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Analysis of the scattering by an unbounded
rough surface

Peijun Li*† and Jie Shen
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This paper is concerned with the mathematical analysis of the solution for the wave propagation from the scattering by
an unbounded penetrable rough surface. Throughout, the wavenumber is assumed to have a nonzero imaginary part
that accounts for the energy absorption. The scattering problem is modeled as a boundary value problem governed by
the Helmholtz equation with transparent boundary conditions proposed on plane surfaces confining the scattering sur-
face. The existence and uniqueness of the weak solution for the model problem are established by using a variational
approach. Furthermore, the scattering problem is investigated for the case when the scattering profile is a sufficiently
small and smooth deformation of a plane surface. Under this assumption, the problem is equivalently formulated into a
set of two-point boundary value problems in the frequency domain, and the analytical solution, in the form of an infinite
series, is deduced by using a boundary perturbation technique combined with the transformed field expansion approach.
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1. Introduction

This paper is concerned with the mathematical analysis of the solution for an acoustic wave scattering problem by an unbounded pen-
etrable rough surface. An unbounded rough surface is a nonlocal perturbation of an infinite plane surface such that the whole surface
lies within a finite distance of the original plane. The problem studied in this work falls in the class of rough surface-scattering problems,
which arise from various applications in industry and military, such as modeling acoustic and electromagnetic wave propagation over
outdoor ground and sea surfaces, optical scattering from the surface of materials in near-field optics or nano-optics, and detection of
underwater mines, especially those buried in soft sediments. These problems have received much attention and been intensively exam-
ined by researchers in the engineering community. A considerable amount of information is available concerning their solutions via
both rigorous methods of computation and approximate, asymptotic, or statistical methods, for example, the reviews and monographs
by Ogilvy [1], Voronovich [2], Saillard and Sentenac [3], Warnick and Chew [4], DeSanto [5], Elfouhaily and Guerin [6], and references
cited therein.

We study the acoustic wave propagation problem of the Helmholtz equation with an unbounded penetrable scattering surface.
Specifically, we consider the scattering of a time-harmonic wave field, generated from a point source, incident on an infinite rough
surface from the top, where the spaces above and below the scattering surface are filled with some fixed materials, respectively. The
unbounded rough surface-scattering problem is challenging because of three major reasons: (i) an appropriate radiation condition
is required as a part of the boundary value problem, since the usual Sommerfeld radiation condition is no longer valid due to the
unboundedness of the rough surface; (ii) lack of compactness of the solution functional space due to the unboundedness of the
domain; and (iii) computationally, a usual approach is to truncate the open domain into a bounded domain, and thus transparent
boundary conditions have to be imposed on the boundary of the truncated bounded domain so that no artificial wave reflection
occurs. Despite the large amount of work performed so far for the unbounded rough surface-scattering problems, the aforementioned
issues still cannot be considered completely solved, particularly for the transparent boundary conditions from the computational point
of view and remain to be the subject matter of much ongoing research.
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This paper consists of two major parts. The first part is concerned with the existence and uniqueness of the solution for a general scat-
tering surface. The second part deals with the derivation of an analytical solution for a special class of scattering surfaces: sufficiently
small and smooth deformation of plane surface.

In the first part, the scattering problem is modeled as a boundary value problem for acoustic wave propagation governed by the
two-dimensional Helmholtz equation with transparent boundary conditions proposed on plane surfaces confining the scattering sur-
face. Because the usual Sommerfeld radiation condition is not valid, the transparent boundary conditions are derived from the new
radiation condition: the total field is consisted of bounded outgoing waves above and below the scattering surface, plus the incident
field above the scattering surface. This radiation condition is equivalent to the upward propagating radiation condition proposed for
a two-dimensional rough surface-scattering problems by Chandler-Wilde and Zhang [7] and has recently been analyzed carefully by
Arens and Hohage [8]. The existence and uniqueness of the weak solution for the model problem are established by using a variational
approach. The method enjoys a great generality in the sense that it allows very general surface structures. Throughout we restrict to
the case of lossy medium, where the wavenumber is assumed to have a nonzero imaginary part accounting for the energy absorption.
We refer to Ritterbusch [9] and Chandler-Wilde and Elschner [10] for related scattering problems where weighted Sobolev spaces are
studied for unbounded domains.

The rough surface-scattering problems for the Helmholtz equation have been recently studied by Chandler-Wilde and Monk [11],
Chanlder-Wilde et al. [12], and Lechleiter and Ritterbusch [13], who considered variational approaches to solve a two-dimensional or
three-dimensional rough surface-scattering problem that models the time-harmonic acoustic wave scattering by a layer of homo-
geneous or inhomogeneous medium above a sound soft rough surface. We refer to Li et al. [14] of the scattering problem for the
vector form of Maxwell’s equations with dielectric surfaces, which models the time-harmonic electromagnetic wave by three lay-
ers of inhomogeneous medium with two infinite rough surfaces. In addition, the two-dimensional scalar model problem has been
considered by integral equation methods in two cases. The first case assumes that the medium is homogeneous and the surface is
the graph of a sufficiently smooth bounded function, when the boundary integral equation methods are applicable, for example,
Chandler-Wilde et al. [15, 16], Zhang and Chandler-Wilde [17, 18], and DeSanto and Martin [19–21]. The second case studied is that the
surface is a straight line, e.g., Chandler-Wilde and Zhang [22] and Li [23].

In the second part, we derive an analytical solution for the scattering problem on the basis of a boundary perturbation technique
combined with the transformed field expansion, under the assumption that scattering rough surface is a sufficiently small and smooth
deformation of a plane surface. By the transformed field expansion, the original problem with complex scattering surface is converted
into a set of recursive transmission problems with a flat interface. Furthermore, the nonlocal transparent boundary conditions become
local boundary condition in the frequency domain. Therefore, we can reduce the two-dimensional problem into a sequence of one-
dimensional two-point boundary value problem with exact local boundary conditions. This approach leads not only to the availability
of analytical solution in the form of an infinite series but also to an efficient and robust computational method (cf. [24]).

For boundary perturbation methods, we refer to a series of papers by Bruno and Reitich [25–29], Nicholls and Reitich [30], and refer-
ences cited therein, for the rigorous mathematical and numerical analysis for solving some diffraction grating and obstacle-scattering
problems. An improved boundary perturbation algorithm, termed as transformed field expansion, was proposed by Nicholls and
Reitich [31], where a change of variables was performed first to flatten the shape of the scattering surface and then followed by the
boundary perturbation technique. The transformed field expansion method was shown to be accurate, stable, and robust even at high
order, see, for example, Nicholls and Shen [32] and Fang et al. [33] for solving the two-dimensional and three-dimensional bounded
obstacle-scattering problems.

We also point out that some related work for the scattering of acoustic and electromagnetic waves in a grating (periodic surface)
structure (diffractive optics) and in a cavity (local perturbation of a plane surface). They have been studied extensively by either integral
equation methods or variational approaches (cf. Bao [34,35], Ammari et al. [36,37], Van and Wood [38], Woo [39], and reference therein).
More recently, existence of the solution to the acoustic and electromagnetic scattering problem in infinite periodic surface perturbed
by a single inhomogeneous object placed inside the periodic structure is established via the integral equation method by Ammari and
Bao [40, 41]. One may consult Colton and Kress [42, 43], Nédélec [44], and Monk [45] for extensive accounts of the integral equation
methods and finite element methods for acoustic and electromagnetic scattering problems.

The outline of this paper is as follows. In Section 2, the model problem is introduced and some regularity properties of the trace
operator are discussed. Section 3 is devoted to the derivation of the transparent boundary condition. Some estimates of the capac-
ity operator are introduced. A variational formulation for the unbounded rough surface acoustic scattering problem is introduced by
using the transparent boundary condition. The existence and uniqueness of the weak solution for the variational problem are estab-
lished. With the boundary perturbation technique combined with the transformed field expansion, an analytical solution is derived in
Section 4. The paper is concluded with some general remarks and directions for future research in Section 5.

2. A model problem

In this section, we shall introduce a mathematical model and define some notation for the scattering problem by an unbounded rough
surface. Let the scattering surface be described by the curve S D f.x, y/ : y D f .x/, x 2 Rg with a bounded and Lipschitz continuous
function f , as seen in Figure 1. The scattering surface S is embedded in the strip

�D f.x, y/ 2R2 : y� < y < yCg DR� .y�, yC/,

where y� and yC are two constants. Let�Cf D f.x, y/ : y > f .x/g and��f D f.x, y/ : y < f .x/g be filled with materials whose wavenum-

bers are constants �C and ��, respectively. In fact, the wavenumber satisfies �2
˙
D !2�"˙, where ! is the angular frequency, � is
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Figure 1. Problem geometry. A wave from the point source at .x0, y0/ is incident on the scattering surface S from the top. The spaces �Cf (above S) and ��f
(below S) are filled with materials whose wavenumbers are constants �C and �� , respectively.

the magnetic permeability that is assumed to be a constant everywhere, and "˙ is the electric permittivity in �˙f . In this work, the
wavenumber �˙ is assumed to be a fixed complex number with

˛ > Re�2
˙ > 0 and Im�2

˙ > ˇ > 0. (2.1)

The condition Im�2
˙
> 0 accounts for energy absorption. Denote by �C D fy D yCg and �� D fy D y�g the top and bottom

boundaries of the domain�.
Suppose that a wave generated from a point source is incident on S from the top. Explicitly, the point incident field is taken as the

fundamental solution of the Helmholtz equation in�C, that is,

uinc.x, y; x0, y0/D
i

4
H.1/0 .�Cj.x, y/� .x0, y0/j/, (2.2)

where H.1/0 is the Hankel function of first kind with order zero, x D .x, y/ is the observation point, and x0 D .x0, y0/ is a given source
point in�C. Clearly the incident field satisfies the two-dimensional Helmholtz equation

�uinc.x/C �2
Cuinc.x/D�ı.x� x0/ in R2,

where ı is the Dirac delta function.
The scattering of time-harmonic electromagnetic waves in the transverse electric case can also be modeled by the two- dimensional

Helmholtz equation:

�u.x/C �2u.x/D�ı.x� x0/ in R2, (2.3)

where the wavenumber

� D

�
�C in �Cf ,
�� in ��f .

(2.4)

Because of the unbounded scattering surface, the usual Sommerfeld radiation condition is no longer valid. The radiation condition that
we impose is the boundedness of u as y tends to infinity. More precisely, we insist that u is composed of bounded outgoing waves in
�C and�� plus the incident wave uinc in�C.

To describe the boundary value problem and derive its variational formulation, we need to introduce some functional space
notations. For u 2 L2.�˙/, which is identified with L2.R/, we denote by Ou the Fourier transform of u defined by

Ou.�/D

Z
R

u.x/eix�dx.

By using Fourier modes, the norm on the space L2.�˙/ can be characterized by

k u kL2.�˙/
Dk u kL2.R/D

�Z
R
juj2dx

�1=2

D

�Z
R
j Ouj2d�

�1=2

.2
1

6
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We denote by C1x .�/ the linear space of infinitely differential functions with compact support with respect to the variable x on �.
Denote by L2.�/ the space of complex square integrable functions on�with the norm

k u kL2.�/D

�Z yC

y�

Z
R
ju.x, y/j2dxdy

�1=2

D

�Z yC

y�

Z
R
j Ou.� , y/j2d�dy

�1=2

.

Denote the Sobolev space: H1.�/D fDsu 2 L2.�/ for all jsj � 1g. A simple calculation yields an explicit characterization of the norm in
H1.�/ via Fourier coefficient:

k u k2
H1.�/

D

Z yC

y�

Z
R

h�
1C j�j2

�
j Ou.� , y/j2C jOu0.� , y/j2

i
d�dy, (2.5)

where Ou0.� , y/ D @y Ou.� , y/. In addition, to describe the boundary operator and transparent boundary condition in the formulation of
the boundary value problem, we define the trace functional space

Hs.�˙/D fu 2 L2.�˙/ :

Z
R
.1C j�j2/sj Ouj2d� <1g,

whose norm is characterized by

k u k2
Hs.�˙/

D

Z
R
.1C j�j2/sj Ouj2d� . (2.6)

It is clear that the dual space associated with Hs.�˙/ is the space H�s.�˙/. In particular, it holds the following duality lemma.

Lemma 2.1
The spaces H1=2.�˙/ and H�1=2.�˙/ are mutually adjoint with respect to the scalar product in L2.�˙/.

The following lemma is concerned with the density of C1x .�/. This is important, particularly for our case of unbounded slab �
because it allows us to prove results for smooth functions with compact support and extend them by limiting argument to more
general functions.

Lemma 2.2
C1x .�/ is dense in H1.�/.

Proof
Noting that C10 .R2/ is dense in H1.R2/, we have C10 .R2/j� is dense in H1.R2/j�. From the Sobolev extension theorem, H1.R2/j� D

H1.�/. Therefore, C1x .�/� C10 .R2/j� is dense in H1.�/. �

To simply proofs, we shall employ positive constants C and Ci as generic constants whose precise values are not required and may
change line by line but should always be clear from the context.

The following lemma shows that the space H1=2.�˙/ and H�1=2.�˙/ are mutually adjoint under the dual paring h�, �i�˙ defined by

hu, vi�˙ D

Z
R
OuOvd� . (2.7)

Note that, from the Parseval formula, the dual paring hu, vi�˙ is the L2.�˙/ inner product between u and v if u, v 2 L2.�˙/.

The following trace regularity result in H1=2.�˙/ is useful in subsequent analysis.

Lemma 2.3
Let �0 D

p
1C .yC � y�/�1. It holds the estimate

k u kH1=2.�˙/
� �0 k u kH1.�/

for all u 2 H1.�/.

Proof
First, we have

.yC � y�/j	.y˙/j
2 D

Z yC

y�
j	.y/j2dyC

Z yC

y�

Z y˙

y

d

dt
j	.t/j2dtdy

�

Z yC

y�
j	.y/j2dyC .yC � y�/

Z yC

y�
2j	.y/jj	0.y/jdy,
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which implies by the Cauchy–Schwarz inequality that

.1C j�j2/1=2j	.y˙/j
2 � �2

0 .1C j�j
2/

Z yC

y�
j	.y/j2dyC

Z yC

y�
j	0.y/j2dy. (2.8)

Given u in H1.�/, it follows from the definition (2.6) that

k u k2
H1=2.�˙/

D

Z
R
.1C j�j2/1=2j Ou.� , y˙/j

2d� .

Using (2.8), we obtain

.1C j�j2/1=2j Ou.� , y˙/j
2 � �2

0 .1C j�j
2/

Z yC

y�
j Ou.� , y/j2dyC

Z yC

y�
j Ou0.� , y/j2dy

� �2
0

Z yC

y�

h
.1C j�j2/j Ou.� , y/j2C jOu0.� , y/j2

i
dy.

The proof is complete by combining the aforementioned estimate and noting the definition of kukH1.�/ in (2.5). �

3. Variational problem

In this section, we shall derive the boundary operators, which map the electric fields to their normal derivatives, introduce the trans-
parent boundary conditions on the artificial boundaries �˙, and present a variational formulation for the scattering problem. The
existence and uniqueness for the weak solution of the model problem will then be established.

3.1. Transparent boundary condition

We wish to reduce problem (2.3) in R2 to the domain�. The radiation condition for the scattering problem insists that the total field u
is composed of bounded outgoing waves in �C and ��, plus the incident field uinc in �C. Because the derivative of the transparent
boundary conditions on�C and�� are parallel, we will only show how to deduce the transparent boundary condition on�C and state
the corresponding transparent boundary condition on �� without derivation.

Observe that the medium is homogeneous above �C. The scattered field us D u� uinc satisfies

�usC �2
Cus D 0 above �C. (3.1)

By taking Fourier transform of (3.1) with respect to x, we have

@2 Ous.� , y/

@y2
C
�
�2
C � �

2
�
Ous.� , y/D 0 for y > yC. (3.2)

Because only bounded outgoing wave is allowed for the solution of (3.2), we deduce that

Ous.� , y/D Ous .� , yC/ eiˇC.y�yC/, (3.3)

where

ˇ2
C.�/D �

2
C � j�j

2 with ImˇC.�/ > 0.

Taking the inverse Fourier transform of Ous.� , y/, we find from (3.3) that

us.x, y/D

Z
R
Ous .� , yC/ eiˇC.y�yC/ei�xd� .

Taking the normal derivative, which is the partial derivative with respect to y on �C, and evaluating at yC yield

@nCus.x, y/
ˇ̌

yDyC
D

Z
R

iˇC Ou
s.� , yC/e

i�xd� , (3.4)

where nC is the unit outward normal on �C, that is, nC D .0, 1/>.
For any given u on �C, define the boundary operator TC:

TCuD

Z
R

iˇC Ou.� , yC/e
i�xd� ,

which leads to a transparent boundary condition on �C,

@nC

�
u� uinc

�
D TC

�
u� uinc

�
.2

1
7

0
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Equivalently, it can be written as

@nCuD TCuC 
 on �C, (3.5)

where


D @nCuinc � TCuinc. (3.6)

Similarly, for any given u on ��, define the boundary operator T�:

T�uD

Z
R

iˇ� Ou.� , y�/e
i�xd� ,

where

ˇ2
�.�/D �

2
� � j�j

2 with Imˇ�.�/ > 0.

Thus, we deduce a transparent boundary condition on ��:

@n�uD T�u, (3.7)

where n� is the unit outward normal on ��, i.e., n� D .0,�1/>.
To summarize, problem (2.5) with the point incident field given in (2.2) and the radiation condition is reduced to the following

problem:

�uC �2uD 0 in�,

@nCuD TCuC 
 on �C,

@n�uD T�u on ��,

(3.8)

with � and 
 given by (2.4) and (3.6), respectively.

Remark 3.1
Clearly, transparent boundary conditions (3.5) and (3.7) are nonlocal in the physical domain. However, they are local boundary
conditions in the frequency domain. In fact, taking the Fourier transform of (3.5) and (3.7) on both sides, we have

@n˙ Ou.� , y˙/DbT˙uD iˇ˙.�/Ou.� , y˙/. (3.9)

This observation is critical and makes it possible to derive an analytical solution in Section 4.

To derive some estimates on the boundary operators, it is useful to introduce the following notations. Define

�2
˙ D '˙C i ˙,

where

'˙ D Re�2
˙ and  ˙ D Im�2

˙.

Denote by

ˇ2
˙ D �

2
˙ � j�j

2 D �˙C i ˙, (3.10)

where

�˙ D Re�2
˙ � j�j

2 D '˙ � j�j
2. (3.11)

A simple calculation gives

ˇ˙ D a˙C ib˙,

where

a˙ D Reˇ˙ D

0
B@
q
�2
˙
C 2
˙
C j�˙j

2

1
CA

1=2

and b˙ D Imˇ˙ D

0
B@
q
�2
˙
C 2
˙
� j�˙j

2

1
CA

1=2

. (3.12)

It follows from (3.11) that

'˙ � �˙ > �1 and j�˙j � 0,

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 2166–2184
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which yields

a˙ �

 
Im�2
˙

2

!1=2

and

 
Im�2
˙

2

!1=2

� b˙ > 0. (3.13)

Lemma 3.1
The boundary operator T˙ : H1=2.�˙/! H�1=2.�˙/ is continuous.

Proof
For any u, v 2 H1=2.�˙/, it follows from definitions (2.7), (3.5), and (3.7) that

hT˙u, vi D i

Z
R
ˇ˙ OuOvd� D i

Z
R
ˇ˙.1C j�j

2/�1=2 � .1C j�j2/1=4 Ou� .1C j�j2/1=4 Ovd� .

To prove the lemma, it is required to estimate

jˇ˙j

.1C j�j2/1=2
D

"
 2
˙
C �2
˙

.1C '˙ � �˙/2

#1=4

.

Let

F˙.t/D
 2
˙
C t2

.1C '˙ � t/2
, �1< t � '˙.

It can be verified that F˙.t/ decreases for �1 < t � K˙ D � 
2
˙
=.1C '˙/ and increases for K˙ � t � '˙. Hence, a simple calculation

yields

F˙.t/�maxfF˙.�1/, F˙.'˙/g Dmax
n

1, j�˙j
4
o

.

Combining the aforementioned estimates yields

jhT˙u, vij � �˙ k u kH1=2.�˙/
k v kH1=2.�˙/

,

where

�˙ Dmaxf1, j�˙jg.

Thus, from Lemma 2.2, we have

k T˙u kH�1=2.�˙/
� sup

v2H1=2.�˙/

jhT˙u, vij

k v kH1=2.�˙/

� �˙ k u kH1=2.�˙/
.

�

Lemma 3.2
Let u 2 H1=2.�˙/. It holds that RehT˙u, ui � 0 and ImhT˙u, ui � 0. If RehT˙u, ui D 0 or ImhT˙u, ui D 0, then uD 0.

Proof
By definitions (2.7), (3.5), (3.7), and (3.12), we find

hT˙u, ui D i

Z
R
ˇ˙j Ouj

2d� D i

Z
R

a˙j Ouj
2d� �

Z
R

b˙j Ouj
2d� .

Taking the real part gives

RehT˙u, ui D �

Z
R

b˙j Ouj
2d� � 0,

and taking the imaginary part yields

ImhT˙u, ui D

Z
R

a˙j Ouj
2d� � 0.

Furthermore, RehT˙u, ui D 0 implies that OuD 0, and ImhT˙u, ui D 0 implies that OuD 0. Hence, either RehT˙u, ui D 0 implies uD 0 or
ImhT˙u, ui D 0 implies uD 0. �

2
1

7
2
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3.2. Well-posedness

We now present a variational formulation of Helmholtz equation (3.8) in H1.�/ and give a simple proof of the well-posedness for the
boundary value problem.

Multiplying (3.8) by the complex conjugate of a test function v 2 H1.�/, integrating over �, and using integration by parts (recall
that Lemma 2.2 implies that the lateral boundary integrals vanish as jxj ! 1), we deduce the variational formulation for scattering
problem (3.8): find u 2 H1.�/ such that

a.u, v/D h
, vi�C for all v 2 H1.�/, (3.14)

with the sesquilinear form

a.u, v/D

Z
�

�
ru � rv � �2u v

�
�

Z
�C

TCu v �

Z
��

T�u v, (3.15)

and the linear functional

h
, vi�C D

Z
�C


 v. (3.16)

Lemma 3.3
Under condition (2.1), we have 
 2 Hs.�C/ for all s 2R.

Proof
Recall


.x, y; x0, y0/D @nCuinc.x, y; x0, y0/� TCuinc.x, y; x0, y0/. (3.17)

It suffices to prove

k 
.x, yC; x0, y0/ k
2
Hs.�C/

D

Z
R
.1C j�j2/sj O
.� , yC; x0, y0/j

2d� <1.

Let

O
inc.� , y; x0, y0/D

Z
R

uinc.x, y; x0, y0/e
�i�xdx

be the Fourier transform of uinc.x, y; x0, y0/ with respect to x. Because the incident field is taken as the fundamental solution for the
Helmholtz equation with number �C, it can be explicitly written as

O
inc.� , y; x0, y0/D
i

2ˇC.�/
eiˇCjy�y0je�i�x0 .

Noticing y0 > yC, we have by simple calculations that

@nC Ou
inc.x, y; x0, y0/jyDyC D�

1

2
eiˇC.y0�yC/e� i�x0 . (3.18)

Using the definition of the boundary operator TC, we have

TCuinc.x, yC; x0, y0/D

Z
R

iˇC.�/Ou
inc.� , yC; x0, y0/e

i�xd� ,

which gives after taking the Fourier transform

2TCuinc.� , yC; x0, y0/D iˇC.�/Ou
inc.� , yC; x0, y0/D�

1

2
eiˇC.y0�yC/e�i�x0 . (3.19)

Combining (3.17), (3.18), and (3.19), we obtain after plugging (3.12) that

O
.� , yC; x0, y0/D�eiˇC.y0�yC/e�i�x0 D�eiaC.�/.y0�yC/e�bC.�/.y0�yC/e�i�x0 ,

which gives

j O
.� , yC; x0, y0/j
2 D e�2bC.�/.y0�yC/.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 2166–2184
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Using (3.11) and (3.12) yields

bC.�/D

0
B@
q
.j�j2 � 'C/2C 

2
CC jj�j

2 � 'Cj

2

1
CA

1=2

,

where 'C D Re�2
C and  C D Im�2

C are fixed constants. It is easy to check that bC.�/� j�j as j�j !1. Hence, we deduce that

k 
.x, yC; x0, y0/ k
2
Hs.�C/

D

Z
R
.1C j�j2/sj O
.� , yC; x0, y0/j

2d�

D

Z
R
.1C j�j2/se�2bC.�/.y0�yC/d� <1

for all s 2R, which completes the proof. �

Remark 3.2
If the incident field is a plane wave uinc.x, y/D ei˛x�iˇy , where ˛ D �C sin � , ˇ D �C cos � , and � is the angel of incidence, then linear
functional (3.16) is not well defined. In fact, a simple calculation yields


.x/D�2iˇei˛x�iˇyC D�2iˇe�iˇyCei Re�C sin �xe�Im�C sin �x .

Thus, it can be easily verified that k 
 kL2.�C/
D1, that is, 
 … L2.�C/. This is the reason why we consider the incident field generated

from a point source instead of the plane wave.

Theorem 3.1
Under condition (2.1), variational problem (3.14) has a unique solution in H1.�/ satisfying

kukH1.�/ �

�
1C

1C ˛

ˇ

�
k@nCuinc � TCu inckH�1=2.�C/

. (3.20)

Proof
It suffices to prove the continuity and coercivity of the sesquilinear form a. The continuity follows directly from the Cauchy–Schwarz
inequality, Lemma 3.1, and Lemma 2.3:

ja.u, v/j � C1 k u kH1.�/k v kH1.�/ CC2 k TCu kH�1=2.�C/
k v kH1=2.�C/

C C3 k T�u kH�1=2.��/
k v kH1=2.��/

� C1 k u kH1.�/k v kH1.�/ CC2 k u kH1=2.�C/
k v kH1=2.�C/

C C3 k u kH1=2.��/
k v kH1=2.��/

� C k u kH1.�/k v kH1.�/ .

Taking the real part of the sesquilinear form a and using Lemma 3.2 yield

ReŒa.u, u/D

Z
�
jruj2 �

Z
�

Re.�2/juj2 � RehTCu, ui�C � RehT�u, ui��

�

Z
�
jruj2 �

Z
�

Re.�2/juj2 �k ru k2
L2.�/

�˛ k u k2
L2.�/

.

Taking the imaginary part of the sesquilinear form a and using Lemma 3.2 give

ImŒa.u, u/D�

Z
�

Im.�2/juj2 � ImhTCu, ui�C � ImhT�u, ui�� � �

Z
�

Im.�2/juj2,

which, along with (2.1), leads to

jImŒa.u, u/j � ˇ k u k2
L2.�/

.

Denote � D .1C ˛/=ˇ > 0. It follows from

ja.u, u/j � jReŒa.u, u/j and � ja.u, u/j � � jImŒa.u, u/j

that we have

.1C �/ja.u, u/j � jReŒa.u, u/j C � jImŒa.u, u/j

�k ru k2
L2.�/

�˛ k u k2
L2.�/

C�ˇ k u k2
L2.�/

�k u k2
H1.�/

.
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It follows from the Lax–Milgram lemma and Lemma 3.3 that there exists a unique weak solution of variational problem (3.14) in H1.�/

satisfying (3.20). �

Remark 3.3
Classical results from the theory of elliptic partial differential equations in Gilbarg and Trundinger [46] indicate that if 
 D @nCuinc �

TCuinc 2 H1=2.�C/, then the unique solution satisfies

kukH2.�/ � Ck@nCuinc � TCuinckH1=2.�C/
, (3.21)

where C is a positive constant.

4. Boundary perturbation method

In this section, we study the method of boundary perturbation and deduce an analytical solution for the unbounded rough surface-
scattering problem. Here, the scattering profile f is assumed to a bounded and twice continuously differentiable function. First, the
scattering problem is formulated as a transmission problem where the scattering profile plays the role of the interface. Then, the
transformed field expansion method (cf. [31]) is applied to derive the analytical solution as an infinite series.

4.1. Transmission problem

We formulate variational problem (3.14) into an equivalent transmission problem or interface problem, which is of more convenient
form for the method of boundary perturbation.

Denote�C D�
C
f \� and�� D��f \�, as seen in Figure 1. Consider Helmholtz equation (2.3) in�C and��, respectively:

�uCC �2
CuC D 0 in�C, (4.1)

�u�C �2
�u� D 0 in��. (4.2)

Recall nonlocal transparent boundary conditions (3.5) and (3.7):

@nCuC D TCuCC 
 on �C, (4.3)

@n�u� D T�u� on ��. (4.4)

Following from the jump conditions, we obtain that the field and its normal derivative are continuous across the scattering surface S,
that is,

uC.x, f .x//D u�.x, f .x//, (4.5)

@nuC.x, f .x//D @nu�.x, f .x//, (4.6)

where nD .n1, n2/
> is the unit normal vector pointing from�C to��. Explicitly, we have

n1 D
f 0.x/p

1C Œf 0.x/2
and n2 D�

1p
1C Œf 0.x/2

.

Hence, the transmission problem is to find the fields uC and u�, which satisfy Helmholtz equations (4.1) and (4.2), continuity conditions
(4.5) and (4.6), and boundary conditions (4.3) and (4.4).

Remark 4.1
It is easy to see that the solution u of variational problem (3.14) restricted to �C and ��,that is, uC D uj�C and u� D uj�� , is the

solution of transmission problem (4.1)–(4.6). Conversely, the solution uC and u� of transmission problem (4.1)–(4.6) constructs the
solution of variational problem (3.14) in the domain�.

4.2. Transformed field expansion

The transformed field expansion method, as applied to the unbounded rough surface scattering, begins with the change of variables

x1 D x, y1 D yC

�
y � f

yC � f

�
, f < y < yC,

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 2166–2184
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and

x2 D x, y2 D y�

�
y � f

y� � f

�
, y� < y < f ,

which maps the perturbed domains �C and �� to unperturbed strip domains DC and D�, respectively. We now seek to restate
transmission problem (4.1)–(4.6) in these transformed coordinates. It is easy to verify the differentiation rules

@x D @x1 � f 0
�

yC � y1

yC � f

�
@y1 ,

@y D

�
yC

yC � f

�
@y1 ,

for f < y < yC, and

@x D @x2 � f 0
�

y� � y2

y� � f

�
@y2 ,

@y D

�
y�

y� � f

�
@y2 ,

for y� < y < f .
Introduce new functions wC.x1, y1/ D uC.x, y/ and w�.x2, y2/ D u�.x, y/ under the transformation. It can be verified after tedious

but straightforward calculations that wC and w�, upon dropping the subscript, satisfy the equation

cC1
@2wC

@x2
C cC2

@2wC

@y2
C cC3

@2wC

@x@y
C cC4

@wC

@y
C cC1 �

2
CwC D 0, 0< y < yC, (4.7)

c�1
@2w�

@x2
C c�2

@2w�

@y2
C c�3

@2w�

@x@y
C c�4

@w�

@y
C c�1 �

2
�w� D 0, y� < y < 0, (4.8)

where

c˙1 D .y˙ � f /2,

c˙2 D Œf
0.y˙ � y/2C y2

C,

c˙3 D�2f 0.y˙ � y/.y˙ � f /,

c˙4 D�.y˙ � y/Œf 00.y˙ � f /C 2.f 0/2.

The nonlocal transparent boundary conditions are

@nCwC D @ywC D

�
1�

f

yC

��
TCwCC 


�
, y D yC, (4.9)

@n�w� D�@yw� D

�
1�

f

y�

�
T�w�, y D y�. (4.10)

The continuity conditions at the interface y D 0 reduce to

wC.x, 0/D w�.x, 0/, (4.11)

�
yC

yC � f

�
@ywC.x, 0/D

�
y�

y� � f

�
@yw�.x, 0/. (4.12)

Now, we use a classical boundary perturbation argument. Let f D "g with " sufficiently small, and consider the formal expansions of
.wC, w�/ in a power series of ":

wC.x, y; "/D
1X

nD0

wCn .x, y/"n and w�.x, y; "/D
1X

nD0

w�n .x, y/"n. (4.13)

Substituting f D "g into c˙j and inserting the aforementioned expansions into (4.7) and (4.8), we may derive the recursions for wCn
and w�n :

@2wCn
@x2

C
@2wCn
@y2

C �2
CwCn D �

C
n , 0< y < yC, (4.14)2

1
7
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@2w�n
@x2

C
@2w�n
@y2

C �2
�wCn D �

�
n , y� < y < 0, (4.15)

where

�˙n D
2g

y˙

@2w˙n�1

@x2
C

2g0.y˙ � y/

y˙

@2w˙n�1

@x@y
C

g00.y˙ � y/

y˙

@w˙n�1

@y
C

2�2
˙

g

y˙
w˙n�1

�
g2

y2
˙

@2w˙n�2

@x2
�
.g0/2.y˙ � y/2

y2
˙

@2w˙n�2

@y2
�

2gg0.y˙ � y/

y2
˙

@2w˙n�2

@x@y

C
Œ2.g0/2 � gg00.y˙ � y/

y2
˙

@w˙n�2

@y
�
�2
˙

g2

y2
˙

w˙n�2.

Nonlocal boundary conditions (4.9) and (4.10) become

@ywCn � TCwCn D 

C
n , y D yC, (4.16)

@yw�n C T�w�n D 

�
n , yD y�, (4.17)

where


C0 D 
, 
C1 D�

�
g

yC

�
TCwC0 �

�
g

yC

�

, 
Cn D�

�
g

yC

�
TCwCn�1, nD 2, 3, : : : ,


�0 D 0, 
�n D

�
g

y�

�
T�w�n�1, nD 1, 2, : : : .

The continuity conditions at the interface y D 0 reduce to

wCn .x, 0/�w�n .x, 0/D 0, (4.18)

@ywCn .x, 0/� @yw�n .x, 0/D %n, (4.19)

where

%0 D 0, %n D

�
g

y�

�
@ywCn�1 �

�
g

yC

�
@yw�n�1, nD 1, 2, : : : .

Note that Helmholtz problem (4.14)–(4.15) for the current terms w˙n involve some nonhomogeneous terms �˙n , 
˙n , and %n, which only
depend on previous two terms w˙n�1 and w˙n�2. Thus, transmission problems (4.14)–(4.19) indeed can be solved in a recursive manner
starting from nD 0.

Taking the Fourier transform of (4.14) and (4.15) with respect to the variable x yields

@2 OwCn
@y2

C .�2
C � �

2/ OwCn D O�
C
n , 0< y < yC, (4.20)

@2 Ow�n
@y2

C .�2
� � �

2/ Ow�n D O�
�
n , y� < y < 0. (4.21)

According to Remark 3.1, the nonlocal boundary conditions become local boundary condition in the frequency domain:

@y Ow
C
n � iˇC Ow

C
n D O


C
n , y D yC, (4.22)

@y Ow
�
n C iˇ� Ow

�
n D O


�
n , y D y�. (4.23)

The continuity conditions reduce to

OwCn .� , 0/� Ow�n .� , 0/D 0, (4.24)

@y Ow
C
n .� , 0/� @y Ow

�
n .� , 0/D O%n. (4.25)

After taking the Fourier transform, two-dimensional problem (4.14)–(4.19) reduces to one-dimensional transmission problem
(4.20)–(4.25) in the frequency domain. This problem falls in the class of the so-called two-point boundary value problem, whose detailed

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 2166–2184
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solution is discussed in Appendix B. An application of Theorem B.1, along with (B.13) and (B.23), leads to the following explicit solution
of the transmission problem.

Theorem 4.1
Let f be in C2.R/, and assume that .wC, w�/ admit the asymptotic expansions (4.13). Then the fields .wCn , w�n / are determined as the
unique solution of the transmission problem (4.20)–(4.25), given explicitly as

OwCn .� , y/D eiˇCy OwCn .� , 0/� KC1 .� , y/ O
Cn C

Z yC

0
KC2 .� , y, z/ O�Cn .z/dz, (4.26)

Ow�n .� , y/D e�iˇ�y Ow�n .� , 0/C K�1 .� , y/ O
�n �

Z 0

y�
K�2 .� , y, z/ O��n .z/dz, (4.27)

where

KC1 .� , y/D
eiˇCyC

�
e�iˇCy � eiˇCy

�
2 iˇC

,

K�1 .� , y/D
e�iˇ�y�

�
eiˇ�y � e�iˇ�y

�
2 iˇ�

,

and

KC2 .� , y, z/D

8̂̂̂
<
ˆ̂̂:

eiˇCy
�

e�iˇCz�eiˇCz
�

2iˇC
if z < y,

eiˇCz
�

e�iˇCy�eiˇCy
�

2iˇC
if z > y,

K�2 .� , y, z/D

8̂̂̂
<
ˆ̂̂:

e�iˇ�z
�

e�iˇ�y�eiˇ�y
�

2iˇC
if z < y,

e�iˇ�y
�

e�iˇ�z�eiˇ�z
�

2iˇ�
if z > y,

with

OwCn .� , 0/D Ow�n .� , 0/D
�i

ˇCC ˇ�
�

�
O%nC e�iˇ�y� O
�n � eiˇCyC O
Cn C

Z yC

0
eiˇCz O�Cn .z/dzC

Z 0

y�
e�iˇ�z O��n .z/dz

�
. (4.28)

Remark 4.2
Under the assumption that f has two continuous derivative, that is, f 2 C2.R/, we may follow the same techniques by Nicholls and
Reitich [30] to show inductively, for " sufficiently small, that

k wCn kH2.�/� KC and k w�n kH2.�/� K�, 8n� 0,

where KC and K� are two positive constants independent of the index n. Therefore, the power series for wC and w� in (4.13) converge
for sufficiently small ".

5. Concluding remarks

We proposed in this paper a variational formulation for the scattering problem by an unbounded penetrable rough surface and derived
the analytical solution when the scattering surface is assumed to be a sufficiently small and smooth perturbation of a plane surface.

In the first part, we reduced the scattering problem to a boundary value problem by using transparent boundary condition and
proved the uniqueness and existence of the weak solution for the variational problem. In the second part, by using the transformed
field expansion and Fourier transform, we converted the original two-dimensional problem with complex scattering surface into a
sequence of one-dimensional two-point boundary value problems with decoupled boundary conditions in the frequency space for
which the analytical solution can be explicitly expressed by using the integrated solution method.

Although the analytical solution given in Theorem 4.1 is of interest for many purposes, it is not very convenient to use in practice
because of the lack of discrete Fourier transform on the infinite domain R. In [24], we shall extend the numerical method in [32, 33] to
construct a practical algorithm for solving this problem.

An essential assumption we made is that Im�2
˙
¤ 0. A challenging problem is to study the infinite rough surface-scattering problem

in lossless medium, that is, Im�2
˙
D 0. Without energy decay, the capacity operator introduced in this paper is unbounded, and the pro-

posed method can not be directly applied to this case. We hope to address these issues by studying the limiting absorption principle
in the future. We also intend to extend the method to more complicated three-dimensional Maxwell’s equations.
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Appendix A. A two-point boundary value problem

In this section, the integrated solution method is briefly introduced to solve a two-point boundary value problem. We refer to Zhang
[47] for the details of the integrated solutions of ordinary differential equation system and two-point boundary value problems.

Consider the two-point boundary value problem

u0.y/CM.y/u.y/D f.y/, (A.1)

A0u.y/jyD0 D r0, (A.2)

B1u.y/jyDL D s1, (A.3)

where f.y/ 2 Cm are m-dimensional vector fields, r0 2 Cm1 and s1 2 Cm2 are given m1-dimensional and m2-dimensional vector fields,
respectively, M.y/ 2 Cm�m is an m �m matrix, and A0 2 Cm1�m and B1 2 Cm2�m are full rank matrices with m1 Cm2 D m, that is,
rankA0 Dm1 and rankB1 Dm2.

Letˆ.y/ be the fundamental matrix of the system

ˆ0.y/CM.y/ˆ.y/D 0, (A.4)

ˆ.0/D I, (A.5)

where I is the m�m identity matrix.

Theorem A.1
Two-point boundary value problem (A.1)–(A.3) has a unique solution if and only if

det

�
A0

B1ˆ.L/

�
¤ 0. (A.6)

Let the pair of functions fA.y/, r.y/g and fB.y/, s.y/g be the integrated solutions of problems (A.1)–(A.2) and (A.1)–(A.3), respectively,
then there exist D0.A, y/ 2Cm1�m1 and D1.B, y/ 2Cm2�m2 such that

A0 D AMC D0A, A.0/D A0, (A.7)

r0 D AfCD0r, r.0/D r0, (A.8)

and

B0 D BMC D1B, B.L/D B1, (A.9)

s0 D BfC D1s, s.L/D s1. (A.10)

Theorem A.2
If two-point boundary value problem (A.1)–(A.3) has a unique solution, then the matrix

�
A.y/
B.y/

�
2Cm�m

is nonsingular.

Theorem A.3
Two-point boundary value problem (A.1)–(A.3) is equivalent to the linear system

�
A.y/
B.y/

�
u.y/D

�
r.y/
s.y/

�
. (A.11)
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Appendix B. A transmission problem

In this section, we discuss the solution of a transmission problem in details. Consider the second order boundary value problem

u00CC �
2
CuC D fC, 0< y < yC, (B.1)

u00�C �
2
�u� D f�, y� < y < 0, (B.2)

with the boundary conditions

@yuC � i�CuC D gC at y D yC, (B.3)

@yu�C i��u� D g� at y D y�, (B.4)

and the jump conditions across the interface y D 0:

uC.0/� u�.0/D h1, (B.5)

@yuC.0/� @yu�.0/D h2. (B.6)

We now convert the second-order differential equation into a first-order two-point boundary value problem. Let vC1 D uC and

vC2 D u0C, second-order boundary value problem (B.1) and (B.3) can be formulated into a first-order two-point boundary value problem:

v0CCMCvC D fC, (B.7)

AC0 vC.0/D uC.0/, (B.8)

BC1 vC.yC/D gC, (B.9)

where

vC D

�
vC1
vC2

�
, fC D

�
0

fC

�
, MC D

�
0 �1
�2
C 0

�
,

and

AC0 D Œ1, 0, BC1 D Œ�i�C, 1.

Similarly, let Let v�1 D u� and v�2 D u0�, second-order boundary value problem (B.2) and (B.4) can be formulated into a first-order
two-point boundary value problem:

v0�CM�v� D f�, (B.10)

A�0 v�.0/D u�.0/, (B.11)

B�1 v�.y�/D g�, (B.12)

where

v� D

�
v�1
v�2

�
, f� D

�
0

f�

�
, M� D

�
0 �1
�2
� 0

�
,

and

A�0 D Œ1, 0, B�1 D Œi��, 1.

Lemma B.1
Given fC 2 L1.0, yC/, uC.0/, and gC 2R. Two-point boundary value problem (B.7)–(B.9) has a unique solution given by

uC.y/D ei�CyuC.0/� KC1 .y/gCC

Z yC

0
KC2 .y, z/fC.z/dz, (B.13)2

1
8

0
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where

KC1 .y/D
ei�CyC

�
e�i�Cy � ei�Cy

�
2i�C

and

KC2 .y, z/D

8̂̂̂
<
ˆ̂̂:

ei�Cy
�

e�i�Cz�ei�Cz
�

2i�C
if z < y,

ei�Cz
�

e�i�Cy�ei�Cy
�

2i�C
if z > y.

Proof
Because MC is a nonsingular matrix, there exists a nonsingular matrix QC such that

Q�1
C MCQC D NC,

where

NC D

�
�i�C 0

0 i�C

�
, QC D

�
1 1

i�C �i�C

�
, and Q�1

C D
1

2i�C

�
i�C 1
i�C �1

�
.

A simple calculation yields

det

�
AC0

BC1 eMC

�
D

ˇ̌̌
ˇ 1 0

i�Cei�C �e�i�C

ˇ̌̌
ˇD�e�i�C ¤ 0.

It follows from Theorem A.1 that two-point boundary value problem (B.7)–(B.9) has a unique solution.
Let fAC.y/, rC.y/g and fBC.y/, sC.y/g be the integrated solutions of problems (B.7), (B.8) and (B.7), (B.9), respectively. Taking

DC0 D i�C, DC1 D�i�C,

we obtain from (A.7)–(A.10) that the integrated solutions satisfy

A0C D ACMCC i�CAC, AC.0/D AC0 , (B.14)

r0C D ACfCC i�CrC, rC.0/D uC.0/, (B.15)

and

B0C D BCMC � i�CBC, BC.yC/D BC1 , (B.16)

s0C D BCfC � i�CsC, sC.yC/D gC. (B.17)

Upon solving the aforementioned initial value problem, we obtain the integrated solutions

AC D
h

AC1 , AC2

i
D

1

2i�C

h
i�C.1C e2i�Cy/, 1� e2i�Cy

i
, (B.18)

BC D
h

BC1 , BC2

i
D Œ�i�C, 1, (B.19)

rC D ei�CyuC.0/C

Z y

0
ei�C.y�z/AC2 .z/fC.z/dz, (B.20)

sC D ei�C.yC�y/gC �

Z yC

y
ei�C.z�y/fC.z/dz. (B.21)

It follows from Theorem A.3 that two-point boundary value problem (B.7)–(B.9) is equivalent to the linear system�
AC1 AC2
BC1 BC2

� �
uC
u0C

�
D

�
rC
sC

�
.
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An application of Gram’s rule yields

uC D
rCBC2 � sCAC2

AC1 BC2 � BC1 AC2
. (B.22)

A simple calculation yields

AC1 BC2 � BC1 AC2 D 1.

Substituting (B.18)–(B.21) into (B.22), we deduce (B.13). �

Lemma B.2
Given f� 2 L1.y�, 0/, u�.0/, and g� 2R. Two-point boundary value problem (B.10)–(B.12) has a unique solution given by

u�.y/D e�i��yu�.0/C K�1 .y/g� �

Z 0

y�
K�2 .y, z/f�.z/dz, (B.23)

where

K�1 .y/D
e�i��y�

�
ei��y � e�i��y

�
2i��

and

K�2 .y, z/D

8̂̂
<̂
ˆ̂̂:

e�i��z
�

e�i��y�ei��y
�

2 i�C
if z < y,

e�i��y
�

e�i��z�ei��z
�

2i��
if z > y.

Proof
The proof is similar to the one for Lemma B.1. It can be verified that

det

�
A�0

B�1 eM�

�
D

ˇ̌̌
ˇ 1 0

i��e�i�� e�i��

ˇ̌̌
ˇD e�i�� ¤ 0,

so Theorem A.1 implies that problem (B.10)–(B.12) has a unique solution.
Let fA�.y/, r�.y/g and fB�.y/, s�.y/g be the integrated solutions of problems (B.10), (B.11) and (B.10), (B.12), respectively. Taking

D�0 D�i��, D�1 D i��,

we obtain from (A.7)–(A.10) that the integrated solutions satisfy

A0� D A�M� � i��A�, A�.0/D A�0 , (B.24)

r0� D A�f� � i��r�, r�.0/D u�.0/, (B.25)

and

B0� D B�M�C i��B�, B�.y�/D B�1 , (B.26)

s0� D B�f�C i��s�, s�.y�/D g�. (B.27)

Upon solving the aforementioned initial value problem, we obtain the integrated solutions

A� D
	

A�1 , A�2


D

1

2i��

h
i��.e

�2i��y C 1/, e�2i��y � 1
i

, (B.28)

B� D
	

B�1 , B�2


D Œi��, 1, (B.29)

r� D e�i��yu�.0/C

Z y

0
e�i��.y�z/A�2 .z/f�.z/dz, (B.30)2

1
8

2
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s� D e�i��.y��y/g� �

Z y�

y
e�i�C.z�y/f�.z/dz. (B.31)

An application of Gram’s rule yields

u� D
r�B�2 � s�A�2

A�1 B�2 � B�1 A�2
. (B.32)

A simple calculation yields

A�1 B�2 � B�1 A�2 D 1.

Substituting (B.28)–(B.31) into (B.32), we deduce (B.23). �

To completely determine the solutions uC.y/ and u�.y/, it is required to compute uC.0/ and u�.0/, which can be obtained by using
jump conditions (B.5) and (B.6). Simple calculations yield

@yKC1 .0/D�ei�CyC , @yKC2 .0, z/D�ei�Cz ,

@yK�1 .0/D e�i��y� , @yK�2 .0, z/D�e�i��z ,

which give

@yuC.0/D i�CuC.0/C ei�CyCgC �

Z yC

0
ei�CzfC.z/dz,

@yu�.0/D�i��u�.0/C e�i��y�g�C

Z 0

y�
e�i��zf�.z/dz.

It follows that from jump conditions (B.5) and (B.6) we obtain

u�.0/D
�i

�CC ��
�

�
h2 � i�Ch1C e�i��y�g� � ei�CyCgCC

Z yC

0
e i�CzfC.z/dzC

Z 0

y�
e�i��zf�.z/dz

�
(B.33)

and

uC.0/D u�.0/C h1. (B.34)

Theorem B.1
Given f� 2 L1.y�, 0/, fC 2 L1.0, yC/, and g˙ 2 R. Transmission problem (B.1)–(B.6) has a unique solution explicitly expressed by (B.13)
and (B.23) with u˙.0/ given by (B.33)–(B.34).
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