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Abstract
We construct a new class of fully decoupled and higher-order implicit-explicit schemes
for the Cahn–Hilliard–Navier–Stokes System, which is a phase-field model of two-phase
incompressible flows, based on the generalized scalar auxiliary variable approach with the
new relaxation for the Cahn–Hilliard equation and the consistent splitting method for the
Navier–Stokes equations. These schemes are linear, fully decoupled, only require solving
a sequence of elliptic equations with constant coefficients at each time step. We show that
numerical solutions of these schemes are uniformly bounded without any restriction on time
step size. Furthermore, we carry out a rigorous error analysis for the first-order scheme
and establish optimal global-in-time error estimates for the phase function, velocity and
pressure in two and three-dimensions. Several numerical examples are presented to validate
the accuracy and robustness of the proposed schemes.
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1 Introduction

We consider in this paper numerical approximation of the following Cahn–Hilliard–Navier–
Stokes system

∂φ

∂t
+ (u · ∇)φ = M�μ in � × J , (1.1a)

μ = −λ�φ + λG ′(φ) in � × J , (1.1b)

∂u
∂t

+ u · ∇u − ν�u + ∇ p = μ∇φ in � × J , (1.1c)

∇ · u = 0 in � × J , (1.1d)

∂φ

∂n
= ∂μ

∂n
= 0, u = 0 on ∂� × J , (1.1e)

where G(φ) = 1

4ε2
(1−φ2)2 with ε representing the interfacial width, M > 0 is the mobility

constant, λ > 0 is the mixing coefficient, ν > 0 is the fluid viscosity. � is a bounded domain
inRd (d = 2, 3) and J = (0, T ]. The unknowns are the velocity u, the pressure p, the phase
function φ and the chemical potential μ. We refer to [11, 20] for its physical interpretation
and derivation as a phase-field model for the incompressible two phase flow with matching
density (set to be ρ0 = 1 for simplicity), and to [1] for its mathematical analysis. The above
system satisfies the following energy dissipation law:

d E(φ,u)

dt
= −M‖∇μ‖2 − ν‖∇u‖2 with E(φ,u) =

∫
�

{
1

2
|u|2 + λ

2
|∇φ|2 + λG(φ)

}
dx.

(1.2)

It is crucial that numerical schemes for (1.1) preserve a dissipative energy law at the discrete
level.

Various energy stable numericalmethods have been proposed forNavier–Stokes equations
and for Cahn–Hilliard equations. The main issue in dealing with the Navier–Stokes equation
is the coupling of velocity and pressure by the incompressible condition ∇ · u = 0. A partial
list of earlier works includes those three categories [9]: the pressure-correction method [19,
24], the velocity-correction method [10, 22] and the consistent splitting method [8] (see also
the gauge method [32]). Among these, the consistent splitting scheme has great advantages
in two aspects: (i) this method can achieve full accuracy of the time discretization since
it is not limited by splitting error; (ii) The inf-sup condition between the velocity and the
pressure approximation spaces is no longer enforced from a computational point of view. A
main difficulty in solving the Cahn–Hilliard equation is how to deal with the nonlinear term
efficiently so that the resulting system can be effectively solved while preserving an energy
dissipation law. There are several popular approaches including the convex splitting method
[5], stabilized semi-implicit method [27], invariant energy quadratization (IEQ) [31], and
scalar auxiliary variable (SAV) [26]. For an up-to-date review on various classical methods
for gradient flows especially for the Cahn–Hilliard equation, one can refer to [4, 30].

There are also many studies devoted to developing efficient numerical schemes and carry-
ing out corresponding error analysis for theCahn–Hilliard–Navier–Stokes phase-fieldmodels
[28, 29]. Fully coupled first-order-in-time implicit semi-discrete and fully discrete finite ele-
ment schemes are considered by Feng, He and Liu [6] and convergence results are established
rigorously. Grün [7] established an abstract convergence result for a fully discrete implicit
scheme for diffuse interface models of two-phase incompressible fluids with different den-
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sities. A coupled second-order energy stable scheme for the Cahn–Hilliard–Navier–Stokes
system based on convex splitting for the Cahn–Hilliard equation is constructed by Han and
Wang [13]. In addition, Han et al. [12] developed a class of second-order IEQ schemes which
can preserve energy stability. In 2020, we [17] constructed a second-order weakly-coupled,
linear, energy stable SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes equations, and
established second order convergence both in time and space for the simpler Cahn–Hilliard-
Stokes equations.

It is important to note that all of the aforementioned works involve solving a coupled
linear or nonlinear system with variable coefficients at each time step. Recently in [18],
we construct first- and second-order time discretization schemes for the Cahn–Hilliard–
Navier–Stokes system based on the MSAV approach for gradient systems and (rotational)
pressure-correction for Navier–Stokes equations. These schemes are linear, fully decoupled,
unconditionally energy stable, and only require solving a sequence of elliptic equations with
constant coefficients at each time step. In the above work, we only established error estimates
for two-dimensional case, as the weak stability results established there were not sufficient
for establishing an error estimate in 3D. It is also much more difficult to construct higher than
second-order fully decoupled numerical schemes due to the splitting error of the pressure-
correction method.

The main purposes of this work are to construct a class of higher-order fully decoupled,
linear and unconditionally energy stable schemes for (1.1), and to carry out a rigorous error
analysis in two and three-dimensional cases. Our main contributions are:

• By using a combination of techniques in the GSAV approach [15] with the new relaxation
and the consistent splitting method [8, 16], we construct new fully decoupled, linear and
higher-order schemes for the Cahn–Hilliard–Navier–Stokes system, which only require
solving a sequence of Poisson type equations with constant coefficients at each time step
and are unconditionally energy stable with a modified energy that is directly linked to
the original energy.

• We establish global-in-time error estimates in l∞(0, T ; H1(�))
⋂

l2(0, T ; H2(�)) for
the velocity and l2(0, T ; H1(�)) for the pressure, and l∞(0, T ; H1(�)) for the phase
function in two and three-dimensional cases.

We believe that our higher-order, fully decoupled, linear, unconditionally energy stable
scheme is the first such scheme for the Cahn–Hilliard–Navier–Stokes system, and its global-
in-time error analysis in the three-dimensional case is the first for any linear and fully
decoupled schemes with explicit treatment of all nonlinear terms.

The paper is organized as follows. In Sect. 2, we provide some preliminaries which will
be used in the sequel. In Sect. 3, we construct the fully decoupled consistent splitting GSAV
schemes and prove that they are unconditionally energy stable with a modified energy. In
Sect. 4, we carry out an error analysis for the first-order consistent splitting GSAV scheme.
In Sect. 5, we present numerical experiments to validate our proposed schemes.

2 Preliminaries

We introduce some standard notations. Let Lm(�) be the standard Banach space with norm

‖v‖Lm (�) =
(∫

�

|v|md�

)1/m

.
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For the case m = ∞, set ‖v‖∞ = ‖v‖L∞(�) = ess sup{| f (x)| : x ∈ �}. And W k,p(�) be
the standard Sobolev space

W k,p(�) = {g : ‖g‖W k
p(�) < ∞},

where

‖g‖W k,p(�) =
⎛
⎝ ∑

|α|≤k

‖Dαg‖p
L p(�)

⎞
⎠

1/p

, (2.1)

in the case 1 ≤ p < ∞, and in the case p = ∞,

‖g‖W k,∞(�) = max|α|≤k
‖Dαg‖L∞(�).

For simplicity, we set Hk(�) = W k,2(�) and ‖ f ‖k = ‖ f ‖Hk (�).
By using Poincaré inequality, we have

‖v‖ ≤ c1‖∇v‖, ∀ v ∈ H1
0(�), (2.2)

where c1 is a positive constant depending only on � and

H1
0(�) = {

v ∈ H1(�) : v|� = 0
}
.

Define

H = {
v ∈ L2(�) : divv = 0, v · n|� = 0

}
, V = {

v ∈ H1
0(�) : divv = 0

}
,

and the trilinear form b(·, ·, ·) by

b(u, v,w) =
∫

�

(u · ∇)v · wdx.

We can easily observe that the trilinear form b(·, ·, ·) is skew-symmetric with respect to its
last two arguments, i.e.,

b(u, v,w) = −b(u,w, v), ∀ u ∈ H, v,w ∈ H1
0(�), (2.3)

b(u, v, v) = 0, ∀ u ∈ H, v ∈ H1
0(�). (2.4)

The following lemmas will be frequently used in the sequel, one can refer the proof and
more detailed information in [2, 3]:

Lemma 2.1 (Holder inequality) Suppose that u ∈ Lp(�), v ∈ Lq(�), w ∈ Ls(�), 1
p + 1

q +
1
s = 1, then we have

∫
�

|(u, v)w|dx ≤ ‖u‖Lp ‖v‖Lq ‖w‖Ls . (2.5)

Lemma 2.2 (Interpolation inequalities) For k = 3, 4, 6, we have

‖f‖Lk ≤ C‖f‖
6−k
2k

L2
‖f‖

3k−6
2k

H1 , ‖f‖L∞ ≤ C‖f‖
1
2

H1‖f‖
1
2

H2 . (2.6)

We will frequently use the following discrete version of the Grönwall lemma [23]:
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Lemma 2.3 Let ak , bk , ck , dk , γk , �tk be nonnegative real numbers such that

ak+1 − ak + bk+1�tk+1 + ck+1�tk+1 − ck�tk ≤ akdk�tk + γk+1�tk+1 (2.7)

for all 0 ≤ k ≤ m. Then

am+1 +
m+1∑
k=0

bk�tk ≤ exp

(
m∑

k=0

dk�tk

)
{a0 + (b0 + c0)�t0 +

m+1∑
k=1

γk�tk}. (2.8)

3 The GSAV Schemewith the New Relaxation

In this section, we first reformulate the Cahn–Hilliard–Navier–Stokes system into an
equivalent system with generalized scalar auxiliary variables (GSAV). Then, we construct
higher-order fully decoupled semi-discrete consistent splitting GSAV schemes with the new
relaxation based on the IMEX BDF-k formulae with k = 1, 2, 3, 4, 5, and prove that they
are unconditionally energy stable.

3.1 GSAV Reformulation

Let γ > 0 be a positive constant, F(φ) = G(φ) − γ
2 φ2 and

E(φ,u) =
∫

�

{
1

2
|u|2 + λ

2
|∇φ|2 + λγ

2
φ2 + λF(φ)

}
dx, (3.1)

where the term λγ
2 φ2 is introduced to simplify the analysis (cf. [25]). We introduce the

following generalized scalar auxiliary variable

r(t) = E(φ,u) + κ0, (3.2a)

where κ0 is a positive constant to guarantee that λ
∫
�

F(φ)dx+κ0 > 0. Next we reformulate
the system (1.1) as:

∂φ

∂t
+ (u · ∇)φ = M�μ in � × J , (3.3a)

μ = −λ�φ + λγφ + λF ′(φ) in � × J , (3.3b)

∂u
∂t

+ u · ∇u − ν�u + ∇ p = μ∇φ in � × J , (3.3c)

∇ · u = 0 in � × J , (3.3d)

dr

dt
= −M‖∇μ‖2 − ν‖∇u‖2 in � × J . (3.3e)

It is easy to see that the above system is equivalent to the original system. We shall construct
below efficient numerical schemes for the above system which are energy stable with respect
to (3.3e).

Assuming φ̃ j , μ̃ j and ũ j with j = n, n − 1, . . . , n − l + 1 are given, we fist solve φ̃n+1

and μ̃n+1 from

αk φ̃
n+1 − Ak(φ̃

n)

�t
+ (Bk(un) · ∇)Bk(φ

n) = M�μ̃n+1,
∂φ

∂n
|∂� = 0, (3.4)

μ̃n+1 = −λ�φ̃n+1 + λγ φ̃n+1 + λF ′(Bk(φ
n)),

∂μ

∂n
|∂� = 0. (3.5)
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Then, we solve ũn+1 from

αk ũ
n+1 − Ak(ũ

n)

�t
− ν�ũn+1 = Bk(μ

n)∇ Bk(φ
n) − (Bk(un) · ∇)Bk(un) − ∇ Bk(pn),

ũn+1|∂� = 0.

(3.6)

For readers’ convenience, αk , the operators Ak and Bk with k = 1, 2, 3, 4, 5 are given below:
first-order scheme:

α1 = 1, A1( f n) = f n, B1(g
n) = gn;

second-order scheme:

α2 = 3

2
, A2( f n) = 2 f n − 1

2
f n−1, B2(g

n) = 2gn − gn−1;
third-order scheme:

α3 = 11

6
, A3( f n) = 3 f n − 3

2
f n−1 + 1

3
f n−2, B3(g

n) = 3gn − 3gn−1 + gn−2.

fourth-order scheme:

α4 = 25

12
, A4( f n) = 4 f n − 3 f n−1 + 4

3
f n−2 − 1

4
f n−3,

B4(g
n) = 4gn − 6gn−1 + 4gn−2 − gn−3;

fifth-order scheme:

α5 = 137

60
, A5( f n) = 5 f n − 5 f n−1 + 10

3
f n−2 − 5

4
f n−3 + 1

5
f n−4,

B5(g
n) = 5gn − 10gn−1 + 10gn−2 − 5gn−3 + gn−4.

Then we solve R̃n+1, ξn+1 from

R̃n+1 − Rn

�t
= −ξn+1 (

M‖∇μ̃n+1‖2 + ν‖∇ Bk(un)‖2) , ξn+1 = R̃n+1

E(φ̃n+1, ũn+1) + κ0
.

(3.7)

Next we update φn+1, μn+1, un+1 by

φn+1 = ηn+1
k φ̃n+1, μn+1 = ηn+1

k μ̃n+1, un+1 = ηn+1
k ũn+1, (3.8)

where

ηn+1
1 = 1 − (1 − ξn+1)2; ηn+1

k = 1 − (1 − ξn+1)k for k = 2, 3, 4, 5. (3.9)

Then we update the SAV Rn+1 as

Rn+1 = min
{

Rn, E(φn+1,un+1) + κ0
}
. (3.10)

Finally, we determine pn+1 by solving

(∇ pn+1,∇q) =
(
μn+1∇φn+1 − (un+1 · ∇)un+1 − ν∇ × ∇ × ũn+1,∇q

)
, ∀q ∈ H1(�).

(3.11)
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Remark 3.1 The above scheme is easy to implement and very efficient. Indeed, (3.4)–(3.5) is
a coupled second-order equations with constant coefficients; (3.6) is a second-order equation
with constant coefficients; (3.11) is a Poisson equation in the weak form; (3.7)–(3.10) can
be updated directly.

Next we prove the following unconditional energy stability with a modified energy for
the above schemes (3.4)–(3.11):

Theorem 3.1 Given Rn > 0, Then for (3.4)–(3.10), we have ξn+1 > 0 and

0 < Rn+1 ≤ Rn, ∀n ≤ T /�t . (3.12)

In addition, there exists a constant MT independent of �t such that

‖un+1‖2+λ‖∇φn+1‖2 + λγ ‖φn+1‖2 ≤ MT , ∀n ≤ T /�t . (3.13)

Proof Given Rn > 0, it follows from (3.10) that (3.12) holds.
In addition, noting that R̃0 = R0. It follows from (3.7) that

0 < R̃n+1 = 1

1 + �t M‖∇μ̃n+1‖2+ν‖∇ Bk (un)‖2
E(φ̃n+1,ũn+1)+κ0

Rn < Rn, (3.14)

then we have ξn+1 > 0. Denote R0 := M , it then follows from (3.1) and (3.14) that

ξn+1 = R̃n+1

E(φ̃n+1, ũn+1) + κ0
≤ 2M

‖ũn+1‖2 + λ‖∇φ̃n+1‖2 + λγ ‖φ̃n+1‖2 + 2
, (3.15)

where without loss of generality, we assume the positive constant
∫
�

F(φ)dx + κ0 > 1.
Recalling (3.9), we can derive from (3.15) that there exists a positive constant M1 such that

|ηn+1
l | = |ξn+1Pq(ξn+1)| ≤ M1

‖ũn+1‖2 + λ‖∇φ̃n+1‖2 + λγ ‖φ̃n+1‖2 + 2
, (3.16)

where Pq is a polynomial function of degree q with q = 1 for l = 1 and q = l − 1 for
l = 2, 3, 4, 5. Thus we have

‖un+1‖2 + λ‖∇φn+1‖2 + λγ ‖φn+1‖2 = (ηn+1
l )2(‖ũn+1‖2 + λ‖∇φ̃n+1‖2 + λγ ‖φ̃n+1‖2)

≤
(

M1

‖ũn+1‖2 + λ‖∇φ̃n+1‖2 + λγ ‖φ̃n+1‖2 + 2

)2

(‖ũn+1‖2 + λ‖∇φ̃n+1‖2 + λγ ‖φ̃n+1‖2)
≤ M2

1 ,

(3.17)

which implies the desired results (3.13). 	

Now we shall first establish the relation between R̃k+1 and Rk+1 to give following esti-

mates.

Lemma 3.2 Using the definition (3.10), we have

Rk+1 = σ k+1 R̃k+1 + (1 − σ k+1)(E(φk+1,uk+1) + κ0), (3.18)

where{
σ k+1 = 0, if Rk ≥ E(φk+1,uk+1) + κ0,

σ k+1 = 1 − R̃k+1(M‖∇μ̃k+1‖2+ν‖∇ Bl (uk )‖2)
(E(φ̃k+1,ũk+1)+κ0)(E(φk+1,uk+1)+κ0−R̃k+1)

�t, if Rk < E(φk+1,uk+1) + κ0.

(3.19)
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Proof Recalling (3.10), it is easy to obtain that if Rk ≥ E(φk+1,uk+1) + κ0,

Rk+1 = min
{

Rk, E(φk+1,uk+1) + κ0

}
= E(φk+1,uk+1) + κ0. (3.20)

Thus we can easily obtain that σ k+1 = 0 in (3.18).
On the other hand, if Rk < E(φk+1,uk+1) + κ0, we have Rk+1 = Rk . Thus by using

(3.14), we have

R̃k+1 < Rk = Rk+1 < E(φk+1,uk+1) + κ0. (3.21)

Thus there exists a constant 0 < σ k+1 < 1 to satisfy (3.18). Using (3.14) leads to

Rk+1 =Rk =
(
1 + �t

M‖∇μ̃k+1‖2 + ν‖∇ Bl(uk)‖2
E(φ̃k+1, ũk+1) + κ0

)
R̃k+1

=σ k+1 R̃k+1 + (1 − σ k+1)(E(φk+1,uk+1) + κ0),

(3.22)

which implies that

σ k+1 = 1 − R̃k+1
(
M‖∇μ̃k+1‖2 + ν‖∇ Bl(uk)‖2)

(E(φ̃k+1, ũk+1) + κ0)(E(φk+1,uk+1) + κ0 − R̃k+1)
�t .

The proof is complete. 	


4 Error Analysis

We note that even in the case of linear time dependent Stokes equations, the stability of
second- and higher-order consistent splitting scheme based on the usual BDF is still an open
problem. Themain difficulty lies in the fact that the coefficient of the estimate for commutator
of the Laplacian and Leray-Helmholtz projection operators is not sufficiently small, which
means that the extrapolation of this term to a higher order poses considerable difficulties for
theoretical analysis. So here we only carry out an error analysis for the scheme (3.4)–(3.11) in
the first-order case. The recent progress in [16] based on a generalized BDF offers potential
for an error analysis of the scheme (3.4)–(3.11) at higher-order discretization, but it will be
much more involved and beyond the scope of this paper.

For purely technical reasons, we shall modify the definition of Rk+1 in (3.10) slightly to
(3.18) with{

σ k+1 = 0, if Rk ≥ E(φk+1,uk+1) + κ0,

σ k+1 = 1 − R̃k+1
(
M‖∇μ̃k+1‖2+ν‖∇Bl (uk )‖2)

(E(φ̃k+1,ũk+1)+κ0)(E(φk+1,uk+1)+κ0−R̃k+1)
(�t)2, if Rk < E(φk+1,uk+1) + κ0.

(4.1)

Note that Theorem 3.1 still holds with this modification if �t < 1. Indeed, if Rk <

E(φk+1,uk+1) + κ0, we obtain from (3.7) that R̃k+1 ≤ Rk . Hence, we can write

Rk = γ k+1 R̃k+1 + (1 − γ k+1)(E(φk+1,uk+1) + κ0), (4.2)

and derive from (3.7) that γ k+1=1− H�t with H := R̃k+1
(
M‖∇μ̃k+1‖2+ν‖∇uk‖2)

(E(φ̃k+1,ũk+1)+κ0)(E(φk+1,uk+1)+κ0−R̃k+1)
.

Hence we have

Rk = R̃k+1 − H�t R̃k+1 + H�t(E(φk+1,uk+1) + κ0). (4.3)

On the other hand, we have from (4.1) that

σ k+1 = 1 − H(�t)2. (4.4)
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We then obtain from (3.18) that

Rk+1 =σ k+1 R̃k+1 + (1 − σ k+1)(E(φk+1,uk+1) + κ0)

=R̃k+1 − H(�t)2 R̃k+1 + H(�t)2(E(φk+1,uk+1) + κ0).
(4.5)

Subtracting (4.3) from (4.5), we have

Rk+1 − Rk =H�t(1 − �t)
(

R̃k+1 − (E(φk+1,uk+1) + κ0)
)

, (4.6)

which, together with R̃k+1 ≤ Rk < (E(φk+1,uk+1) + κ0) implies

Rk+1 < Rk, if �t < 1. (4.7)

For notational simplicity, we shall drop the dependence on x for all functions
when there is no confusion. Let (φ, μ,u, p, r) be the exact solution of (3.3), and
(φn+1, φ̃n+1, μn+1, μ̃n+1, ũn+1,un+1,

pn+1, Rn+1, R̃n+1) be the solution of the scheme (3.4–3.11), we denote⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẽn+1
φ = φ̃n+1 − φ(tn+1), en+1

φ = φn+1 − φ(tn+1),

ẽn+1
μ = μ̃n+1 − μ(tn+1), en+1

μ = μn+1 − μ(tn+1),

ẽn+1
u = ũn+1 − u(tn+1), en+1

u = un+1 − u(tn+1),

ẽn+1
R = R̃n+1 − r(tn+1), en+1

R = Rn+1 − r(tn+1).

en+1
p = pn+1 − p(tn+1).

(4.8)

The main results are stated in the following theorem:

Theorem 4.1 Assuming φ ∈ W 2,∞(0, T ; L2(�))
⋂

W 1,∞(0, T ; H1(�))
⋂

L∞(0, T ;
H2(�)), μ ∈ W 1,∞(0, T ; H2(�)), u ∈ W 1,∞(0, T ;H2(�))

⋂
W 2,∞(0, T ;L2(�)), and

p ∈ W 1,∞(0, T ; L2(�)), then for the first-order scheme (3.4)-(3.11) with (3.10) replaced
by (3.18) with (4.1), we have

‖en+1
φ ‖2+‖∇en+1

φ ‖2 + �t
n∑

k=0

‖ek+1
μ ‖2 + �t

n∑
k=0

‖∇ek+1
μ ‖2

+ ‖∇en+1
u ‖2 + �t

n∑
k=0

‖�ek+1
u ‖2 + �t

n∑
k=0

‖∇ek+1
p ‖2 ≤ C(�t)2, ∀n ≤ T /�t,

under the condition that �t ≤ 1
1+C2

0
, where C0 is independent of �t and will be specified in

what follows.

Proof The proof of the above theorem will be carried out through a sequence of intermediate
lemmas. First we shall make the hypothesis that there exists a positive constant C0 such that

|1 − ξ k | ≤ C0�t, ∀k ≤ T /�t, (4.9)

‖ẽk
u‖H2 + ‖ẽk

μ‖H1 ≤ (�t)1/6, ∀k ≤ T /�t, (4.10)

which will be proved in the induction process below by using a bootstrap argument.
We can easily obtain that (4.9) and (4.10) hold for k = 0 by setting ξ0 = 1. Now we

suppose

|1 − ξ k | ≤ C0�t, ∀k ≤ n, (4.11)

‖ẽk
u‖H2 + ‖ẽk

μ‖H1 ≤ (�t)1/6, ∀k ≤ n, (4.12)
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and we shall prove that |1− ξn+1| ≤ C0�t and ‖ẽn+1
u ‖H2 +‖ẽn+1

μ ‖H1 ≤ (�t)1/6 hold true.

Step 1: Estimates for H1 bounds of ‖ẽn+1
φ ‖. First using exactly the same procedure in [14],

we can easily obtain that

1

2
≤ |ξ k |, |ηk | ≤ 2, (4.13)

under the condition �t ≤ min{ 1
4C0

, 1}.
We shall first derive an H2(�) bound for φn without assuming the Lipschitz condition on

F(φ). A key ingredient is the following stability result

‖un+1‖2 + ‖φn+1‖2H1 + |Rn+1|2 ≤ K1, (4.14)

where the positive constant K1 is dependent on u0 and φ0, which can be derived from the
unconditionally energy stability (3.13). 	

Lemma 4.2 Under the assumption of Theorem 4.1, there exists a positive constant K2 inde-
pendent of �t such that

‖�φ̃k+1‖2 + ‖μ̃k+1‖2 +
n∑

k=0

�t‖∇μ̃k+1‖2 ≤ K2, ∀ 0 ≤ k ≤ n + 1.

Proof Combining (3.4) with (3.5) and taking the inner product with �2φ̃k+1 leads to

1

2�t
(‖�φ̃k+1‖2 − ‖�φ̃k‖2 + ‖�φ̃k+1 − �φ̃k‖2) + Mλ‖�2φ̃k+1‖2 + Mλγ ‖∇�φ̃k+1‖2

= Mλ(�F ′(φk),�2φ̃k+1) − (uk · ∇φk,�2φ̃k+1). (4.15)

The first term on the right hand side of (4.15) can be controlled by the following equation
with the aid of (4.14):

Mλ(�F ′(φk),�2φ̃k+1) ≤ Mλ

4
‖�2φ̃k+1‖2 + C(K1)‖�F ′(φk)‖2

≤ Mλ

4
‖�2φ̃k+1‖2 + Mλ

2
‖�2φ̃k‖2 + C(K1).

(4.16)

Recalling (4.12), we have ‖un‖H1 ≤ C . Then using (4.14) and lemmas 2.1 and 2.2, the
last term on the right hand side of (4.15) can be bounded by

−(uk · ∇φk,�2φ̃k+1) ≤ ‖uk‖L6‖∇φk‖L3‖�2φ̃k+1‖
≤C‖uk‖H1‖∇φk‖1/2‖∇φ̃k‖1/2

H1 ‖�2φ̃k+1‖
≤C‖uk‖2H1‖∇φ̃k‖2H1 + Mλ

16
‖�2φ̃k+1‖2 + C‖uk‖2H1‖∇φk‖2

≤ Mλ

4
‖�2φ̃k+1‖2 + C‖uk‖2H1(‖�φ̃k‖2 + C(K1)).

(4.17)

Combining (4.15) with (4.16)–(4.17) leads to

1

2�t
(‖�φ̃k+1‖2 − ‖�φ̃k‖2 + ‖�φ̃k+1 − �φ̃k‖2) + Mλ

2
‖�2φ̃k+1‖2 + Mλγ ‖∇�φ̃k+1‖2

≤ Mλ

2
‖�2φ̃k‖2 + C‖uk‖2H1(‖�φ̃k‖2 + C(K1)) + C(K1).

(4.18)
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Then multiplying (4.18) by 2�t and summing over k, k = 0, 1, 2, . . . , n, we have

‖�φ̃n+1‖2 + Mλ�t‖�2φ̃n+1‖2 + Mλγ�t
n∑

k=0

‖∇�φ̃k+1‖2

≤‖�φ̃0‖2 + Mλ�t‖�2φ̃0‖2 + C�t
n∑

k=0

‖uk‖2H1‖�φ̃k‖2 + C(K1),

(4.19)

which, together with lemma 2.3 and equations (3.5), (4.12) and (4.14), lead to the desired
result. 	


Lemma 4.3 Under the assumption of Theorem 4.1, we have

λ(‖∇ ẽn+1
φ ‖2 − ‖∇ ẽn

φ‖2 + ‖∇ ẽn+1
φ − ∇ ẽn

φ‖2) + M�t‖∇ ẽn+1
μ ‖2

+ λγ (‖ẽn+1
φ ‖2 − ‖ẽn

φ‖2 + ‖ẽn+1
φ − ẽn

φ‖2) + M�t‖ẽn+1
μ ‖2

≤ C�t‖∇ ẽn+1
φ ‖2 + C�t‖ẽn

φ‖2 + C�t‖∇ ẽn
φ‖2 + C�t‖∇ ẽn

u‖2
+ C(‖∇ũn‖2 + ‖φ̃n‖2H1)C

4
0 (�t)5 + C(�t)3,

(4.20)

where C is a positive constant independent of �t and C0.

Proof Let Rn+1
φ be the truncation error defined by

Rn+1
φ = ∂φ(tn+1)

∂t
− φ(tn+1) − φ(tn)

�t
= 1

�t

∫ tn+1

tn
(tn − t)

∂2φ

∂t2
dt . (4.21)

Subtracting (3.3a) at tn+1 from (3.4), we have

ẽn+1
φ − ẽn

φ

�t
−M�ẽn+1

μ = (u(tn+1) · ∇)φ(tn+1) − (un · ∇)φn + Rn+1
φ . (4.22)

Taking the inner product of (4.22) with ẽn+1
μ and λẽn+1

φ , respectively leads to

(
ẽn+1
φ − ẽn

φ

�t
, ẽn+1

μ

)
+ M‖∇ ẽn+1

μ ‖2

= ((u(tn+1) · ∇)φ(tn+1) − (un · ∇)φn, ẽn+1
μ ) + (Rn+1

φ , ẽn+1
μ ),

(4.23)

and

λ

2�t
(‖ẽn+1

φ ‖2−‖ẽn
φ‖2 + ‖ẽn+1

φ − ẽn
φ‖2)

=λ((u(tn+1) · ∇)φ(tn+1) − (un · ∇)φn, ẽn+1
φ )

+ λ(Rn+1
φ , ẽn+1

φ ) − Mλ(∇ ẽn+1
μ ,∇ ẽn+1

φ ).

(4.24)

Subtracting (3.3b) at tn+1 from (3.5), we have
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ẽn+1
μ = − λ�ẽn+1

φ + λγ ẽn+1
φ + λF ′(φn) − λF ′(φ(tn+1)). (4.25)

Taking the inner product of (4.25) with Mẽn+1
μ and

ẽn+1
φ −ẽn

φ

�t , respectively results in

M‖ẽn+1
μ ‖2 =Mλ(∇ ẽn+1

μ ,∇ ẽn+1
φ ) + Mλγ (ẽn+1

φ , ẽn+1
μ )

+ Mλ
(
F ′(φn) − F ′(φ(tn+1)), ẽn+1

μ

)
,

(4.26)

(
ẽn+1
φ − ẽn

φ

�t
, ẽn+1

μ

)
= λ

2�t
(‖∇ ẽn+1

φ ‖2 − ‖∇ ẽn
φ‖2 + ‖∇ ẽn+1

φ − ∇ ẽn
φ‖2)

+ λ

(
F ′(φn) − F ′(φ(tn+1)),

ẽn+1
φ − ẽn

φ

�t

)

+ λγ

2�t
(‖ẽn+1

φ ‖2 − ‖ẽn
φ‖2 + ‖ẽn+1

φ − ẽn
φ‖2).

(4.27)

Combining (4.23) with (4.24)–(4.27), we have

λ

2�t
(‖∇ ẽn+1

φ ‖2 − ‖∇ ẽn
φ‖2 + ‖∇ ẽn+1

φ − ∇ ẽn
φ‖2) + M‖∇ ẽn+1

μ ‖2

+ λγ

�t
(‖ẽn+1

φ ‖2 − ‖ẽn
φ‖2 + ‖ẽn+1

φ − ẽn
φ‖2) + M‖ẽn+1

μ ‖2

= ((u(tn+1) · ∇)φ(tn+1) − (un · ∇)φn, ẽn+1
μ + λẽn+1

φ ) + (Rn+1
φ , ẽn+1

μ )

+ λ(Rn+1
φ , ẽn+1

φ ) + Mλγ (ẽn+1
φ , ẽn+1

μ )

+ λ

(
F ′(φn) − F ′(φ(tn+1), Mẽn+1

μ − ẽn+1
φ − ẽn

φ

�t

)
.

(4.28)

Using lemmas 2.1 and 2.2, the first term on the right hand side of (4.28) can be recast as

(
(u(tn+1) · ∇)φ(tn+1) − (un · ∇)φn, ẽn+1

μ + λẽn+1
φ

)

=
(
(u(tn+1) · ∇)φ(tn+1) − (u(tn) · ∇)φ(tn), ẽn+1

μ + λẽn+1
φ

)

− (
(en

u · ∇)φ(tn), ẽn+1
μ

) −
(
(un · ∇)en

φ, ẽn+1
μ + λẽn+1

φ

)

≤ M

8
‖∇ ẽn+1

μ ‖2 + C‖∇ ẽn+1
φ ‖2 + C‖φ‖2L∞(0,T ;H2(�))

‖en
u‖2

+ C‖un‖2L3‖∇en
φ‖2L2 + C‖u‖2L∞(0,T ;H1(�))

‖φ‖2W 1,∞(0,T ;H1(�))
(�t)2

+ C‖u‖2W 1,∞(0,T ;L2(�))
‖φ‖2L∞(0,T ;H1(�))

(�t)2.

(4.29)
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Recalling lemma 4.2 and (4.22), the last term on the right hand side of (4.28) can be estimated
by

λ

(
F ′(φn) − F ′(φ(tn+1), Mẽn+1

μ − ẽn+1
φ − ẽn

φ

�t

)

= λ
(

F ′(φn) − F ′(φ(tn+1), Mẽn+1
μ − Rn+1

φ

)

− λ
(
F ′(φn) − F ′(φ(tn+1), (u(tn+1) · ∇)φ(tn+1) − (un · ∇)φn)

+ λ
(∇(F ′(φn) − F ′(φ(tn+1)), M∇ ẽn+1

μ

)

≤ M

8
‖ẽn+1

μ ‖2 + M

8
‖∇ ẽn+1

μ ‖2 + C‖en
φ‖2 + C‖∇en

φ‖2

+ C‖φ‖2W 1,∞(0,T ;H1(�))
(�t)2 + C‖φ‖2L∞(0,T ;H2(�))

‖en
u‖2

+ C‖un‖2L3‖∇en
φ‖2L2 + C‖u‖2L∞(0,T ;H1(�))

‖φ‖2W 1,∞(0,T ;H1(�))
(�t)2

+ C‖u‖2W 1,∞(0,T ;L2(�))
‖φ‖2L∞(0,T ;H1(�))

(�t)2

+ C‖φ‖2W 2,∞(0,T ;L2(�))
(�t)2.

(4.30)

Using Poincaré inequality, we have ‖en
u‖2 ≤ C‖∇en

u‖2 and using (3.8) and (4.11), we have

‖∇en
u‖2 ≤2‖∇ ẽn

u‖2 + 2|1 − ηn |2‖∇ũn‖2
≤2‖∇ ẽn

u‖2 + 2‖∇ũn‖2C4
0 (�t)4,

(4.31)

‖en
φ‖2H2 ≤2‖ẽn

φ‖2H2 + 2‖φ̃n‖2H2C4
0 (�t)4. (4.32)

Then combining (4.28) with (4.29) and (4.30) and multiplying 2�t on both sides, we have

λ(‖∇ ẽn+1
φ ‖2 − ‖∇ ẽn

φ‖2 + ‖∇ ẽn+1
φ − ∇ ẽn

φ‖2) + M�t‖∇ ẽn+1
μ ‖2

+ λγ (‖ẽn+1
φ ‖2 − ‖ẽn

φ‖2 + ‖ẽn+1
φ − ẽn

φ‖2) + M�t‖ẽn+1
μ ‖2

≤ C�t‖∇ ẽn+1
φ ‖2 + C�t‖ẽn

φ‖2 + C�t‖∇ ẽn
φ‖2 + C�t‖un‖2L3‖∇ ẽn

φ‖2
+ C‖φ‖2W 1,∞(0,T ;H1(�))

(�t)3 + C�t‖φ‖2L∞(0,T ;H2(�))
‖∇ ẽn

u‖2
+ C‖u‖2L∞(0,T ;H1(�))

‖φ‖2W 1,∞(0,T ;H1(�))
(�t)3 + C‖∇ũn‖2C4

0 (�t)5

+ C‖u‖2W 1,∞(0,T ;L2(�))
‖φ‖2L∞(0,T ;H1(�))

(�t)3 + C‖φ̃n‖2H1C4
0 (�t)5

+ C‖φ‖2W 2,∞(0,T ;L2(�))
(�t)3, (4.33)

which implies the desired result (4.20). 	

Step 2: Estimates for H2 bounds of ẽn+1

u . We first establish error estimate for the commuta-
tor of the Laplacian and Leray-Helmholtz projection operators to bound the part of pressure.
Similar to [21], we let P denote the Leray-Helmholtz projection operator onto divergence-
free fields, defined as follows. Given any b ∈ L2(�,Rd), there is a unique q ∈ H1(�) with∫
�

q = 0 such that Pb = b + ∇q satisfies

(b + ∇q,∇φ) = (Pb,∇φ) = 0, ∀φ ∈ H1(�). (4.34)

Then for u ∈ L2(�,Rd), we have [21]

�Pu = �u − ∇∇ · u = −∇ × ∇ × u. (4.35)
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Next we recall the estimate for commutator of the Laplacian and Leray-Helmholtz projection
operators.

Lemma 4.4 [21] Let � ⊂ R
d be a connected bounded domain with C3 boundary. Then

for any ε > 0, there exists a positive constant C ≥ 0 such that for all vector fields u ∈
H2 ∩ H1

0 (�,Rd),
∫

�

|(�P − P�)u|2 ≤
(
1

2
+ ε

)∫
�

|�u|2 + C
∫

�

|∇u|2. (4.36)

We define the Stokes pressure ps(u) by

∇ ps(u) = (�P − P�)u, (4.37)

where the Stokes pressure is generated by the tangential part of vorticity at the boundary in
two and three dimensions by∫

�

∇ ps(u) · ∇φ =
∫

�

(∇ × u) · (n × ∇φ), ∀φ ∈ H1(�). (4.38)

Then by using (4.35), we have

∇ ps(u) = (�P − P�)u = (I − P)�u − ∇∇ · u = (I − P)(�u − ∇∇ · u). (4.39)

Recalling (4.34), we have∫
�

∇ ps(u) · ∇φ =
∫

�

(�u − ∇∇ · u) · ∇φ, ∀φ ∈ H1(�). (4.40)

Lemma 4.5 Under the assumption of Theorem 4.1, we have

M

2K3
(‖∇ ẽn+1

u ‖2 − ‖∇ ẽn
u‖2 + ‖∇ ẽn+1

u − ∇ ẽn
u‖2) + M

2K3

(
1 − 3(1 − α)

8

)
ν�t‖�ẽn+1

u ‖2

≤ M

2K3

(
α + (1 − α)

8

)
ν�t‖�ẽn

u‖2 + C�t‖∇ ẽn
u‖2

+ C�t‖ẽn
φ‖2 + C�t‖∇ ẽn

φ‖2 + M

2
�t(‖ẽn

μ‖2 + ‖∇ ẽn
μ‖2)

+ C(‖�ũn‖2 + ‖∇ũn‖2)C4
0 (�t)5

+ C‖φ̃n‖2H2C4
0 (�t)5 + C‖∇μ̃n‖2C4

0 (�t)5 + C(�t)3,

(4.41)

where the positive constant C is independent of �t and C0 and the positive constant α

satisfies 1
2 < α < 1.

Proof Let Rn+1
u be the truncation error defined by

Rn+1
u = ∂u(tn+1)

∂t
− u(tn+1) − u(tn)

�t
= 1

�t

∫ tn+1

tn
(tn − t)

∂2u
∂t2

dt . (4.42)

Subtracting (3.3c) at tn+1 from (3.6), we obtain

ẽn+1
u − ẽn

u

�t
− ν�ẽn+1

u = (u(tn+1) · ∇)u(tn+1) − un · ∇un

− ∇(pn − p(tn+1)) + μn∇φn − μ(tn+1)∇φ(tn+1) + Rn+1
u .

(4.43)
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Next we establish an error equation for pressure corresponding to (3.11) by

(∇en+1
p ,∇q) = (

(u(tn+1) · ∇)u(tn+1) − (un+1 · ∇)un+1,∇q
)

+ (
μn+1∇φn+1 − μ(tn+1)∇φ(tn+1),∇q

)
− (ν∇ × ∇ × ẽn+1

u ,∇q), ∀q ∈ H1(�).

(4.44)

Taking q = en+1
p in (4.44) leads to

‖∇en+1
p ‖ ≤ν‖∇ pn+1

s (ẽu)‖ + ‖en+1
u ‖L6‖∇u(tn+1)‖L3 + ‖un+1‖L6‖∇en+1

u ‖L3

+ ‖en+1
μ ‖L6‖∇φn+1‖L3 + ‖μ(tn+1)‖L6‖∇en+1

φ ‖L3 .
(4.45)

Recalling (4.40) and lemma 4.4, we have

ν‖∇ pn+1
s (ẽu)‖2 ≤να‖�ẽn+1

u ‖2 + νCα‖∇ ẽn+1
u ‖2, (4.46)

where the positive constant 1
2 < α < 1.

Taking the inner product of (4.43) with −2�t�ẽn+1
u and using lemmas 2.1 and 2.2, we

have

(‖∇ ẽn+1
u ‖2 − ‖∇ ẽn

u‖2 + ‖∇ ẽn+1
u − ∇ ẽn

u‖2) + 2ν�t‖�ẽn+1
u ‖2

≤ 2ν�t‖�ẽn+1
u ‖‖∇ pn

s (ẽu)‖ + 4�t‖�ẽn+1
u ‖(‖en

u‖L6‖∇u(tn)‖L3 + ‖un‖L6‖∇en
u‖L3 )

+ 4�t‖�ẽn+1
u ‖(‖en

μ‖L6‖∇φn‖L3 + ‖μ(tn)‖L6‖∇en
φ‖L3 )

+ 2�t‖�ẽn+1
u ‖(‖p(tn) − p(tn+1)‖ + ‖Rn+1

u ‖ + ‖(u(tn+1) · ∇)u(tn+1) − (u(tn) · ∇)u(tn)‖)
+ 2�t‖�ẽn+1

u ‖‖μ(tn+1)∇φ(tn+1) − μ(tn)∇φ(tn)‖.
(4.47)

Using Cauchy-Schwarz inequality, the first term on the right hand side of (4.47) can be
estimated by

2ν�t‖�ẽn+1
u ‖‖∇ pn

s (ẽu)‖ ≤ ν�t‖�ẽn+1
u ‖2 + να�t‖�ẽn

u‖2 + νCα�t‖∇ ẽn
u‖2. (4.48)

Recalling (4.12), we can obtain ‖un‖H2 ≤ C and by using (3.8) and (4.11), we have

‖�en
u‖2 ≤2‖�ẽn

u‖2 + 2|1 − ηn |2‖�ũn‖2 ≤ 2‖�ẽn
u‖2 + 2‖�ũn‖2C4

0 (�t)4. (4.49)

Thus the second term on the right hand side of (4.47) can be estimated by

4�t‖�ẽn+1
u ‖(‖en

u‖L6‖∇u(tn)‖L3 + ‖un‖L6‖∇en
u‖L3)

≤ (1 − α)ν

8
�t‖�ẽn+1

u ‖2 + C�t‖∇en
u‖2‖∇u(tn)‖‖∇u(tn)‖H1

+ C�t‖∇un‖2‖∇en
u‖‖∇en

u‖H1

≤ (1 − α)ν

8
�t‖�ẽn+1

u ‖2 + (1 − α)ν

16
�t‖�en

u‖2 + C�t‖∇en
u‖2

≤ (1 − α)ν

8
�t‖�ẽn+1

u ‖2 + (1 − α)ν

8
�t‖�ẽn

u‖2 + C�t‖∇ ẽn
u‖2

+ C(‖�ũn‖2 + ‖∇ũn‖2)C4
0 (�t)5.

(4.50)

Using (4.25), we have

�ẽn+1
φ = γ ẽn+1

φ + F ′(φn) − F ′(φ(tn+1)) − 1

λ
ẽn+1
μ . (4.51)
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Recalling (4.12) leads to ‖μn‖H1 ≤ C . In addition, we have

‖en
φ‖2H2 ≤2‖ẽn

φ‖2H2 + 2‖φ̃n‖2H2C4
0 (�t)4, (4.52)

‖∇en
μ‖2 ≤2‖∇ ẽn

μ‖2 + 2‖∇μ̃n‖2C4
0 (�t)4. (4.53)

Hence the third term on the right hand side of (4.47) can be bounded by

4�t‖�ẽn+1
u ‖(‖en

μ‖L6‖∇φn‖L3 + ‖μ(tn)‖L6‖∇en
φ‖L3)

≤ 4�t‖�ẽn+1
u ‖(‖en

μ‖H1‖∇φn‖1/2‖∇φn‖1/2
H1 + ‖μ(tn)‖H1‖∇en

φ‖1/2‖∇en
φ‖1/2

H1 )

≤ (1 − α)ν

8
�t‖�ẽn+1

u ‖2 + K3�t(‖ẽn
μ‖2 + ‖∇ ẽn

μ‖2) + C�t‖ẽn
φ‖2

+ C�t‖∇ ẽn
φ‖2 + C‖φ̃n‖2H2C4

0 (�t)5 + C‖∇μ̃n‖2C4
0 (�t)5

+ C‖φ‖2W 1,∞(0,T ;H1(�))
‖μ‖2L∞(0,T ;H1(�))

(�t)3,

(4.54)

where K3 is a positive constant which is independent of �t and C0.
Using Cauchy-Schwarz inequality, the last two terms on the right hand side of (4.47) can

be bounded by

2�t‖�ẽn+1
u ‖(‖p(tn) − p(tn+1)‖ + ‖Rn+1

u ‖ + ‖(u(tn+1) · ∇)u(tn+1) − (u(tn) · ∇)u(tn)‖)
+ 2�t‖�ẽn+1

u ‖‖μ(tn+1)∇φ(tn+1) − μ(tn)∇φ(tn)‖

≤ (1 − α)ν

8
�t‖�ẽn+1

u ‖2 + C(�t)2
(∫ tn+1

tn
‖pt‖2dt +

∫ tn+1

tn
‖ut t‖2dt

)

+ C(�t)2
(∫ tn+1

tn
‖∇ut‖2dt‖u(tn+1)‖2H2 + ‖u(tn)‖2H1

∫ tn+1

tn
‖ut‖2H2dt

)

+ C(�t)2
(∫ tn+1

tn
‖∇φt‖2dt‖μ(tn+1)‖2H2 + ‖φ(tn)‖2H1

∫ tn+1

tn
‖μt‖2H2dt

)
.

(4.55)

Finally, combining (4.47) with (4.48)–(4.55), we obtain

(‖∇ ẽn+1
u ‖2 − ‖∇ ẽn

u‖2 + ‖∇ ẽn+1
u − ∇ ẽn

u‖2) + (1 − 3(1 − α)

8
)ν�t‖�ẽn+1

u ‖2

≤
(

α + (1 − α)

8

)
ν�t‖�ẽn

u‖2 + C�t‖∇ ẽn
u‖2 + C�t‖ẽn

φ‖2 + C�t‖∇ ẽn
φ‖2

+ K3�t(‖ẽn
μ‖2 + ‖∇ ẽn

μ‖2)
+ C(‖�ũn‖2 + ‖∇ũn‖2)C4

0 (�t)5

+ C‖φ̃n‖2H2C4
0 (�t)5 + C‖∇μ̃n‖2C4

0 (�t)5

+ C(|u‖2W 1,∞(0,T ;H2(�))
+ ‖φ‖2W 1,∞(0,T ;H1(�))

+ ‖μ‖2W 1,∞(0,T ;H2(�))
)(�t)3

+ C(‖p‖2W 1,∞(0,T ;L2(�))
+ ‖u‖2W 2,∞(0,T ;L2(�))

)(�t)3,

(4.56)

which leads to the desired result (4.41) by multiplying M
2K3

on both sides of (4.56). 	

Combining lemmas 4.3 and 4.5, we have

λ(‖∇ ẽk+1
φ ‖2 − ‖∇ ẽk

φ‖2 + ‖∇ ẽk+1
φ − ∇ ẽk

φ‖2) + λγ (‖ẽk+1
φ ‖2 − ‖ẽk

φ‖2 + ‖ẽk+1
φ − ẽk

φ‖2)
+ M�t‖∇ ẽk+1

μ ‖2 + M�t‖ẽk+1
μ ‖2 + M

2K3
(‖∇ ẽk+1

u ‖2 − ‖∇ ẽk
u‖2 + ‖∇ ẽk+1

u − ∇ ẽk
u‖2)
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+ M

2K3

(
1 − 3(1 − α)

8

)
ν�t‖�ẽk+1

u ‖2

≤ C1�t‖∇ ẽk+1
φ ‖2 + C�t‖ẽk

φ‖2 + C�t‖∇ ẽk
φ‖2 + C

(
‖∇ũk‖2 + ‖φ̃k‖2H1

)
C4
0 (�t)5

+ C(�t)3 + M

2K3
(α + (1 − α)

8
)ν�t‖�ẽk

u‖2 + C�t‖∇ ẽk
u‖2 + C�t‖ẽk

φ‖2 + C�t‖∇ ẽk
φ‖2

+ M

2
�t(‖ẽk

μ‖2 + ‖∇ ẽk
μ‖2) + C(‖�ũk‖2 + ‖∇ũk‖2)C4

0 (�t)5

+ C‖φ̃k‖2H2C4
0 (�t)5 + C‖∇μ̃k‖2C4

0 (�t)5 + C(�t)3. (4.57)

Summing (4.57) over k, k = 0, 1, 2, . . . , n, using boundedness estimates (4.12), (4.14),
lemma 4.2 and applying the discrete Gronwall lemma 2.3 under the condition that�t ≤ λ

2C1
,

we can arrive at

‖ẽn+1
φ ‖2 + ‖∇ ẽn+1

φ ‖2 + �t
n∑

k=0

‖ẽk+1
μ ‖2 + �t

n∑
k=0

‖∇ ẽk+1
μ ‖2

+ ‖∇ ẽn+1
u ‖2 + �t

n∑
k=0

‖�ẽk+1
u ‖2

≤ C2
(
1 + C4

0 (�t)2
)
(�t)2, ∀n ≤ T /�t,

(4.58)

where C2 is independent of C0 and �t .
Step 3: Estimates for |1− ξn+1| with the new relaxation.We finish the induction process
by establishing the estimates for |1 − ξn+1|. Let Sk+1

r be the truncation error defined by

Sk+1
r = ∂r(tk+1)

∂t
− R(tk+1) − R(tk)

�t
= 1

�t

∫ tk+1

tk
(tk − t)

∂2r

∂t2
dt . (4.59)

Subtracting (3.3e) at tk+1 from (3.7), we obtain

ẽk+1
R − ek

R

�t
= − R̃k+1

E(φ̃k+1, ũk+1) + κ0

(
M‖∇μ̃k+1‖2 + ν‖∇uk‖2

)

+ r(tk+1)

E(φ(tk+1),u(tk+1)) + κ0

(
M‖∇μ(tk+1)‖2 + ν‖∇u(tk+1)‖2

)
+ Sk+1

r .

(4.60)

Thus we can obtain an error equation corresponding to (3.18)

ek
R = σ k ẽk

R + (1 − σ k)
(

E(φk,uk) − E(φ(tk),u(tk))
)

. (4.61)

Plugging (4.61) into (4.60) leads to

ẽk+1
R − σ k ẽk

R =(1 − σ k)
(

E(φk ,uk) − E(φ(tk),u(tk))
)

− �t
R̃k+1

E(φ̃k+1, ũk+1) + κ0

(
M‖∇μ̃k+1‖2 + ν‖∇uk‖2

)

+ �t
r(tk+1)

E(φ(tk+1),u(tk+1)) + κ0

(
M‖∇μ(tk+1)‖2 + ν‖∇u(tk+1)‖2

)
+ �t Sk+1

r .

(4.62)

Next we continue the error estimates in the following two cases Rk−1 ≥ E(φk,uk)+ κ0 and
Rk−1 < E(φk,uk) + κ0.
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Case I: Under the condition that Rk−1 ≥ E(φk,uk) + κ0, we have from Lemma 3.2 that
σ k = 0. Thus multiplying (4.62) with ẽk+1

R and using the triangle inequality, we have

|ẽk+1
R |2 =

(
E(φk,uk) − E(φ(tk),u(tk)), ẽk+1

R

)

+ �t(Sk+1
r , ẽk+1

R ) + H(R̃k+1, μ̃k+1,uk),

(4.63)

where

H(R̃k+1, μ̃k+1,uk) =�t

(
R̃k+1

E(φ̃k+1, ũk+1) + κ0

(
M‖∇μ̃k+1‖2 + ν‖∇uk‖2

)

−
(

M‖∇μ(tk+1)‖2 + ν‖∇u(tk+1)‖2
)

, ẽk+1
R

)
.

Using (4.14) and (4.58), we have

|E(φk,uk) − E(φ(tk),u(tk))|
≤ |E(φk,uk) − E(φ̃k, ũk)| + |E(φ̃k, ũk) − E(φ(tk),u(tk))|
≤ C K1(‖∇φk − ∇φ̃k‖ + ‖φk − φ̃k‖ + ‖uk − ũk‖)

+ C(‖∇φ̃k − ∇φ(tk)‖ + ‖φ̃k − φ(tk)‖ + ‖ũk − u(tk)‖)
+ λ

∫
�

|F(φk) − F(φ(tk))|dx
≤ C |1 − ηk

1|(‖φ̃k‖H1 + ‖ũk‖) + C�t

≤ C(‖φ̃k‖H1 + ‖ũk‖)C2
0 (�t)2 + C�t .

(4.64)

Then the first term on the right hand side of (4.63) can be estimated as

(
E(φk,uk) − E(φ(tk),u(tk)), ẽk+1

R

)

≤ C(‖φ̃k‖2H1 + ‖ũk‖2)C4
0 (�t)4 + C(�t)2 + 1

4
|ẽk+1

R |2.
(4.65)

Since

�t

∣∣∣∣∣
R̃k+1

E(φ̃k+1, ũk+1) + κ0

(
M‖∇μ̃k+1‖2 + ν‖∇uk‖2

)
−

(
M‖∇μ(tk+1)‖2 + ν‖∇u(tk+1)‖2

)∣∣∣∣∣

= �t

∣∣∣∣∣
R̃k+1

E(φ̃k+1, ũk+1) + κ0
− r(tk+1)

E(φ(tk+1),u(tk+1)) + κ0

∣∣∣∣∣
(

M‖∇μ(tk+1)‖2 + ν‖∇u(tk+1)‖2
)

+ M�t
R̃k+1

E(φ̃k+1, ũk+1) + κ0
(‖∇μ̃k+1‖2 − ‖∇μ(tk+1)‖2)

+ ν�t
R̃k+1

E(φ̃k+1, ũk+1) + κ0
(‖∇uk‖2 − ‖∇u(tk+1)‖2)

≤ C�t |ẽk+1
R | + C�t(‖∇μ̃k+1‖ + 1)‖∇ ẽk+1

μ ‖ + C�t‖ẽk
u‖ + C�t .

(4.66)
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Thus using Cauchy-Schwarz inequality, the last term on the right hand side of (4.63) can be
bounded by

H(R̃k+1, μ̃k+1,uk) ≤C�t |ẽk+1
R |2 + 1

4K2
�t‖∇μ̃k+1‖2|ẽk+1

R |2

+ C�t‖∇ ẽk+1
μ ‖2 + C�t‖ẽk

u‖2 + C(�t)2.
(4.67)

Combining (4.63) with (4.64)–(4.67), we have

|ẽk+1
R |2 ≤ C(‖φ̃k‖2H1 + ‖ũk‖2)C4

0 (�t)4 + 1

4
|ẽk+1

R |2 + C�t |ẽk+1
R |2

+ 1

4K2
�t‖∇μ̃k+1‖2|ẽk+1

R |2 + C�t‖∇ ẽk+1
μ ‖2 + C�t‖ẽk

u‖2 + C(�t)2.
(4.68)

By substituting n for k and adding some positive terms on the right hand side of (4.68), we
get

|ẽn+1
R |2 ≤ C(‖φ̃n‖2H1 + ‖ũn‖2)C4

0 (�t)4 + 1

4
|ẽn+1

R |2 + C3�t
n∑

k=0

|ẽk+1
R |2

+ 1

4K2
|ẽn+1

R |2�t
n∑

k=0

‖∇μ̃k+1‖2 + C�t
n∑

k=0

‖∇ ẽk+1
μ ‖2 + C�t

n∑
k=0

‖ẽk
u‖2 + C(�t)2.

(4.69)

Case II: Under the condition that Rk−1 < E(φk,uk) + κ0, we have from (4.1), that

σ k = 1 − R̃k
(
M‖∇μ̃k‖2+ν‖∇uk−1‖2)

(E(φ̃k ,ũk )+κ0)(E(φk ,uk )+κ0−R̃k )
(�t)2. Thus using (4.62), we have

ẽk+1
R − ẽk

R = − �t
R̃k+1

E(φ̃k+1, ũk+1) + κ0

(
M‖∇μ̃k+1‖2 + ν‖∇uk‖2

)

+ �t
r(tk+1)

E(φ(tk+1),u(tk+1)) + κ0

(
M‖∇μ(tk+1)‖2 + ν‖∇u(tk+1)‖2

)

+ �t Sk+1
r + R̃k

(
M‖∇μ̃k‖2 + ν‖∇uk−1‖2)

E(φ̃k, ũk) + κ0
(�t)2.

(4.70)

Multiplying (4.70) with ẽk+1
R and using the triangle inequality, we have

1

2
|ẽk+1

R |2 − 1

2
|ẽk

R |2 + 1

2
|ẽk+1

R − ẽk
R |2

= �t

(
R̃k

(
M‖∇μ̃k‖2 + ν‖∇uk−1‖2)

E(φ̃k, ũk) + κ0
�t, ẽk+1

R

)
+ �t(Sk+1

r , ẽk+1
R )

+ H(R̃k+1, μ̃k+1,uk),

(4.71)

Taking the sum of (4.71) from q + 1 to n with σ q = 0 and using (4.63) result in

1

2
|ẽn+1

R |2 ≤ �t
n∑

k=q+1

(
R̃k

(
M‖∇μ̃k‖2 + ν‖∇uk−1‖2)

E(φ̃k, ũk) + κ0
�t, ẽk+1

R

)

+ 1

2

(
E(φq ,uq) − E(φ(tq),u(tq)), ẽq+1

R

)
+ 1

2
�t(Sq+1

r , ẽq+1
R )

+ �t
n∑

k=q+1

(Sk+1
r , ẽk+1

R ) + 1

2
H(R̃q+1, μ̃q+1,uq) +

n∑
k=q+1

H(R̃k+1, μ̃k+1,uk).

(4.72)
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Using (4.14) and lemma 4.2, the first term on the right hand side of (4.72) can be estimated
as

�t
n∑

k=q+1

(
R̃k

(
M‖∇μ̃k‖2 + ν‖∇uk−1‖2)

E(φ̃k, ũk) + κ0
�t, ẽk+1

R

)
≤ 1

4
|ẽn+1

R |2 + C(K1 + K2)(�t)2,

(4.73)

where we suppose that |ẽn+1
R |2 achieves its maximum value at the time step n +1. Otherwise

we should repeat this estimate.
The other terms on the right hand side of (4.72) can be estimated by using exactly the

same procedure as above in Case I, we can obtain that

|ẽn+1
R |2 ≤C4�t

n∑
k=q+1

|ẽk+1
R |2 + C�t

n∑
k=0

‖∇ ẽk+1
μ ‖2

+ C�t
n∑

k=0

‖ẽk
u‖2 + C(‖φ̃q‖2H1 + ‖ũq‖2)C4

0 (�t)4 + C(�t)2.

(4.74)

Applying the discrete Gronwall lemma 2.3 under the condition that�t ≤ min{ 1
4C3

, 1
4C4

} and
using (4.58), we can arrive at

|ẽn+1
R |2 ≤ C5

(
1 + C4

0 (�t)2
)
(�t)2, ∀n ≤ T /�t . (4.75)

Next we finish the induction process as follows. Recalling (3.7), we have

|1 − ξn+1| =
∣∣∣∣∣

R(tn+1)

E(φ(tn+1),u(tn+1)) + κ0
− R̃n+1

E(φ̃n+1, ũn+1) + κ0

∣∣∣∣∣
≤C(|ẽn+1

R | + ‖ẽn+1
u ‖ + ‖ẽn+1

φ ‖ + ‖∇ ẽn+1
φ ‖)

≤C6�t
√
1 + C4

0 (�t)2, ∀n ≤ T /�t .

(4.76)

where C6 is independent of C0 and �t .

Let C0 = max{2C6, 2
√

C4, 2
√

C3, (2C2)
3
2 ,

√
2C1
λ

, 4} and �t ≤ 1
1+C2

0
, we can obtain

C6

√
1 + C4

0 (�t)2 ≤ C6(1 + C2
0�t) ≤ C0. (4.77)

Then combining (4.76) with (4.77) results in

|1 − ξn+1| ≤C0�t, ∀n ≤ T /�t . (4.78)

Recalling (4.58), we have

‖ẽn+1
u ‖H2 + ‖ẽn+1

μ ‖H1 ≤ C2
(
1 + C4

0 (�t)2
)
(�t)1/2 ≤ (�t)1/6, (4.79)

which completes the induction process (4.9) and (4.10).
Then combining (4.58) with (4.49), (4.52) and (4.53), we obtain

‖en+1
φ ‖2 + ‖∇en+1

φ ‖2 + �t
n∑

k=0

‖ek+1
μ ‖2 + �t

n∑
k=0

‖∇ek+1
μ ‖2

+ ‖∇en+1
u ‖2 + �t

n∑
k=0

‖�ek+1
u ‖2 ≤ C(�t)2, ∀n ≤ T /�t .

(4.80)
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Now it remains to estimate the pressure error. Recalling (4.46), we can estimate (4.45)
into the following:

�t
n∑

k=0

‖∇ek+1
p ‖2 ≤ C�t

n∑
k=0

‖�ẽk+1
u ‖2 + C�t

n∑
k=0

‖∇ ẽk+1
u ‖2

+ C�t
n∑

k=0

(‖∇ek+1
u ‖2‖∇u(tk+1)‖‖∇u(tk+1)‖H1 + ‖∇uk+1‖2‖∇ek+1

u ‖‖∇ek+1
u ‖H1)

+ C�t
n∑

k=0

(‖∇en+1
μ ‖2‖∇φn+1‖‖∇φn+1‖H1 + ‖∇μ(tn+1)‖2‖∇en+1

φ ‖‖∇en+1
φ ‖H1)

≤ C(�t)2, ∀n ≤ T /�t, (4.81)

which completes the proof. 	


5 Numerical Experiments

In this section, we provide some numerical experiments to verify our theoretical results
of the constructed high-order GSAV schemes with the new relaxation (3.4)–(3.11) for the
Cahn–Hilliard–Navier–Stokes model.

5.1 Convergence Tests

We first verify the accuracy of the proposed numerical schemes. We choose the coefficients

λ = 1, M = 1 × 10−3, ε = 1, γ = 0, ν = 0.05, (5.1)

and solve (1.1) with right hand sides chosen so that the exact solution is

φ(x, y, t) = cos(t) cos(πx) cos(π y),

u(x, y, t) = π sin(t)(sin2(πx) sin(2π y),− sin(2πx) sin2(π y))T ,

p(x, y, t) = sin(t) cos(πx) sin(π y).

(5.2)

We set � = (−1, 1)2 and use 50 × 50 modes to discretize the space variables, so the
spatial discretization error is negligible compared to the time discretization. In Fig. 1(a–e),
we list the errors between the numerical solution and the exact solution at T = 0.2. We
observe that all schemes achieve the expected accuracy in time, which is consistent with the
error analysis in Theorem 4.1.

5.2 Shape Relaxation

In this simulation, we employ an evolution of a star-shaped interface, with the initial value
provided by

φ(x, y, 0) = tanh
0.25 + 0.1 cos(sθ + π/2) − r√

2ε
, u(x, y, 0) = 0,

θ = arctan
y − 0.5

x − 0.5
, r =

√
(x − 0.5)2 + (y − 0.5)2,
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Fig. 1 Numerical convergence rates of the first- to fifth-order schemes

Fig. 2 Snapshots of the phase function φ at t = 0, 0.2, 0.6, 1.5

where the parameter s denotes the count of vertices in the initial data. We set � = (0, 1)2

and use 128 × 128 modes to discretize the space variables. The parameters are

�t = 1 × 10−3, λ = 1 × 10−2, M = 1 × 10−3,

ε = 1 × 10−2, γ = 2 × 104, ν = 1.
(5.3)

In Fig. 2, we depict the dynamic process of shape relaxation towards a disk, considering
various initial values with third-order scheme. It can be clearly observed that the energy
dissipation law holds for both s = 4 and s = 6 in Fig. 3 (Left). Furthermore, we can also
find that the more vertices, the faster the evolution by comparing the energy evolutions of
two cases.
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Fig. 3 Evolutions of both the original and modified energy curves under shape relaxation (Left), as presented
in subsection 5.2. The energy curves that depict the nucleation process (Right) using the GSAV and NR-GSAV
schemes can be found in subsection 5.3

5.3 Flow-Coupled Phase Separation

In this subsection, the process of flow-coupled nucleation is considered. The initial conditions
are as follows

φ(x, y, 0) = y − 1 + 0.01rand(x, y), u(x, y, 0) = 0,

where rand(x, y) represents the random distribution between −1 and 1.
We set � = (0, 2)2 and use 200 × 200 modes to discretize the space variables and the

other parameters are set as follows:

�t = 1 × 10−3, λ = 1 × 10−5, M = 5 × 10−1,

ε = 1 × 10−2, γ = 2 × 104, ν = 1.
(5.4)

The magnitude of φ has a larger value close to the upper and lower boundaries and a smaller
value close to the domain center with the specified initially condition. We observe a mono-
tonic decay of energywith third-order scheme in Fig. 3 (Right), with the original andmodified
energy of the GSAV scheme with the new relaxation (NR-GSAV) showing enhanced consis-
tency compared to the GSAV scheme over the same time step. In Figrue 4, it can be noticed
that the phase separation occurs close to the domain center. The generated droplets eventually
disappear over time since the interfacial length as a whole shrank as a result of energy decays.

5.4 Buoyancy-Driven Flow

In this example, we reformulate the momentum equation as follows:

∂u
∂t

+ u · ∇u − ν�u + ∇ p = μ∇φ + χρ(φ)g, (5.5)

where χρ(φ)g is a buoyancy term with χρ(φ) = χ(φ − φ̄), and φ̄ is spatially averaged order
parameter. The computational domain is � = (0, 1)2. We use 128× 128 modes to discretize
the space variables and the initial velocity is initialized as u(x, y, 0) = 0.
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Fig. 4 The top and bottom rows display the snapshots of the phase function φ and velocity field for the
flow-coupled nucleation process at time t = 1, 5, 10, 20

Fig. 5 Snapshots of the phase function φ at t = 1, 2.55, 3.25, 4

5.4.1 Bubble Rising

The numerical and physical parameters are provided as follows:

�t =5 × 10−4, λ = 1 × 10−3, M = 1 × 10−2, ε = 1 × 10−2,

γ =2 × 104, ν = 1, g = (0,−1)T , χ = 5 × 10.
(5.6)

We set the initial condition for the phase function as a circular bubble centered at (0.5, 0.25)
with a radius of r = 0.15. In Fig. 5, snapshots of the phase evolution with second-order
scheme at different times (t = 1, 1.75, 2.55, 3.25, 3.35, 4) are displayed. Initially, the bubble
appears as a circular shape near the bottom of the domain. The bubble, which is lighter
compared to the surrounding fluid, rises gradually, transitioning into an elliptical shape, and
eventually deforms as it approaches the upper boundary, as expected.

5.4.2 Dripping Droplet

We first conduct simulations to observe the evolving behavior of a dripping droplet under
different Reynolds numbers: ν = 1/10, 1/100, and 1/200. Set the parameters as

�t =1 × 10−3, λ = 1 × 10−3, M = 1 × 10−2, ε = 1 × 10−2,

γ = 2 × 104, g = (0, 1)T , χ = 10.
(5.7)
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Fig. 6 Snapshots of the phase function φ at different T

Fig. 7 Snapshots of the phase function φ at t = 0.2, 0.4, 0.7, 0.9

The initial condition is as follows

φ(x, y, 0) = tanh

(
0.32 − √

(x − 0.5)2 + (y − 1.1)2√
2ε

)
.

Initially, the droplet with heavier density is attached to the upper solid wall. Due to the
influence of gravity, the droplet gradually descends over time. In Fig. 6, the top row presents
a snapshot of the droplet at ν = 1/10, while the second and third rows depict the evolution
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results for ν = 1/100 and ν = 1/200 respectively. It is evident that as the Reynolds number
1/ν increases, the pinch off occurs more rapidly and the droplet descends at a faster rate.

Next, we choose the parameters as

�t =1 × 10−3, λ = 1 × 10−5, M = 1 × 10−1, ε = 7.5 × 10−3,

γ = 2

ε2
, ν = 5 × 10−2, g = (0, 1)T , χ = 10.

(5.8)

The snapshots of the droplet are shown in Fig. 7 with the initial state unchanged. The forma-
tion of spike structures becomes evident, particularly when the liquid filament is extremely
elongated.

6 Concluding Remarks

In this paper we constructed novel fully decoupled and higher-order IMEX schemes for the
Cahn–Hilliard–Navier–Stokes system based on the GSAV method with the new relaxation
for Cahn–Hilliard equation and the consistent splitting method for Navier–Stokes equations.
The resulting higher-order schemes are fully decoupled, linear, unconditional energy stable
and only require solving several Poisson type equations with constant coefficients at each
time step. We also carried out a rigorous global-in-time error analysis for the first-order
scheme in two and three-dimensional cases.

We only carried out the error analysis for the first-order scheme, due in principle to
the lack of strong stability for the second- and higher-order consistent splitting schemes
for the Navier–Stokes equations. Recently a consistent splitting scheme for the Navier–
Stokes equations based on a generalized BDF was introduced in [16], and its second-order
version was shown to possess a strong stability.While its error analysis for the Navier–Stokes
equations is much more complicated, it offers potential for an error analysis of the scheme
(3.4)–(3.11) at second- and higher-order discretizations. We plan to investigate this potential
in a future work.

Funding This work is supported by the National Natural Science Foundation of China (Grant Nos:
12271302, 12371409, W2431008, 12131014), Shandong Province Natural Science Foundation for Outstand-
ing Youth Scholar (Grant No: ZR2024JQ030), Taishan Scholar Foundation of Shandong Province (Grant No:
tsqn202408140) and the Hong Kong Polytechnic University Postdoctoral Research Fund 1-W22P.

Data Availability The data used to support the findings of this study are available from the corresponding
author upon request.

Declarations

Conflict of interest The authors declare that they have no Conflict of interest.

References

1. Abels, H.:On a diffuse interfacemodel for two-phase flows of viscous, incompressible fluidswithmatched
densities. Arch. Ration. Mech. Anal. 194, 463–506 (2009)

2. An, R., Gao, H., Sun, W.: Optimal error analysis of Euler and Crank-Nicolson projection finite difference
schemes for Landau-Lifshitz equation. SIAM J. Numer. Anal. 59, 1639–1662 (2021)

3. Brenner, S.C., Scott, L.R., Scott, L.R.: Themathematical theory of finite elementmethods, vol. 3. Springer
(2008)

123



Journal of Scientific Computing           (2025) 103:27 Page 27 of 28    27 

4. Du, Q., Feng, X.: The phase field method for geometric moving interfaces and their numerical approxi-
mations, In: Handbook of Numerical Analysis, vol. 21, Elsevier, pp. 425–508 (2020)

5. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation, In: MRS Proceed-
ings, vol. 529, Cambridge Univ Press, p. 39 (1998)

6. Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase
fluids. Math. Comput. 76, 539–571 (2007)

7. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids
with general mass densities. SIAM J. Numer. Anal. 51, 3036–3061 (2013)

8. Guermond, J., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J.
Comput. Phys. 192, 262–276 (2003)

9. Guermond, J.L.,Minev, P., Shen, J.:An overviewof projectionmethods for incompressible flows.Comput.
Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

10. Guermond, J.-L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J.
Numer. Anal. 41, 112–134 (2003)

11. Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an
order parameter. Math. Models Methods Appl. Sci. 6, 815–831 (1996)

12. Han, D., Brylev, A., Yang, X., Tan, Z.: Numerical analysis of second order, fully discrete energy stable
schemes for phase field models of two-phase incompressible flows. J. Sci. Comput. 70, 965–989 (2017)

13. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme
for Cahn–Hilliard-Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015)

14. Huang, F., Shen, J.: Stability and error analysis of a class of high-order IMEX schemes for Navier–Stokes
equations with periodic boundary conditions. SIAM J. Numer. Anal. 59, 2926–2954 (2021)

15. Huang, F., Shen, J.: A new class of implicit-explicit BDFk SAV schemes for general dissipative systems
and their error analysis. Comput. Methods Appl. Mech. Eng. 392, 114718 (2022)

16. Huang, F., Shen, J.: Stability and error analysis of a second-order consistent splitting scheme for the
Navier–Stokes equations. SIAM J. Numer. Anal. 61, 2408–2433 (2023)

17. Li, X., Shen, J.: On a SAV-MAC scheme for the Cahn–Hilliard-Navier–Stokes phase field model and its
error analysis for the corresponding Cahn-Hilliard-Stokes case. Math. Models Methods Appl. Sci. 30,
2263–2297 (2020)

18. Li, X., Shen, J.: On fully decoupled msav schemes for the Cahn–Hilliard-Navier–Stokes model of two-
phase incompressible flows. Math. Models Methods Appl. Sci. 32, 457–495 (2022)

19. Li, X., Shen, J., Liu, Z.: New SAV-pressure correction methods for the Navier–Stokes equations: stability
and error analysis. Math. Comput. 91, 141–167 (2022)

20. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation
by a Fourier-spectral method. Phys. D 179, 211–228 (2003)

21. Liu, J.-G., Liu, J., Pego, R.L.: Stability and convergence of efficient Navier–Stokes solvers via a com-
mutator estimate, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant
Institute of. Math. Sci. 60, 1443–1487 (2007)

22. Serson, D., Meneghini, J., Sherwin, S.J.: Velocity-correction schemes for the incompressible Navier–
Stokes equations in general coordinate systems. J. Comput. Phys. 316, 243–254 (2016)

23. Shen, J.: Long time stability and convergence for fully discrete nonlinear Galerkin methods. Appl. Anal.
38, 201–229 (1990)

24. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes.
SIAM J. Numer. Anal. 29, 57–77 (1992)

25. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient
flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)

26. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows.
SIAM Rev. 61, 474–506 (2019)

27. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete
Contin. Dyn. Syst 28, 1669–1691 (2010)

28. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible
flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

29. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible
flows. SIAM J. Numer. Anal. 53, 279–296 (2015)

30. Shen, J., Yang, X.: The IEQ and SAV approaches and their extensions for a class of highly nonlinear
gradient flow systems, In: 75 years of mathematics of computation, vol. 754 of Contemp. Math., Amer.
Math. Soc., Providence, RI, pp. 217–245 (2020)

31. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase
field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

123



   27 Page 28 of 28 Journal of Scientific Computing           (2025) 103:27 

32. Weinan, E., Liu, J.-G.: Gauge method for viscous incompressible flows. Commun. Math. Sci. 1, 317–332
(2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	On a Class of Higher-Order Fully Decoupled Schemes for the Cahn–Hilliard–Navier–Stokes System
	Abstract
	1 Introduction
	2 Preliminaries
	3 The GSAV Scheme with the New Relaxation
	3.1 GSAV Reformulation

	4 Error Analysis
	5 Numerical Experiments
	5.1 Convergence Tests
	5.2 Shape Relaxation
	5.3 Flow-Coupled Phase Separation
	5.4 Buoyancy-Driven Flow
	5.4.1 Bubble Rising
	5.4.2 Dripping Droplet


	6 Concluding Remarks
	References


