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We consider numerical approximation of the Riesz Fractional Differential Equations (FDEs), 
and construct a new set of generalized Jacobi functions, J −α,−α

n (x), which are tailored 
to the Riesz fractional PDEs. We develop optimal approximation results in non-uniformly 
weighted Sobolev spaces, and construct spectral Petrov–Galerkin algorithms to solve the 
Riesz FDEs with two kinds of boundary conditions (BCs): (i) homogeneous Dirichlet 
boundary conditions, and (ii) Integral BCs. We provide rigorous error analysis for our 
spectral Petrov–Galerkin methods, which show that the errors decay exponentially fast as 
long as the data (right-hand side function) is smooth, despite that fact that the solution 
has singularities at the endpoints. We also present some numerical results to validate our 
error analysis.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Fractional differential equations (FDEs) have attracted considerable attention recently due to their ability to model cer-
tain processes which can not be adequately described by usual partial differential equations. Among the many forms of 
FDEs, Riesz FDEs are closely related to the fractional power of Laplacian operator [5], and have been numerically studied 
extensively in the last decade. For example, Deng [7] developed a finite difference/predictor–corrector approximations for 
the Riesz fractional Fokker–Planck equation; Shen et al. [19] proposed a new weighted Riesz fractional finite-difference ap-
proximation scheme; Zhao et al. [27] presented a fourth order compact alternating direction implicit (ADI) scheme to solve 
the nonlinear Riesz fractional Schrödinger equation. On the other hand, finite element methods have been also developed 
for Riesz FDEs [4,29]. We observe that most of the numerical works for Riesz FDEs and more general FDEs are based on 
finite-element or finite difference methods. In particular, pioneer work with finite element analysis is carried out in [16]
and [8], and fast algorithms for some FDEs have been developed in [22,23,14,10], among others.

Due to the non-local feature of the fractional derivatives, global methods such as spectral methods appear to be well-
suited for FDEs. Indeed, spectral methods for some FDEs have been proposed in [11,12] where the well-posedness of some 
FDEs and their spectral approximations have been established; a Crank–Nicolson ADI Spectral method is presented in [26], a 
class of efficient spectral methods for solving multi-dimensional FDEs have been developed in [13]. However, the solution of 
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a FDE has low regularity in the usual Sobolev spaces even with a smooth data. It leads to slow convergence if a usual Spec-
tral method is employed. Recently, some efficient spectral/spectral-element DG methods for a class of one-dimensional FDEs 
with one-sided fractional derivatives have been proposed in [24,25] by using eigenfunctions of fractional Sturm–Liouville 
problems as basis functions. Related spectral algorithms and their rigorous error analyses have been established in [6].

The main purpose of this paper is to extend most of the algorithms and analyses in [6] for one-sided FDEs to Riesz FDEs. 
To this end, we construct a new set of generalized Jacobi functions, J −α,−α

n (x), which are tailored to the Riesz fractional 
PDEs, and stay their various properties including in particular optimal approximation results in non-uniformly weighted 
Sobolev spaces. We then construct efficient spectral Petrov–Galerkin algorithms to solve the Riesz FDEs with two kinds of 
boundary conditions (BCs): (i) homogeneous Dirichlet boundary conditions, and (ii) Integral BCs. We provide rigorous error 
analysis for our spectral Petrov–Galerkin methods, and show that the errors decay exponentially fast as long as the data 
(right-hand side function) is smooth, even though the solution may have singularities at the endpoints. We also present a 
number of numerical results to validate our error estimates.

The rest of the paper is organized as follows. We describe some basic notations and properties for fractional derivatives 
and Jacobi polynomials/functions in Section 2. We introduce a set of generalized Jacobi functions J −α,−α

n (x) and discuss 
its properties in Section 3. Its approximation results are listed in Section 4. Then, in Section 5, we construct efficient 
Petrov–Galerkin method for two classes of Riesz FDEs, conduct error analysis and show a number of numerical results. 
Finally we give some concluding remarks.

2. Preliminaries

In this section, we review the fractional integrals and derivatives, and recall some crucial relationships between fractional 
derivative and Jacobi polynomials.

2.1. Fractional integrals and derivatives

Let N and R be respectively the set of positive integers and real numbers. We further denote

N0 := {0} ∪N, R
+ := {a ∈R : a > 0}, R

+
0 := {0} ∪R

+. (2.1)

Recall the definitions of the fractional integrals and fractional derivatives in the sense of Riemann–Liouville (see e.g., [15]). 
In this paper, we fixed � = [−1, 1]. Let �(·) be the Gamma function.

Definition 1 (Fractional integrals and derivatives). For ρ ∈ R
+ , the left and right fractional integrals are respectively defined 

as

−1 Iρx v(x) := 1

�(ρ)

x∫
−1

v(t)

(x − t)1−ρ
dt, x > −1,

x Iρ1 v(x) := 1

�(ρ)

1∫
x

v(t)

(t − x)1−ρ
dt, x < 1.

(2.2)

For real s ∈ [k − 1, k) with k ∈N, the left-sided Riemann–Liouville fractional derivative (LRLFD) of order s is defined by

−1 Ds
x v(x) = 1

�(k − s)

dk

dxk

x∫
−1

v(t)

(x − t)s−k+1
dt, x ∈ �, (2.3)

and the right-sided Riemann–Liouville fractional derivative (RRLFD) of order s is defined by

x Ds
1 v(x) = (−1)k

�(k − s)

dk

dxk

1∫
x

v(t)

(t − x)s−k+1
dt, x ∈ �. (2.4)

And it is clear that for any k ∈ N0,

−1 Dk
x = Dk, x Dk

1 = (−1)k Dk, where Dk := dk

dxk
. (2.5)

Then, we can express the RLFD as

−1 Ds
x v(x) = Dk{−1 Ik−s

x v(x)
}
,

x Ds
1 v(x) = (−1)k Dk{

x Ik−s
1 v(x)

}
.

(2.6)
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Definition 2 (Riesz fractional integrals and derivatives). (See [17], Equations (12.44) and (12.55).) For ρ ∈ [0, 1), the Riesz 
potential i.e. Riesz fractional integrals are respectively defined as

Iρ1 v(x) := 1

2�(ρ) sin(πρ/2)

1∫
−1

sign(x − t)

|x − t|1−ρ
v(t)dt = 1

2 sin(πρ/2)
(−1 Iρx − x Iρ1 )v(x), x ∈ �,

Iρ2 v(x) := 1

2�(ρ) cos(πρ/2)

1∫
−1

v(t)

|x − t|1−ρ
dt = 1

2 cos(πρ/2)
(−1 Iρx + x Iρ1 )v(x), x ∈ �,

(2.7)

where sign is the sign function.
Likewise, for real s ∈ [k − 1, k) with k ∈N, we define the Riesz fractional derivative (RFD) of order s:

Ds v(x) :=
{

Dk Ik−s
1 v(x), k is odd,

Dk Ik−s
2 v(x), k is even,

x ∈ �. (2.8)

We also define

Ds
1 v(x) := Dk Ik−s

1 v(x), Ds
2 v(x) := Dk Ik−s

2 v(x), x ∈ �, (2.9)

Obviously,

Ds
1 v(x) := Ds v(x), if k is odd,

Ds
2 v(x) := Ds v(x), if k is even.

(2.10)

2.2. Jacobi polynomials and its properties

Let us first recall the classical Jacobi polynomials. For α, β > −1, let Pα,β
n (x) be the classical Jacobi polynomials which 

are orthogonal with respect to the weight function ωα,β(x) = (1 − x)α(1 + x)β over (−1, 1), i.e.

1∫
−1

Pα,β
n (x)Pα,β

m (x)ωα,β(x)dx = γ
α,β

n δmn, (2.11)

where

γ
α,β

n = ‖Pα,β
n (x)‖2

ωα,β (x) = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)n!�(n + α + β + 1)
(2.12)

and δmn is the Dirac Delta symbol. The Jacobi polynomials satisfy the three-term recurrence relation:⎧⎪⎨
⎪⎩

Pα,β

0 (x) = 1,

Pα,β

1 (x) = 1
2 (α + β + 2)x + 1

2 (α − β),

Pα,β

n+1(x) = (Aα,β
n x − Bα,β

n )Pα,β
n (x) − Cα,β

n Pα,β

n−1(x), n ≥ 1,

(2.13)

where

Aα,β
n = (2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)
,

Bα,β
n = (α2 − β2)(2n + α + β + 1)

2(n + 1)(n + α + β + 1)(2n + α + β)
,

Cα,β
n = (n + α)(n + β)(2n + α + β + 2)

(n + 1)(n + α + β + 1)(2n + α + β)
.

(2.14)

And (cf. [3])

ωα,β(x)Pα,β
n (x) = (−1)k(n − k)!

2kn!
dk

dxk

{
ωα+k,β+k(x)Pα+k,β+k

n−k (x)
}
, n ≥ k ≥ 0. (2.15)

In our paper, we will make use of the Jacobi polynomials with real parameters α, β ∈R, which are defined by (cf. [1,21]):

Pα,β
n (x) = (α + 1)n

n! 2 F1

(
− n,n + α + β + 1;α + 1; 1 − x

2

)
= (−1)n (β + 1)n

2 F1

(
− n,n + α + β + 1;β + 1; 1 + x) (2.16)
n! 2
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where

2 F1(a,b; c; x) =
∞∑
j=0

(a) j(b) j x j

(c) j j! , |x| < 1, a,b, c ∈R, −c /∈N0 (2.17)

is hypergeometric function, and the rising factorial in the Pochhammer symbol for a ∈ R, j ∈ N0 is defined by

(a)0 = 1; (a) j := a(a + 1) · · · (a + j − 1) = �(a + j)

�(a)
, for j � 1. (2.18)

It should be pointed out that the three-term recurrence relation (2.13) is also hold for the generalization of Jacobi polyno-
mials with real parameter. However, the orthogonality does not carry over to the general case. From the Jacobi definition 
(2.16), we can derive the following property (cf. [1]).

Property 1. If −(n + α + β + 1) /∈ N0 , we have

dk

dxk
Pα,β

n (x) = dα,β

n,k Pα+k,β+k
n−k , n ≥ k, (2.19)

where

dα,β

n,k = �(n + k + α + β + 1)

2k�(n + α + β + 1)
(2.20)

We also have following properties.

Property 2.

Pα,β
n (x) = (−1)n Pβ,α

n (−x); Pα,β
n (1) = (α + 1)n

n! . (2.21)

2.3. Generalized Jacobi polynomials/functions

We start with the generalized Jacobi functions (GJFs) introduced in [9]:

jα,β
n (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − x)−α(1 + x)−β P−α,−β

n̂
, (α,β) ∈ N1, n̂ = n − [−α] − [−β],

(1 − x)−α P−α,β

n̂
, (α,β) ∈ N2, n̂ = n − [−α],

(1 + x)−β Pα,−β

n̂
, (α,β) ∈ N3, n̂ = n − [−β],

Pα,β
n , (α,β) ∈ N4,

(2.22)

where [a] denotes the maximum integer ≤ a, and

N1 = {(α,β) : α,β ≤ −1}, N2 = {(α,β) : α ≤ −1, β > −1},
N3 = {(α,β) : α > −1, β ≤ −1}, N4 = {(α,β) : α,β > −1}.

Let us recall some properties of GJFs which will be used in section 4. Here we just list the properties that will be used 
in this paper, for more information, please refer to [9]. The GJFs are mutually L2

ωα,β -orthogonal, i.e.,

1∫
−1

jα,β
m (x) jα,β

n (x)ωα,β(x)dx = γ
ᾱ,β̄

n̂
, (2.23)

where n̂ is defined in (2.22), γ ᾱ,β̄

n̂
is defined in (2.12), and

ᾱ =
{ −α, α ≤ −1

α, α > −1
(2.24)

(likewise for β̄). Let k, l, m ∈N, and if m ≤ k, l, then

Dm j−k,−l
n (x) = (−2)m (n − k − l + m)!

(n − k − l)! j−k+m,−l+m
n−m (x), n ≥ max(k + l,m). (2.25)

It also holds

Dm j−k,−l
n (1) = Dm j−l,−k

n (−1) = 0, l,k > m. (2.26)
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2.4. The relationship of fractional derivatives and Jacobi polynomials

Before stating the relationship, for simplicity, we define

Q α,β
n (x) := (1 − x)α(1 + x)β Pα,β

n .

Then we have the following two lemmas.

Lemma 1 (Spectral relationship for the classical Riesz potential). (See [15, page 184, Theorem 6.5].) If 0 < ν < 1 and r and k are two 
integers such that r > − ν+1

2 , k > − ν+3
2 , then for x ∈ (−1, 1) the following holds

1∫
−1

Q
ν−1

2 +r, ν+1
2 +k

m (t)dt

|x − t|ν = π(−1)r2r+k+1�(m + ν)

m!�(ν) cos νπ
2

P
ν−1

2 −r, ν−3
2 −k

m+r+k+1 (x), m + r + k + 1 ≥ 0, (2.27)

Lemma 2. (See [15, page 185, Theorem 6.7].) If 0 < ν < 1 and r and k are integer numbers such that r, k > −ν

2
− 1, then the following 

holds

1∫
−1

sign(x − t)

|x − t|ν Q
ν
2 +r, ν

2 +k
m (t)dt = (−1)rπ�(m + ν)

2−r−k−1m!�(ν) sin(πν
2 )

P
ν
2 −r−1, ν

2 −k−1
m+r+k+1 (x). (2.28)

3. Generalized Jacobi function J −α,−α
n (x) and its related properties

In this section, we will introduce a special set of generalized Jacobi functions J −α,−α
n with α > −1, α /∈ N0, n =

0, 1, 2, · · · . As we will see in subsection 5.1, it can be used as basis functions for spectral methods to Riesz fractional 
differential equation.

3.1. Definition of J −α,−α
n (x)

First let us give its definition.

Definition 3. Define

J−α,−α
n (x) = Q α,α

n (x) = (1 − x2)α Pα,α
n (x), for α > −1 (3.1)

for all x ∈ � and n ∈ N0.

From (2.22), we can see that

J−α,−α
n (x) = j−α,−α

n−2[−α](x), if α > 1. (3.2)

3.2. Properties of J −α,−α
n (x)

It can be readily verified from (2.21) that

J−α,−α
n (−x) = (−1)nJ−α,−α

n (x), α > −1, (3.3)

and

DkJ−α,−α
n (±1) = 0, k = 0,1, · · · , 	α
 − 1, (3.4)

where 	a
 is the minimal integer that great or equals to a. It also satisfies the three-term recurrence relation:⎧⎨
⎩

J −α,−α
0 (x) = (1 − x2)α,

J −α,−α
1 (x) = (α + 1)x(1 − x2)α,

J −α,−α
n+1 (x) = Aα,α

n xJ−α,−α
n (x) − Cα,α

n J−α,−α
n−1 (x), n ≥ 1,

(3.5)

where Aα,α
n , Cα,α

n are defined in (2.14).
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We derive from (2.11) that for α > −1,

1∫
−1

J−α,−α
n (x)J −α,−α

m (x)ω−α,−α(x) = γ α,α
n δmn, (3.6)

where γ α,α
n is defined in (2.12).

Next, let us study the integrals and derivatives of J −α,−α
n (x). First by (2.15), we have the integer order derivatives of 

J −α,−α
n (x), which is

dk

dxk
J −α,−α

n (x) = (−1)k2k(n + k)!
n! J k−α,k−α

n+k (x), n,k ≥ 0. (3.7)

On the other hand, for the fractional integrals and derivatives of J −α,−α
n (x), in view of (2.7), (2.8) and Lemma 1, 2, we 

have the following two results.

Theorem 1. If −1 < s < 0, then

I−s
2 J− s

2 ,− s
2

m (x) = �(m + 1 + s)

m! P
s
2 , s

2
m (x). (3.8)

Proof. Let r = 0, k = −1 and ν = 1 + s in equation (2.27), then we have

I−s
2 J− s

2 ,− s
2

m (x) = 1

2 cos(−π s
2 )�(−s)

1∫
−1

J − s
2 ,− s

2
m (t)

|x − t|1+s
dt

= 1

2 cos(π s
2 )�(−s)

π�(m + 1 + s)

m!�(1 + s) cos (1+s)π
2

P
s
2 , s

2
m (t).

Then we can derive (3.8) from above and the Euler’s reflection formula (see e.g., [2]):

�(1 − τ )�(τ ) = π

sin(πτ )
= π

2 sin(πτ
2 ) cos(πτ

2 )
, 0 < τ < 1. � (3.9)

Theorem 2. If s ∈ (n − 1, n) with n ∈N, then

In−s
ν J − s

2 ,− s
2

m (x) = C(n)
�(m + s + 1 − n)

2−nm! P
s
2 −n, s

2 −n
m+n (x), (3.10)

and for k = 0, 1, · · · , n − 1,

Ds−k
ν J− s

2 ,− s
2

m (x) = 2kC(n)
�(m − k + 1 + s)

m! P
s
2 −k, s

2 −k
m+k (x), (3.11)

where

ν = 1, C(n) = (−1)
n−1

2 , if n is odd; ν = 2, C(n) = (−1)
n
2 , if n is even. (3.12)

Proof. We consider first the case when n is odd. Let r = n−1
2 , k = n−1

2 and ν = s + 1 − n in equation (2.28), then we have

In−s
1 J− s

2 ,− s
2

m (x) = 1

2 sin(
π(n−s)

2 )�(n − s)

1∫
−1

J− s
2 ,− s

2
m (t)

|x − t|1+s−n
dt

= 1

2 cos(π s
2 )�(n − s)

π�(m + s + 1 − n)

2−nm!�(s + 1 − n) sin(
π(s+1−n)

2 )
P

s
2 −n, s

2 −n
m+n (x)

Using (3.9), the last equation becomes

In−s
1 J − s

2 ,− s
2

m (x) = C(n)
�(m + s + 1 − n)

2−nm! P
s
2 −n, s

2 −n
m+n (x). (3.13)

For k = 0, 1, · · · , n − 1, by the Riesz fractional derivative definition (2.9), we have

Ds−kJ− s
2 ,− s

2
m (x) = Dn−k In−sJ− s

2 ,− s
2

m (x). (3.14)
1 1
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Then by (3.13), we have

Ds−k
1 J − s

2 ,− s
2

m (x) = C(n)
�(m + s + 1 − n)

2−nm!
dn−k

dxn−k
P

s
2 −n, s

2 −n
m+n (x)

= C(n)
�(m + s + 1 − n)

2−nm!
�(m − k + s + 1)

2n−k�(m + s + 1 − n)
P

s
2 −k, s

2 −k
m+k (x)

=2kC(n)
�(m − k + 1 + s)

m! P
s
2 −k, s

2 −k
m+k (x).

Now we consider the case when n is even. Let r = n
2 , k = n

2 − 1 and ν = s + 1 − n in equation (2.27), then we have

In−s
2 J− s

2 ,− s
2

m (x) = 1

2 cos(π(n−s)
2 )�(n − s)

1∫
−1

J− s
2 ,− s

2
m (t)

|x − t|1+s−n
dt

= 1

2 cos(π s
2 )�(n − s)

π2n�(m + s + 1 − n)

m!�(s + 1 − n) cos (s+1−n)π
2

P
s
2 −n, s

2 −n
m+n (x)

Using (3.9), the last equation becomes

In−s
2 J− s

2 ,− s
2

m (x) = C(n)
2n�(m + s + 1 − n)

m! P
s
2 −n, s

2 −n
m+n (x). (3.15)

For k = 0, 1, · · · , n − 1, by the Riesz fractional derivative definition (2.9), we have

Ds−k
2 J− s

2 ,− s
2

m (x) = Dn−k In−s
2 J− s

2 ,− s
2

m (x). (3.16)

Then by (3.15), we have

Ds−k
2 J − s

2 ,− s
2

m (x) = C(n)
2n�(m + s + 1 − n)

m!
dn−k

dxn−k
P

s
2 −n, s

2 −n
m+n (x)

= C(n)
2n�(m + s + 1 − n)

m!
�(m − k + s + 1)

2n−k�(m + s + 1 − n)
P

s
2 −k, s

2 −k
m+k (x)

= 2kC(n)
�(m − k + 1 + s)

m! P
s
2 −k, s

2 −k
m+k (x).

Here we used the fact: −(m + s + 1 − n) /∈ N0. This is because m, n are integers while s is a non-integer number. The proof 
is complete. �

Another useful property of J −α,−α
n (x) is the orthogonality of its Riesz fractional derivatives. For s > 0, s /∈ N, let k =

� s
2 � + 1, where �a� is the maximum integer that is less than or equal to a. Then for 0 ≤ l ≤ m + k, n + k, it hold

1∫
−1

Ds−k+l
ν J− s

2 ,− s
2

m (x)Ds−k+l
ν J − s

2 ,− s
2

n (x)ω
s
2 −k+l, s

2 −k+l(x)dx = h
s
2 , s

2
n,l δmn, (3.17)

where

h
s
2 , s

2
n,l =22k �2(n − k + 1 + s)

(n!)2
(d

s
2 −k, s

2 −k
n+k,l )2γ

s
2 −k+l, s

2 −k+l
n+k−l

=2s+1 �2(n + s
2 + 1)�(n − k + l + s + 1)

(2n + s + 1)(n + k − l)!(n!)2
,

(3.18)

and ν is defined in (3.12). This equation can be derive from (2.11), (2.19) and (3.11). This property plays an essentially role 
in the analysis of the approximation of J − s

2 ,− s
2

n (x).
We point out in particular that with k = 0 in (3.11), we have

Corollary 1. If s ∈ (n − 1, n) with n ∈N, then

DsJ− s
2 ,− s

2
m (x) = C(n)

�(m + 1 + s)

m! P
s
2 , s

2
m (x). (3.19)
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3.3. Sturm–Liouville problem

For s ∈ (n − 1, n), n ∈N, we define the Riesz fractional Sturm–Liouville type operator:

Ls := −(1 − x)
s
2 (1 + x)

s
2 Ds(1 − x)

s
2 (1 + x)

s
2 Ds. (3.20)

Thanks to (3.20), one can immediately derive that J − s
2 ,− s

2
m (x), m = 0, 1, · · · , are eigenfunctions of Riesz fractional Sturm–

Liouville type equations. Indeed, we have the following result:

Theorem 3. Let s ∈ (n − 1, n), n ∈N and x ∈ �, then

LsJ− s
2 ,− s

2
m (x) = λm,sJ

− s
2 ,− s

2
m (x), m = 0,1, · · · (3.21)

where

λm,s = −�2(m + 1 + s)

(m!)2
. (3.22)

Next, we derive an asymptotic estimate from λm,s with fixed s.
From the following property of Gamma function:

�(x + 1) = √
2πxx+1/2 exp

(
− x + θ

12x

)
, ∀ x > 0, 0 < θ < 1, (3.23)

we can show that for any constant a, b ∈ R, n ∈N, n + a > 1 and n + b > 1 (cf. [28]),

�(n + a)

�(n + b)
≤ νa,b

n na−b, (3.24)

where

νa,b
n = exp

( a − b

2(n + b − 1)
+ 1

12(n + a − 1)
+ (a − b)2

n

)
. (3.25)

Then we can immediately derive from (3.22) and the above that for fixed s, we have

λm,s = O (m2s), for m � 1. (3.26)

4. Approximation by J −α,−α
n (x)

In view of (3.4), we know that J −α,−α
n (x), n = 0, 1, · · · can be used as basis functions to deal with boundary value 

problem with boundary condition: u(k) = 0, k = 0, 1, · · · , 	α
 − 1. Below, we establish their approximation properties.
We first introduce some notations about weighted Sobolev spaces. Let ω(x) > 0 be a weight function, then the weighted 

Sobolev space is defined by:

L2
ω(�) =

{
u :

∫
�

u2(x)wdx < +∞
}
, (4.1)

with norm

‖u‖w =
(∫

�

u2(x)wdx
) 1

2
.

Denote L2(�) = L2
ω(�) and ‖u‖ = ‖u‖w if w(x) = 1.

Furthermore, we define the non-uniformly Jacobi weighted space involving Riesz fractional derivatives as follows: Let 
k = � s

2 � + 1, s ∈ (n − 1, n) with n ∈ N, and l ∈N0, we denote

Bm,ν
s := {u ∈ L2

ω
− s

2 ,− s
2
(�) : Ds−k+l

ν u ∈ L2

ω
s
2 −k+l, s

2 −k+l (�), for 0 ≤ l ≤ m}, m ∈N0, (4.2)

where ν is defined in (3.12).
Let PN be the set of polynomials of degree at most N . For α > 0, α /∈ N, and any real number ν , μ, define the finite 

dimensional fractional-polynomial space

F
−ν,−μ

(�) := {
φ = (1 − x)ν(1 + x)μϕ : ϕ ∈ PN

}
. (4.3)
N
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In particular,

F
−α,−α
N (�) = span

{
J−α,−α

n (x), 0 ≤ n ≤ N
}
.

We now show the completeness of {J −α,−α
n (x)} in L2

ω−α,−α (�). Indeed, for any u ∈ L2
ω−α,−α (�), we have (1 − x2)−αu ∈

L2
ωα,α (�). For α > 0, Jacobi polynomials {Pα,α

n }n≥0 are mutually orthogonal and complete in L2
ωα,α (�), so we can uniquely 

expand

(1 − x2)−αu(x) =
∞∑

n=0

ûα,α
n Pα,α

n (x), (4.4)

where

ûα,α
n = 1

γ α,α
n

1∫
−1

(1 − x2)−αu(x)Pα,α
n (x)ωα,α(x)dx

= 1

γ α,α
n

1∫
−1

u(x)J −α,−α
n (x)ω−α,−α(x)dx.

Multiplying both sides of (4.4) by (1 − x2)−α , we obtain owing to the orthogonality of (3.6), we can expand any u ∈
L2
ω−α,−α (�) as

u(x) =
∞∑

n=0

û−α,−α
n J−α,−α

n (x). (4.5)

And it holds the Parseval identity:

‖u‖2
ω−α,−α =

∞∑
n=0

γ α,α
n |û−α,−α

n |2. (4.6)

Consider next the L2
ω−α,−α -orthogonal projection on F−α,−α

N (�) defined by

(π−α,−α
N u − u, v N)ω−α,−α = 0, ∀v N ∈ F

−α,−α
N (�). (4.7)

By definition, we have

π−α,−α
N u(x) =

N∑
n=0

û−α,−α
n J−α,−α

n (x). (4.8)

Lemma 3. Let α > 0, α �= n/2 with n ∈N, if k = �α� + 1, then ∀ l ∈N0 , we have(
D2α−k+l

ν (π−α,−α
N u − u), Dl−k w N

)
ωα−k+l,α−k+l = 0, ∀w N ∈ PN . (4.9)

Moreover,

‖D2α−k+l
ν u‖2

ωα−k+l,α−k+l =
∞∑

n=l

hα,α
n,l |û−α,−α

n |2, (4.10)

where hα,α
n,l is same to (3.18) and

ν =
{

1, if 	2α
 is odd,
2, if 	2α
 is even.

(4.11)

Proof. Since

(π−α,−α
N u − u)(x) =

∞∑
n=N+1

û−α,−α
n J−α,−α

n (x),

and PN = span{Pα,α
n : 0 ≤ n ≤ N}, by (2.11), (2.19) and (3.19), we can derive (4.9).

Then, (4.10) can be derived directly from (3.17) and (4.5). �
Now we are ready to show the main approximation results. In the sequel, we use c to denote a generic constant.
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Theorem 4. Assume α > 0 and α �= n/2, n ∈N. Let k = �α� + 1, u ∈ Bm,ν
2α with m ∈N0 , and ν be defined as in (4.11).

Then for 0 ≤ l ≤ m ≤ N + k,

‖D2α−k+l
ν (π−α,−α

N u − u)‖ωα−k+l,α−k+l ≤ cN
l−m

2

√
(N + k − m + 1)!
(N + k − l + 1)! ‖D2α−k+m

ν u‖ωα−k+m,α−k+m . (4.12)

In particular, if m is fixed, then

‖D2α−k+l
ν (π−α,−α

N u − u)‖ωα−k+l,α−k+l ≤ cNl−m‖D2α−k+m
ν u‖ωα−k+m,α−k+m . (4.13)

For 0 ≤ m ≤ N + k, we also have the L2
ω−α,−α -estimates:

‖π−α,−α
N u − u‖ω−α,−α ≤ cNk−2α

√
(N + k − m + 1)!
(N + k + m + 1)! ‖D2α−k+m

ν u‖ωα−k+m,α−k+m . (4.14)

In particular, if m is fixed, then

‖π−α,−α
N u − u‖ω−α,−α ≤ cNk−(2α+m)‖D2α−k+m

ν u‖ωα−k+m,α−k+m . (4.15)

Proof. We derive from (4.5), (4.7) and (4.9) that

‖D2α−k+l
ν (π−α,−α

N u − u)‖2
ωα−k+l,α−k+l =

∞∑
n=N+1

hα,α
n,l |û−α,−α

n |2 =
∞∑

n=N+1

hα,α
n,l

hα,α
n,m

hα,α
n,m |û−α,−α

n |2

≤ hα,α
N+1,l

hα,α
N+1,m

‖D2α−k+m
ν u‖2

ωα−k+m,α−k+m .

(4.16)

By (2.18), (3.18), we have

hα,α
N+1,l

hα,α
N+1,m

= �(N + l − k + 2α + 2)

�(N + m − k + 2α + 2)

(N + k − m + 1)!
(N + k − l + 1)!

= 1

(N + l − k + 2α + 2) · · · (N + m − k + 2α + 1)

(N + k − m + 1)!
(N + k − l + 1)!

≤ Nl−m (N + k − m + 1)!
(N + k − l + 1)! ,

(4.17)

which, together with (4.16), implies (4.12).
Using (3.24) and the fact that �(n + 1) = n!, we have that for m ≤ N ,

(N + k − m + 1)!
(N + k − l + 1)! ≤ Nl−mν2−m,2−l

N+k Nl−m, (4.18)

where ν2−m,2−l
N+k ≈ 1 for fixed m and N � 1. Therefore, we can derive (4.15) from (4.12).

Using a similar argument, we can derive the L2
ω−α,−α -estimates. Indeed, by (4.6) and (4.10),

‖π−α,−α
N u − u‖2

ω−α,−α =
∞∑

n=N+1

γ α,α
n |û−α,−α

n |2 =
∞∑

n=N+1

γ α,α
n

hα,α
n,m

hα,α
n,m |û−α,−α

n |2

≤ γ α,α
N+1

hα,α
N+1,m

‖D2α−k+m
ν u‖2

ωα−k+m,α−k+m .

(4.19)

Similarly, by (2.12), (3.18) and (3.24) again, we obtain, for fixed m,

γ α,α
N+1

hα,α
N+1,m

= (N + 1)!
�(N + 2α + 2)

(N + k + m + 1)!
�(N + 2α − k + m + 2)

(N + k − m + 1)!
(N + k + m + 1)!

≤ν2,2+2α
N N−2αν2,2+2α

N+m (N + m)2k−2α (N − m + 1)!
(N + m + 1)!

≤ cN2k−(4α+2m).

This completes the proof. �
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5. Application to Riesz fractional differential equations

We consider in this section the application of {J −α,−α
n (x)} to solve a class of fractional differential equations with Riesz 

derivatives with two kinds of boundary conditions: one is with Dirichlet boundary conditions, and the other is with integral 
BCs.

5.1. RFBVPs with homogeneous Dirichlet BCs

We consider the one-dimensional RFBVPs of order 2α ∈ (2k − 1, 2k) with k ∈ N:

(−1)k D2αu(x) = f (x), x ∈ �,

u(l)(±1) =0, l = 0,1, · · · ,k − 1,
(5.1)

where f (x) ∈ L2
ωα,α (�) is a given function.

For the above problem, we can determine its classical solution as follows. We expand:

f (x) =
∞∑

m=0

fm Pα,α
m (x), (5.2)

and assume that the solution u(x) of (5.1) takes the form:

u(x) =
∞∑

n=0

ũnJ−α,−α
n (x). (5.3)

Obviously, u(x) satisfies the boundary conditions, and by (3.19), we have

D2αu(x) =
∞∑

n=0

ũn D2αJ−α,−α
n (x) = (−1)k �(n + 1 + 2α)

n!
∞∑

n=0

ũn Pα,α
n (x). (5.4)

Substituting (5.4) and (5.2) in (5.1), and thanks to the orthogonality of Pα,α
n (x), we have

ũn = fn

/(
2 cos(πα)

�(n + 1 + 2α)

n!
)
. (5.5)

Since the expansion of f is unique, so is the expansion (5.3).
Recall that F−α,−α

N = span{J −α,−α
n (x) : n = 0, 1, · · · , N}. Then, a Petrov–Galerkin spectral method for (5.1) is: Find uN ∈

F
−α,−α
N such that

(−1)k(D2αuN , v N)ωα,α = ( f , v N)ωα,α , ∀v N ∈ P N . (5.6)

The solution to this discrete problem can be found directly as follows. Setting

uN(x) =
N∑

n=0

ûnJ−α,−α
n (x), (5.7)

and plugging the above and (5.2) in (5.6), using (3.19) and the orthogonality of {Pα,α
m } in L2

ωα,α (�), we find

ûn = ũn = fn

/(
2 cos(πα)

�(n + 1 + 2α)

n!
)
, ∀0 ≤ n ≤ N. (5.8)

As for the error estimate, we have

Theorem 5. Assuming f ( j) ∈ L2
ωα+ j,α+ j (�) for 0 ≤ j ≤ m, we have

‖u − uN‖ω−α,−α ≤ cN−2α−m‖ f (m)‖ωα+m,α+m . (5.9)

‖D2α(u − uN)‖ωα,α ≤ cN−m‖ f (m)‖ωα+m,α+m . (5.10)

Proof. It is clear from (5.8) that uN = �
−α,−α
N u. Hence, by (4.15), we have

‖u − uN‖ω−α,−α = ‖u − �
−α,−α
N u‖ω−α,−α ≤ cN−2α−m‖D2α+mu‖ωα+m,α+m .

Since D2α+mu = f (m) , we conclude (5.9).
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Fig. 1. Convergence results for problem (5.1) with Petrov–Galerkin method (left: f (x) = cos(πx), right: u(x) = (1 − x2)2).

On the other hand, it is easy to derive from (5.6) that (−1)k D2αuN = �
α,α
N f , where �α,α

N is the L2
ωα,α -projector onto 

P N . Hence, we have

(−1)k D2α(u − uN) = f − �
α,α
N f .

Then, (5.10) is a direct consequence of the approximation result for �α,α
N (cf. Thm. 3.35 in [20]). �

5.1.1. Numerical tests
Now let us present several numerical examples to illustrate our Petrov–Galerkin method and validate the theoretical 

results.

Example 1. (Smooth right-hand side function). We take f (x) = cos(πx) as an example. In this case, it is easy to see that the 
solution is not smooth in the usual Sobolev spaces as it exhibits singularities at the endpoints.

The results for 2α = 1.8, 3.8, 5.8 are shown in the left of Fig. 1 which is draw in semi-log scale. We observe that all 
errors decay exponentially which agrees with our error estimate (5.9)–(5.10).

Example 2. (Smooth solution). We take u(x) = (1 − x2)2 as an example. In this case, the right-hand side function f (x) is 
non-smooth.

The results for 2α = 1.2, 1.8 are shown in the right of Fig. 1 which is draw in log–log scale. We observe that it only has 
algebraic convergence as expected.

5.2. RFBVPs with fractional integral BCs

Setting r = 0, k = −1 in (2.27), we have

1∫
−1

Q
ν−1

2 , ν−1
2

m (τ )dτ

|t − τ |ν = π�(m + ν)

m!�(ν) cos νπ
2

P
ν−1

2 , ν−1
2

m (t), m = 0,1, · · · . (5.11)

By equation (5.11), one can readily derive that, for s ∈ (n − 1, n) with n is a even number, it holds

In−s
2 Q

s−n
2 , s−n

2
m = �(m + s + 1 − n)

m! P
s−n

2 , s−n
2

m . (5.12)

On the other hand, setting r = 0, k = −1 in (2.28), we have

1∫
−1

sign(x − t)

|x − t|ν Q
ν
2 , ν

2 −1
m (t)dt = π�(m + ν)

m!�(ν) sin(πν
2 )

P
ν
2 −1, ν

2
m (x), (5.13)

which implies that, for s ∈ (n − 1, n) with n being a odd integer, it holds
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In−s
1 Q

s+1−n
2 , s−1−n

2
m = �(m + s + 1 − n)

m! P
s−1−n

2 , s+1−n
2

m . (5.14)

Hence, (5.12) and (5.14) indicate that Q
s−n

2 , s−n
2

m (resp. Q
s+1−n

2 , s−1−n
2

m ) can be used as basis functions to RFBVPs of “even” (resp. 
“odd”) order with fractional integral BCs. Here a FDE of order s is “even” (resp. “odd”) means that s ∈ (n − 1, n) with n being 
an even (resp. odd) number.

To fixed the idea, we consider the RFBVPs of order s ∈ (1, 2) or (2, 3):

−Dsu(x) = f (x), x ∈ �, (5.15)

with boundary conditions:

Iμ2 u(±1) = 0, μ = 2 − s, if s ∈ (1,2); (5.16)

or

Iμ1 u(±1) = 0, D Iμ1 u(1) = D1−μ
1 u(1) = 0, μ = 3 − s, if s ∈ (2,3). (5.17)

Let us first consider the case s ∈ (1, 2). Take v(x) := Iμ2 u(x), then a (weighted) weak formulation to (5.15)–(5.16) is: for 
f (x) ∈ H−1

ωα,β (�) with a given pair −1 < α, β < 1, find v ∈ H1
0,ωα,β (�), such that

a(v, w) = ( f , w)ωα,β , ∀ w ∈ H1
0,ωα,β (�), (5.18)

where

a(g,h) =
∫
�

Dg(x)D(h(x)ωα,β(x))dx.

Here, H1
ωα,β (�) is the usual weighted Sobolev space and H−1

ωα,β (�) is its dual space, H1
0,ωα,β (�) := {v ∈ H1

ωα,β (�), v(±1) =
0}. The continuity and coercivity of the bilinear form a(·, ·) is shown in [20] (Lemma 3.5). Hence, the above problem admits 
a unique solution v ∈ H1

0,ωα,β .

Let P0
N := {u ∈ PN : u(±1) = 0}. In order to derive an efficient method, we take α = β = s/2 −1. Then the Petrov–Galerkin 

method to (5.18) is: Find v N := Iμ2 uN ∈ P
0
N such that

a(v N , w N) = ( f , w N)ωs/2−1,s/2−1 , ∀ w N ∈ P
0
N . (5.19)

Since P0
N is a subspace of H1

0,ωs/2−1,s/2−1 (�), the problem (5.19) admits an unique solution.
Denote

P̂ s/2−1,s/2−1
m (x) = m!�(s/2)

�(m + s/2)
P s/2−1,s/2−1

m (x), m ≥ 0,

and set

φk(x) = P̂ s/2−1,s/2−1
k (x) − P̂ s/2−1,s/2−1

k+2 (x), k ≥ 0.

By (2.21), we have φk(±1) = 0, k ≥ 0. Hence, P0
N = span{φk(x) : k = 0, 1, · · · , N − 2}.

On the other hand, denote

ϕk(x) = (
1 − x2)s/2−1(

ak P̂ s/2−1,s/2−1
k (x) − ak+2 P̂ s/2−1,s/2−1

k+2 (x)
)
, (5.20)

where ak = k!
�(k+s−1)

. Then by (5.12), we have

Iμ2 ϕk(x) = φk(x). (5.21)

Therefore, setting

U N := span{ϕk(x) : k = 0,1, · · · , N − 2}, (5.22)

the Petrov–Galerkin approximation to problem (5.15)–(5.16) is: find uN ∈ U N , such that

(D1−μ
2 uN , D(w Nωs/2−1,s/2−1)) = ( f , w N)ωs/2−1,s/2−1 , ∀ w N ∈ P

0
N . (5.23)

We now provide some implementation detail for (5.19) and (5.23). Writing v N = ∑N−2
k=0 vkφk(x) in (5.19) and taking w N =

φ j(x) for j = 0, 1, ·, N − 2, we arrive at the following linear system:

S v̄ = f̄ , (5.24)
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where S = {si, j}N−2
i, j=0 with si, j = a(φ j, φi), v̄ = [v0, v1, · · · , v N−2]T , and f̄ = [ f0, f1, · · · , f N−2]T with f j = ( f , w)ωs/2−1.s/2−1 , 

j = 0, 1, · · · , N − 2. Therefore, thanks to (5.21), we can recover uN by

uN =
N−2∑
k=0

vkϕk(x), (5.25)

where ϕk(x) is defined in (5.20). It can be easily shown that S is a upper triangular matrix whose non-zero entries can be 
derived explicitly, so (5.24) can be easily solved.

Remark 1. One can also take α = β = 0 in (5.18) and the corresponding finite dimensional approximation. In this case, we 
can expand v N = ∑N−2

m=0 ṽm P−1,−1
m which leads to a diagonal system for {ṽm}, but it is more difficult to compute uN = Dμ

2 v N . 
See the case s ∈ (2, 3) below for such an approach.

In order to describe the approximation error, we introduce the non-uniformly Jacobi–weighted Sobolev space Bm
α,β(�) :=

{u : Dku ∈ L2
ωα+k,β+k (�), 0 ≤ k ≤ m}, k, m ∈N.

Theorem 6. Let u and uN be the solution of (5.15)–(5.16) and (5.23), respectively. If v = Iμ2 u ∈ H1
0,ωs/2−1,s/2−1(�) and D v = D1−μ

2 u ∈
Bm−1

s/2−1,s/2−1(�) with m ∈N, then we have

‖D1−μ
2 (u − uN)‖ωs/2−1,s/2−1 � N1−m‖Dm−μ

2 u‖ωs/2+m−2,s/2+m−2 . (5.26)

In particular, if f (m−2) ∈ L2
ωs/2+m−2,s/2+m−2(�) with m ≥ 2, then

‖D1−μ
2 (u − uN)‖ωs/2−1,s/2−1 � N1−m‖ f (m−2)‖ωs/2+m−2,s/2+m−2 . (5.27)

Proof. Using a standard argument, we derive immediately from (5.18) and (5.19) that

‖D(v − v N)‖ωs/2−1,s/2−1 � inf
v̂ N ∈P0

N

‖D(v − v̂ N)‖ωs/2−1,s/2−1 . (5.28)

Let π1,0
N,s/2−1,s/2−1 the orthogonal projection defined in [20] (cf. Equation (3.290)), and take v̂ N = π1,0

N,s/2−1,s/2−1 v in the last 
equation, we find

‖D(v − v N)‖ωs/2−1,s/2−1 � ‖D(v − π1,0
N,s/2−1,s/2−1 v)‖ωs/2−1,s/2−1

� N1−m‖Dm v‖ωs/2+m−2,s/2+m−2 (cf. [20] Thm. 3.39),
(5.29)

which, together with (5.15), implies (5.26), and (5.27), since v = Iμ2 u and v N = Iμ2 uN . �
We now present some numerical examples to illustrate our approximation results.

Example 3. (With smooth f (x)). We consider first (5.15) with a smooth f (x) = cos(πx).

The results are shown in the left of Fig. 2. We observe that, despite the fact that the solution is non-smooth at the 
endpoints, all errors decay exponentially. This is consistent with the error estimate (5.27).

Example 4. (With non-smooth f (x)). We also consider (5.15) with a non-smooth f (x) = cos(πx)(1 + x)0.6.

The convergence results are shown in the right of Fig. 2. We observe that the error converges algebraically which is also 
consistent with (5.27).

Now let us turn to the case s ∈ (2, 3). Set v(x) := Iμ1 u(x), and define

W = {w(x) ∈ H1
0(�) : D w ∈ L2

ω−2,0(�)},
X = {w(x) ∈ W : D2 w ∈ L2

ω0,2(�)}. (5.30)

Then a weak formulation for (5.15) and (5.17) is: find v ∈ W , such that

(D v, D2 w) = −( f , w), ∀ w ∈ X . (5.31)

Now we apply the dual-Petrov–Galerkin approximation [18] for (5.31). We define a pair of dual approximation spaces
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Fig. 2. Convergence results for problem (5.15)–(5.16) (left: f (x) = cos(πx), right: f (x) = cos(πx)(1 + x)0.6).

W N = {w(x) ∈ PN : w(±1) = w ′(1) = 0},
W ∗

N = {w(x) ∈ PN : w(±1) = w ′(−1) = 0}. (5.32)

Then the dual-Petrov–Galerkin approximation for (5.31) is: find v ∈ W N , such that

(D v N , D2 w N) = −( f , w N), ∀ w N ∈ W ∗
N . (5.33)

The following result is shown in [18] (cf. also [20] Thm. 6.4).

Lemma 4. Let v = Iμ1 u and v N = Iμ1 uN be the solution of (5.15)–(5.17) and (5.33), respectively. If v ∈ W ∩ Bm−2,−1(�) with m ≥ 2, 
then we have

‖v − v N‖ω−1,1 + N−1‖D(v − v N)‖ω−1,0 � N−m‖Dm v‖ωm−2,m−1 . (5.34)

We can then derive the following error estimate between u and uN .

Theorem 7. If v ∈ W and D1−μ
1 uN ∈ Bm−1

−1,0(�) with m ≥ 2, then we have

‖D1−μ
1 (u − uN)‖ω−1,0 � N1−m‖Dm−μu‖ωm−2,m−1 . (5.35)

In particular, if f (m−3) ∈ L2
ωm−2,m−1 with m ≥ 2, then

‖D1−μ
1 (u − uN)‖ω−1,0 � N1−m‖ f (m−3)‖ωm−2,m−1 . (5.36)

We now provide some implementation detail for solving (5.33). Set

φ̃k(x) = j−2,−1
k+3 (x), φ̄k(x) = j−1,−2

k+3 (x).

It is clear from (2.26) that

W N = span{φ̃0, φ̃1, · · · , φ̃N−3}, W ∗
N = span{φ̄0, φ̄1, · · · , φ̄N−3}. (5.37)

Thus, denote

v N =
N−3∑
k=0

ṽkφ̃k(x), v̄ = (ṽ0, ṽ1, · · · , ṽ N−3)
T ;

fk = (IN f , φ̄k), f̄ = ( f0, f1, · · · , f N−3)
T ;

si, j = (φ̃ j, φ̄i), S = (
si j

)N−3
i, j=0,

(5.38)

the linear system (5.33) becomes

S v̄ = f̄ . (5.39)
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Fig. 3. Convergence results for problem (5.15)–(5.17). Left: f (x) = cos(πx); Right: f (x) = cos(πx)(1 + x)0.6.

By the orthogonality (2.23), one can easily show that S is a diagonal matrix [18]. Since the basis function φ̃k(x) is a linear 
combination of Legendre polynomials (see equation (6.9) in [20]), then we can rewrite v N (x) in the form

v N(x) =
N∑

m=0

vm P s/2−2,s/2−1
m (x) (5.40)

by Jacobi–Legendre transform. Then, we can recover uN by (5.14) with n = 3:

uN(x) = D3−s
1 v N(x) =

N∑
m=0

vm m!
�(m + s − 2)

Q s/2−2,s/2−1
m (x). (5.41)

Using the same data as in Examples 3 and 4, we plot the numerical result for (5.15)–(5.17) in Fig. 3. We observe that the 
results agree well with the error estimate (5.36).

Remark 2. For higher-order RFBVPs, one can apply a similar approach.

6. Concluding remarks

We developed in this paper efficient and accurate spectral Petrov–Galerkin methods for Riesz FPDEs with homogeneous
Dirichlet BCs and fractional integral BCs. The methods are based on a new class of generalized Jacobi functions which are 
tailored to Riesz fractional derivatives. We derived useful properties of these generalized Jacobi functions, and in particular 
their optimal approximation results in non-uniformly weighted Sobolev spaces. By using various orthogonal properties of 
Jacobi polynomials and generalized Jacobi functions, we developed efficient Petrov–Galerkin methods for a class of Riesz 
FDEs, and derived rigorous error estimates. In particular, it is shown that the errors decay exponentially fast as long as the 
data (right-hand side function) is smooth, despite that fact that the solution has singularities at the endpoints. We also 
presented a number of numerical results to validate our error estimates.
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