate
2T x 21 6.38E-2 — 1.35E-2 —

25 x 25 1.42E-2 2.17 3.49E-3 1.95
26 x 26 3.27E-3 2.12 8.72E-4 2.00
27 x 27 7.97E-4 2.04 2.17E-4 2.01

—s— one root in Example 3

—p— the other in Example 3

— — reference value S=1 | o
reference value $=0

06 -

0.015
0.01
0.005

0
/ 20 202 204 206 208
0.1+ —

s s s
2 30 40 50 60 70
N

ol

Fi1G. 1. Time evolutions of the two approzimate solutions of (2.21) as At — 0 for Ezample 3.

It is clear that

h hy _
hozﬂ, hN:M, ko

ki i kN2
2 2 - r Ny '

2 Y 2

For a function f(z,y), let f; ., denote f(zi,ym), where | may take values 4, ¢ + 1/2
for integer i, and m may take values j, j + 1/2 for integer j. For discrete functions
with values at proper nodal-points, define

it1,m — fim frj+3/2 — fij+1/2
[de flis1/2m = Jictm ~Jim, Dy flijan = = e,
(A 2) hi+1/2 ijrl
' D.fl. _ Jivsj2m = fiv1/2,m d g — S
[De fliv1,m = » o Ay flijrae = B
i+1 j+1/2

For functions f and g, define some discrete {2 inner products and norms as follows:

Ny—1Ny—1

(A.3) (fag)l2,M = Z Z hi+1/2kj+1/2fi+1/2,j+1/2gi+1/2,j+1/27
i=0 ;=0
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N, Ny—1
(A.4) (f,9er = Z Z hik; fi.594.5

i—0 j=1

Nm_l Ny
(A.5) (f,9)eer, = hik; fi 95

i=1 j=0
(A6) Hf||l22,§ = (f7 f)lQ,fv g = M; Taw T‘y-

Further define discrete 12 inner products and norms as follows:

N,—1N,—1
(A7) (f,9)erm = Z Z hikji12fij+1/29i5+1/25
i=1 =0
N;—1Ny—1
(A.8) (fs9)emr = Z Z hiti1/2k; fiv1/2,59i+1/2.55
i=0 j=1
(A.9) ||f||122,T,M = (f, e ||f||122,M,T = (i e

For vector-valued functions u = (u1,usg), it is clear that

N,—1Ny—1
(A.10) ||dzU1||122,M = Z Z hi+1/2kj+1/2|da:u1,i+1/2,j+1/2|27
i=0  j=0
Ny—1 Ny
(A.11) IDywllZer, = DY hiky| Dyuai s,
i=1 j=0

and || dyuz||i2 amr, || Dauzlli2,7, can be represented similarly. Finally, define the discrete
H! norm and discrete [2 norm of a vector-valued function u as

(A12)  [[Dul® = [l dour ||z ar + 1Dyusl?e 7, + 1 Davizllio , + dyuzllio ars

(A13)  ulE = fluall?e goar + lulZ -

For simplicity we only consider the case when uniform meshes are used in both the
x- and y-directions with all h; 11/ = h and kj /0 = k.
Finally we present the following useful lemma.

Lemma A1 ([25]).  Let  {Viijri2},  {Veurijest  and  {quivi2541/2})
{q2,i+1/2,j+1/2} be discrete functions with ‘/LOJ+1/2 = Vl,Nz,j+1/2 = V2,i+1/2,0 =
Vaiv1/2,n, = 0, with proper integers i and j. Then there holds

(A.14) { (Dequ, Vi) rn = —(q1,deV1)i2 0
' (qu27 VQ)V,]W,T = —((Jz,dyVQ)le.
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