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Stabilized semi-implicit spectral deferred
correction methods for Allen–Cahn and
Cahn–Hilliard equations
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Stabilized semi-implicit spectral deferred correction methods are constructed for the time discretization of Allen–Cahn
and Cahn–Hilliard equations. These methods are unconditionally stable, lead to simple linear system to solve at each
iteration, and can achieve high-order time accuracy with a few iterations in each time step. Ample numerical results are pre-
sented to demonstrate the effectiveness of the stabilized semi-implicit spectral deferred correction methods for solving
the Allen–Cahn and Cahn–Hilliard equations. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

We consider in this paper the numerical approximation of the Allen–Cahn equation
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and the Cahn–Hilliard equation
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with the initial condition ujtD0 D u0 and a suitable set of boundary conditions, for example, periodic boundary conditions or
homogeneous Neumann boundary conditions
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for (1.2). In the previous equation, f .u/D .u2�1/uD F 0.u/where F.u/D 1
4 .u

2�1/2 is the usual double-well potential,� is a bounded
domain, and n is the outward normal. We have introduced a parameter " explicitly in (1.1) and (1.2) to highlight additional difficulties
that may arise when "� 1 as in interfacial problems.

The Allen–Cahn Equation (1.1) was originally introduced in [1] to describe the motion of anti-phase boundaries in crystalline solids,
whereas the Cahn–Hilliard Equation (1.2) was introduced by [2] to describe the complicated phase separation and coarsening phenom-
ena in a solid. These equations have been used extensively in materials science as model for phase transition, pattern formation, and
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such, and have been the subject of extensive mathematical and numerical studies (see, e.g.,[3–6] and the references therein). It is still a
challenge to construct efficient high-order, unconditionally energy stable schemes that are robust with small ".

Although an enormous body of work have been devoted to developing high-order or spectrally accurate schemes for spatial vari-
ables (cf. [7–11] and the references therein), much less attention has been paid to developing high-order or spectrally accurate schemes
in time, some efforts in this direction include [12–19]. Although in principle, one can apply a spectral-collocation or spectral Galerkin
method to the time variable, a fundamental difficulty is how to solve the resultant nonlinear system efficiently.

Note that it is certainly not a good idea to treat the whole time interval with one spectral element, as it will lead to very large nonlin-
ear systems that are hard to store and solve. Instead, we should adopt the h-p finite element (or spectral element) strategy in time to
divide the whole time interval into a sequence of smaller intervals Œsi , siC1�, i D 0, 1, � � � , M� 1 and construct a spectrally accurate time
marching scheme from time si to siC1. We note that for the h� p method applied to the spatial variables, it is not possible to decouple
the computation element-wise; however, the fact that the time variable has a direction makes the subinterval-wise decoupling possible
in time.

The crucial issue is how to solve the nonlinear systems at each time interval stably and efficiently. The advent of spectral/Krylov
deferred correction (SDC/KDC) method [14] provided a good starting point. We shall describe later in the text several strategies that
will allow us to construct high-order or even spectrally accurate schemes in time for a class of partial differential equations in fluid
mechanics and materials science.

To use the SDC/KDC approach, the main difficulty is to construct an efficient basic scheme that is unconditionally energy stable. One
option is to use a convex splitting scheme [20] which is unconditionally energy stable but leads to a nonlinear system to solve at each
time step. Instead, we propose to use a stabilized semi-implicit scheme (cf. [21]) that is unconditionally stable and leads to a system
of Poisson type equations that can be solved very efficiently. Thus, this approach will allow us to use large time steps with high-order
accuracy in time, which is otherwise very difficult to achieve.

Although we only consider the Allen–Cahn and Cahn–Hilliard equations in this paper, it is clear that this approach can be applied
to more general gradient flows, including the equations for thin film epitaxy (cf. [22–24]) and anisotropic Cahn–Hilliard equations (cf.
[25–27]). Moreover, this approach is an important component for developing high-order stable schemes for phase-field models of the
multiphase flows (cf. for instance [28] and the references therein).

The remainder of the paper is organized as follows. In the next section, we briefly describe the SDC and the semi-implicit SDC (SISDC)
methods. In Section 3, we construct the stabilized semi-implicit SDC (SSISDC) scheme for the Allen–Cahn and Cahn–Hilliard equations.
We present ample numerical results to demonstrate the high-order (in time) accuracy of the SSISDC method in Section 4, followed by
some concluding remarks.

2. SDC and SISDC Schemes for system of ODEs

The SDC method was first introduced by Dutt, Greengard, and Rokhlin in [14] to construct high-order stable methods for solving ODEs.
The basic idea of the SDC method is to replace the original ODE by the corresponding Picard integral equation and discretize it on
a sequence of large time intervals by using a Legendre–Gauss-type quadrature. The resultant system is first solved approximately by
using a simple time marching numerical method and correct the solution to higher-order accuracy by solving a sequence of correction
equations on the same Gauss-type grid with a simple time marching scheme (such as the Euler method).

For the readers’ convenience, we describe later in the text the basic SDC method in some detail. Consider the following system
of ODEs:

�0.t/D F.t,�.t//, t 2 Œ0, T�,
�.0/D �0,

(2.1)

where �.t/,�0 2C
n and F :R�Cn!Cn. We assume that F is sufficiently smooth such that the problem (2.1) is well posed.

We subdivide the time interval Œ0, T� in K non-overlapping intervals: Œ0, T�D[K�1
jD0 Œtj , tjC1�. We shall describe later in the text the SDC

method that will be used to advance from tj to tjC1. To simplify the notation, we shall denote the interval Œtj , tjC1� by the generic interval
Œa, b�.

2.1. Picard integral equation

The first key idea of the SDC method is to rewrite (2.1) in the form of Picard integral equation. Integrating (2.1) from a to t, we obtain
the equivalent Picard integral equation

�.t/D �aC

Z t

a
F.� ,�.�//d� . (2.2)

Given an initial approximate solution �0.t/ to (2.2), we denote the error by ı.t/ D �.t/� �0.t/. Another measure for the quality of the
approximation is given by the residual function

�.t,�0/D �aC

Z t

a
F.� ,�0.�//d� � �0.t/. (2.3)
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Because �.t/D �0.t/C ı.t/, we can rewrite (2.2) as

�0.t/C ı.t/D �aC

Z t

a
F.� ,�0.�/C ı.�//d� .

Combining the previously mentioned equation with (2.3), we derive

ı.t/D

Z t

a
ŒF.� ,�0.�/C ı.�//� F.� ,�0.�//�d� C �.t,�0/, (2.4)

which is referred to as the correction equation.

2.2. The SDC method based on the Euler method

We denote the p Legendre–Gauss–Radau IIa nodes (including the right end point) on the interval Œ�1, 1� by r1, r2, : : : , rp, which is a
strictly increasing sequence of points, and denote by s1, s2, : : : , sp the p Legendre–Gauss–Radau IIa nodes on the interval Œa, b�, given
by the formula

si D
b� a

2
ri C

bC a

2
.

We then divide the interval Œa, b� into p subintervals Œsi , siC1� by the Legendre–Gauss–Radau IIa points aD s0 < s1 < s2 < : : : < sp D b.
The subinterval Œsi , siC1� is referred to as a substep.

An approximate solution �0.si/ can be obtained by using the forward Euler method or the backward Euler method. For instance,
using the notation �k

i D �
k.si/ (likewise for ık

i and �i
�
�k
�
), the backward Euler scheme for (2.1) is given by the formula
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i C ıti � F.siC1,�0

iC1/, ıti D siC1 � si , (2.5)

whereas the forward Euler scheme is
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0
i /, ıti D siC1 � si , (2.6)

for iD 0, : : : , p� 1.
To compute a sequence of corrections ık

i by discretizing Equation (2.4) to obtain an increasingly accurate approximate solution

�kC1 D �k C ık , the residual function �.s,�k.s// is approximated using the spectral integration matrix

E� D E�aC�tAEF � E�k , (2.7)

where A is the spectral integration matrix [14], which was discussed in detail in [29].
We shall use the correction Equation (2.4) to construct a sequence of corrections fıkg and new approximations f�kg. By using the

backward Euler scheme to the correction Equation (2.4), we obtain
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On the other hand, the forward Euler scheme leads to
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Let us denote
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i
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We then derive from (2.3) that
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Because �k
iC1C ı

k
iC1 D �

kC1
iC1 , substituting (2.10) into Equation (2.8), we obtain the equation
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On the other hand, substituting (2.10) into Equation (2.9), we obtain the equation
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We can use either (2.11) or (2.12) to compute a new approximation �kC1 from �k . Note that the only thing remained to be specified is
how to compute IiC1

i

�
�k
�
.

The second key idea of the SDC method is to approximate F
�

t,�k
�

by its Lagrange interpolation polynomials Fp
�

t,�k
�

based on the

Gauss-type points, and integrate
R siC1
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Fp
�
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�

dt exactly. More precisely, we write
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�
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where

cp
ij D

Z siC1

si

Lp
j .t/dt (2.15)

can be precomputed once and for all.
It is formally shown in [14] that the order of accuracy for the approximation �k is of order min.kC 1, 2p� 2/ if p Gauss-Radau points

are used.

2.3. Semi-implicit SDC schemes

In general, it may not be good to use either the forward or backward Euler scheme for the correction Equation (2.4), as the sys-
tem (2.1) may have terms with different time scales and/or different stiffness. Thus, it is plausible to treat some terms implicitly
and other terms explicitly, leading to the so-called SISDC scheme (cf. [14, 30]). More precisely, assuming that we split F.t,�.t//
as FI.t,�.t// C FE.t,�.t// and treat FI implicitly and FE explicitly. Then a first-order semi-implicit scheme for computing an initial
approximation �0

i to Equation (2.1) is

�0
iC1 D �

0
i C ıti � ŒFI.siC1,�0

iC1/C FE.si ,�
0
i /�. (2.16)

Similarly, a semi-implicit scheme for (2.4) is
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which can be rearranged as

�kC1
iC1 D �

kC1
i C ıtiŒFI.siC1,�kC1

iC1 /� FI.siC1,�k
iC1/C FE.si ,�

kC1
i /� FE.si ,�

k
i /�C IiC1

i

�
�k
�

. (2.18)

In summary, given a system of ODEs (2.1), the only thing we need to specify for the previous SISDC scheme is the splitting F D FICFE .

3. Stabilized SISDC Schemes for the Allen–Cahn and Cahn–Hilliard Equations

To apply the SISDC scheme described above to the Allen–Cahn and Cahn–Hilliard equations, the first step is to discretize them in space
with a suitable spatial discretization to obtain a system of ODEs in the form of (2.1). Then, we need to construct a suitable splitting of
F D FI C FE to be used in (2.16).

3.1. Spatial discretization

Although the SISDC schemes presented previously can be combined with any consistent spatial discretization, we shall restrict our-
selves to the spectral Galerkin method (cf. [31]), which has proven to be effective for interfacial problems modeled by Allen–Cahn and
Cahn–Hilliard equations (cf. [21]).

For the readers’ convenience, we shall present the 1D case in some detail; we refer to [31] for more detail on the multidimensional
case.

We consider first the Legendre–Galerkin method for the Allen–Cahn equation. Let us denote

XN D fu 2PN : @xu.˙1/D 0g D spanf�0, � � � ,�N�2g,

with �0.x/D 1, and for k � 1, �k.x/D Lk.x/� bkLkC2.x/, where Lk.x/ is the Legendre polynomial of k-th order, and

bk D
k.kC 1/

.kC 2/.kC 3/
, k � 0.

It is easy to verify that Dij D .�
00
j ,�i/D 0 for i¤ j, and Mij D .�j ,�i/D 0 for i¤ j, j˙ 2.
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The Legendre–Galerkin method for (1.1) with (1.3) is to find UN.�, t/ 2 XN such that

.@tUN,�k/D �

�
@xxUN �

1

"2
f .UN/,�k

	
, kD 0, 1, � � � , N� 2. (3.1)

Let us denote

UN.x, t/D
N�2X
kD0

Quk.t/�k.x/, NuD .Qu0, Qu1, � � � , QuN�2/
T ,

f .Nu/k.t/D�.f .UN/,�k/, Nf .Nu/D .f .Nu/0, f .Nu/1, � � � , f .Nu/N�2/
T .

(3.2)

Then, (3.1) reduces to
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DNu.t/C

1

"2
Nf .Nu.t//

�
, (3.3)

which can be written in the form of (2.1) as

Nu0.t/D �M�1
�

DNu.t/C
1

"2
Nf .Nu.t//

�
:D F.t, Nu.t//. (3.4)

For the Cahn–Hilliard equation, we denote

YN D fu 2PN : @xu.˙1/D @3
x u.˙1/D 0g D spanf 0, � � � , N�4g.

Setting  k.x/D Lk.x/C hkLkC2.x/C gkLkC4.x/with

hk D�
2k.kC 1/.2kC 5/

.2kC 7/.k2C 7kC 9/
, gk D

k.kC 1/.2kC 3/.k2C 3k � 1/

.kC 4/.kC 5/.2kC 7/.k2C 7kC 9/
, k � 0.

It is easy to verify that QDij D�. 
0000
j , i/D 0 for i¤ j, Cij D . 

00
j , i/D 0 for i¤ j, j˙ 2, and QMij D . j , i/D 0 for i¤ j, j˙ 2,˙4.

The Legendre–Galerkin method for (1.2) with (1.4) is to find UN.�, t/ 2 YN such that
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, kD 0, 1, � � � , N� 4. (3.5)

Let us denote

UN.x, t/D
N�4X
kD0

Quk.t/ k.x/, NuD .Qu0, Qu1, � � � , QuN�4/
T ,

g.Nu/k.t/D .@xxf .UN/, k/, Ng.Nu/D .g.Nu/0, g.Nu/1, � � � , g.Nu/N�4/
T .

(3.6)

Then, (3.5) reduces to

QMNu0.t/D �

�
QDNu.t/C

1

"2
Ng.Nu.t//

�
, (3.7)

which can be written in the form of (2.1) as

Nu0.t/D � QM�1
�
QDNu.t/C

1

"2
Ng.Nu.t//

�
:D F.t, Nu.t//. (3.8)

Hence, we can directly apply the SISDC method to (3.4) and (3.8). The only ingredient remains to be specified is how to split F.s, u/ in
(3.4) and (3.8) such that the basic scheme (2.16) is simple, easy to solve, and stable for large time steps.

3.2. Stabilized semi-implicit scheme

We now present stabilized semi-implicit schemes that determine the splitting of F.s, Nu/ in (3.4) and (3.8).
Let us denote E.u/D kruk2C 1

"2

R
� F.u/dx. An important property of the Allen–Cahn Equation (1.1) is that its solution satisfies the

following energy law:
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Similarly, the solution of the Cahn–Hilliard Equation (1.2) satisfies

@

@t
E.u/D��





r.�u�
1

"2
f .u//






2

. (3.10)

Hence, it is highly desirable that the solution of a numerical scheme satisfy a corresponding discrete energy law. Such a numerical
scheme is then said to be energy stable.

It can be shown that the usual first-order semi-implicit methods for Allen–Cahn and Cahn–Hilliard equations are energy stable under
quite restrictive conditions �t D O."2/ and �t D O."4/, respectively, when " � 1. Shen and Yang presented the following stabi-
lized first-order semi-implicit methods and proved their stability in [21]. The stabilized first-order semi-implicit method for Allen–Cahn
Equation (1.1) reads �

1

ıt
C
�S

"2

	
.ukC1 � uk/D �

�
�ukC1 �

1

"2
f .uk/

�
, (3.11)

whereas that for the Cahn–Hilliard Equation (1.2) is

1

ıt
.ukC1 � uk/D ��

�
��ukC1C

S

"2

�
ukC1 � uk

�
C

1

"2
f .uk/

	
. (3.12)

In the previous schemes, S is a stabilizing parameter to be specified. The stabilizing term �S
"2 .u

kC1�uk/ in (3.11) (resp. �S
"2 �.u

kC1�uk/

in (3.12)) introduces an extra consistency error that is of the same order as the error introduced by the explicit treatment of the nonlin-
ear term (cf. [21]). Therefore, the stabilized semi-implicit schemes (3.11) and (3.12) are of the same order of accuracy, in terms of ıt and
", as the standard first-order semi-implicit schemes, that is, with S D 0 in (3.11) and (3.12). As for the stability, the following results are
established in [21]:

Lemma 1
Let S� L

2 where LDmax�2R jf
0.�/j. Then, the stabilized schemes (3.11) and (3.12) are unconditionally energy stable for any ıt, that is,

the solutions of (3.11) and (3.12) satisfy E.ukC1/� E.uk/ for all k � 0 and any ıt.

Remark 1
Note that for F.�/ being the double-well potential, we have L D max�2R jF 00.�/j D 1 so the condition S � L

2 can not be satisfied.
However, because it is well known that the Allen–Cahn equation satisfies the maximum principle, we can truncate F.u/ to quadratic
growth outside of the interval Œ�M, M�without affecting the solution if the maximum norm of the initial condition u0 is bounded by M.
Although the Cahn–Hilliard equation does not satisfy the maximum principle, it has been shown in [32] that for a truncated potential
F.u/ with quadratic growth at infinities, the maximum norm of the solution for the Cahn–Hilliard equation is bounded. Therefore, it
has been a common practice (cf. [33, 34]) to replace the double-well potential by a truncated potential with quadratic growth at infinity
so that L is finite. In practice, if we assume max�2R ju0.�/j D 1, we can truncate F.�/ outside of the interval Œ�1, 1� in such a way that
LDmax�2R jF 00.�/j D 2.

At each time step, the stabilized scheme (3.11) (resp. (3.12)) leads to a Poisson (resp. biharmonic) type equation, which can be effi-
ciently solved by the spectral Galerkin method (cf. [31]), so they are very good candidates for the basic scheme in the SDC approach.
They will allow us to use large time steps with high-order accuracy in time, which is otherwise very difficult to achieve.

3.3. Fully discretized SSISDC scheme

We now combine all the ingredients presented previously to describe the SSISDC scheme with the Legendre–Galerkin approximation
in space.

By using the notation in Subsection 3.1, the Legendre–Galerkin approximation for the stabilized semi-implicit scheme (3.11) for
Allen–Cahn equation reads �

1

ıt
C
�S

"2

	
M.NukC1 � Nuk/D �

�
DNukC1C

1

"2
Nf .Nuk/

�
, (3.13)

whereas the Legendre–Galerkin approximation for the stabilized semi-implicit scheme (3.12) Cahn–Hilliard equation is

1

ıt
QM.NukC1 � Nuk/D � QDNukC1C

�S

"2
C.NukC1 � Nuk/C

�

"2
Ng.Nuk/. (3.14)

We shall use the previous schemes as the basic semi-implicit scheme in the SDC approach. More precisely, the scheme (3.13)
corresponds to (2.16) with the splitting

FI.s, Nu/D �

�
M�1DNu�

S

"2
Nu

	
, FE.s, Nu/D �

�
1

"2
M�1Nf .Nu/C

S

"2
Nu

	
, (3.15)

whereas the scheme (3.14) corresponds to (2.16) with the splitting

FI.s, Nu/D �M�1
�
QDNuC

S

"2
C Nu

	
, FE.s, Nu/D �M�1

�
1

"2
Ng.Nu/�

S

"2
C Nu

	
. (3.16)
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4. Numerical Results

In this section, we present some numerical results for Allen–Cahn and Cahn–Hilliard equations obtained by using the SSISDC method.

4.1. Allen–Cahn equation

We consider the one-dimensional Allen–Cahn Equation (1.1) with the homogeneous Neumann boundary conditions (1.3) and solve
it by using the SSISDC method with the Legendre–Galerkin approximation described in the last section. We choose N, the number
of modes in the spatial discretization, to be large enough that the spatial discretization error is negligible compared with the time
discretization error.

We first investigate the stability issue. We fix p D 4 and J D 2, and start with a random initial condition with values in Œ�1, 1�. We
define �tc D

T
m to be the largest possible time step, which allows stable numerical computation, that is, the numerical solution will

blow up if ıt > �tc. In Table I, we list the values of �tc with � D 0.1, 0.01, " D 0.01, 0.001, and different stabilizing parameters of S.
We observe that the stabilized scheme with S D 1 or 2 is stable for virtually any �t, whereas the non-stabilized scheme has a rather
restrictive time step constraint.

Next, we investigate the effect of stabilizing parameter S on the accuracy of the transient state as well as steady state solutions. We
fix pD 4 and JD 3, and take � D 0.01 and "D 0.01 in (1.1). On the left of Figure 1, we observe that the stabilized scheme with SD 1, 2
leads to visually the same results at a transient time with a time step which is 50 times larger than the non-stabilized scheme (i.e., SD 0),
whereas for the steady state, the time step of the stabilized scheme with S D 1 or 2 can be 1000 times larger while maintaining the
same accuracy. We note that the time step of 10�4 is close to the maximum allowable time step for the non-stabilized scheme.

We now examine the order of accuracy as we increase the number of iteration. To fix the idea, we use the following parameters:
� D 0.01, " D 0.1, S D 2, and N D 127, and we compute the L1-norm of the residual defined in (2.7) at time T D 1. We first take
p D 4 (4 Gauss–Radau IIa points) and J D 1, 2, 3, 4, 5. The decay rates of the residual with different number J of iterations are shown in
Figure 2. We observe that for p and J, relatively small as in this example, the SSISDC scheme achieves the expected accuracy of order
min.JC 1, 2p� 2/.

Table I. �tc with different � , " and S for the Allen–Cahn equation.

� " S �tc

� D 0.1 "D 0.01 SD 0 �tc � 3.0303E � 3
SD 1 �tc > 10
SD 2 �tc > 10

� D 0.1 "D 0.001 SD 0 �tc � 2.7027E � 5
SD 1 �tc > 10
SD 2 �tc > 10

� D 0.01 "D 0.001 SD 0 �tc � 2.7027E � 4
SD 1 �tc > 10
SD 2 �tc > 10

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

u(
t=

0.
01

)

Δ
×
×

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

u(
t=

1)

Δ

Figure 1. Comparison of the numerical solutions obtained by the SISDC and SSISDC method. Left: a transient state; Right: at the steady state.
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Figure 2. L1 residual versus�t with JD 1, � � � , 5 (pD 4).
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Figure 4. Comparison of the numerical solutions of the 2-D Allen–Cahn equation with � D 0.01, " D 0.01 at T D 10. Left: by the non-stabilized SISDC scheme;

Right: by the SSISDC scheme.

To examine the convergence behavior for lager numbers of iterations, we fix p D 8 and take �t D 1
8 , 1

16 , 1
32 , respectively. We plot in

Figure 3 the residual versus J, the number of iterations. We observe that the errors decrease as the expected formal accuracy of order
min.JC 1, 2p � 2/ only for J relatively small, and that the maximum order accuracy, 2p � 2, does not seem to attainable. This type of
order reduction is well known for stiff problems, and is consistent with the observation in [29], which suggests to use the KDC to accel-
erate the SDC method if very high-order of accuracy (i.e., p large) is desired. However, for many PDEs as Allen–Cahn and Cahn–Hilliard
equations, a time accuracy of 6th to 8th order (achievable with pD 4 and 5, respectively) often suffices. In these cases, the simple and
robust SDC method is more than adequate.

As the last example for the Allen–Cahn equation, we consider a two-dimensional domain�D Œ0, 2	�2 with periodic boundary con-
ditions. We start with a random initial data and integrated the Allen–Cahn equation with � D 0.01, " D 0.01 to T D 10. The Fourier
spectral method with 128 Fourier modes in each direction is used. Figure 4 shows the solution comparisons at T D 10 using the SISDC
scheme with�tD 10�3 and the SSISDC scheme with SD 2 and�tD 0.1. The two results are visually indistinguishable.
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4.2. Cahn–Hilliard Equation

We now consider the Cahn–Hilliard Equation (1.2) with the homogeneous Neumann boundary conditions (1.4), and present a same set
of numerical results as for the Allen–Cahn equation.

The results in Table II are similar to those in Table I, except that the time step for the non-stabilized scheme becomes much more
restrictive. Therefore, it is extremely beneficial to use a stabilized scheme that is unconditionally stable.

Next, we investigate the effect of the stabilizing term on the accuracy. We first compute the residuals with different stabilizing param-
eters with varying�t by fixing pD 4, J D 3, "D 1, and � D 0.01. The results are shown in Figure 5 which shows that the residuals are
almost the same with stabilizing parameters SD 0, 1, 2 even with relatively large time steps.

Table II. �tc with different � , " and S for the Cahn–Hilliard equation.

� " S �tc

� D 0.1 "D 0.1 SD 0 �tc � 0.009
SD 1 �tc > 1
SD 2 �tc > 1

� D 0.1 "D 0.01 SD 0 �tc � 9E � 7
SD 1 �tc > 1
SD 2 �tc > 1

� D 0.01 "D 0.01 SD 0 �tc � 9E � 6
SD 1 �tc > 1
SD 2 �tc > 1
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Figure 5. L1 residual versus�t with different stabilization parameters.
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Figure 9. Comparison of the numerical solutions of the 2D Cahn–Hilliard equation with � D 10�4, "D 0.01 at T D 10. Left: by the non-stabilized SISDC scheme;

Right: by the SSISDC scheme.

We then fix pD 4, JD 3 and take � D 0.1 and "D 0.05 in (1.2). On the left (resp. right) of Figure 6, we plot the solutions at a transient
time (resp. the steady state) obtained by using the non-stabilized and stabilized schemes. We observe that for the transient time (resp.
the steady state), the time step of the stabilized scheme can be 125 (resp. 1250) times larger than that of the non-stabilized scheme
with no visible difference in the numerical solutions.

In the next two experiments, we fix � D 0.01, " D 1 in (1.2), and examine the order of accuracy of the SSISDC scheme with different
number of iterations. As for the Allen–Cahn equation, we first take p D 4 with J up to 5. Figure 7 shows how the residual decays as J
increases with different time step sizes. It is observed that the scheme achieves the expected formal accuracy of order min.JC1, 2p�2/
only for JD 1, 2, 3. As we further increase J, the order of convergence does not behave like min.JC1, 2p�2/. Similar situation is observed
for p D 8 (cf. Figure 8). The order reduction of the SSISDC method for the Cahn–Hilliard equation appears to be more severe than that
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for the Allen–Cahn equation, but this is not surprising because the ODE system from the semi-discretization of Cahn–Hilliard equation
is much more stiff than that of the Allen–Cahn equation.

As the final example for the Cahn–Hilliard equation, we solve the Cahn–Hilliard Equation (1.2) with � D 10�4, "D 0.01 and periodic
boundary conditions in the domain � D Œ0, 2	�2 using the non-stabilized SISDC scheme and the SSISDC scheme with a Fourier dis-
cretization in space. We start with a random initial condition and use 512 Fourier modes in each direction. We plot Figure 9 the contour
lines of the solution at T D 10 by using the non-stabilized SISDC scheme (i.e., SD 0) with�tD 10�5 and the SSISDC scheme with SD 2
and�tD 0.05. No visible difference is observable.

5. Concluding remarks

We presented SSISDC methods for the time discretization of Allen–Cahn and Cahn–Hilliard equations. Although these methods can
be coupled with any consistent spatial discretization, we used Legendre–Galerkin method for nonperiodic boundary conditions and
Fourier–Galerkin method for periodic boundary conditions. The combined algorithms are unconditionally stable, lead to simple linear
system to solve at each iteration, and can achieve high-order time accuracy with a few iterations in each time step.

We presented ample numerical results to demonstrate the effectiveness of the SSISDC methods. It is observed that the SSISDC meth-
ods can achieve a relatively high-order accuracy in time with just a few SDC iterations. However, due to the stiffness in the ODE systems
from the semi-discretizations of the Allen–Cahn and the Cahn–Hilliard equations, the actual order of accuracy is usually less than the
expected formal accuracy of order min.JC 1, 2p� 2/ for large J and p. If very high order of accuracy is desired, one can use instead the
so-called KDC method. However, it usually takes a quite large number of iterations to reach the maximum order of accuracy of 2p� 2.

In conclusion, the SSISDC methods are very effective for solving Allen–Cahn and Cahn–Hilliard equations. In particular, they allow
us to use much larger time steps to obtain moderately high-order of accuracy with only a few iterations at each time step. They can
also be generalized to deal with more general gradient flows, and can be used as a major ingredient for developing highly efficient
and accurate numerical schemes for other systems involving Allen–Cahn and Cahn–Hilliard equations such as the phase-field model
for multiphase incompressible flows.
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