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Abstract. Our aim in this article is to study the existence and regularity of solutions of a quasilinear 
elliptic-hyperbolic equation. This equation appears in the design of blade cascade profiles. This leads 
to an inverse problem for designing two-dimensional channels with prescribed velocity distributions 
along channel walls. The governing equation is obtained by transformation of the physical domain to 
the plane defined by the streamlines and the potential lines of fluid. We establish an existence and 
regularity result of solutions for a more general framework which includes our physical problem as a 
specific example. 
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O. Introduction 

The  main object  of this article is to study the existence and the regularity of 
solutions of a quasilinear equation, One specific application is the equation 

governing the flow of a perfect  and isentropic fluid, obtained when solving the 

inverse problem of determination of transonic channels, with the deviation as 

well as the Mach number distributions prescribed along channel walls (see 
[3, 9, 10] and appendix). 

This equation was established for a fluid verifying the exact isentropicity law: 

p/p~  = cst (where 7 is the ratio of specific heats (~  1.4), p and t9 are, respectively, 
the pressure and the density of fluid) after transformation of the physical domain 
to the plane defined by the streamlines and the potential lines of the fluid. 

The  unknowns of this equation are the velocity, the Mach number, and the 

density - the two last quantities are given as algebraic functions of the velocity by 
virtue of St. Venant 's  relations for isentropic fluids (see [4, 6, 10]). 

The  streamline curvatures in the physical domain can be determined by a 
function of these aerodynamic unknowns as well as the angle between the 
streamline tangent vector  and the physical domain basis vector  i. The  Cartesian 
coordinates of the channel walls are obtained by an integration of first-order 
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differential equations; these equations are functions of angle and velocity along 
the streamlines defining the channel walls. 

0.1. PHYSICAL PROBLEM MODEL 

The considered domain is rectangular because being formed by the channel 
image in the plane defined by the streamlines (~0 = cst) and the potential lines 
(~ = cst) (see Figures la and b). 

(•)2 

@=1 Y 

¢,=0, ~x 

Fig. la. Physical domain. 
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Fig. lb. Computational domain. 



SOLUTIONS OF A QUASILINEAR MIXED EQUATION 289 

The equations governing the fluid flow in this rectangular domain (~)  are as 
follows: 

oEv 1 - M 2 0 2 V  I + M 2 ( O V ~ 2 + I + ) , M 4 ( O V ~  2 
0~2 p2 0~2 ~- V \ - ~ ]  p2V \ - ~ ]  = 0  in ~ ,  

M--  in ~ ,  
T + I  1 y - 1  V 2 

7 + 1  
(0.1) 

o=(1  ~ -  1 v~)"~- l '  -3,+1 in ~ ,  

BD: Vho~ = g, 

where V is the dimensionless velocity, p is the dimensionless density and g is 
obtained from the Mach number distributions prescribed on the channel walls 
(for more details, see the appendix). 

In addition, we have the following expression for the streamline curvatures 

OV 
X = P in ~ .  (0.2) a4, 

Finally, the deviation that generates the channel walls as well as their coordinates 
are obtained by integrations of the following equations in ~ :  

Oda _ X Ox _ cos ¢ 0y _ sin 4~ 
a~ v '  a~ v ' a~ v ' (0.3) 
BC: ~b(O, q,) = tb,, x(O, g,) = x,(q,), y(O, q,) = y,(qJ), 

where 6 , ,  xl(q,) and y~(q,) are physical data. More details about the equations are 
given in the appendix (see also [10]). 

0.2. MATHEMATICAL SETTING AND GENERAL FRAMEWORK 

We analyze the equation (0.1) by setting it in the more general framework which 
follows: 

(~) Find u ~ WI'P(II) f-I L®(II) such that 

A u + F ( u ,  V u ) =  T inlI ,  

u - g c W o ~ ' " ( t l ) .  

Here 11 denotes a bounded open set of R N, A u  =-(O/Ox~)ai(x, u, Vu)*, an 
elliptic-hyperbolic operator of Leray-Lions type which maps WI'P(I))fl L~(II) 

* In the sequel, we will often omit the sum signs. 
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into W-~'P'(I)), ( l i p ' +  l ip  = 1) and such that 

B. MICHAUX ET AL. 

For almost every x • f~, Vu c I c R, V~ e R ~ 

ai(x, u, '~)'~i ~ v(u)l ~:l p- 

g is given in WI"P(Iq) fq L~(II) and F is in W-~'v'(II). 

(0.4) 

Some similar problems in the case of the homogeneous boundary condition (i.e. 
g = 0) and in the case where the operator is uniformly elliptic on all real axes for 
u (i.e. v(u) = cst = Vo > O, Vu e R) were studied by several authors (see [1, 5, 7] 

and the references therein). 

More recently, one of the authors found a situation in [17-19] where the 

operator can degenerate  (i.e. v(u) > 0 for u ¢ 0 and v(0)/> 0). In this last case, he 
proved a maximum principle which will be used in the present approach. In 

addition, three new approaches are presented in this article. 
One can observe that one of the main differences between the papers quoted 

above [1, 5, 7] and ours is that the operator A is not elliptic on all the real axes 
but only on some intervals. This is why we assume only the following condition 

on v: there exists an interval (0, uo], Uo > 0 in the domain of the function v on 

which the function v is continuous and strictly positive. For example, 

l 
v(u)= l - l u  l _ a 2 u a ,  a > O .  

The  condition is related to the values of the Mach number (less than 1) for the 

physical model case which, in this case, represents a subsonic flow. 

The second novelty appears when we use a principle of comparison to show 
that if there exists a constant 8 > 0 such that g >i 8, then there exists a solution of 

the problem (~)  satisfying also u >~ & 
Also observe that here the boundary condition is nonhomogeneous on Ol). 

This is another case not treated in the papers [16, 17, 19]. Note that the one side 
condition on F (see assumption H3(i)) is not preserved by translation on u. 

Finally, the third novelty resides in the fact that the domain of the function 

u ~  F(x,  u, ~) as well as the function u~--~ ai(x, u, ~) are not necessary R, for 
almost every x and for all ~ e R  N. In [1,5,  7, 19], F is defined everywhere on 

fl  × R × R N. But in our case, it is only defined on a subset of this domain. 
Specifically, in our model case: 

Dom F(x,  . , ~) = (0, a) U ( - a ,  0), 

where 

~/T +1  
a = ¥ - ~ - i -  with 3' ~ 1.4. 

We can also treat some functions of the following form: 
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- 1  x/1 - u 2 
F(x, u, ~:)= lo--~ I~] p + - - - - - ~ -  I~l P-'. 

In [1], Boccardo et al. treated only the case where the operator is uniformly 
elliptic, and where the second member (i.e.: T) is a smooth function in L ~. Here, 
we do not need the notion of sub and sur-solution. The assumptions for the 
operator A in [5] and [7] are the same as those in [1] and also, the growth of the 
function F is less than p. Moreover, in [7] these operators are very smooth. 

Remark 1. In addition, we will get a uniform upper bound for all solutions of 
(~)  by the method developed in [16-19] by one of the authors. To our 
knowledge, it is the first time that such a quasilinear equation with quadratic 
growth representing a physical problem has been so thoroughly studied. 

The presentation of our work will be as follows: 
In Section 1, we present the assumptions on the operator A, the function F and 

the right-hand term T, and we will show how the physical model case can be 
represented by the general framework presented previously. 

In Section 2, we introduce a family of modified problems ( ~ )  whose solution 
u~ stays in a bounded domain of W~'V(fl)N L~(12). Moreover, we show that it 
possesses a principle of comparison. 

We also prove that the sequence u~ converges to a function u strongly in 
W~'P(fl) and weak-star in L~(~). 

In Sections 3 to 5, we deduce that this function u is, in fact, a weak solution of 
the problem (~). 

We establish in Section 6 the H61der continuity for the solutions of this 
problem (~). 

We complete this article with an appendix which explains briefly how the 
problem (0.1) is established from the physical considerations on the inverse 
problem. Several numerical approaches of this type of inverse problem have been 
studied for a subsonic flow (see [20, 21]) as well as for a transonic flow (see 
[9, 10]). In [11], we propose a numerical scheme based on a finite difference 
method with various boundary conditions corresponding to different physical 
problems. 

1. Hypotheses 

Let l'l be a smooth bounded open set of R/~, ( N ~  > 1) and p ~ (1, +oo). We propose 
to solve the following problem (~): 

(~) Find u ~ WI'p(II) f'l L~(II), 

A u + F ( u ,  Vu)= T inl~, 

u - g ~ W~'P(f~) 
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under the following assumptions on A, F,  T and g: 

(H1) T ~ W-l'r(l-l), r>~ p', r>  N / ( p -  1) and T/> 0 in the sense of W-LP'(I~) 
i.e. for all q~eW~'P(fl), q~>~O, (T,~)>~O where, 1 / p + l / p ' = l  and 
( . ,  .) denotes the scalar product between W-I'P'(ll) and W~'P(O). 

(H2) There exists a number u~ e R*,  (i.e., ul can be infinite but u~ > 0), such 
that: 

(i) The maps a~ are Caratheodory functions from II x (0, u0  x R N into 
R: i.e., 

¥'0 ~ ]0, u~[, ¥ ~  ~ R N, 

x ~ a~(x, "11, ~) is measurable from 1) into R. 

For almost every x e 

(~/, ~ ) ~  a~(x, 71, ~) is continuous from (0, uO x R ~ into R. 

(ii) (growth) For almost every x e fl, for all 7/e (0, uO and for all 
~ R  N, 

la~(x, n, #)l ~< a(rt)([~:l p-~ + ao(x)), 

where a: (0, U l ) ~ R +  is increasing 

and ao ~ LP'(~"~). 

(iii) (restricted coercivity) there exists a continuous function v on its 
domain, such that: 

(H3) 

(0, Ul) c Domain of v, V(a,/3) e (0, l t l )  2, min v(-q) > 0. 

For almost every x e 1), VT/e (0, u0,  V~ ~ R N, 
N 

i=1 

(iv) (restricted monotony) For almost every x ~ fl, Vrl ~ (0, ul), V~ ~ R N 
and V (  ~ R N, ~ ¢ ( :  

N 

[ai(x, 7q, ~ ) -  ai(x, rh ~')][~:i- s¢~] > 0. 
i=1 

(i) There exists a number u 2 e R *  such that the map F is a Cara- 
theodory function from l-I × (0, u2) × R N into R +. 

(ii) V ~ > 0 ,  V M ~  (0, u2), there exists a constant C , ( M ) > 0  such that 
V~ c (~, M), for almost every x ~ fl, '¢~ ~ R N, 

IF(x, n, Ol ~ c,(M)(I ¢1" + fo(X)), 

where [o c LI(II). 
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(iii) F(x, rl, 0) = 0, for almost every x ~ f~ and Vrl ~ (0, u2). 

(n4) g ~ WI'p(O) CI L®(O) and there exists a constant 8 ~ (0, min(ul,  u2)) such 
that g I> 8 in the sense of traces on Of]. (See Remark 2 below.) 

SEVERAL EXAMPLES 

We prove first that the model  problem (0.1) satisfies the hypotheses (H1) to (H4). 
We transform (0.1) so that we can write it in the abstract form of problem (~) .  

Next, let us consider (0.1), using the variables x~ and x2 instead of ~: and ¢J, we 
can write Equation (0.1) in the following form 

- ~ O---~- ~. a,.j(v) 3V+ 
j=~ axj i~1 7x~ F(V,  VV) = 0, (1.1) 

where 

(a,,i)=(f(oV) ~) with f(V) -I-M2(V) (1.2) 
o~(v) 

We note that the functions M and p are continuous on their domain. We establish 
that (see appendix) 

M 4 
f ' (V)  = - (~/+ 1) (1.3) pZ V 

(see (0.1) for the definition of M and p). Using (0.1), (1.2) and (1.3), we get 

F(v, vv)=(I+M2)[(oV 2+ oV 2 
V L\-~x# f(V)(-~x~)]" 

Hence,  V~ = (~1, ~2) ~ R 2, 

2 
a,(x, 7, ~)= ~, aii(n)~. 

The expression of the function M (Mach number) implies that 

u~ < x/"y 
+ 1 

T - 1  

and, moreover,  

v(n) = min(1, f('0)), 

where 

1 - M2(T/) 
f(n) - p2(n ) 
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Therefore ,  we have  to choose  ul = 1 so that  v satisfies (H2)(ii). We  also deduce  

that  

F(r / ,  ¢) - 1 + MZ(r/) [ ~  +/ ( .0)~2]  

satisfies the required hypotheses  if we choose  u2 = 1. 

Remark 2. The  condi t ion  on the boundary  data  (g/> 8) cor responds  to the fact  

that  the prescr ibed M a c h  number  distributions on the channel  walls do  not  vanish 

in the case of curve  channels .  Hence ,  these distributions are bounded  f rom below 
by a strictly posit ive constant .  

The  hypothesis  on v: v(r/) > 0 cor responds  to the case of  a subsonic  flow (i.e., the 

M a c h  number  is less than 1). 

Mathematical examples 

1st example: 

_ d i v ( v ( u ) l V u ] P _ 2 V u )  _ [Vu l  ~ + 4 1  - u_______~ ~ 
log u u 

u - g e W ~ , ' P ( ~ ) ,  

l - - u  
v(u) - u(1 + luV)' no(x) c L°~(O), f c L N+/v+'(Y~). 

We can check  that  for  this system, we have 

ul = u2 = l ,  

ai(x, n, ~) = v(n)l~V-2¢,, 
F(x, ,7, 0 I~1 ~ , / 1  

7/2 

_ _ _  I ~ l a o ~ x ) ,  
log rl r/ 

g c W 1'p(I]) fq L°~(I~), g/> 8, ~ < 1. 

IVu[a2o(X) = f ( x ) ,  

2 nd example: 

( P ( u )  iVulp_2vu) + e.l~lq + a~(x)l~lo = d i v ,  1 + a~o(X)lul p T, 

u - g ~ W ~ ' P ( ~ ) ,  

where  P is a polynomial  whose real zeros are posit ive and P(u) > 0 for u > 0 in a 

ne ighborhood  of  0. For  example,  

P(u) = urn(2 - u) s, ul = 2, 

P ( u )  = u z +  u +  1, uj = +oo. 



SOLUTIONS OF A QUASILINEAR MIXED EQUATION 295 

Hence,  if P does not admit any real zero or 0 is the unique real zero of P,  then 

ul = +oo. Otherwise, we take: Ul = min{t ~ R +, P(t) = 0} and in this case 

u2=+o0, 0~<q~<p, 

a,(x, *1, ~)= 1 + ~[rllP. . [~lP--2~i' 

F(x, n, 0 -- e~l#l q + a~(x)l#lL 

T ~  w- l ' r (~ '~ ) ,  r>~N/(p-1)" r>~P'= P 1' T>~O" p -  

To simplify, we can take a~ ~ L°°(f~), i = 0, 1. 

Remark 3. We note that the operator  

N 0 
Au = -i~=1 ~x~ a,(x, u, V u) 

is not necessary defined, even if we restrict ourselves to the class of functions of 
W l'P(f~) N L°°(O). This is one of the novelties of our work in relation to other 

treated cases (see [16, 19]). 

In the present case we do not assume any ditterentiability hypotheses on the 
operators. We can imagine that the functions a~(x . . . . .  ¢) and F ( x , . . . ,  ~) are 

discontinuous outside the considered interval in the previous assumptions. For 
example: 

a (h(u) OU)+ 
ox, ox~z g ( u ) l V u l  2 - - / ( x ) ,  

where 

'0 a 
0, 

h(r/) = l /3,  

[ 0 ,  

1 
~, 0~<n ~<2, 

= 0, < 0, g( n) n 
Xo( rl), n >~ 2, 

u - g e Wo' ,p(o)  

O~<r/<~l, 

7/~<0, 
7/> 1, 7/is a rational number, 
r/i> 1, 7/is not a rational number, 

where Xo is the cnaracteristic function of Q (Q is the set of rational numbers) 

g/> 8, 8 < 1, g c W ~'p(l-l) f-) L°°(fl). 

In brief, to solve the problem, one has to check that g is 'small' (i.e., 0 </5 <~ g ~< 
m) and that in a neighborhood of g ~ Wl'P(f/) (7 L~(O), the considered operators 
A and F are well defined (i.e., Aw ~_ W-I'v'(I]), F ( . ,  w, Vw)~ L~oc(f/) for w in a 
neighborhood of g). 
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To give a meaning to the problem (~), we introduce the following definition: 

DEFINITION 1. We say that u c W~'P(II) is a weak solution of (~)  if 
(a) 0 < ess infa u <<- ess supa u < min(ul,  u2). 
(b) For all v ~ W~'P(II) N L~([I), 

(Au,  v) + [• F(x ,  u(x), Vu(x) )v (x)  dx = ( T,  v) . 

(c) u - g c Wo~'P(l~). 

Notation. aN = measure of the unit ball of R N, 

F(u, Vu)(x) = F(x ,  u(x), Vu(x)), 
(f'"' )'-'/'p-"" 

,y  = o . ( l / N - - 1 ) ( ( p - - l ) r / ( p - l ) r - - 1 )  do- 
",dO 

Then, the main result of the problem (~) is the following: 

T H E O R E M  1. Let Uoe (0, min(ul,  u2)) and Vo = min~<,~<uo v(~/) such that: 

" "  (1.4) m = ess sup g(x) + TII w '.'co) ~< u~. 
[l /"0 

Under the hypotheses (H1) to (H4), there exists at least a weak solution of ( ~ )  in the 
sense of Definition 1. Moreover, all the weak solutions of ~ satisfy: 

,5 <~ u(x) <~ m. ( 1 . 5 )  

Remark 4. The condition (1.4) can be explained in the model case (0.1) by the 
fact that on the boundary, the velocity g stays small, i.e., the Mach number 
distributions on the channel walls are less than 1. The relation (1.5) then explains 
the fact that the Mach number also stays less than 1 inside the domain (subsonic 
case). These results are compatible with the numerical results (see [9, 11]). 

2. A Family of Modified erob lems  

As in [16, 17] and [19], we introduce a family of modified problems arising from 
the problem (~)  for diverse reasons: 

- We do not know a priori if the operators are well defined outside of the 
intervals (0, ui), i = 1, 2. 

- We have to work within the interval (0, Uo). 
- The numerical results obtained for the model case confirm that the estimate 

(1.5) has to be satisfied by the solution. Therefore, we choose a modified 
problem whose solutions verify the estimate (1.5). 

We define the function a'i as follows: 



SOLUTIONS OF A QUASILINEAR MIXED EQUATION 297 

For almost every x c f~, Wq ~ R, V~ ~ R N, 

[ai(x, n, ~), 71 u~), 6 
a',(x, 71, ~)=la , (x ,  6, 0 ,  r/<~ 6, (2.1) 

'ta,(x, uo, O, Uo n. 

We will use Ci to denote different constants depending only on 6, g, T, Uo and 
12 in the rest of this article. 

Properties of a'i: 

(PI) (growth of a'i) From the hypotheses (H2)(i) and (ii) on the function ai, we 
get 

{a~(x, rl, ~)1 <~ Cl([~l p-' nL ao(x)) 

for almost every x ~ t'l, Vr/c  R, V~ ~ R N. 

(Pz) (monotonicity) For almost every x ~ 1~, V, /c  R, V ~  R u and V~'~ R u, 

N 

[a',(x, r/, ~) - a',(x, TI, ()][~:, - s¢]] > 0 
~=1 

(the property (Pz) is a direct consequence of (Hz)(iv).) 

(P3) (coercivity) let Uo = mins~,~,o v(7/) > 0 and from (H2)(iii) then 
for almost every x c 1"~, Vr/~ R, Vs c 6 R N, 

N 

Y'. a',(x, n,  i> .01 1 p 
i = l  

(the property (P3) is a direct consequence of (H2)(iii)). The map a'~ are 
some Caratheodory functions on 11 × R x R N. Then, we define for u 
WLP(tl), the operator A' by 

A ' u = -  ~, 0 
,=10x/a',(x, u, Vu). (2.2) 

Let e > 0, we define the real continuous function h, as follows 

1, t~>'~, 

h,(t) = 0, t~<0, 
[affine for 0 ~< t ~< e. (2.3) 

Then, we define 

[ F ( x , ' o , O ,  6<<-n<~uo, 
F' (x ,  rl, t~) = IF(x ,  6, (;), rl ~ 6, 

IF(x ,  Uo, 1~), Uo <- "O. (2.4) 

and 
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F,(x, ~1, ~) = h,(n - ~) 

Properties of F,: 

F'(x, n, ~) 
1 + ~F'(x, n, ~ )  

B. MICHAUX ET AL. 

(2.5) 

where 

0 
A"v  = - - -  a~(x, g(x) + v, Vg(x) + Vv), 

Oxi 

and if we note 

a'S(x, n, ~) = a',(x, g(x) + 71, Vg(x) + ~), 

a'~ verifies the equivalent properties (PI) and (P2) for the functions a~. 

Moreover,  

for all Inl in a bounded set, 

and if 

F"(x,  ~7, ~) = F,(x, g(x) + 71, Vg(x) + ~) 

t¢ t t  then, F ,  is a Caratheodory function and also F ,  ~ l /e .  
Then, by applying to ( ~ ' )  the theorem ([8], p. 183) of J. L. Lions, we conclude 

that there exists at least one solution of ( ~ )  and, therefore, there also exists u. 

solutions of (~,).  

L E M M A  2. (Principle of comparison) Under the hypotheses (H1) to (Ha), all 

solutions u, of ( ~ )  verify: 

(P4) F, is a Caratheodory function from ~ × R × R n into R +. 

1 
(Ps) F, ~<-. 

E 

Then, we define the family of modified problems (~,)  as follows 

(~,)  Find u, ~ W1'P(I)), 

A'u,  + F,(x, u,,  Vu,)  = T, 

u, - g ~ W~'P(fZ). 

L E M M A  1. Under the hypotheses (H1) to (H4), the problem (~ , )  admits at least 
one solution. 

Proof. We note w, = u , -  g. The problem (~,)  then is equivalent to the 
following problem: 

(~',) Find w, c W~o'P(fl), 

A " w , + F ' , ( x ,  w,,Vw,)  = T, 
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(a) 6 <~ u , ( x ) ,  almost everywhere in f~ ,  

Y p'/p 
II TII w-',,~o) <~ uo (b) u,(x)~< ess sup~ g 4 uoNa~U 

Proof. Let v = ( u ,  - 6 ) _ ,  since g t> 6, then v c Wo~'P(fl) and 

(A'u,, v)+ f F,(x, u,,Vu,)vdx = ( T ,  v) 
Jta 

but 

and 

(A'u,, v)=fa',~x, u~, Vu,) ,gx~ °--v-v dx 

= -  I. a'~(x, u., Vu.) OU" dx 
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(2.6) 

(2.7) 

The second part of the proof is issued from a technique developed by one of the 
authors (see [16, 18]). For the reader's convenience, we give here a sketch of the 
proof. For more details on the relative rearrangement used here, we refer to 
[13, 15] and [19]. 

Let 0 > 0, h > 0 be two fixed positive real numbers for which we associate two 
Lipchitz functions: 

Let: 

(u, - 6)_ = 0, i.e., u~/> ~ a.e. (2.13) 

(T, v)I> 0 (because T >/0 in the sense of W-LP'(I))), (2.8) 

I F,(x,u,,Vu,)vdx=~,, (u,-f)_h,(u,-6)F'(x,u~,Vu,)dx=O (2.9) 

from the definition of h,. 
Then, we deduce from (2.6) to (2.9) that: 

Iu 0u~ 
- a'i(x, u,, Vu~) ~S-. dx >~ 0 (2.10) oxi 

and from (P3) on the coercivity of a'i 

a',(x, u,, V u , ) ~ x  ~ ~ Vo[VU,[ p. (2.11) 

Thus, from (2.10) and (2.11) we get: 

~,ol," IVu, lPdx<~O i.e., ~nlV(u~-6)_lPdx<~0. (2.12) 
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H e ( z )  = 0,  ~-~<0, 

Ho(~-) = ~-, 0 ~ < ¢ ~ < 0 ,  

n0(~-)=0,  0~<1 ", 

So,h(r) = 0, ~" ~< 0, 

So,h(Z) is affine for 0 ~< ~ ~< 0 + h, 

So,h(Z) = 1, 0 + h <<- z. 

B, MICHAUX ET AL. 

( OOu, 

(c) ~ -  Ho(u, = 
• O ,  

End of Lemma 2 proof: 

Since u, is solution of the problem (~,),  we have 

(A' u, ,  v,)+ IaF , (x ,  u,,  Vu,)v,  dx = ( T ,  v,) (2.14) 

and since ve I> 0 and F,/> 0 from (P4), we  deduce 

(A 'u , ,  v,)<~(T, v,). (2.15) 

But since T e W-~"(f~), let us consider fi e L'(~q), (i --- 1 , . . . ,  N),  such that 

N of~ N 
V = -  ~ - -  and IITIIw ... .  (n)= Y, II~llr,~,~- (2.16) 

i=10Xi i=1 

Using the expression of A'u , .  Equation (2.16) and part (c) of Lemma 3, we 

deduce 

( T, vJ I f ,  °°" dx" = ~  I0,<,.-0~+h 0U, 
0 = f' dx, (2.17) 

0 Io a~(x, u,, Vu,) 0u, dx. (2.18) (A 'u , ,  v,) = ~  1<~,-o1+h 0xi 

Thus, from (2.15), (2.17) and (2.18), we find 

i 
Io Io 

Ou~. 1 f~ - - d x .  (2.19) 
l'~''VU~) OxiOX~],l ,<u<~Ol+h OXi h 1 <Z i~  ~ 0 1  q-h  

0 1 < U~ ~ 0 1 31- h, 

otherwise. 

We note that 01 : 0q-ess supa g and we define v, = So,.h(U,)Ho(u~- g). With 
these definitions, we then get the following lemma which can be readily proved 
(see [19] for more details). The parts (a) and (b) derive directly from the 
definitions of /4o  and So.h. 

L E M M A  3. Let v, = So.,h(U,)Ho(u, - g), 01 = O+ ess supa g, then 

(a) o~>~0, 

(b) o, ~ W~'P(I~) f-) L~(l'l), 
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From the coercivity of a'~, we deduce that 

1 Io a',(x, u~, Vu,) ~u" dx ~ > h I0 IVu,[ p dx. (2.20) 
-h i<u .~Ol+h  f~Xi i<u .~Ot+h 

Letting 

and using the H61der inequality 

Io Ou, dx 
h ~<u,~Oj+h OXi 

" ~ /P ' /1  . l ip 

By (2.19) to (2.21), we deduce 

Let a, = (u, - ess sup ,  g)+, then when h goes to 0, (2.22) implies 

Vo( -d  I~,>olV~,lV dx)<--d  I~,>of dx. (2.23) 

If we note [,.~ the relative rearrangement of f with respect to ti,, we deduce 
(see [ 16, 19]) 

d ,[ f dx = -/x'(0) f,a~(p~(0)) for almost every 0, (2.24) 

where/z(0) = [ti, > 01 and/.~' is the derivative of/~. 
Since t~, c WI'p(fo, we can show that (see [16, 19]): 

( - ~  fa,>olV~,lv dx) '/v(- ~'(o))l/P'>~ Nct~N(l~(O)) 1-1/N. (2.25) 

From (2.23) to (2.25), we get 

1 I -'~ I/N--I II e , ,, ,/N(/.~(O)) f , , ,  (/.z(O))(-/z (0)). (2.26) 
VO 1~/O~ N 

Therefore, from (2.26) we derive (see [16, 18, 19]) that for all s e [0, If l]: 

1 
[lal --l/N-l~l/e ~--~ dtr, (2.27) 

ti,,(s) <<- t'oNct~ ~ ,s u l*~,wJ 

where ti,, is the decreasing rearrangement of i/,. 
We deduce from the properties of the rearrangement and from the H61der 

inequality that for all s e [0, It, ll 
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o r  

u , , ( s ) -  ess sup g <~ 3' p'/p 

(iIl)[ )l-(ll(p-1)r) ~/ ~. o.(1/N-1)((p-1)r/(p-1)r-1) do  
$ 

In particular: 

u,(x)  ~< II ~,11~ ~ ess sup g + - -  
f/ voNa ~N 

(2.28) 

LEMMA 4. There exists a constant C5 independent of E such that 

IlVu.llLo ~ C5. 

In other words, the sequence u, stays in a bounded set of W"P(I)). Let us recall 
the following lemma which is proved in [19]. 

LEMMA 5. Let tzl > 0 and [.L 2 ~ O. There then exists a function tr e Cl(R) which is 
a solution of: 

ttlo.'(t)-/z2lo.(t)[ = 1, t e R ,  

o.(O) = O, o. is odd. 

Proof of Lemma 4. Consider w, = o . ( u , -  g) with /Zl =Vo and p.2 = Ca(Uo) 
(see (H3)(ii)) then w, ~ Wo~'P(fl) N L=(fl) and 

a'i(x, u,, Vu,)o.'(u, - g) Ou....__~, dx 
OXi 

= at(x, u,, Vu,)o.'(u, - g dx + 

+fa  F,(x, u , ,Vu , )w ,  dx + ( T ,  w,). (2.29) 

Since F,(x, u,,  Vu,) <~ F(x, u,, Vu,), from (H3)(ii) and Lemma 3, we deduce 

F,(x, u., Vu~) ~< c~(~o)(lVu, l p + fo(x)) (2.30) 

and from the coercivity of a'i and since o.' > O, we get 

Io L a'i(x, u. ,Vu~)~xi  O"(u~-g)dx>~ vo ~'(u,-g)lVu, lPdx. (2.31) 

On the other hand, since o-'(u~- g ) ~  C6 and from the growth property of a ' .  
using the H61der inequality, we deduce 

Io ' < ( x .  u . .  v , . ) ~ ' ( u .  - g)ag dx ~ C~llVu, II~'~,~ + C~ (2.32) 
c3xi 
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and from (2.30), we get 

a F , ( x ,  u, ,  Vu~)w, dx 

<~ f .  c~(uo)lo,(u.-g)l lVu.I ~ dx + C9 ~,~ fo(X)P,I dx 

<~ I .  C~(~o)l~,(u. - g)l IVu.I ~ dx ÷ C,0 

and 
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(2.33) 

(T, w.> <~ IITIl., .... '~-~11 w.II wo'.~.~ 

C1111Vu~IIL.~.~ + C,2. (2.34) 

From (2.29) to (2.34), we get 

I [,,o,,'(u, - g ) -  c~(~o)l , . ( , . -  g)l]lv u.I ~ d~ 

~<c- 7 Vu. "~'L ¢.) + c..llVu.llL.~.~+ c13 (2.35) 

and by the definition of or, (2.35) becomes 

Finally, by Young's inequality, we deduce I lVu .k~)~  c.4. 

We now assume that when ~ ~ 0, 

u, ~ u weakly in W1'P(I-I), 

u, ~ u weakly-star in L=(I)), (2.36) 

u, ~ u almost everywhere in fL 

LEMMA 6. The [unction u defined by the relation (2.36) satisfies 

(a) 6 <~ u(x) <- ess supa g + Z ,/N II Tlle~e'.'~-) 
voNa t~ 

for almost every x E f~ 

(b) u - g ~ W~'P(Iq). 

Proof. This lemma follows directly from Lemma 2, the definition of u (2.36) 
and the continuity of the trace [unction. 

Remark 5. Lemmas 2 and 6 ensure that almost every in ~ ,  

a'~(x, u(x), Vu(x)) = a,(x, u(x), Vu(x)), 

a~(x, u,(x), Vu,(x)) = a~x, u,(x), Vu,(x)). 
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3. A Result o| the Strong-Convergence in W~'P(~) 

The purpose of this section is to pass to the limit in (~,)  as •~-->0. For 
convenience, we denote by fi~(u, Vu) the vector  of R N whose components are 
ai(x, u(x) ,  Vu(x)) and we write 

N 0U 
Y. a,(x, u(x), V u ( x ) )  ~x,  = A(u, V u ) V u ,  
i=1 (3.1) 
F(x ,  u, Vu) = F ( u ,  Vu). 

L E M M A  7. The  sequence u~ converges strongly to u in W1"P(I~) as • ~ O. 

Proof. We use essentially the property (S+) introduced by F. E. Browder (see 
[2]). The idea of the proof is partially due to Boccardo-Murat -Puel  [1]. Since the 
operator fi, satisfies the property (S+), it suffices to show that 

lim sup f [fi~(u,, Vu,) - fi,(u, Vu)]V(u, - u) dx ~ 0. (3.2) 
an 

Let /~ = Vo and ~ = Cn(uo), and tr be the function associated to /~] and /z2, 
according to Lemma 5. Then, ¥ •  > 0, Yrl > 0 

or.,  = ,~(u .  - u , ) ]  Wo'."(n).  
on.. ~ r ( u , -  u . )J  ~ 

By replacing v by v,.,~ (resp. v,~.,) in (~,)  (resp.(~,~)), we get: 

i A u , ,  v,.,~) + (F,(u, ,  Vu~), v,.,~) = i T ,  v,.,~), (3.3) 

i A u  n , v,7.,) + ( Fn( u~ , Vun), vn.,) = i T ,  v,~.,), (3.4) 

i .e. ,  

( A u , ,  o-(u~ - u,,)) + (FAu, ,  Vu,), ~ (u ,  - u,)) -- (W, ~ ( u ,  - u,)),  (3.5) 

( A u , ,  v-(u,, - u,)) + (F,~(u,,, Vu,), v-(u, - u,)) = (T,  o-(u,~ - u,)). (3.6) 

Since or is an odd function, we have 

~ ( u .  - u~) = - ¢ r ( u ~  - u.) .  

Using this fact, we get by summing up relations (3.5) and (3.6) 

i a u ,  - A u , ,  v-(u, - u.O) + (F,(u, ,  Vu,) - Fn(u, ~ , Vun), ~r(u, - u.~)) = 0 

and we find 

~ [fi~(u,, Vu,) - A ( u , ,  V un)]V(u, - un)cr'(u, - u,~) dx tZl 
(3.7) 

~< ~,  | [IF.(u~, Vu.)[ + IE,(u., ,  vu,,)J]lo'(u. - u.)l dx. 
F ,  

do 



SOLUTIONS OF A QUASILINEAR MIXED EQUATION 305 

Using the assumption (H4) on the growth of F, we obtain that 

f, [IF~(~, vu,)l + v ~)l]l,~(u, - u~)l dx  [F~(u,, 

<~ ~2 Io [Iv ~,1" + Iv~lP]l~(~,- ~)1 dx + 2/x2 Io [o(x)l~(u,- u~)l dx. 

(3.8) 

From assumption (H3), using the fact that [I u,[l~ ~< M and [[u~]l~ <~ M, we get 

.~(u~, Vu,)Vu,/> tZllVU, L p, (3.9) 

A(u~,, v~)vu ,  >/~,,Iv u.I .. (3.10) 

From (3.8), (3.9) and (3.10) we deduce that 

~n [ tF , (u , ,  Vu , )  t + IF,~(un, Vun)t] I o'(u, - un) I dx 

<~ ~2 I, A(u,, Vu,)Vu, lo-(u~ - u~)l dx + 

+/~2 ~. A(u . ,  Vun)Vun[cr(u. - un)[dx  + 2~,p,2 ~. f o ( x ) l c r ( u . -  u.)[ dx. 

(3.11) 

We now let e go to 0 and then ~ go to 0. Since u~ ~ u almost everywhere in fl as 
e,--~0 (and also u n ~  u almost everywhere in fl as r /N0),  we deduce by 
Lebesgue's dominated convergence theorem, that 

lim f f0(x)ltr (u~- u~)[ dx = f fo(x)[tr(u - u~)] dx ac~ 
and (3.12) 

lim f f o ( x ) [ o ' ( u  - un) [ dx = 0. 
all 

From (3.7) and (3.11) we get 

I [,4(u,, Vu~) - .4(un, V un)]V(u, - un)tr'(u, - un) dx /zt 

~</~2 Ill A(u,,  Vu,)V u~ltr (u, - un) I dx + 

+ ~2 ~o a(t .~,  V/~)V//nIOr(U . --//~)[ dx + 2/*1/-~2 Io fo(x)[o'(/~ - /~ ) ]  dx. 

(3.•3) 

Let us write: 
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fit(u., Vu.)V u. = A(u . ,  Vu.)V(u.  - u.,) + fit(u., V u.)V u~, 

fit(u~, Vu.,)Vu~ = - fit(u.,, Vu.)V(u.  - u.,) + fi t(u. ,  V u~)Vu.. 

B. MICFIAUX ET AL. 

(3.14) 

(3.15) 

+ 2/xl p.2 In fo(X)[tr(u - un) ] dx.  (3.17) 

When r i c O  in (Y17), we find that 

limsup,._,o In A(u"Vu')Vu'dx<~ In UVudx (3.18) 

we conclude that 

lim,~,osup In [fit(u,, Vu,) - fi,(u, V u)]~r(u~ - u) dx 

<" lim sup la fit(u" Vu~)V u" d x -  UV u d x -  

- In fit(u, Vu)Vudx + In fi~(u, Vu)Vudx. (3.19) 

Hence,  from (3.13), (3.14), (3.15) and the following relation 

m o-'(u, - u 0  - ~2l,~(u, - u~)l = 1 

we obtain 

I [ A ( u , ,  Vu~)JV(u. - u,0o-'(u, - u, 0 dx Vu,) A(u., ,  

/.t2 In fit(u,, Vu~)VunJo'(u, - u,1) [ dx + (3.16) 

~ I, fit("' Vu.)V,.l~(,.- u.)l dx + 2~,~.~ ~. Io(X)l~(u.- u.)t dx, + 

since fit(u,, Vu,) is in a bounded set of (LP'(I-~)) N, w e  can subtract a subsequence 
still denoted by e such that 

fit(u,,Vu,),--~ U weakly in (LP'(~'~)) N as e~-~0. 

For a fixed r/, we take Iim sup as E ~-~ 0 in (3.16). Using Lebesgue 's  dominated 
convergence theorem, we obtain: 

f a(,.. vu.)Vu, d x -  Vu,)V  dx + lira sup 
E~..--~O an ,/I/ 

+ In fi t(u. ,  v uo)V u.  dx 

,la 
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From (3.18), we see that the second member of inequality (3.19) is less than or 
equal to zero. This proves the desired result (3.2). 

4. Existence of Solution for the Problem ( ~ )  

We will now prove the existence oi a solution for the problem (~) by passing "to 
the limit in (~,). Let v e. Wlo'p(~) fq L~(~), we can write 

(Au,, v)= f [ai(u,, Vu)] 0--~v dx V u , ) -  a,( u, + 
Jn OXi 

+ In ai(u, Vu) Ov dx 
Oxi 

By Vitali's theorem, we deduce by using Lemma 7 that 

ai(u~,Vu,)-ai(u, V u ) ~ O  in LP'(f~) as E ~ 0 .  

Hence, 

l im(au, ,  v) = [ Vu) O--~v dx. ai( u, 
e,.--,O .IN O Xi 

= (Au, v) 

In addition, we deduce from Lemmas 6 and 7 and assumption (H3)(iii), that for 
almost every x e f~: 

F'(x, u,, Vu,) 
1 + eF'(x, u,, Vu~) 

lira h,(u, - 8) 
e~---~O 

Using Vitali's theorem, we have 

F,(u,,  Vu,) ~ F(u, Vu) 

Hence, 

fa F,(u,, Vu,)v dx 

- F'(X, u(x), Vu(x)) 

= F(x, u(x), Vu(x)). 

in Ll(fl)-strong as E ~ 0. 

= In [F(u, ,  Vu,) - F(u, Vu)]v dx + 

+ InF(u,  Vu)v dx~-> ,,-,o lnF(u,  Vu)v dx 

and we conclude from these convergence results that 

Vv ~ Wlo'P(~q) f3 L~(tq), 

(Au, v) + fn F(u, Vu)v dx = (T, v). 
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Lemma 6 and this last relation ensure that u is a weak solution of (~) in the sense 

of Definition 1. 

5. A Priori Estimate for the Weak Solution of (~ ) .  (End  of  T h e o r e m  1 
proof)  

LEMMA 8. All  the weak solutions of (~)  satisfy 

"y p'/p 
nix) <~ ess sup g -~ _ .-- u~/II TII w . . . .  <it~ (5.1) 

I t  lV 01'~0~ N 

where 

17o = min 1,(71) > 0. 
{ess inf~ u<-a?<~ess supt~ u} 

Proof. Since u is a weak solution, by definition 

0 < ess inf u <<- ess sup u < min(ul,  u2). 
I t  1"~ 

This relation implies that for almost every x e f l ,  

N OU>_ 
Y. a,(x, u(x), oolVu(x)l', (5.2) 
i=1  

where ZTo is given by (2.1) and Vo > 0 (see (H2)(ii)). 
We deduce also that for a weak solution of ~ ,  we have the following growth 

property 

for almost every x c f l  (5.3) 

0 <~ F(x ,  u(x), Vu(x)) ~< c (IVu(x)l" + fo(x)), 

where C~s is a constant dependent on ess infa u and ess supn u. 
From relations (5.2) and (5.3), the proof of Lemma 8 is exactly the same as for 

u, if we replace Vo by Uo. 
This completes the proof of Theorem 1. 

6. Regularity of Solution of ( ~ )  

T H E O R E M  6.1. Assume (H0 to (H4) and in addition, that ao~ Lr(f~), foe  
Lr/¢(fl). Then every weak solution of (~)  satisfies the a-H61der condition in 1~. 

Proof. Let us denote 

a = ess inf u, /3 = ess sup u. 
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Since u is a weak solution of (b~), then 

0 < a <~/3 < min(ul, U2). 

From this relation, we deduce the following growth properties for A and F: 

(Q1) 
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~=~ a,(x, u(x), Vu(x))Ou/Ox, ~ ~olVu(x)l ~, 
~o = min~,7~ov(rl) > 0. 

(Oz) [a,(x, u(x), Vu(x))l ~< c(/3)(IVu(x)l o + ao(x)), 
c(fl) is a constant dependent only on/3. 

(Q3) u(x) > O, F(x, u(x), Vu(x))/> 0. 

(Q4) F(x,  u(x), Vu(x)) <~ C~(/3)(IVu(x)l p + fo(X)), 
T e  W-"r(f~), r> N / ( p - 1 ) .  

The relations (Q1) to (Q4) imply that the assumptions of the theorem proved 
in [16, 19] for local H61der continuity are satisfied. We can conclude that u is 
H61der continuous inside of fL 

Remark: In [16, 19] the boundary condition is homogeneous, but the proof 
does not change in the general case, since we show a local result. 

In addition, the condition (Q3) ensures  that the solution of (~)  is also a solution 
of a variational inequality with the constraint set 

K = {o ~ W~.P(~) + g, v >/0}. 

6.1. CASE WHERE T = 0 

The model case given in (0.1) corresponds to the case T = 0. In this particular 
case, many precise results are given by many authors (see [7, 12, 22]). In the 
present case, we will use the results of N. S. Trudinger [22]. For the reader's 
convenience, we recall these results. 

6.2. TRUDINGER'S RESULTS 

Let u ~ WI"P(f~) be the solution of 

(El) div(A(x, u(x), Vu(x))) + B(x, u(x), Vu(x)) = 0. 

We assume that A and B satisfy 

(Io) tA(x, u, ~)1 <<- C~5(1~t p-] + ao(x)), 

~A(x, u, ~) >>- C161 ~l p, 
IB(x, u, ~)1 ~ c~7(1~1 p +  a~(x)), 
C15 , C16 , C 1 7 > 0  and  a, eL~°(l]),  Ila, ll®~<~. 
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Then, u is a solution of (E0 if 

(E2) ~'th e W0~'P(fl) CI L~(I~), 

Ia(Vd~A(x, u(x), - dx = O. Vu(x)) c~B(x, u(x)~ Vu(x))) 

6.3. HARNACK'S INEQUALITIES 

Let u be a solution of (E2) such that 0 ~< u(x) <~ M. Then for all cube Kp of edge 
p in 1): 

(11) max u(x) <~ C min u(x), 
K s K o 

where C depends only on N, p , /x ,  M, C~5, C~6 and C~7 and 

(12) P-N/~II UllL~¢~s) ~ C min u(x). 
K s 

For all 3' such that 

N(p-  1) 
1'< N - p  

7<~ oo, p > N, 

p <  N, 

(I3) K2p c ~ ,  

max u(x) <<- cp-N/qll ullLq.,2s~, 
K s 

for all q > p - 1 

(L) pN/<'-">II UlIL"-'(K2.~ ~ C(min u + re(p)), 
K p  

where m(p) = [d,p + (l~p) pI(P-I), C = C(p,  N, ai , M),  

sup u ~< C ( M +  m(o)) , 
K o 

for al lp~<po, where 8 > 0  and C = C ( p , N ,  ai, C15, C16, CIT,M). 

T H E O R E M  6.2 (Trudinger). We assume that OO is of class C 1 and g is 
continuous on fL We also assume (I0). Then, any solution of 

div(A(x, u(x), Vu(x)) + B(x,  u(x), Vu(x)) = 0, in ~ ,  

u = g, on O~, 

is continuous in ~ .  Moreover, if g satisfies the a-H61der condition in ~ ,  then the 
solution u satisfies also the a-H61der condition in ~ .  
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COROLLARY. We assume that T = O, g is a-Hflder continuous in ~,  aoe 
L~(I'I), fo ~ L~(FI). Then, every weak solution u of ~ is a-H~lder continuous in 
and satisfies Harnack' s inequalities (11) to (I4). 

Proof. From the inequality 

0 < ess rain u(x) <~ ess sup u(x) < min(ul, u2) 

we deduce that the assumptions (I0) on the operators are well satisfied. 

7 .  A p p e n d i x  

7.1. AERODYNAMIC HYPOTHESES 

- Plane flow (two-dimensional), 
- Isentropic flow (nonviscous flow, no shock), 
- Perfect fluid, 
- Uniform upstream data (and also the downstream conditions). 

We deduce from these hypotheses that: 

(a) The dynamic equation is reduced to: curl V = 0. 
(b) The density p and the pressure p are linked by the following equation 

(isentropic law) p/or =cst. 

7.2. GENERALITIES OF THERMODYNAMICS 

We recall here some differential relations that we will use later. From the first 
principle of thermodynamics, we write 

d/-/~ = 0 = d h +  V d v = d P  + V d V .  
P 

Since the enthalpy is constant, then for an isentropic flow, we have 

p s p  p 

which implies 

a2dP + V d V = 0 ,  
P 

therefore 

d ( p V ) = ( 1 - M 2 ) p d V ,  dp = - pM 2 d V.  (7.1) 
V 
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Similarly, we establish the following relations from the 
considerations (see [3, 4, 6, 10]) 

B. MICHAUX ET AL 

same thermodynamic 

d a -  3 ' - I M d v ,  d M = M ( l + 3 , 2 1 M 2 )  dV  
~ -  V (7.2) 

Relations of St. Venant 

Let p~, T~, p~, etc. be the characteristic of the steady state of the flow 
(generator state). If we consider an isentropic fluid, we also have from the first 
principle of thermodynamics, the following equations of St. Venant (see [4, 10]): 

=T=4, 
and we deduce from these relations that 

(7.3) 

- 1 
1 + ~  --~ M2 - y - 1  

1 -  92 
3,+1 

M 
3,+1 1 _ 3 , - 1  92 

y + l  

2 \  ( l /v  -1 ) 
, 

3'+1 
(7.4) 

where Q = V/ac, ~ -- p/p~ and the characteristics of the critical state of fluid are 
given by 

Tc (_p~)(v-1/v) (p_5_~]v_l=(a._~_~]z 2 

= = \Pl/ \ai!  r+ 1' 
(7.5) 

where c denotes the critical state of fluid. 

7.3. VELOCITY EQUATION IN FRENET'S COORDINATES 

By introducing the continuity equation, we get the equations which represent the 
flow of a 2-D perfect fluid: 

curl V = 0, div pV = 0. (7.6) 

Let (t, n) be Frenet's vectors associated to a streamline of fluid, s and n be 
the coordinates along the streamlines and the orthogonal lines of the streamlines 
(V = Vt) and B be the normal vector of the physical plane. 
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From (7.6), (7.1) and (7.2) we get (see [3, 9, I0]) 

grad V = -  (1 _~VM2 div t ) ,  + V(B • curl t)n. 

On the other hand, we also have (see [3, 10]) 

04' 
B- curl t = X = -~-s' div t = X' = ~n $,  

313 

(7.7) 

(7.8) 

where D is the channel flow. Noting by the sub-index 1 the upstream conditions 
and h~ the upstream channel spacing, we then have D = hl#l V1 cos 4'1. 

Therefore, the computational domain is rectangular because being defined by 
the transformation of the physical domain to the plane defined by the streamlines 
and the potential lines of fluid (see Figure 1). 

From (7.11) and Equations (7.9) and (7.10), we get the following equations. 

Velocity equation: 

02~ 1-M202V I+M2(OV'~ 2 I+_yM'[OV'~ z 
O~t2 #2 0---~ + (/ \1-~ -t ~2(,, \0~1 =0.  (7.12) 

d ~ = ~ d s ,  d~ = dn, (7.11) 

where X (resp. X') is the curvature of the streamlines (resp. of the orthogonal lines 
of the streamlines). 

Therefore, we deduce the following relations between angles and velocity. 

o~b 10V  
X Os V On' 

X' - 0~b _ 1 - M 2 0 V (7.9) 
0n V 0s " 

It is clear that curl grad 4' -- 0. Taking then the scalar product of this vector with 
B, we get from (7.1), (7.2) and (7.9) the velocity equation in the Frenet 
coordinates 

OZV+(1-MZ)O2V 2(OV~ z 2-M2+'yM4(OV~2=O. (7.10) 
On 2 Os 2 V \ - ~ n  ] V \ Os ] 

Computational domain. Introduction of the parameters ~ and qJ. 
From the continuity equation div pV = O, we deduce that there exists a stream 

function 4, such that d4, = pVdn and from the dynamic equation curl V = O, we 
deduce that there exists a potential function ~e such that dE = V ds. 

The potential lines and the streamlines define a mesh of orthogonal lines in the 
physical domain. 

We use the following change of variables (~, ~O)~--~ (~, ~): 
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Relations between angles and velocity: 

. O V  X, = _ ( 1 _  M2) OV 
x = P  

04, x 04, x' 
O~ - V' O~ - tSV" (7.13) 

Similarly, from the differential relations between the Cartesian coordinates of the 
physical plane and the Frenet coordinates 

dx = c o s  4, ds +sin 4,dn, dy = sin 4, d s -  cos 4 ,dn 

we get in the computational domain 

Ox cos4,  Ox sin4, 
o~ v ' oq~ = ~ f "  

Oy sin 4, Oy cos 4' (7.14) 
~ -  f , ,  o~ = ~ f ,  

Let us establish now the relation (1.3). W e  have 

f(V) 1 - m2('(O 
= -  fi2(9 ) 

and from (7.1), (7.2) and (7.4), one can readily check that 

- ( v +  1) M~_._v f'(f,) 

7.4. BOUNDARY CONDITIONS AND APPLICATION 

The physical data for the inverse problem are the inlet and outlet angles and the 
Mach number distribution on each channel wall. These distributions are the same 
at the upstream and downstream points of the channel walls because we assume 
that the flow's upstream and downstream conditions are uniform. 

We compute first the potential difference A~:'low on the lower channel wall on 
which the length is equal to 1 

, 1 f f  A~l°w = 5 ~Vrlow(7) dT. 

and we multiply it by a constant L~ow to get 

A&w = a~;owL, ow. 

The potential difference on the upper channel wall has to be equal to one on the 
lower channel wall (see Figure 1) A~'upp = A~ow. 
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In the same way, we have 

A~Lpp ~--- ~ ~rupp(T ) d'r 

which gives us a second constant  Lup p 

~PP = A~'pp" 

The constants L,ow and Lup p are respectively the length of the lower and upper 
channel wall over the upstream channel spacing h,. Therefore, from the same 
Mach number distribution M =  F(~-), ~-e[0, 1], there are as many velocity dis- 
tributions V = g(~) on the channel walls (boundary condition on the velocity) as 
the pair (Li,f, L~up) because multiplying by L.ow and Lupp is the same as dilating 
the i-axis. There exists, moreover a particular pair of values (Liar, Lsup) which 
gives exactly the total deviation Atb so desired. Hence, we are sure to get the 
deviation. However, the upstream channel spacing is totally defined and it can be 
modified only by changing the initial Mach number distributions. 

If we prefer to have the upstream channel spacing as data, we will fix it and one 

of the inlet and outlet angles. In this case, the deviation will be obtained from the 
computation as in the previous case for the upstream channel spacing. 
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