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Abstract Solutions of two-sided fractional differential equations (FDEs) usually
exhibit singularities at the both endpoints, so it can not be well approximated by
a usual polynomial based method. Furthermore, the singular behaviors are usually
not known a priori, making it difficult to construct special spectral methods tailored
for given singularities. We construct a spectral element approximation with geo-
metric mesh, describe its efficient implementation, and derive corresponding error
estimates. We also present ample numerical examples to validate our error analysis.
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1 Introduction

We consider numerical approximation for the two-sided fractional differential equa-
tions (FDEs):

ρu − p1 −1D
α
x u(x) − p2 xD

α
1 u(x) = f (x), x ∈ �,

u(±1) = 0,
(1.1)

where 1 < α < 2, ρ ≥ 0, p1, p2 ≥ 0 and p1 + p2 �= 0, f (x) is a given function,
−1D

α
x u(·) and xD

α
1 u(·) are the left-sided and right-sided Riemann-Liouville (R-L)

fractional derivative, respectively.
FDEs provides a useful approach to describe transport dynamics in complex

systems that are governed by anomalous diffusion and non-exponential relaxation
patterns. In addition, the problem (1.1) arises when one discretizes in time parabolic
equations with two-sided spatial fractional derivatives, for instance, fractional advec-
tion diffusion equations [5, 6, 14, 17, 18], fractional kinetic equation [9], fractional
Fokker-Planck equation [22].

It is in general desirable to have high-order numerical methods when solving
PDEs, including fractional PDEs. The convergence rate of numerical methods usu-
ally depends on the regularity of solutions in suitable functional spaces, e.g., usual
Sobolev spaces for polynomial (local or global) based methods. However, it is now
well-known that solutions of fractional PDEs usually do not have high regularities in
the usual Sobolev spaces. Some high-order methods have been developed for FDEs
such as (1.1), e.g., fourth order finite difference schemes [1, 27], spectral methods
[13, 15] with the assumption that the solution of FDEs is sufficiently smooth in the
usual Sobolev spaces, which does not hold in general.

In some recent work, special treatments have been proposed to deal with the
endpoint singularities for FDEs in some special cases of (1.1), such as

• Left-sided FDEs: p1 �= 0, p2 = 0, or Right-sided FDEs: p1 = 0, p2 �= 0;
• Riesz FDEs: p1 = p2 �= 0.

For examples, Jin et al. proposed finite element approximations with a regularity
reconstruction [11] or regularity pickup [12] to improve the convergence rate for
one-sided FDEs; Zayernouri et al. developed in [23, 24] efficient spectral/spectral-
element DG methods for a class of one-dimensional FDEs with constant-coefficients
and one-sided fractional derivatives by using the so called poly-fractonomials;
Chen et al. [3] developed related spectral algorithms and rigorous error analysis
using the framework of generalized Jacobi functions in suitably weighted Sobolev
spaces, in particular, they showed that the well desired spectral Petrov-Galerkin
methods can achieve spectral accuracy even if the solution is not smooth in the
usual Sobolev spaces; the authors of this paper [16] extended the analysis and
algorithms developed in [3] for one-sided FDEs to Riesz FDEs. However, these
results can not be extended to more general FPDEs with two-sided fractional
derivatives.

Recently, Zeng et al. [25, 26] developed a generalized spectral collocation method
with tunable accuracy for FDEs of variable order with end-point singularities, their
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methods enjoy high accuracy if the singular behaviors of the solutions are known a
priori. However, for general FDEs (1.1), it is in general not possible to determine a
priori singular behaviors of its solution.

The main purpose of this paper is to develop a spectral-element method (SEM)
for the general FDEs with two-sided fractional derivatives (1.1) which can achieve
exponential accuracy despite the fact its solution has singularities at the endpoints.
The main approach is inspired by the h-p finite-element method with geometric mesh
developed in [8] for second order problems with singular solutions. In particular,
for SEM using a geometric mesh with linearly increasing degrees of polynomi-
als in successive subintervals, we develop error estimates in energy norm for both
left-sided or two-sided FDEs. Our error estimates show that, for a given geomet-
ric mesh with ratio q combined with a linearly increasing degrees of polynomials,
our SEM converges exponentially like e−C

√
N , where N is the total degree of free-

dom, without the a priori knowledge about the singularity. We believe that this is
the first time such results are derived for FDEs with general two-sided fractional
derivatives.

The rest of this paper is organized as follow: In Section 2, we describe some basic
notations and properties for fractional derivatives. We present our SEM and describe
the structure of the stiffness matrix in Section 3. Then in Section 4, we carry out an
error analysis of the SEM with geometric mesh for both left-sided FDEs and two-
sided FDEs. A number of numerical examples are presented to validate our error
estimates in Section 5. Some concluding remarks are given in the last section, fol-
lowed by an appendix where an efficient and stable procedure to evaluate the stiffness
matrix is described.

2 Preliminaries

We first recall some functional spaces which will be used in this paper.
Let � = (−1, 1), and ω(x) > 0 (x ∈ �) be a weight function, we denote by

L2
ω(�) the usual weighted Hilbert space with the inner product and norm defined by

(u, v)�,ω =
∫

�

uv ωdx, ‖u‖ω,� = (u, u)
1
2
ω,�, ∀u, v ∈ L2

ω(�). (2.1)

We denote by Hs
ω(�) and Hs

0,ω(�) (with s ≥ 0) the usual weighted Sobolev spaces
with norm ‖ · ‖s,ω,� and semi-norm | · |s,ω,�. When ω ≡ 1, we will drop ω from the
above notations, and we will also drop � and/or � from the notations if no confusion
arises.

Let c be a generic positive constant independent of any functions and of any dis-
cretization parameters. We use the expression A � B (respectively A � B) to mean
that A � cB (respectively A � cB), and use the expression A ∼= B to mean that
A � B � A.

We recall now notations and properties of Riemann-Liouville fractional integrals
and derivatives [19, 20].
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Definition 1 Let s ∈ [n−1, n) where n is a given positive integer. The left-sided and
right-sided Riemann-Liouville fractional integrals aI

s
x and xI

s
b of order s are defined

as

aI
s
x v(x) := 1

�(s)

∫ x

a

v(τ )

(x − τ)1−s
dτ, ∀ x ∈ [a, b], (2.2)

and

xI
s
b v(x) := 1

�(s)

∫ b

x

v(τ )

(τ − x)1−s
dτ, ∀ x ∈ [a, b], (2.3)

respectively, where �(·) is the Gamma function.

Definition 2 Let s ∈ [n − 1, n) where n is a given positive integer. The left-sided
and right-sided Riemann-Liouville fractional derivatives aD

s
x and xD

s
b of order s are

defined as

aD
s
xv(x) := 1

�(n − s)

dn

dxn

∫ x

a

v(τ )

(x − τ)s−n+1
dτ, ∀ x ∈ [a, b], (2.4)

and

xD
s
bv(x) := (−1)n

�(n − s)

dn

dxn

∫ b

x

v(τ )

(τ − x)s−n+1
dτ, ∀ x ∈ [a, b], (2.5)

respectively.

It is clear that Riemann-Liouville fractional derivatives are linear operators, i.e.,

Ds(λf (x) + μg(x)) = λDsf (x) + μDsg(x) (2.6)

where Ds can be either aD
s
x or xD

s
b.

We also recall the following results (cf. [4, 13]) which play important roles in the
weak formulation and analysis of FDEs:

Lemma 1 Let 1 < s < 2, then we have
〈
−1D

s
xw(x), v(x)

〉
�

=
(

−1D
s
2
x w(x), xD

s
2
1 v(x)

)
�

, ∀w, v ∈ H
s
2

0 (�), (2.7)

〈
xD

s
1w(x), v(x)

〉
�

=
(

xD
s
2
1 w(x), −1D

s
2
x v(x)

)
�

, ∀w, v ∈ H
s
2

0 (�). (2.8)

Lemma 2 Let 1/2 < s < 1, then we have

‖−1D
s
xv(x)‖L2(�)

∼= ‖v(x)‖Hs(�), ∀v ∈ Hs
0 (�), (2.9)

‖xD
s
1v(x)‖L2(�)

∼= ‖v(x)‖Hs(�), ∀v ∈ Hs
0 (�), (2.10)(

−1D
s
xv(x), xD

s
1v(x)

)
�

∼= ‖v(x)‖Hs(�), ∀v ∈ Hs
0 (�). (2.11)

3 Spectral element discretization

We consider in this section a spectral element approximation for two-sided FDEs.
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3.1 Weak formulation and well-posedness

By virtue of Lemma 1, a weak formulation of problem (1.1) is: Find u ∈ H
α
2

0 (�),
such that

A(u, v) = (f, v), ∀ v ∈ H
α
2

0 (�), (3.1)

where

A(u, v) := ρ(u, v) − p1

(
−1D

α
2
x u, xD

α
2

1 v
)

− p2

(
xD

α
2

1 u, −1D
α
2
x v
)

.

The well-posedness of (3.1) has been discussed in [13]. In particular, we immediately

obtain from Lemma 2 that, A(·, ·) is continuous and coercive in H
α
2

0 × H
α
2

0 , i.e.,

A(u, v) � ‖u‖Hα/2‖v‖Hα/2; ‖u‖2
Hα/2 � A(u, u), ∀u, v ∈ H

α
2

0 (�).

Thanks to the Lax-Milgram lemma, the above problem admits a unique solution u ∈
H

α
2

0 (�) satisfying
‖u‖Hα/2 � ‖f ‖(Hα/2)′, (3.2)

where (Hα/2)′ is the dual space of Hα/2.

3.2 Spectral element approximation

The standard spectral Galerkin method with polynomial basis functions is not
suitable for FDEs. For some simple special FDEs, it is possible to obtain better con-
vergence results by choosing special basis functions with built in known singular
features of the solution (cf. [3, 16]). However, it is not clear what type of singu-
larities that solutions of general FDEs have, especially for problems with two-sided
fractional derivatives. Hence, we adopt a spectral element method ( i.e., h-p finite
element method) with geometric mesh [8] which has proven to be effective to deal
with singularities at endpoints.

We split the domain � into M non-overlapping elements:

�i = (xi−1, xi), i = 1, 2, · · · , M,

Where −1 = x0 < x1 < · · · < xM = 1. Let PN be the polynomial space whose
degree is less than or equal to N , and define the approximation space

XN = {v ∈ C(�) : v|�i
∈ Pni

, 1 ≤ i ≤ M}, XN = {v ∈ XN : v(±1) = 0},
(3.3)

where ni is the polynomial degree on the interval �i, i = 1, 2, · · · , M , and N stands
for the number of degrees of freedom of XN . We also denote

hi = xi − xi−1, h = max
1�i�M

hi.

The spectral element method (SEM) for (3.1) is: Find uN ∈ XN , such that

A(uN, vN) = (INf, vN), ∀ vN ∈ XN, (3.4)

where, INf is the interpolation operator in XN based on Legendre-Gauss-Lobatto
points at all subintervals �k, 1 ≤ k ≤ M . The argument for the continuous problem
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(3.1) also holds true for spectral element approximation (3.4), i.e., (3.4) admits a
unique solution uN ∈ XN .

3.3 Implementation

We shall use a standard set of basis functions for XN . For the interior unknowns in
each subdomain, we use the modal basis {φk

j (x)}1≤k≤M
0≤j≤nk−2 for �k, 1 ≤ k ≤ M . For

nk � 2,

φk
j (x) =

{
Lk

j (x) − Lk
j+2(x), x ∈ �k,

0, else,
(3.5)

where {Lk
j (x)}1≤k≤M

0≤j≤nk−2 are Legendre polynomials defined on the element �k , and nk

are the degree of polynomial on �k . For the unknowns at the nodes {xi}i=1,··· ,M−1,
we use the usual hat functions defined as:

ĥk(x) =

⎧⎪⎨
⎪⎩

x−xk−1
xk−xk−1

, x ∈ �k,
xk+1−x

xk+1−xk
, x ∈ �k+1,

0, otherwise.

(3.6)

It is easy to verify that the above basis functions form a basis for XN with the number
of degrees of freedom

N =
M∑
i=1

ni − 1.

Hence we can write

uN(x) =
M∑

k=1

nk−2∑
j=0

u
(1)
kj φk

j (x) +
M−1∑
k=1

u
(2)
k ĥk(x). (3.7)

Substitute it into (3.4) and let vn run through all basis functions of XN , we obtain the
linear system:

(ρM − p1 Sα
l − p2 Sα

r )U = F, (3.8)

where

U = [
u

(1)
10 , u

(1)
11 , · · · , u

(1)
1,n1−2; · · · ; u

(1)
M0, u

(1)
M1, · · · , u

(1)
M,nM−2; u

(2)
1 , u

(2)
2 , · · · , u

(2)
M−1

]T
,

F = [F̃ , F̄ ]T ,

F̃ = [
f̃10, f̃11, · · · , f̃1,n1−2; · · · ; f̃M0, f̃M1, · · · , f̃M,nM−2;

]
, f̃kj = (

f, φk
j (x)

)
,

F̄ = [f̄1, f̄2, · · · , f̄M−1], f̄j = (
f, ĥj (x)

)
,

M is the mass matrix, and Sα
l , Sα

r are corresponding left and right (fractional)
stiffness matrices. One can verify that:

Sα
l = (Sα

r )T . (3.9)

Hence, we only have to describe how to compute elements of Sα
l .



Spectral element method with geometric mesh for two-sided... 751

Due to the non-local property of fractional derivative, the left fractional stiffness
matrix can be written in block form as follows:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11 S1

S12 S22 S2

S13 S23 S33 S3
...

...
...

. . .
...

S1,M−1 S2,M−1 S3,M−1 · · · SM−1,M−1 SM−1

S1,M S2,M S3,M · · · SM−1,M SM,M SM

S̃1 S̃2 S̃3 · · · S̃M−1 S̃M Ŝ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.10)

where

(
Spq

)
ij

=(−1D
α
2
x φ

p
j (x), xD

α
2

1 φ
q
i (x)

)
, 1 ≤ p ≤ q ≤ M, 0 ≤ i ≤ nq − 2, 0 ≤ j ≤ np − 2;

(
Sk

)
ij

=(−1D
α
2
x ĥj (x), xD

α
2

1 φk
i (x)

)
, 1 ≤ k ≤ M, 1 ≤ j ≤ M − 1, 0 ≤ i ≤ nk − 2;

(
S̃k

)
ij

=(−1D
α
2
x φk

j (x), xD
α
2

1 ĥi (x)
)
, 1 ≤ k ≤ M, 1 ≤ i ≤ M − 1, 0 ≤ j ≤ nk − 2;

(
Ŝ
)
ij

=(−1D
α
2
x ĥj (x), xD

α
2

1 ĥi (x)
)
, 1 ≤ i ≤ M − 1, 1 ≤ j ≤ M − 1.

(3.11)

are corresponding modal-modal, nodal-modal, modal-nodal, nodal-nodal block stiff-
ness matrices. Note that, for p > q, by the definition of basis functions, we know that

there is no interaction between −1D
α
2
x φ

p
j (x), 0 ≤ j ≤ np − 2 and xD

α
2

1 φ
q
i (x), 0 ≤

i ≤ nq − 2, so all the elements of Spq, p > q are zero.
The computation of mass matrix is standard. Due to the non-local features of

fractional derivatives, it is non-trivial to compute efficiently the stiffness matrices
associated with the spectral-element formulation. Details for the computation of left
fractional stiffness matrix Sα

l is presented in Appendix A.

4 SEM with geometric meshes and their error analysis

We present in this section the SEM with geometric meshes for FDEs and carry out
its error analysis. The procedure of the proof follows closely to the original proof
given in [8] for regular PDEs. The main difference between [8] and our work is that
the error in the H 1 norm is analyzed for regular PDEs in [8], while the error analysis
in the fractional Sobolev space Hα/2 norm is carried out in our work for fractional
PDEs. Although the arguments we use below are quite similar to those used in [8],
we believe that this is the first time such estimates are derived for fractional PDEs,
and thus it should be verified and documented. More importantly, the analysis for
the fractional PDEs clearly shows how the value of fractional order α affects the
convergence, and it also provide guidance on how to choose the optimal ratio q and
the slope s for a given value of fractional order α.
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4.1 SEM with geometric mesh for left-sided FDEs

We first consider the left-sided FDEs (p2 = 0): Find uN ∈ XN , such that

ρ(uN, vN) − p1
(
−1D

α
2
x uN, xD

α
2

1 vN

) = (f, vN), ∀vN ∈ XN. (4.1)

In this case, the solution is usually singular at the left boundary. Without loss of
generality, we assume that the solution behaves like:

u(x) = a(1 + x)μ + h.o.t., (4.2)

where h.o.t. denotes terms which are more regular than O((1 + x)μ) but also satisfy
u(−1) = 0, in particular, h.o.t. denotes terms which are at least order of O((1 + x)ν)

with ν > μ.

4.1.1 Error estimate

Let u(x) and uN(x) be the solutions of (3.1) with p2 = 0 and (4.1), respectively.
Setting

e(x) = u(x) − uN(x), (4.3)

we are interested in an error estimate in the energy norm,

‖e‖E := ‖e‖ α
2

∼= ‖−1D
α
2
x e‖L2 . (4.4)

The second equivalence of the above equation follows from Lemma 2. Next we shall
derive approximation errors on each interval I = (a, b) by the polynomial space
Pp(I). We shall use the following equivalent notations:

‖e‖E(I) ≡ Ep(I) ≡ Ep[a, b].
Using (4.2) and the definition of fractional derivative, we have

−1D
α
2
x u = a�(μ + 1)

�(μ + 1 − α/2)
(1 + x)μ−α/2 + h.o.t.,

here h.o.t. denotes terms which are not only more regular than O((1 + x)μ−α/2) but
also satisfy u(−1) = 0. The second equivalence of (4.4) indicates that the approxi-
mation of the solution u(x) in the energy norm is equivalent to the L2-approximation
of the fractional derivative of u(x) of order α

2 , i.e., the L2-approximation of
a�(μ+1)

�(μ+1−α/2)
(1 + x)μ−α/2 + h.o.t.. Then it follows from [7, Theorem 5 and 7] that

we have the following useful lemma by neglecting the high order term (see also
[8, Theorem 1.1]):

Lemma 3 Let Eni
(�i) be the local error of the spectral element solution of the

model problem (4.1) with analytic solution (4.2), and denote

ri =
√

xi + 1 − √
xi−1 + 1√

xi + 1 + √
xi−1 + 1

, i = 1, · · · , M.
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Then

En1(�1) ≈ h
μ− α

2 + 1
2

1

n
2μ−α+1
1

. (4.5)

Furthermore, if 0 < r2
i < 1 − 1

ni
, i � 2, then

Eni
(�i) ≈ h

μ− α
2 + 1

2
i√
1 − r2

i

r
ni+ α

2 −μ

i

n
μ+1− α

2
i

( 1

n
μ− α

2 + 1
2

i

+ (1 − r2
i )μ− α

2 + 1
2

)
, (4.6)

and if 1 − 1
ni

< r2
i < 1, i � 2, then

Eni
(�i) ≈ h

μ− α
2 + 1

2
i

r
ni+ α

2 −μ

i

n
μ+ 1

2 − α
2

i

( 1

n
μ− α

2 + 1
2

i

+ (1 − r2
i )μ− α

2 + 1
2

)
. (4.7)

In the inequalities (4.5)–(4.6), the symbol ≈ means that the ratio of the left and
the right hand side is bounded above and below by positive constants which merely
depend on μ.

Remark 1 If ri is not close to 1, then (4.6) may be written as

Eni
(�i) ≈ h

μ− α
2 + 1

2
i

(1 − r2
i

2ri

)μ− α
2 r

ni

i

n
μ+1− α

2
i

. (4.8)

Now we consider the case when a geometric mesh is adopted. By this we mean

xi = −1 + 2qM−i , (4.9)

where 0 < q < 1. In this case, we have ri = 1−√
q

1+√
q

≡ r for all i. The geometric mesh

(4.9) for q = 0.5, M = 10 is showed in Fig. 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

geometric mesh for problem with singularity at left boundary, q = 0.5, M = 10

x

Fig. 1 Geometric mesh (4.9) for q = 0.5,M = 10
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Next, we shall try to characterize an optimal degree distribution which minimizes
the error (4.4). Let n = (n1, n2, · · · , nM) where ni is the polynomial degree in �i .
Then by Remark 1, we have

2−2(μ− α
2 + 1

2 )‖e‖2
E ≈

[q(M−1)(μ− α
2 + 1

2 )

n
2μ−α+1
1

]2

+(1 − r2

2r

)2(μ− α
2 )

M∑
i=2

[ (qM−i − qM−i+1)μ− α
2 + 1

2

n
μ+1− α

2
i

rni

]2

= q2(M−1)(μ− α
2 + 1

2 )
{ 1

n
4μ−2α+2
1

+(1

2
(

1

r
− r)

)2μ−α
M∑
i=2

q(2μ−α+1)(1−i)

n
2μ+2−α
i

r2ni (1 − q)2μ−α+1
}

= q2(M−1)(μ− α
2 + 1

2 )
{ 1

n
4μ−2α+2
1

+(1

2
(

1 + √
q

1 − √
q

− 1 − √
q

1 + √
q

)
)2μ−α

(1 − q)2μ−α+1
M∑
i=2

q(2μ−α+1)(1−i)

n
2μ+2−α
i

r2ni

}

≈ q2(M−1)(μ− α
2 + 1

2 )
{ 1

n
4μ−2α+2
1

+qμ− α
2 (1 − q)

M∑
i=2

q(2μ−α+1)(1−i)

n
2μ+2−α
i

r2ni

}
.

Denote

E(M, n) = 1

n
4μ−2α+2
1

+ qμ− α
2 (1 − q)

M∑
i=2

q(2μ−α+1)(1−i)

n
2μ+2−α
i

r2ni . (4.10)

Then
‖e‖E ≈ η(M, n) ≡ q(M−1)(μ− α

2 + 1
2 )
√
E(M, n). (4.11)

Obviously, for each N � 2, there is M � 2 and a degree vector n(M) = {n(M)
i }Mi=1

with
M∑
i=1

n
(M)
i = N such that

η(M, n(M)) = min
{
η(k, n)|2 � k � N,

M∑
i=1

ni = N, ni � 1
}
.

Now let us take a look at the structure of n(M) as N → ∞. We denote

DM = {n ∈ RM |ni > 0, i = 1, 2, · · · , M},
and for N � M ,

D′
M,N =

{
n ∈ DM

∣∣∣
M∑
i=1

ni = N
}
.
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For each N � 2, consider the minimization problem: Find (MN, n(MN)) with
n(MN) ∈ D′

M,N such that:

η(MN, n(MN)) = min{η(k, n)|2 � k � N, n ∈ D′
M,N }.

Since for each M, D′
M,N is a connected open set of an (M − 1)-dimensional

hyperplane of RM , and

η(M, n) � 0, ∀n ∈ D′
M,N,

η(M, n) → ∞, asn → n0 ∈ ∂D′
M,N .

It follows that for each 2 � M � N , one can find a minimizer n(MN) of η(M, ·). To
this end, consider the following Lagrange function with Lagrange multiplier λN :

L
(
E(M, n), λN

) := E(M, n) + 2λN(

M∑
i=1

ni − N). (4.12)

The the minimizer n(MN) necessarily satisfies the following conditions:

∂L
(
E(M, n(MN)), λN

)
∂n1

= −4μ + 2α − 2(
n

(MN)
1

)4μ−2α+3
+ 2λN = 0, (4.13)

∂L
(
E(M, n(MN)), λN

)
∂ni

= 2Cq−(2μ−α+1)i
r2n

(MN )

i

(
n

(MN)
i ln r − (μ + 1 − α

2 )
)

(
n

(MN)
i

)2μ−α+3

+2λN = 0, (4.14)

where C = (1 − q)q3μ− 3α
2 +1. Then we can find n(MN) which minimizes the error.

We will call the sequence {n(MN)}∞N=2 the sequence of the optimal degree dis-
tribution. Clearly, the integer degree distribution n(N) which satisfies nN

i � 1 and

|nN
i − n

(MN)
i | < 1 will give a good rate of convergence.

The next result characterizes the optimal degree distribution asymptotically. An
analogous result in the case of regular PDEs is given in [8, Theorem 3.1].

Theorem 1 As N → ∞, the asymptotic optimal degree distribution satisfies

lim
N→∞[n(MN)

MN−i − n
(MN)
MN−i−1] = s0, i = 1, 2, · · · , M,

with

s0 = (
μ + 1

2
− α

2

) ln q

ln r
. (4.15)

Proof First we notice that as N → ∞, it is possible to obtain a rate of convergence
e−C

√
N for each C > 0. This will be proven in Theorem 2. From the expression of

η(M, n), it is easy to see that if MN or max
1�i�MN

p
(MN)
i is bounded by some number,
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then we cannot achieve a rate of convergence better than N−σ for some σ > 0.
Therefore, for the optimal degree distribution we must have

MN → ∞ and max
1�i�MN

n
(MN)
i → ∞ as N → ∞.

In fact, we can obtain an even stronger conclusion that for each i = 1, 2, · · · fixed:

n
(MN)
MN−i → ∞ (asN → ∞)

which follows from

η(M, n) >
√

C
q(i−2)(μ− α

2 + 1
2 )r

2n
(MN )

MN −i

(
n

(MN)
MN−i

)2μ
.

By (4.14) one has that for each N � 2, i = 2, 3, · · · , MN

Cq−(2μ−α+1)i
r2n

(MN )

i

(
n

(MN)
i ln 1

r
+ (μ + 1 − α

2 )
)

(
n

(MN)
i

)2μ−α+3
= λN .

Let nN(x), 0 < x < ∞ be the function implicitly defined by the equation

Cq−(2μ−α+1)x
r2nN (x)

(
nN(x) ln 1

r
+ (μ + 1 − α

2 )
)

(
nN(x)

)2μ−α+3
= λN . (4.16)

Consider the range of the function

g(y) = A
r2y
(
y ln 1

r
+ (μ + 1 − α

2 )
)

y2μ−α+3
(4.17)

for any A > 0. Since lim
y→0+ g(y) = +∞, lim

y→∞ g(y) = 0, g : (0, ∞) → (0, ∞)

is onto. Thus for any λN > 0, (4.16) is solvable. Use the derivative rule of implicit
function to (4.16) we find:

{
(nN(x))2μ−α+3

[
q(α−2μ−1)x(α − 2μ − 1) ln q

(
r2nN (x)

(
nN(x) ln

1

r
+ (μ + 1 − α

2
)
))

+ q(α−2μ−1)x
(
r2nN (x)2n′

N(x) ln r
(
nN(x) ln

1

r
+ (μ + 1 − α

2
)
)+ r2nN (x) ln

1

r
n′

N(x)
)]

− q(α−2μ−1)xr2nN (x)
(
nN(x) ln

1

r
+ μ + 1 − α

2

)
(2μ − α + 3)(nN(x))2μ−α+2n′

N(x)
}

× 1

(nN(x))4μ−2α+6
= 0

(4.18)
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which gives

nN(x)
[
(α − 2μ − 1) ln q

(
nN(x) ln

1

r
+ (μ + 1 − α

2
)
)

+ 2n′
N(x) ln r

(
nN(x) ln

1

r
+ (μ + 1 − α

2
)
)+ ln

1

r
n′

N(x)
]

− (2μ − α + 3)
(
nN(x) ln

1

r
+ μ + 1 − α

2

)
n′

N(x) = 0.

(4.19)

After a tedious calculation, we arrive at

n′
N(x) = (

μ + 1

2
− α

2

) ln q

ln r

(
1 −

(
μ − α

2 + 1
)(

nN(x) ln 1
r

+ (μ + 3
2 − α

2 )
)

nN(x) ln r
(
nN(x) ln 1

r
+ (μ + 1 − α

2 )
)
)−1

= (
μ + 1

2
− α

2

) ln q

ln r

(
1 +

(
μ − α

2 + 1
)(

nN(x) ln 1
r

+ (μ + 3
2 − α

2 )
)

nN(x) ln 1
r

(
nN(x) ln 1

r
+ (μ + 1 − α

2 )
)
)−1

.

(4.20)
Observe that n′

N(x) > 0, nN(i) = n
(MN)
i for all 2 � i � MN . We obtain that if

MN − i − 1 � x � MN − i, then

n
(MN)
MN−i−1 � nN(x) � n

(MN)
MN−i . (4.21)

By mean value theorem

n
(MN)
MN−i − n

(MN)
MN−i−1 = n′

N(ζN,i)

for some MN − i−1 � ζN,i � MN − i. For any i > 0 fixed, we have from (4.21) that

lim
N→∞ nN(ζN,i) = +∞.

It follows from (4.20) that

lim
N→∞

(
n

(MN)
MN−i − n

(MN)
MN−i−1

) = s0 = (
μ + 1

2
− α

2

) ln q

ln r
.

Now we adopt the geometric mesh (4.9) combining with linear degree vector

ni = �1 + s(i − 1)�, i = 1, 2, · · · , M. (4.22)

The value s > 0 will be called the slope. In this case we can let

N ≈ sM2

2
. (4.23)

We then have the following result which is similar o the results obtained in
[8, Theorem 3.2].

Theorem 2 For the geometric mesh with ratio q combined with a linear degree
vector of slope s, we have:

• if s > s0, then

‖e‖E ≈ C(μ, q, s)q(μ− α
2 + 1

2 )
√

2N/s; (4.24)
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• if s < s0, then

‖e‖E ≈ C(μ, q, s)r
√

2Ns; (4.25)

• if s = s0, then

‖e‖E ≈ C(μ, q)e

√
−(μ− α

2 + 1
2 )N

√
2 ln q ln r

, (4.26)

where r = 1−√
q

1+√
q
and s0 = (μ − α

2 + 1
2 )

ln q
ln r

is the optimal slope in the sense that the

exponential rate attends maximum (with same q).
Further more, the optimal geometric mesh and linear degree vector combination

is given by

qop = (
√

2 − 1)2, sop = 2μ − α + 1. (4.27)

In this case

‖e‖E ≈ C(μ)[(√2 − 1)2]
√

(μ− α
2 + 1

2 )N
. (4.28)

In (4.24)–(4.28), the equivalence constants depends on (μ, q, s), (μ, q) and μ

respectively.

Proof By (4.11), we have

‖e‖E ≈q(M−1)(μ− α
2 + 1

2 )

{
1 + qμ− α

2 (1 − q)

M∑
i=2

q(2μ−α+1)(1−i)r2(1+s(i−1))

(
1 + s(i − 1)

)2μ+2−α

} 1
2

=q(M−1)(μ− α
2 + 1

2 )

{
1 + qμ− α

2 (1 − q)r2
M∑
i=2

e(i−1)(2s ln r−(2μ−α+1) ln q)

(
1 + s(i − 1)

)2μ+2−α

} 1
2

.

(4.29)
If 2s ln r − (2μ − α + 1) ln q < 0, i.e.,

s > (μ − α

2
+ 1

2
)
ln q

ln r
= s0,

then the sum in the bracket converges as M → ∞, thus

‖e‖E ≈ C(μ, q, s)q(M−1)(μ− α
2 + 1

2 ) ≈ C(μ, q, s)q(μ− α
2 + 1

2 )
√

2N/s. (4.30)

If s < s0, the quantity in the bracket is of order

e(M−1)(2s ln r−(2μ−α+1) ln q) = r2s(M−1)q−(M−1)(2μ−α+1) (4.31)

(as M → ∞), thus

‖e‖E ≈ C(μ, q, s)rs(M−1) ≈ C(μ, q, s)r
√

2Ns. (4.32)

If s = s0, note that 2μ + 2 − α > 1, so the sum in the bracket also converges, this
gives

‖e‖E ≈ C(μ, q)q(M−1)(μ− α
2 + 1

2 ) ≈ C(μ, q)q(μ− α
2 + 1

2 )
√

2N/s0

≈ C(μ, q)e
−
√

(μ− α
2 + 1

2 )N
√

2 ln q ln r
.

(4.33)
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We now show that s = s0 gives the best convergence rate and hence it is the
optimal slope. As a matter of fact, we have: if s > s0, then

q(μ− α
2 + 1

2 )
√

2N/s = e(μ− α
2 + 1

2 ) ln q
√

2N/s > e(μ− α
2 + 1

2 ) ln q
√

2N/s0

= e
−
√

(μ− α
2 + 1

2 )N
√

2 ln q ln r ;
If s < s0, then

r
√

2Ns = eln r
√

2Ns > eln r
√

2Ns0 = e
−
√

(μ− α
2 + 1

2 )N
√

2 ln q ln r
.

So in either case, the rate of convergence is not better than that when s = s0.
At last, by the same argument as in [8, Corollary 3.1], it can be showed that the

optimal geometric mesh degree combination is given by

q = qop = (
√

2 − 1)2,

and

sop = s0 = (
μ − α

2
+ 1

2

) ln qop

ln
1−√

qop

1+√
qop

= 2μ − α + 1,

thus,

‖e‖E ≈C(μ)e
−
√

(μ− α
2 + 1

2 )N
√

4(ln(
√

2−1)2)

=C(μ)[(√2 − 1)2]
√

(μ− α
2 + 1

2 )N
.

(4.34)

Remark 2 Theorem 2 shows that, for a given geometric mesh with ratio q combine
with a linear degree vector of slope s, we can always obtain convergence rate of
e−C

√
N even if we do not know the singularity behavior at the end point. However,

if the leading singularity μ is known, then the optimal ratio qop and slope sop of the
geometric mesh is given in (4.27).

4.2 SEM with geometric mesh for two-sided FDEs

For the two-sided fractional PDE (1.1), the solution usually has singularities at both
end points for given smooth data. Therefore, in this subsection, we apply the SEM
with a different type of geometric mesh to solve Eq. 1.1.

Since the singularities exist at both boundaries, we first spilt it into two subdo-
mains [−1, 0] and [0, 1], then for given ratios 0 < ql, qr < 1, we use the geometric
mesh defined as:

xi = −1 + q
M
2 −i

l ∈ [−1, 0], i = 1, 2, · · · ,
M

2
,

xi = 1 − q
i− M

2
r ∈ [0, 1], i = M − 1, M − 2, · · · ,

M

2
+ 1,

(4.35)
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with linear degree vectors as follows:

ni = �1 + sl(i − 1)�, (i = 1, 2, · · · ,
M

2
),

ni = �1 + sr (M − i)�, (i = M − 1, M − 2, · · · ,
M

2
+ 1),

(4.36)

where sl and sr are the absolute values for the slopes of degree vectors to the left
and right boundaries, respectively. Here for the sake of simplicity, the number of
elements, M

2 , is set to be the same for both subdomains. Figure 2 shows the geometric
mesh (4.35) for ql = qr = 0.5, M = 16.

Clearly, the error ‖e‖E on (−1, 1) is the sum of the errors of subintervals (−1, 0)

and (0, 1), i.e.,
‖e‖E = ‖e‖El

+ ‖e‖Er ,

where ‖e‖El
:= ‖e‖E([−1,0]) and ‖e‖Er := ‖e‖E([0,1]). With the help of Lemma 2,

we can write

‖e‖El
= ‖−1D

α
2
x e‖0,[−1,0] and ‖e‖Er = ‖xD

α
2

1 e‖0,[0,1].
In order to obtain estimates for ‖e‖El

and ‖e‖Er , we assume that the solution
behaves like:

u(x) = a(1 + x)μ(1 − x)ν + h.o.t., (4.37)
where h.o.t. represents terms more regular than (1+x)μ(1−x)ν satisfying u(±1) =
0. Therefore, all the arguments for (4.3) discussed in last subsection also hold true
for ‖e‖El

and ‖e‖Er . In view of Theorem 2, there are nine possibilities for different
values of sl, sr and μ, ν. For the sake of simplicity, we let ql = qr = q, sl = sr = s,
and μ = ν, so that the total degree of freedom is

N ≈ sM2. (4.38)

In this case, Theorem 2 leads immediately to the following result:

Theorem 3 Let u be the solution of the two-sided fractional PDE (3.1) and uN be
the solution of SEM (3.4) with the geometric mesh (4.35) with ratio q combined with
the degree vectors (4.36) of slope s. Then, we have:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

geomtric mesh for problem with singularity at both boundaries, q = 0.5, M = 16

x

Fig. 2 Geometric mesh (4.35) for q = 0.5,M = 16
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• if s > s0, then

‖e‖E ≈ Ĉ(μ, q, s)q(μ− α
2 + 1

2 )
√

N/s; (4.39)

• if s < s0, then

‖e‖E ≈ Ĉ(μ, q, s)r
√

Ns; (4.40)

• if s = s0, then

‖e‖E ≈ Ĉ(μ, q)e

√
−(μ− α

2 + 1
2 )N/2

√
2 ln q ln r

, (4.41)

where r = 1−√
q

1+√
q
and s0 = (μ − α

2 + 1
2 )

ln q
ln r

is the optimal slope (with given q).

Similarly, the optimal geometric mesh ratio q and the slope s are also given by
(4.27). In this case

‖e‖E ≈ Ĉ(μ)[(√2 − 1)2]
√

(μ− α
2 + 1

2 )N/2
. (4.42)

Remark 3 As in Remark 2, Theorem 3 indicates that we can always achieve a con-
vergence rate of e−C

√
N for a given geometric mesh with ratio q and a slope s, and

we can choose the optimal q and s if μ and ν are known.

5 Numerical tests

We present below several numerical tests to show the effectiveness of the SEM and
to verify the error estimates. All figures are plotted in

√
N − log scale in order to

show a convergence rate of e−C
√

N .
We first apply the SEM to left-sided problem (4.1).

Example 1 Let ρ = 1, suppose we have a exact solution

u(x) = (1 + x) − 21−γ (1 + x)γ , (5.1)

where γ is a positive fractional number.

Since the solution contain both a smooth term 1 + x and a non-smooth term
21−γ (1 + x)γ , so neither spectral approximation [15] using Jacobi polynomials nor
Petrov-spectral-Galerkin approximation [3] using general Jacobi functions can give
good convergence. The exact solution (5.1) only contain singularity at the left end-
point, so we using the spectral element approximation with geometric mesh (4.9)
with a linear degree vector (4.22). In the test, we set α = 1.2, γ = 0.6 or
α = 1.6, γ = 0.8. Figure 3 shows the convergence in L2 and H

α
2 for the two sets

of data. Here the mesh ratio is set to be q = (
√

2 − 1)2, corresponding optimal slope
s = (γ − α

2 + 1
2 )

ln q
ln r

.

We also present the convergence rate in H
α
2 in Fig. 4 with different combinations

of ratio q and the corresponding optimal slope s. The H
α
2 convergence results with

q = (
√

2 − 1)2 and different s are shown in Fig. 5.
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Fig. 3 L2 and H
α
2 errors of SEM based on geometric mesh for example 1. (left: α = 1.2, γ = 0.6, right:

α = 1.6, γ = 0.8)
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q=0.3,s=0.4893
q=0.5,s=0.1966
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Fig. 4 H
α
2 errors of SEM based on geometric mesh for example 1 with different q and corresponding

optimal s (left: α = 1.2, γ = 0.6, right: α = 1.6, γ = 0.8)
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Fig. 5 H
α
2 errors of SEM based on geometric mesh for example 1 with q = (

√
2 − 1)2 ≈ 0.1715 and

different s (left: α = 1.2, γ = 0.6, right: α = 1.6, γ = 0.8)
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Fig. 6 L2 and H
α
2 errors with SEM based on geometric mesh for example (2) (p1 = 1, p2 = 1, left:

α = 1.4, right: α = 1.6)

We observe that the errors in all figures have a convergence rate of e−C
√

N , which
is in agree with the error estimates (4.24)–(4.26).

Furthermore, Fig. 4 shows that, for different combinations of q and the corre-
sponding optimal value of s, the optimal value of q = (

√
2 − 1)2 ≈ 0.1715 with

the corresponding optimal slope s gives the best result. On the other hand, Fig. 5
shows that, for the given optimal value of q = (

√
2 − 1)2, the optimal value of

s = (γ − α
2 + 1

2 )
ln q
ln r

(or the value very close to it) gives better convergence rate in

H
α
2 .
In the next example, we solve the two-sided FDEs (1.1) with a smooth right-hand

side function f .

Example 2 Let ρ = 1 and

f (x) = − cos(
απ

2
)(2�(1 + α) + �(3 + α)x).
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Fig. 7 L2 and H
α
2 errors with SEM based on geometric mesh for example (2) (p1 = 3, p2 = 2, left:

α = 1.4, right: α = 1.6)
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Fig. 8 L2 and H
α
2 errors with SEM based on geometric mesh for example (2) (p1 = 2, p2 = 1, left:

α = 1.4, right: α = 1.6)

It is well-known that the solution of (1.1) is singular at x = ±1. We test different
values of fractional order α and different sets of (p1, p2) with optimal value of ratio
ql = qr = q = (

√
2 − 1)2. The value of slope is set to be sl = sr = s = 1. Since

no exact solution is available, we use the numerical solution with M = 32 as the
reference solution.

Figures 6, 7 and 8 show the convergence rate in L2 and H
α
2 for α = 1.4, 1.6

and (p1, p2) equals to (1, 1), (3, 2), (2, 1). Again, we observe that, in all cases, the
errors converge like e−C

√
N .

Finally, we comment on the conditioning of the linear system (3.8). Let

A = ρM − p1 Sα
l − p2 Sα

r ,

and set q = (
√

2 − 1)2, s = 1, we computed the condition numbers of A for geo-
metric meshes (4.9) (ρ = 1, p1 = 1, p2 = 0) and (4.35) (ρ = 1, p1 = 1, p2 = 1)
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Fig. 9 Condition number of A (left: geometric mesh (4.9), ρ = 1, p1 = 1, p2 = 0, right: geometric
mesh (4.35), ρ = 1, p1 = 1, p2 = 1)
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with linear degree vectors. The results are presented in Fig. 9 (in
√

N -log scale). We
observe that the condition numbers grow exponentially with respect to

√
N for all

α, but larger value of α leads to faster rate, as expected. For the results presented
in this paper, simple Gaussian elimination is used. For larger problems in multi-
dimension, it will become necessary to develop efficient preconditioning techniques
for the system matrix.

6 Concluding remarks

Solutions of fractional diffusion equations with two-sided fractional derivatives usu-
ally has singularities at the boundaries, and in general forms of these singularities
are unknown and complicated. This makes it hard to design high-order numerical
methods which require prior knowledge about the singularities.

Inspired by the success of h-p finite-element methods with geometric mesh for
singular problems, we developed a spectral-element approximation using a geomet-
ric mesh with linear degree distribution of polynomials, and derived corresponding
error estimates. We showed that, for two-sided fractional diffusion equations with
unknown singularities at both ends, the SEM with geometric mesh can achieve expo-
nential convergence rate of e−C

√
N , where N is the total number of unknowns. We

also gave specific guidelines on how to choose the geometric mesh ratio q and the
linear degree distribution slope s in different situations.

Another difficulty involved with the fractional PDEs is that the fractional deriva-
tives are nonlocal operators, making it very expensive to compute stiffness matrices.
We developed efficient and stable algorithms to compute the stiffness matrices.

We applied our algorithms to solve the one-sided FDEs as well as two-sided FDEs.
Our numerical results indicate that the convergence rate of the proposed SEM with
geometric meshes converge like e−C

√
N in all situations, without prior knowledge

about the singular behaviors at the end points.
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Appendix: A Computation of stiffness matrix

We provide below details on how to compute the left fractional stiffness matrix Sα
l .

The following lemma can be readily verified by Lemma 1 and integration by parts.

Lemma 4 Let ζ(x), η(x) be any two basis functions given by (3.5) or (3.6), then we
have
(
−1D

α
2
x ζ(x), xD

α
2

1 η(x)
) = −(−1D

α−1
x ζ(x), η′(x)

) = (
ζ ′(x), xD

α−1
1 η(x)

)
(A.1)

First of all, for the nodal-nodal block matrix Ŝ, the explicit formula is given in [10].
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A.1 Modal-modal block matrices

Next, we consider the modal-modal block matrices Spq, 1 ≤ p ≤ q ≤ M . Denote
φj (x) = Lj (x) − Lj+2(x). Case I: p = q.

(
Spq

)
ij

=(−1D
α
2
x φ

p
j (x), xD

α
2

1 φ
q
i (x)

) = (
xp−1D

α
2
x φ

p
j (x), xD

α
2
xp

φ
q
i (x)

)
�p

=(hp

2

)1−α(
−1D

α
2
x φj (x), xD

α
2

1 φi(x)
)
, 0 ≤ i, j ≤ nq − 2.

(A.2)

The last inner product of above equation is the left fractional stiffness matrix for
one domain Legendre-Spectral Galerkin method, and can be compute exactly by
Legendre-Gauss quadrature. More details can be found in [15].

Let nmax := max{ni, i = 1, · · · , M}. We observe from (A.2) that we only need
to compute the block stiffness matrix with polynomial degree nmax .

Case II: p = q − 1.

Using (A.1), we have

(
Spq

)
ij

=(−1D
α
2
x φ

p
j (x), xD

α
2

1 φ
q
i (x)

) = −(−1D
α−1
x φ

p
j (x),

d

dx
φ

q
i (x)

)

= − (
xp−1Dα−1

xp
φ

p
j (x),

d

dx
φ

q
i (x)

)
�q

, 0 ≤ i ≤ nq − 2, 0 ≤ j ≤ np − 2,

(A.3)
where

xp−1Dα−1
xp

φ
p
j (x) := 1

�(2 − α)

∫ xp

xp−1

d

ds
φ

p
j (s)(x − s)1−αds. (A.4)

Note that xp−1Dα−1
xp

φ
p
j (x) is different from the point value, xp−1D

α−1
x φ

p
j (x)|x=xp

denoted by xp−1D
α−1
xp

φ
p
j (xp).

We present next two methods to compute the inner product in (A.3). The first one
is to rewrite it as:

− (
xp−1Dα−1

xp
φ

p
j (x),

d

dx
φ

q
i (x)

)
�q

= − (
xp−1D

α−1
x φ

p
j (x),

d

dx
φ

q
i (x)

)
�q

+ (
xpDα−1

x φ
p
j (x),

d

dx
φ

q
i (x)

)
�q

.

(A.5)

Then
(
xp−1D

α−1
x φ

p
j (x),

d

dx
φ

q
i (x)

)
�q

= 1

�(2−α)

∫ 1

−1

(hp+1

4
(1+t)+ hp

2

)2−α d

dt
φi(t)

∫ 1

−1
(1−τ)1−α d

ds
φ

p
j (sp−1(τ ))dτdt,

(A.6)
where sp−1(τ ) = x−xp−1

2 τ + x+xp−1
2 , and

(
xpDα−1

x φ
p
j (x),

d

dx
φ

q
i (x)

)
�q

= 1

�(2 − α)

∫ 1

−1

(hp+1

4
(1 + t)

)2−α d

dt
φi(t)

∫ 1

−1
(1 − τ)1−α d

ds
φ

p
j (sp(τ ))dτdt,

(A.7)
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where sp(τ ) = x−xp

2 τ + x+xp

2 .
All these integrals can be computed by Jacobi-Gauss quadrature with suitable

Jacobi indices. However, it only work for polynomials of low degree, and becomes
computationally unstable for higher degree polynomials which are used in geometric
meshes.

Thus, we provide below a less elegant but more stable approach to compute (A.3).

Using two transforms: x = hp+1

2 (1 + t) + xp and s = hp

2 (1 + τ) + xp−1, then by
(A.4), we have that Eq. A.3 becomes

− (
xp−1Dα−1

xp
φ

p
j (x),

d

dx
φ

q
i (x)

)
�q

= −1

�(2 − α)

(hp

2

)1−α
∫ 1

−1

d

dt
φi(t)

∫ 1

−1

(
1 − τ + hp+1

hp

(1 + t)
)1−α d

dτ
φj (τ )dτdt.

(A.8)
Let us first look at the inner integral. Note that d

dτ
φj (τ ) = −(2j + 3)Lj+1(τ ) [21].

So the inner integral becomes
∫ 1
−1(x − τ)1−αLj+1(τ )dτ (with x > 1) which is a

special case of

P̃
α,β,ν
j (x) := 1

�(ν)

∫ 1

−1
(x − s)ν−1P

α,β
j (s)ds, x > 1. (A.9)

The main difficulty in computing the above integral is the singular term (x − s)ν−1.
We shall compute them by using a hybrid method given in [2, section 3.2] with
the main idea being to use three-term recurrence relation for x near 1, while apply-
ing Gauss quadrature for x away from 1. Then, we can use the Legendre-Gauss
quadrature to compute the outer integral.

Remark 4 Observe that for each entry of the block stiffness matrices, the second
method needs to compute the outer integral with a lot of Gauss points to obtain high
accuracy due to the weakly singularity (x near the point xp), so it is very expensive.
However, with special mesh, e.g. uniform mesh and geometric mesh, we only need to
compute one block matrix. Indeed, for uniform mesh, set hp = h, p = 1, 2, · · · , M ,
then (A.8) becomes

−1

�(2 − α)

(h
2

)1−α
∫ 1

−1

d

dt
φi(t)

∫ 1

−1

(
2 + t − τ

)1−α d

dτ
φj (τ )dτdt. (A.10)

For geometric mesh, Let x0 = a, xi = a + (b − a)ηM−i , i = 1, 2, · · · , M with
η ∈ (0, 1) is a given constant, (A.5) becomes

−(b − a)1−α

�(2 − α)

(ηM−m−2

2(1 − η)

)1−α
∫ 1

−1

d

dt
φi(t)

∫ 1

−1

(
1 + 1

η
(1 + t) − τ

)1−α d

dτ
φj (τ )dτdt,

(A.11)
Observe that the integrals in (A.10) and (A.11) are both independent of p and q.
Therefore, we only need to compute the block matrix Spq with either np = nmax or
nq = nmax , p = q − 1. This also holds true for the first method.



768 Z. Mao and J. Shen

Case III: p < q − 1.
One can easily obtain that, for 0 ≤ i ≤ nq − 2, 0 ≤ j ≤ np − 2,

(
Spq

)
ij

= −1

�(2 − α)

∫ 1

−1

d

dt
φi(t)

∫ 1

−1

(hp+1

2
(1 + t) − hq+1

2
(1 + τ)

+xp − xq

)1−α d

dτ
φj (τ )dτdt. (A.12)

Since the integrands associated with both fractional derivative and inner product are
smooth, they can be computed by the Legendre-Gauss quadrature.

Remark 5 For uniform mesh or geometric mesh, as discussed in Remark 4, we only
need to compute M − 2 block matrixes {SpM}nmax−2

i,j=0 for p = 1, · · · , M − 2, then
any other block matrix Spq, p < q − 1 can be obtained by scaling SM−q+p+1,M .

A.2 Nodal-modal and modal-nodal block matrices

Finally, we consider the nodal-modal, modal-nodal block matrices, i.e. Sk and S̃k ,
1 ≤ k ≤ M .

For
(
Sk

)
ij
, 1 ≤ j ≤ M − 1, 0 ≤ i ≤ nk − 2, with the help of (A.1), we have

(
Sk

)
ij

= −(−1D
α−1
x ĥj (x),

d

dx
φk

i (x)
) = −(−1D

α−1
x ĥj (x),

d

dx
φk

i (x)
)
�k

. (A.13)

The fractional derivative of ĥj (x), i.e. −1D
α−1
x ĥj (x), denoted by Ij (x), can be

rewritten as:

Ij (x) = −1D
α−1
x ĥj (x) = 1

�(2 − α)

∫ x

−1
(x − t)1−αĥ′

j (t)dt,

which can be computed exactly:

Ij (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x < xj−1,
h−1

j

γα
g(x, xj−1), xj−1 ≤ x < xj ,

h−1
j

γα

[
g(x, xj−1) − g(x, xj )

]− h−1
j+1
γα

g(x, xj ), xj < x ≤ xj+1,

h−1
j

γα

[
g(x, xj−1) − g(x, xj )

]+ h−1
j+1
γα

[
g(x, xj+1) − g(x, xj )

]
, x > xj+1,

(A.14)

where γα = �(3 − α) and g(x, xj ) := (x − xj )
2−α . Thus, we can calculate the

integral (A.13) by arguing as follows.

• Case I: k ≤ j − 1.

(
Sk

)
ij

= 0. (A.15)
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• Case II: k = j .

(
Sk

)
ij

= −(Ij (x),
d

dx
φk

i (x)
)
�k

= −h−1
j

γα

∫ xj

xj−1

(x − xj−1)
2−α d

dx
φk

i (x)dx

= − h1−α
j

22−αγα

∫ 1

−1
(1 + t)2−α d

dt
φi(t)dt.

(A.16)
Then the integral can be computed by Jacobi-Gauss quadrature with respect to
weight ω0,2−α(x).

• Case III: k = j + 1.

(
Sk

)
ij

= − (
Ij (x),

d

dx
φk

i (x)
)
�k

=−h−1
j

γα

∫ xj

xj−1

(x − xj−1)
2−α d

dx
φk

i (x)dx

+ h−1
j + h−1

j+1

γα

∫ xj

xj−1

(x − xj )
2−α d

dx
φk

i (x)dx

=−h−1
j

γα

∫ 1

−1

(hj+1

2
(1 + t) + hj

)2−α d

dt
φi(t)dt

+
( (h−1

j+1 + h−1
j )h2−α

j+1

22−αγα

) ∫ 1

−1
(1 + t)2−α d

dt
φi(t)dt.

(A.17)

The first integral can be computed by the Legendre-Gauss quadrature and the
second one can be computed by the Jacobi-Gauss quadrature with respect to the
weight ω0,2−α(x).

• Case IV: k = j + 2. Similarly, we have

(
Sk

)
ij

=−h−1
j

γα

∫ 1

−1

(hj+2

2
(1 + t) + hj + hj+1

)2−α d

dt
φi(t)dt

+
( (h−1

j+1 + h−1
j )

γα

) ∫ 1

−1

(hj+2

2
(1 + t) + hj+1

)2−α d

dt
φi(t)dt

− h−1
j+1h

2−α
j+2

22−αγα

∫ 1

−1
(1 + t)2−α d

dt
φi(t)dt.

(A.18)
The first two integrals can be computed by the Legendre-Gauss quadrature and
the last one can be computed by the Jacobi-Gauss quadrature with respect to the
weight ω0,2−α(x).
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• Case V: k > j + 2.

(
Sk

)
ij

=−h−1
j

γα

∫ 1

−1

(hk

2
(1 + t) + xk−1 − xj−1

)2−α d

dt
φi(t)dt

+
( (h−1

j+1 + h−1
j )

γα

) ∫ 1

−1

(hk

2
(1 + t) + xk−1 − xj

)2−α d

dt
φi(t)dt

− h−1
j+1

γα

∫ 1

−1

(hk

2
(1 + t) + xk−1 − xj+1

)2−α d

dt
φi(t)dt.

(A.19)
All three integrals above can be computed by the Legendre-Gauss quadrature.

Finally, for S̃k, 1 ≤ k ≤ M , by using (A.1), we have

(
S̃k

)
ij

= ( d

dx
φk

j (x), xD
α−1
1 ĥi (x)

) = ( d

dx
φk

j (x), xD
α−1
1 ĥi (x)

)
�k

. (A.20)

Then we can apply the same argument as for Sk to compute S̃k .
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