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Abstract. We consider a Cahn-Hilliard gradient flow model with a free energy
functional, which contains a non-local term in addition to linear and non-linear
local terms. The non-local terms can be based on smooth and weakly singular
kernel operators. We establish the well-posedness of this problem, construct an
unconditional energy stable scheme, and carry out a stability and convergence
analysis. Several numerical results are presented to illustrate the efficiency and
robustness of the proposed scheme.
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1 Introduction

Various physical dissipative systems can be described by gradient flow models. A
large number of studies are conducted for gradient flows driven by local free en-
ergy (see [16, 17, 27–29, 39, 43] and the references therein), but these local models
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are inadequate to describe certain dissipative physical phenomena with long-range
interactions accurately. There has been a growing interest in modeling such systems
using non-local models in recent years. Our interest of study is a class of non-local
gradient flow models that are governed by the energy functional

E[v]=

∫
Ω

F (v)dx+

∫
Ω

v(x)H(x)dx+
1

2

∫
Ω

∫
Ω

W (x,y)v(x)v(y)dxdy,

where F is an internal free energy density, H and W denote the confinement and in-
teraction potentials respectively. Such non-local models appear in several branches
of sciences, such as material science [21], biological systems (see [5, 36]), physical
science (see [10, 11]), etc. The interaction potential W may be smooth or singu-
lar in nature. The non-local models with a smooth kernel W are used in studying
granular flows (see [8, 11]), interaction of gases (see [10, 38]), biological aggregation
(see [24,36]), peridynamics [30], quasi-crystallization (see [2,6,20]) etc. Meanwhile,
the singular potentials are mostly used in modeling the interaction energy associ-
ated with a repulsive-attractive potential in the study of various atomic structures.
Such potentials are known as repulsive-attractive Morse or power-law potentials [14].
The studies in (see [3, 12, 36]) cover a variety of non-local interaction models with
such power-law potentials. The singular potentials make the interaction energy infi-
nite, and various interesting questions in the study of crystallization are raised with
these potentials, e.g., in [34], an asymptotic behavior of the ground state energy of
many-particle systems is mathematically analyzed, where the interaction energy is
represented by a singular potential kernel.

In this paper, we consider a Cahn-Hilliard gradient flow model governed by the
non-local free energy containing both smooth and weakly singular potentials. It is
generally desirable that numerical methods for such systems preserve the discrete
energy dissipation law. In recent years, several popular numerical approaches are
proposed to construct energy stable schemes for gradient flows with nonlinear (lo-
cal) density function, for example, convex splitting method [17], stabilization method
(see [26, 43]) and invariant energy quadratization (IEQ) method (see [39, 42]), and
with non-local free energies containing only smooth interaction potentials, for exam-
ple, the Discontinuous Galerkin (DG) method [31], Primal-Dual methods [14], the
Back-and-Forth method [19] etc. In particular, the SAV approach [27] enjoys many
advantages compared with other approaches. In the convex spitting method [17],
one needs to solve nonlinear equations at each time step, which can be expensive,
and in the IEQ method, linear systems with variable coefficients need to be solved.
At the same time, the SAV scheme requires only the solution of linear systems with
constant coefficients at each time step. Besides, the first- and second-order SAV
schemes are unconditionally energy-stable and applicable to a large class of gradient
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flows. Additionally, in [28], the authors conducted convergence and error analysis
of the SAV scheme for gradient flow problems governed by local energy functional.

Motivated by the works (see [15,27–29]), we develop a SAV scheme for the pro-
posed gradient flow model with smooth and weakly singular kernels. Here, the main
challenge is that the kernel of the non-local term, i.e. the interaction potential, is
weakly singular and not bounded. To overcome this difficulty, we split the total
free energy density functional into two parts by placing the non-local term together
with the nonlinear (local) density function such that the integral of the singular
non-local term becomes bounded from below. Then, we design an energy-stable
scheme in which the non-local term is treated explicitly along with the nonlinear
(local) term. Furthermore, we establish the existence of a unique weak solution to
the continuous problem. With proper assumption on the initial condition, we show
that the sequence of approximate solutions admits convergence in the space con-
taining the continuous weak solution. The difficulty introduced due to the presence
of higher-order derivatives of the singular kernel function is handled by imposing
minimum assumptions on it. We also establish regularity results without requiring
Lipschitz continuity condition on the nonlinear function and carry out experiments
for both smooth and singular type kernel functions to validate our scheme.

The paper is organized as follows: Section 2 introduces the gradient flow mod-
els with non-local free energy and establishes the existence and uniqueness result.
In Section 3, we construct a first-order numerical scheme based on the the SAV
approach, and establish its stability, and convergence analysis. Sections 4 and 5
present a second-order scheme and numerical results, respectively. Some concluding
remarks are given in the last section.

2 A non-local Cahn-Hilliard model

In this section, we first introduce a Cahn-Hilliard gradient flow model with a non-
local free energy, followed by analysis on the existence of its unique weak solution.

We first introduce some notations. Let Ω⊂Rd (d=1,2,3) be an open bounded
domain. We denote the inner product between functions u(t) and v(t) by (u,v) =∫

Ω
u(t)v(t)dt, and use ||·||V to denote the norm defined on the respective space V

and in particular, the notation ||·|| indicates the standard L2-norm. The dual space
of V is denoted by V ′. We also define, for 1≤p<∞,

Lp(0,T ;V ) :=

{
v(t) : [0,T ]→V ;

(∫ T

0

‖v(t)‖pV dt
)p
<∞

}
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and for p=∞,

L∞(0,T ;V ) :=
{
v(t) : [0,T ]→V ; ess sup

t∈[0,T ]

‖v(t)‖V <∞
}
.

For ψ(x,t) :Ω×[0,T ]→R, we define the free energy functional E[ψ] as:

E[ψ]=

∫
Ω

[
1

2
ψLψ+F (ψ)

]
dx+

1

2

∫
Ω

ψK̃ψdx

=
1

2
(ψ,Lψ)+(F (ψ),1)+

1

2
(ψ,K̃ψ), (2.1)

where [0,T ] is the time interval, L is a non-negative symmetric linear operator
independent of ψ, F (ψ) is non-linear free energy density, and the operator K̃ is
given by

K̃ψ(x,t)=

∫
Ω

k(x,y)ψ(y,t)dy, (2.2)

where k(x,y)=h(x,y)l(x,y) (see [3,12] and the references therein) with l(x,y) being
a smooth function and

h(x,y)=


1 for smooth kernel,

|x−y|−α for weakly singular algebraic kernel when 0<α<d,

ln(|x−y|) for weakly singular logarithmic kernel when α=0.

(2.3)

Then, the H−1 gradient flow corresponding to the free energy functional E[ψ] is as
follows:

∂ψ

∂t
=∆µ, (2.4a)

µ=
δE

δψ
=Lψ+f(ψ)+K̃ψ, (2.4b)

where f(ψ) =F ′(ψ), along with the initial condition ψ(x,0) =ψ0(x) and suitable
boundary conditions. For simplification, throughout the paper, we assume that
the boundary conditions are chosen such that all boundary terms will vanish when
integration by parts is performed, which is true for periodic boundary conditions or
homogeneous Neumann boundary conditions for µ and ψ. It is clear that the above
equation satisfies the energy dissipation law,

dE

dt
=

∫
Ω

δE

δψ

∂ψ

∂t
=

∫
Ω

µ∇2µ=−‖∇µ‖2≤0. (2.5)
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Assumption 2.1. We make the following assumptions.

(i) The integral of the non-linear free energy density is bounded from below i.e.,
for some c0>0, ∫

Ω

F (ψ)dx≥c0.

(ii) The non-linear free energy density F (s)∈C3(R), and

(a) there exists C1>0 such that |f ′(s)|<C1(1+|s|q1), for d=1, 2, arbitrary
q1>0, and for d=3, q1∈ (0, 4) holds, and

(b) there exists C2>0 such that |f ′′(s)|<C2(1+|s|q2), for d=1, 2, arbitrary
q2>0, and for d=3, q2∈ (0, 3) holds.

(iii) The kernel k(x,y) has continuous derivatives Dβ
xD

γ
yk(x,y) up to order 2 on

Ω̃ :=Ω×Ω\{x−y}, where |β|+ |γ|≤ 2 such that [37]

|Dβ
xD

γ
x+yk(x,y)|≤C3

{
1+|x−y|−α−|β|, when α+|β| 6=0,

1+ln(|x−y|), when α+|β|=0,

holds. Here C3 is a constant, β = (β1,β2,··· ,βd) and γ = (γ1,γ2,··· ,γd) are
multi-indices with βi, γi≥ 0, |β|=

∑d
i=1βi and

Dβ
x=
( ∂

∂x1

)β1
···
( ∂

∂xd

)βd
and Dγ

x+y=
( ∂

∂x1

+
∂

∂y1

)γ1
···
( ∂

∂xd
+

∂

∂yd

)γd
,

where x=(x1,x2,··· ,xd) and y=(y1,y2,··· ,yd).

2.1 Existence and uniqueness result

We start with a few lemmas that are needed in the subsequent analysis.

Lemma 2.1 ( [28]). If ‖ψ‖H1≤M and the assumption (ii) holds, then for any ψ∈H4

there exists a constant C̃1(M) such that for 0≤σ<1,

‖∆f(ψ)‖2≤ C̃1(M)(1+‖∆2v‖2σ) (2.6)

holds.

It is clear that both the algebraic and logarithmic kernels in (2.3) are integrable.
In the next lemma, we show that these integrals are bounded.
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Lemma 2.2. There exists C̃2>0 such that

∣∣∣∫ T

0

(∫ T

0

h(t,s)ds

)2

dt
∣∣∣≤ C̃2,

where h(t,s) is the kernel function defined in (2.3).

Proof. For any 0≤s,t≤1 and 0<α<1, we have∫ T

0

1

|t−s|α
ds=

∫ t

0

1

(t−s)α
ds+

∫ T

t

1

(s−t)α
ds

=

[
−(t−s)1−α

1−α

]t
0

+

[
(s−t)1−α

1−α

]T
t

=
t1−α

1−α
+

(T−t)1−α

1−α
, (2.7)

and ∫ T

0

(∫ T

0

1

|t−s|α
ds

)2

dt=

∫ T

0

t2(1−α)

1−α
dt+

∫ T

0

(T−t)2(1−α)

1−α
dt

=

[
t3−2α

(1−α)(3−2α)

]T
0

+

[
− (T−t)3−2α

(1−α)(3−2α)

]T
0

=
2T 3−2α

(1−α)(3−2α)
.

Hence, ∣∣∣∣∫ T

0

(∫ T

0

1

|t−s|α
ds

)2

dt

∣∣∣∣≤ 2|T |3−2α

(1−α)(3−2α)
≤c1. (2.8)

Similarly, we can obtain∣∣∣∣∫ T

0

(∫ T

0

ln|t−s|ds
)2

dt

∣∣∣∣≤ |T |327
|9(lnT )2−6lnT+2|≤c2.

This concludes the proof.

We derive the above result for one dimension. It can be extended for higher
dimensional functions as follows. Let, x, y∈Ω⊂Rd, where Ω is bounded and hence



M. Mandal, M. Chowdhury and J. Shen / Ann. Appl. Math., 41 (2025), pp. 1-25 7

there exists R1>0 such that Ω⊂{y : |y|≤R1}.∫
Ω

1

|x−y|α
dy≤

∫
|y|≤R1

1

|x−y|α
dy=

∫
|x+z|≤R1

1

|z|α
dz

≤
∫
|z|≤R2

1

|z|α
dz=

∫
Sd−1

∫ R2

0

r−αrd−1drdξ

≤c3
Rd−α

2

d−α
<∞, if α<d,

where for fix x, there exists R2>0 such that {z : |x+z|≤R1}⊂{z : |z|≤R2} holds.
Now using this above result, we can establish the following:

Lemma 2.3. If ψ∈H2 and the kernel function satisfies the assumption (iii), then
there exists a constant C̃3>0 such that∣∣∣∣∫

Ω

ψ(x,t)K̃ψ(x,t)dx

∣∣∣∣≤ C̃3‖ψ‖H2‖ψ‖ (2.9)

holds.

Proof. Applying the Cauchy-Schwarz inequality, we have∣∣∣∣∫
Ω

ψ(x,t)K̃ψ(x,t)dx

∣∣∣∣≤‖K̃ψ‖‖ψ‖. (2.10)

For the kernel function satisfying the assumptions (iii), using the Lemma 2.2 and
the Sobolev embedding result H2⊂L∞, we find

‖K̃ψ‖2 =

∫
Ω

(∫
Ω

k(x,y)ψ(y,t)dy

)2

dx

≤‖ψ‖2
L∞

[∫
Ω

(∫
Ω

k(x,y)dy

)2

dx

]
≤C̃2

3‖ψ‖2
H2 , (2.11)

which implies the desired result.

Theorem 2.1 (Existence and uniqueness of the continuous solution). Let T > 0,
ψ0∈H2, and the assumptions (i)-(iii) hold. Then the problem (2.4) with L:=−∆+λ
(where λ is a positive real-valued parameter which depends on the Sobolev embedding
constant) admits a unique solution in C(0,T ;H2)∩L2(0,T ;H4).
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Proof. Existence: We shall use the Galerkin approach to establish the existence of
the continuous weak solution of the problem (2.4).

Consider an orthonormal basis of L2(Ω), say {wi}, which are eigen-functions of
the linear operator −∆, i.e., −∆wi =αiwi. We construct an approximate solution
by ψm(·,t)=

∑m
i=1 c̄m,i(t)wi such that

(ψ′m,wi)+(∆ψm,∆wi)+λ(∇ψm,∇wi)+(∆f(ψm),wi)

+(∆K̃ψm,wi)=0, 1≤ i≤m. (2.12)

We now proceed to derive a uniform bound for the sequence of approximate solutions
{ψm}. Multiplying (2.12) by c̄m,i(t), αic̄m,i(t) and α2

i c̄m,i(t) respectively and taking
summation for i=1,2,··· ,m, in each of the three resultant equations, we can obtain

1

2

d

dt
‖ψm‖2+‖∆ψm‖2+λ‖∇ψm‖2+(∆f(ψm),ψm)+(∆K̃ψm,ψm)=0, (2.13a)

1

2

d

dt
‖∇ψm‖2+‖∇∆ψm‖2+λ‖∆ψm‖2−(∆f(ψm),∆ψm)

−(∆K̃ψm,∆ψm)=0, (2.13b)

1

2

d

dt
‖∆ψm‖2+‖∆2ψm‖2+λ‖∇∆ψm‖2+(∆f(ψm),∆2ψm)

+(∆K̃ψm,∆2ψm)=0. (2.13c)

Summing up the above equations, we obtain

1

2

d

dt
‖ψm‖2

H2 +‖∆2ψm‖2+(1+λ)
[
‖∇∆ψm‖2+‖∆ψm‖2

]
+λ‖∇ψm‖2

≤|(∆f(ψm),ψm+∆ψm+∆2ψm)|+|(∆K̃ψm,ψm+∆ψm+∆2ψm)|. (2.14)

We now estimate the terms on the right-hand side using the assumptions (i)-(iii), the
results in Lemmas 2.1-2.3, the relation H2⊂L∞, and applying the Cauchy-Schwarz
and the Young’s inequalities as follows

|(∆f(ψm),ψm+∆ψm+∆2ψm)|
≤C1‖∆f(ψm)‖2+C2

(
‖ψm‖2+‖∆ψm‖2+‖∆2ψm‖2

)
≤C3‖ψm‖2+C4‖∆ψm‖2+C5‖∆2ψm‖2+C̃1(M), (2.15a)

|(∆K̃ψm,ψm+∆ψm+∆2ψm)|

=
(∫

Ω

(Dx+yDxk(x,y)+Dx+yDyk(x,y))ψm(y)dy

+

∫
Ω

Dx+yk(x,y)∇ψm(y)dy,ψm+∆ψm+∆2ψm

)
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≤
(∥∥∥∫

Ω

Dx+yDxk(x,y)ψm(y)dy
∥∥∥+
∥∥∥∫

Ω

Dx+yDyk(x,y)ψm(y)dy
∥∥∥

+
∥∥∥∫

Ω

Dx+yk(x,y)∇ψm(y)dy
∥∥∥)(‖ψm‖+‖∆ψm‖+‖∆2ψm‖)

≤ C̄(2‖ψm‖L∞+‖∇ψm‖L∞)(‖ψm‖+‖∆ψm‖+‖∆2ψm‖)
≤C6‖ψm‖2+C7‖∇ψm‖2+C8‖∆ψm‖2+C9‖∇∆ψm‖2+C10‖∆2ψm‖2, (2.15b)

where Ci (for i= 1,2,··· ,10) are some positive constants. We next combine these
results in (2.13) such that the following holds

d

dt
‖ψm‖2

H2 +C11‖ψm‖2
H4≤ C̃1(M). (2.16)

This result shows that ψm is bounded independent ofm in L∞(0,T ;H2)∩L2(0,T ;H4).
Therefore, a sub-sequence {ψmk

} converges to ψ weakly in L2(0,T ;H4) and weak-
star in L∞(0,T ;H2). As a consequence, the Aubin-Lions lemma [32] implies that
{ψmk

} converges to ψ strongly in L2(0,T ;H3). These convergence results will be
used in proving that this weak limit is the weak solution of the continuous problem
(2.4).

To pass to the limit, we separately estimate each of the terms present in the
weak formulation (2.12). The estimation of the term involving the time derivative
can be ontained as in [32], hence, we skip it here. Estimations of the linear terms
are given below.

Let η(t)∈C1([0,T ]) be an arbitrary function satisfying η(T ) = 0. Applying the
Cauchy-Schwarz inequality, the assumption (iii) on the kernel function, and the
result in Lemma 2.3, we obtain the following results for w∈H2,∫ T

0

(∆ψmk
−∆ψ,∆w)η(t)dt≤‖∆ψmk

−∆ψ‖L2(0,T ;L2)‖η(t)∆w‖L2(0,T ;L2)

≤‖ψmk
−ψ‖L2(0,T ;H2)‖η(t)∆w‖L2(0,T ;L2), (2.17a)∫ T

0

(∇ψmk
−∇ψ,∆w)η(t)dt≤‖ψmk

−ψ‖L2(0,T ;H1)‖η(t)∆w‖L2(0,T ;L2), (2.17b)∫ T

0

(∆K̃ψmk
−∆K̃ψ,w)η(t)dt=

∫ T

0

(K̃ψmk
−K̃ψ,∆w)η(t)dt

≤ C̃3‖ψmk
−ψ‖L2(0,T ;H2)‖η(t)∆w‖L2(0,T ;L2), (2.17c)∫ T

0

(∆f(ψmk
)−∆f(ψ),w)η(t)dt=

∫ T

0

(f(ψmk
)−f(ψ),∆w)η(t)dt

≤L‖ψmk
−ψ‖L2(0,T ;L2)‖η(t)∆w‖L2(0,T ;L2), (2.17d)
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where L is a positive constant, and we refer [28] for the details of the estimation
of the last term containing the non-linear function. We observe that the strong
convergence of {ψmk

} implies that all the right-hand side terms tend to zero strongly
as k→∞. Hence, passing the limit k→∞ in the weak formulation (2.12), we obtain
the following

d

dt
(ψ,w)+(∆ψ,∆w)+λ(∇ψ,∇w)+(∆f(ψ),w)+(∆K̃ψ,w)=0, ∀w∈H2, (2.18)

in the distribution sense in (0,T ). Besides, it can be easily shown that ψ(x,0)=ψ0,
using the continuity of ψ(t) about t obtained from a standard result in [33]. This
result is a consequence of

ψ′=−∆2ψ+λ∆ψ+∆f(ψ)+∆K̃(ψ)∈L2(0,T ;H2)⊂L2(0,T ;(H4)′)

obtained from (2.18) and using ψ∈L2(0,T ;H4).
Uniqueness: Let ψ1 and ψ2 be two solutions to the problem (2.4) and φ=

(ψ1−ψ2) satisfies the following,

φ′+∆2φ−λ∆φ=(∆f(ψ1)−∆f(ψ2))+
(

∆K̃ψ1−∆K̃ψ2

)
. (2.19)

We first take inner product of (2.19) with φ and integrating further we obtain

d

dt
‖φ‖2+‖∆φ‖2+λ‖∇φ‖2 =(f(ψ1)−f(ψ2),∆φ)+(K̃ψ1−K̃ψ2,∆φ)

=(f ′(θψ1+(1−θ)ψ2)φ,∆φ)+(K̃ψ1−K̃ψ2,∆φ), (2.20)

for 0≤θ≤1. Applying the assumption (i), we can bound the derivative of f in [ψ1,ψ2].
Further employing Cauchy-Schwarz and Young’s inequalities, the assumption (iii)
on the kernel function, and the result obtained in Lemma 2.3, the two terms on
the right-hand side can be estimated. Later, combining the estimated results with
the left-hand side terms and assigning appropriate values to arbitrary constants, we
finally reach at the following

d

dt
‖φ‖2≤ C̃4‖φ‖2, (2.21)

where C̃4 is a positive constant and this result implies

‖φ‖≤ C̃5e
t‖φ0‖ for t∈ [0,T ]. (2.22)

As φ0 =0, thus the uniqueness of the solution is proved.
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3 A first-order scheme based on the SAV approach

In this section, we construct a SAV scheme to solve the H−1 gradient flow model
given by (2.4). Following [28], we introduce a scalar auxiliary variable r(t) =√
E1[ψ]+C0, where

E1[ψ]=

∫
Ω

F (ψ)dx+
1

2

∫
Ω

∫
Ω

k(x,y)ψ(y,t)ψ(x,t)dydx

and C0 is a positive constant such that E1[ψ]>−C0, as E1[ψ] is bounded below
using the assumption (i) and Lemma 2.3. Without loss of generality, we take C0 =0
below and hence E1[ψ]≥δ>0. Then, we expand the gradient flow problem (2.4) as
follows:

∂ψ

∂t
=∆µ, (3.1a)

µ=Lψ+
r(t)√
E1[ψ]

(
f(ψ)+K̃(ψ)

)
, (3.1b)

dr

dt
=

1

2
√
E1[ψ]

∫
Ω

(
f(ψ)+K̃(ψ)

) ∂ψ
∂t
. (3.1c)

Taking the inner product of the first two equations with µ and ∂ψ
∂t

respectively
and multiplying the last equation by 2r, we obtain the following after successive
substitutions in the first equation (3.1)

dE

dt
=
d

dt

[
1

2
(ψ,Lψ)+r2

]
=(µ,∆µ)=−‖∇µ‖2≤0.

We divide the time interval [0,T ] into N(>0) uniform time intervals with step size
δt= T

N
. Denoting ψn+1, µn+1 and rn+1 as the approximations of ψ(tn+1), µ(tn+1) and

r(tn+1) respectively, a first-order implicit-explicit scheme (IMEX1) for (3.1) is

ψn+1−ψn

δt
=∆µn+1, (3.2a)

µn+1 =Lψn+1+
rn+1√
E1[ψn]

(
f(ψn)+K̃(ψn)

)
, (3.2b)

rn+1−rn

δt
=

1

2
√
E1[ψn]

∫
Ω

(
f(ψn)+K̃(ψn)

)ψn+1−ψn

δt
. (3.2c)
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By taking the inner products of the first two equations in (3.2) with µn+1 and ψn+1−ψn

δt

respectively, and multiply the last equation by 2rn+1, we arrive at the following,[
1

2
(ψn+1,Lψn+1)+(rn+1)2

]
−
[

1

2
(ψn,Lψn)+(rn)2

]
+

[
1

2
(ψn+1−ψn,L(ψn+1−ψn))+(rn+1−rn)2

]
=−δt‖∇µn+1‖2≤0, (3.3)

which indicates that the scheme is unconditionally energy stable with a modified
energy. Since L:=∆+λ with λ>0, we derive immediately from the above that there
exists a positive constant M such that for all n∈ [0,N−1], we have

‖ψn+1‖H1 +|rn+1|≤M. (3.4)

By using a similar procedure as described in [28], the scheme can be efficiently
implemented by solving two fourth-order linear equations with constant coefficients
at each time step.

3.1 Stability in stronger norms

The inequality (3.3) provides a uniform stability in terms of the norm induced by
the inner product (L·,·). In order to establish the convergence and error analysis,
we need to establish a stability in a stronger norm.

Theorem 3.1 (Stability). Let the assumptions (i)-(ii) hold for the non-linear free
energy density and its higher order derivatives, and the linear kernel function satis-
fies the assumption (iii). Assume that v0∈H4 and the constant M is given in (3.4).
Then for all N≤ T

δt
, we have

‖∆ψN‖2+‖∇ψN‖2+C̄1δt

N∑
n=0

‖∆2ψn+1‖2+C̄2δt

N∑
n=0

‖∇∆ψn+1‖2

+C̄3δt
N∑
n=0

‖∆ψn+1‖2

≤C̃1(M)+C̄4δt‖ψ0‖2
H4 +‖∆ψ0‖2+‖∇ψ0‖2, (3.5)

where C̄i for i=1,2,3,4 are positive constants independent of the time step size δt.
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Proof. We first substitute µn+1 in the first equation in (3.2) and in the following we
take inner product of the resultant equation once with ∆ψn+1(ψn+1−ψn

δt
,∆ψn+1

)
=−(∆2ψn+1,∆ψn+1)+λ(∆ψn+1,∆ψn+1)

+
rn+1√
E1[ψn]

(∆f(ψn)+∆K̃(ψn),∆ψn+1), (3.6)

and with ∆2ψn+1(ψn+1−ψn

δt
,∆2ψn+1

)
=−(∆2ψn+1,∆2ψn+1)+λ(∆ψn+1,∆2ψn+1)

+
rn+1√
E1[ψn]

(∆f(ψn)+∆K̃(ψn),∆2ψn+1). (3.7)

Integrating by parts in the above equations, we obtain

1

δt
(∇ψn+1−∇ψn,∇ψn+1)+‖∇∆ψn+1‖2+λ‖∆ψn+1‖2

≤
∣∣∣ rn+1√

E1[ψn]
(∆f(ψn)+∆K̃(ψn),∆ψn+1)

∣∣∣,
and

1

δt
(∆ψn+1−∆ψn,∆ψn+1)+‖∆2ψn+1‖2+λ‖∇∆ψn+1‖2

≤
∣∣∣ rn+1√

E1[ψn]
(∆f(ψn)+∆K̃(ψn),∆2ψn+1)

∣∣∣.
Thanks to the assumption E1[ψ]≥δ>0 and the bound (3.4), we have

|rn+1|√
E1[ψn]

≤M
δ
.

Then, using the identity (a−b,a)= 1
2
(‖a‖2−‖b‖2+‖a−b‖2), the Cauchy-Schwarz and

Young’s inequalities and the results (2.6), we arrive at the following

1

2δt

(
‖∆ψn+1‖2−‖∆ψn‖2

)
+

1

2δt

(
‖∇ψn+1‖2−‖∇ψn‖2

)
+C ′1‖∆2ψn+1‖2+C ′2‖∇∆ψn+1‖2+C ′3‖∆ψn+1‖2

+C ′4
(
‖∆2ψn+1‖2−‖∆2ψn‖2

)
+C ′5

(
‖∇∆ψn+1‖2−‖∇∆ψn‖2

)
+C ′6

(
‖∆ψn+1‖2−‖∆ψn‖2

)
≤ C̃1(M),

where C ′i for i=1,2,··· ,6 are positive constants. Now summing up the above relation
for n=0,1,2,··· ,(N−1), we finally obtain (3.5).
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3.2 Convergence analysis

The scheme (3.2) produces sequences of approximate solutions. In this subsection,
we establish the convergence of these sequences. First, we introduce a few notations
to simplify the presentation. For any t in [nδt,(n+1)δt] and any n≥0, we define the
following functions

(a) ψ1(t)=ψn+1, ψ2(t)=ψn;

(b) ψ3(t) is piecewise linear function with ψ3(nδt)=ψn and ψ3((n+1)δt)=ψn+1.

Similarly, we define r1(t), r2(t) and r3(t) respectively using {rn}.

Theorem 3.2. Let, ψ0∈H4 and the assumptions (i)-(iii) hold for the non-linear free
energy density function, its derivative and the non-linear kernel function respectively.
Then ψi→ψ strongly in L2(0,T ;H4−β) (∀β>0), weakly in L2(0,T ;H4), weak-star in
L∞(0,T ;H2) and ri→r=

√
E1(ψ) weak-star in L∞(0,T ) as δt→0.

Proof. Let η(t) be a real-valued smooth function defined on [0,T ] with η(T )=0. We
first multiply the first two equations in (3.2) by w(x)η(t) and further combining
them, we integrate the resultant equation in space and time. Again, multiplying
the third equation in (3.2) by η(t) and integrating in time, we obtain the following
equations which (ψi, ri) satisfies:∫ T

0

η(t)

[
(∆ψ1,∆w)+λ(∇ψ1,∇w)+

r1√
E1[ψ2]

(f(ψ2)+K̃(ψ2),∆w)

]
dt

=

∫ T

0

(ψ3,wη
′(t))dt+(v0,wη(0)), ∀w∈H2. (3.8a)∫ T

0

η(t)

2
√
E1[ψ2]

(f(ψ2)+K̃(ψ2),
∂ψ3

∂t
)dt=

∫ T

0

r3η
′(t)dt+r0η(0). (3.8b)

The stability result in (3.5) using the assumption ψ0∈H4 implies,

(R1) ψi are bounded in L∞(0,T ;H2)∩L2(0,T ;H4).

(R2) ri are bounded in L∞(0,T ).

Based on the notational convention, we see that

∂ψ3

∂t
=
ψn+1−ψn

δt
=∆µn+1

and this implies
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(R3) ∂ψ3

∂t
is bounded in L2(0,T ;(H2)′). Besides,

(R4) for some positive constants C1 and C2, ‖ψi−ψj‖L2(0,T ;L2)≤C1

√
δt and ‖ri−

rj‖L2(0,T )≤C2

√
δt.

From these above results, we obtain sub-sequences {ψi,m} and {ri,m}, for i= 1,2,3
such that for m→∞

(R5) ψi,m→ ψ̄i weakly in L2(0,T ;H4) and weak-star in L∞(0,T ;H2).

(R6) ri,m→ r̄i weak-star in L∞(0,T ).

(R7) ∂ψ3,m

∂t
→ ∂ψ̄3

∂t
weakly in L2(0,T ;(H2)′).

Now, using the Aubin-Lions lemma [32], we find that ψi,m → ψ̄i strongly in
L2(0,T ;H4−β), for β>0 and hence applying (R3), we obtain

ψ̄1 = ψ̄2 = ψ̄3 = ψ̄ and r̄1 = r̄2 = r̄3 = r̄.

Now using these strong results, the Cauchy-Schwarz inequality, the Sobolev embed-
ding result, we can easily pass the limit in (3.8) for the linear terms. Here we need
to show the convergence of the non-linear terms, such as

f(ψ2,m), E1[ψ2,m] and
η(t)

2
√
E1[ψ2,m]

(
f(ψ2,m)+K̃(ψ2,m),

∂ψ3,m

∂t

)
.

We observe that using the result in (R1), the strong convergence result, the as-
sumption (iii) on the kernel function, and the result in Lemma 2.3, we reach the
following:

(I) f(ψ2,m)→f(ψ) strongly in L2(0,T ;H1) [28].

(II) E1[ψ2,m]→E1[ψ] weak-star in L∞(0,T ).

We further proceed to establish the convergence of the remaining non-linear term
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using the assumptions (i)-(iii) on the local and non-local terms as follows:∣∣∣∣∣
∫ T

0

η(t)

2
√
E1[ψ2,m]

(
f(ψ2,m)+K̃(ψ2,m),

∂ψ3,m

∂t

)
dt−

∫ T

0

η(t)

2
√
E1[ψ]

(
f(ψ)+K̃(ψ),

∂ψ

∂t

)∣∣∣∣∣
≤
∫ T

0

∣∣∣∣∣ η(t)

2
√
E1[ψ2,m]

∣∣∣∣∣
∣∣∣∣(f(ψ2,m)−f(ψ),

∂ψ3,m

∂t

)∣∣∣∣dt
+

∫ T

0

∣∣∣∣∣ η(t)

2
√
E1[ψ2,m]

∣∣∣∣∣
∣∣∣∣(K̃(ψ2,m)−K̃(ψ),

∂ψ3,m

∂t

)∣∣∣∣dt
+

∫ T

0

∣∣∣∣∣ η(t)

2
√
E1[ψ2,m]

∣∣∣∣∣
∣∣∣∣(f(ψ)+K̃(ψ),

∂(ψ3,m−ψ)

∂t

)∣∣∣∣dt
+

∫ T

0

|η(t)|
2

∣∣∣∣∣ 1√
E1[ψ2,m]

− 1√
E1[ψ]

∣∣∣∣∣
∣∣∣∣(f(ψ)+K̃(ψ),

∂ψ

∂t

)∣∣∣∣dt
≤C‖f(ψ2,m)−f(ψ)‖L2(0,T ;H1)

∥∥∥∥∂ψ3,m

∂t

∥∥∥∥
L2(0,T ;(H1)′)

+C‖ψ2,m−ψ‖L2(0,T ;H2)

∥∥∥∥∂ψ3,m

∂t

∥∥∥∥
L2(0,T ;(H1)′)

+C

∫ T

0

∣∣∣∣(f(ψ)+K̃(ψ),
∂(ψ3,m−ψ)

∂t

)∣∣∣∣dt
+C

∫ T

0

|E1[ψ2,m]−E1[ψ]|
∣∣∣∣(f(ψ)+K̃(ψ),

∂ψ

∂t

)∣∣∣∣dt.
Clearly, the right-hand side goes to zero using (R5)-(R7) and (I)-(II) above, and by
the uniqueness, we obtain the desired results.

3.3 A second-order scheme

Similarly, we can construct linear, second-order schemes with unconditional energy
stability. For example, a second-order implicit-explicit scheme (IMEX2) is as follows:

vn+1−vn

δt
=∆µn+ 1

2 , (3.9a)

µn+ 1
2 =Lvn+ 1

2 +
rn+ 1

2√
E1[v̄n+ 1

2 ]

(
f(v̄n+ 1

2 )+K̃(v̄n+ 1
2 )
)
, (3.9b)
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rn+1−rn

δt
=

1

2
√
E1[v̄]

∫
Ω

(
f(v̄n+ 1

2 )+K̃(v̄n+ 1
2 )
) vn+1−vn

δt
, (3.9c)

where

vn+ 1
2 =

vn+1+vn

2
, rn+ 1

2 =
rn+1+rn

2
and v̄n+ 1

2 =

(
3

2
vn− 1

2
vn−1

)
.

Taking the inner products of the first equations with µn+ 1
2 , vn+1−vn

δt
respectively

and multiplying the last equation with rn+1+rn

δt
, we can easily derive that the above

scheme is unconditionally energy stable with a modified energy. The above scheme
can also be efficiently solved as described in [28], and the convergence analysis can
also be carried out in a similar manner.

4 Numerical experiments

In this section, we carry out numerical experiments to validate the proposed schemes
for solving various Cahn-Hilliard non-local models. In each numerical experiment,
we compare the performance of the first-order scheme (3.2) (denoted by IMEX1)
and the second-order scheme (3.9) (denoted by IMEX2) with different time step
sizes. Here we consider a few cases with smooth and singular kernels.

In all the experiments, we consider Ω:=[0,2π)×[0,2π) with periodic condition and
random initial data, ψ0(x)=0.15Rand(x), where the function Rand(x) is uniformly
distributed random function in [−1,1]×[−1,1]. For the spatial discretization, we ap-
ply Fourier Spectral method with grid size 256×256. The choices of the smooth and
non-smooth kernel functions are motivated from the studies on quasi-crystallization
and repulsive-attractive power-law potentials representing the non-local interaction
energy components.

Example 4.1 (Non-local term with smooth kernel). We choose the kernel function
to be

k(r)=e−r
(

1+
1

2
r2+

1

4
r4+

1

6
r6+

1

8
r8
)

for r=
√
x2+y2. This kernel function is a combined form of the kernel functions

mentioned in the studies on various quasi-crystals [2, 20]. Fig. 1 presents the snap-
shots of the phases at different time steps produced from the IMEX1 and IMEX2
schemes. The plots in the first and last rows are produced by the IMEX1 scheme
with time step sizes 10−5 and 10−3 respectively and the middle row plots are gen-
erated using the IMEX2 scheme for δt= 10−3. Fig. 2 presents the comparison of
the original and modified energies evolution with time for both the schemes with
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Figure 1: Example 4.1. IMEX1 with δt=10−5 (first row), IMEX2 (second row) and IMEX1 (third row)
with δt=10−3.

Figure 2: Example 4.1. Original and modified energy comparison plots.

different time step sizes. Besides, Fig. 3 compares the evolution of the numerically
computed auxiliary scalar variable with its continuous representation for both the
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Figure 3: Example 4.1. Auxiliary variable comparison plots.

schemes.

It is evident from the plots that the results by IMEX1 with δt=10−5 and IMEX2
with δt= 10−3 agree well while those by IMEX1with δt= 10−3 is not satisfactory.
Therefore, in the following examples we shall only present the results using IMEX1
with δt=10−5 and IMEX2 with δt=10−3.

Example 4.2 (Non-local term with weakly singular kernels). (a) Logarithmic ker-
nel:] Here we hypothetically consider

k(x,y)=exy ln(|x−y|).

Fig. 4 presents the phase snapshots at different time steps evaluated using the
IMEX1 scheme with δt=10−5 and the IMEX2 scheme with δt=10−3.

(b) Algebraic kernel:] The use of algebraic kernels can be found in the studies of
various atomic structures. Thees types of kernels represent the interaction energies
among the electrons and nucleons. In this case the kernel functions are chosen based
on the studies conducted by C. M. Topaz [36] and J. A. Carrillo [12]: ki(x,y) =
|x−y|−αi with three different choices for αi, where i=1, 2, 3, and we denote these
cases by (b1)-(b3), respectively. We have considered α1 =0.5, α2 =1.0 and α3 =1.5.
Numerical results for these three algebraic kernels (b1)-(b3) are presented in the
Figs. 5-7 respectively. Besides, Fig. 8 presents the comparison of the original and
modified energy evolution with time for IMEX1 and IMEX2 schemes for the last
numerical example.

We observe from the above plots that the results produced by IMEX1 with
δt= 10−5 and IMEX2 with δt= 10−3 are indistinguishable, indicating that these
numerical results are trustworthy.
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Figure 4: Logarithmic kernel: IMEX1 with δt=10−5 (first row), IMEX2 with δt=10−3 (second row).

Figure 5: Example 4.2(b1). IMEX1 with δt=10−5 (first row), IMEX2 with δt=10−3 (second row).
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Figure 6: Example 4.2(b2). IMEX1 with δt=10−5 (first row), IMEX2 with δt=10−3 (second row).

Figure 7: Example 4.2(b3). IMEX1 with δt=10−5 (first row), IMEX2 with δt=10−3 (second row).
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Figure 8: Example 4.2(b3). Original and modified energy comparison plots.

5 Concluding remarks

The gradient flow models with weakly singular non-local terms are widely used in
modeling various physically relevant dissipative systems. We investigated in this
paper the well posedness of these models, and constructed efficient, simple, and un-
conditional energy-stable SAV schemes for its numerical approximation. Our theo-
retical results are applicable to a wide range of the models with smooth or weakly
singular kernels, and provided mathematical insights into the stability and regu-
larity of these models. Our numerical experiments validated the proposed schemes’
robustness in solving such nonlinear problems with smooth or weakly singular kernel
functions.
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[4] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Nonlocal interactions by
repulsive-attractive potentials: radial ins/stability, Phys. D, 260 (2013), 5–25.
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