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Convergence of approximate attractors for a fully 
discrete system for Reaction-Diffusion Equations 

Jie Shen 
The Institute for Applied Mathematics and Scientific Computing 

& Department of Mathematics, Indiana University 

ABSTRACT 

The reaction-diffusion equations are approximated by a fully discrete sys- 
tem: a Legendre-GaIerkin approximation for the space variables and a semi- 
implicit scheme for the time integration. The stability and the convergence of 
the fully discrete system are established. It is also shown that, under a re- 
striction on the space dimension and the growth rate of the nonlinear term, 
the approximate attractors of the discrete finite dimensional dynarnical sys- 
tems converge to the attractor of the original infinite dimensional dynarnical 
systems. An error estimate of optimal order is derived as well without any 
further regularity assumption. 

1 Introduction 

It is well known that the permanent regime of a large class of dissipative dynamical 

systems can be represented by a finite number of determining modes, e.g. by the 

universal (global) attractors or the inertial manifolds (if they exist). We refer to  

Temam 1131 for an extensive review on this subject. In particular, for the reaction- 

diffusion equations, the existence of a maximal attractor A and the estimates of its 

Hausdorff and fractal dimensions have been given in Babin-Vishik [I] and Marion 

PI. 
Since the attractors or the inertial manifolds play an important role in the un- 

derstanding of the long time behavior of the solutions of certain dynamical systems, 

it is then worthwhile to consider approximations for the attractors or the inertial 

manifolds. The problem has been approched in various directions, among them 

are: approximations to the attractor of the Navier-Stokes equations by a simpler 

Copyright @ 1990 by Marcel Dekker, Inc. 
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infinite dimensional dynamical system (see for instance Brefort et al. [2]) or by a 

semi-discrete scheme based on the eigenvectors of the Stokes operator (see Sec. 4.7 

of [IS]); approximations to the inertial manifolds (see among others Foias et al. [5], 

Marion 191). The aim of this paper is to  study a fully discrete scheme, which is 

readily implementable in computers, for the reaction-diffusion equations. The dis- 

crete scheme generates a discrete dynarnical system, and our goal is t o  show how 

the attractors of the discrete dynamical systems converge to  the attractor of the 

original dynamical system. A necessary step for this purpose is to  derive a uniform 

bound, which is independent of time and space mesh sizes, in the strong topology 

H , ~ ( R )  for the approximate solutions given by the discrete scheme. 

The upper bound for approximate solutions to evolutionary partial differential 

equations, given by a large number of existing stability analyses, often increases 

indefinitely when the time interval [O,T] goes to  infinity. Such a stability result is 

certainly irrelevant for the long time integrations. In a previous paper Il l] ,  the 

author proved the L ~ ( I R + ;  H e )  (a = 0 , l )  stability for fully discrete nonlinear 

Galerkin method for the Navier-Stokes equations. However the space discretization 

used there was based on the eigenvectors of the Stokes operator which are in general 

not readily available. We consider in this paper a Legendre-Galerkin approxima- 

tion for the space variables while using a first order semi-implicit scheme for the 

time integration. The techniques we use here are similar to  those used in [Ill, but 

differ from those in the choice of an appropriate test function which enables us to  

obtain the strong stability. Although only the Legendre-Galerkin approximation is 

considered, the techniques apply also to  a fairly large class of spatial approximations. 

The strong stability of the approximate solutions and its convergence towards 

the exact solution are established. Under a restriction on the space dimension and 

the growth rate of the nonlinear term, we are able to  prove the convergence of the 

approximate attractors of the fully discrete systems to  the attractor of the reaction- 

diffusion equations. In addition, we are able to  obtain an error estimate of optimal 

order without assuming further regularity of the exact solution. Our results are 

not complete in the high space dimensional cases due to  the lack of the uniform 

L*(IR+ x R) stability for the approximate solutions. 

The paper is organized as follows. In the next section, we introduce the discrete 

scheme which is to  be studied and we recall two discrete Gronwall lemmas and 

several classical results about the exact solution. In section 3, we derive the uniform 

bounds for the a.pproximate solutions in ~ ' ( n )  as well as in w ~ ( R ) ,  which ensure 

that the approximate attractors are uniformly bounded in ~ i ( 0 ) .  Then we prove 

that the approximate solutions converge to  the exact solution in various topologies 

in section 4. Finally, in section 5, we establish the convergence of the approximate 

attractors towards the attractor of the original dynamical system. 
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2 Notations and Some Preliminary Results 

We consider the following reaction-diffusion equation 

subjected t o  the homogeneous Dirichlet boundary conditions. 

d > 0 is given, 0 is an open bounded set in IR' with sufficient smooth boundary, 

and g is a polynomial of odd degree with a positive leading coefficient 

We will deal with the nonlinear cases: p > 1. 

Let us first derive some inequalities on g which will be used frequently in this 

paper. Since bzP-1  > 0, by using the Young's inequality we derive from (3) that  

there exist c l ,  c2 > 0 such that 

Also we infer from ( 4 )  that 

1 3 
-bzp- l sZp - ~1 5 g( s ) s  5 - b 2 p - 1 ~ 2 P  + ~1 , V S .  
2 2 (6) 

In addition, since 

we can derive by using the Young's inequality that 

Let us denote 

v = ~ , ' ( a ) ,  H = L ~ ( R ) .  
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The norm in H and V will be denoted respectively by 

The corresponding inner product in H and V will be denoted respectively by (.,-) 
and (V.,  V . ) .  We also denote the norm in H 8 ( R )  by I ( .  (1,. 

The following classical existence and uniqueness results are well known (see for 

instance Lions [6]). 

Theorem 1 For ug E H ,  the system (1)-(2) admits a unique solution u satisfying 

u E c(@; H )  and u E L ~ ( o , T ;  V )  n L ' P ( ( O , T )  x R ) ,  V T  > 0. 

Moreover, if uo E V )  then u E c(@; V )  n ~ ~ ( 0 ,  T ;  ~ ~ ( 0 )  n V ) ,  V T  > 0. 

Further regularity results are also available. For example, we can prove (see for 

instance Temam [13] and Marion [8])  the following results. 

Theorem 2 For uo E H and 0 < t o  < T < m, there exist dl = d l (d ,  SZ,to, JuoJ ) ,  

dz = dz (d ,  R , t o ,  T, luol) such that the unique solution u of (1)-(2) satisfies 

We now introduce some notations for the spectral-Legendre approximation. We 

define 

S N :  the set of polynomials such that the order of each variable is less or equal 

than N; 

0 PN: the orthonormd projection operator from H onto S N ;  

a(u ,  v )  = ( V u ,  V v )  , V u ,  v E V ;  

l lN:  the orthogonal projection operator form V onto VN defined by 

We refer to the recent book by Canuto et al. [3] and the references therein for 

further properties and applications of the spectral-Legendre approximations. 

We consider in this paper the following scheme which uses Legendre- Galerkin 

approximation for the space variables while time discretization is made by a first 

order semi-implicit scheme. 
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Find { u n )  = {U;E . ,~ )Y  satisfying 

with 

u0 = P N U O  or u0 = n N u O  if U O  E V.  ( 10) 

For u n  given in S N ,  the existence and the uniqueness of the un+l E VN satisfying 

( 9 )  is clear thanks to the classical Lax-Milgram theorem. We can then define a map 

associated to (9) - (10) .  It is straightforward that { s ( N ,  k ) " }  satisfies the discrete 

semi-group properties 

s ( N ,  k)' = Identity and s ( N ,  k)n+m = s ( N ,  k ) n  o s ( N ,  k ) m  , V n ,  m 2 0 

and of' course s ( N ,  k)nuO = un.  

Before all, let us recall two time discrete analogs of Gronwall lemmas which are 

essential to obtain the long time stabilities of the discrete scheme. 

Lemma 1 Let an,  bn be two series satisfying 

- an 

k  
t Xun+' 5 bn and bn 5 b, V n 2 0.  

provided k ,  1 f kX > 0. 

The second one is a time discrete counterpart of the uniform Gronwall lemma (see 

shen [ll]). 

Lemma 2 Let dn ,  g n ,  hn  be three series satisfying 

p+' - dn 
5 gndn + hn , V n  2 no,  

k 

and 

with kN = r .  Then 
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3 Absorbing Sets and Attractors 

From now on, we will use ci, c: to denote positive constants only depending on R; bi, 

Bi  and Gi  to denote positive constants depending on some data: bi = bi(d, 0 ,  luol), 

Bi = Bi(d l  0 ,  luol, n), G ;  = G i ( d ,  R,  luoll n ,  r ) .  We will assume hereafter k 5 KO (for 
some K O  > 0 fixed). 

3.1 Absorbinn Set  in H 

Let us denote 
1 + Kod6 

bo = b 0 l 2  + d6 (c1 

We are going to prove 

Theorem 3 We assume k and N are such that 

c8k2N4'(~-')b2P-2 < a - 6 
0 - 

csd- l )N41(p- l ) -4b2~-2  3 
0 1 5 - 6  

where I  is the space dimension and 6 is given in ( 0 ,  a ) .  Then, we have 

where cs ,  cg is to be given in the process of the proof. 

1 t K o d b  = Remark 1 Let PO = +(e l  + c3Ko)IRI. Then V p b  > PO, we infer form this 

theorem that for n suflciently large, we have lun12 5 P ; .  In other word, Bo = 
BH(O, pb) is an absorbing set of the discrete semi-group { s ( N ,  k ) n }  in H. 

PROOF: Taking the inner product of (9) with 2kunt1, by using the identity 

we obtain 
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By using (4) and the Schwarz inequality, we obtain 

1 
2Pdt + clklQl + .-lun+l - un12 + 2k2 

We infer from (15) and (7) that 

Thanks to the Sobolev embedding theorem, we have 

I(P - 1) Ha c L ~ ~ - ~  with a = -. 
2p - 1 

case a < 1: We recall that (see for instance Lions & Magenes [TI) 

Hence by using (17) and (18) 

By using the following inverse inequality (see Canuto & Quarteroni [4]) 

we derive that 

case a 2 1: Using (17) and (20), we derive 

We infer from (20) that 



Putting ( 23 )  into ( 1 6 ) ,  we derive 

Assuming that k and N verify the hypothesis ( 1 2 ) ,  we will prove by induction that 

bq12 5 B O ( ~  I b0 , v Q 0. 

0 ( 2 5 )  at q = 0 is obvious; 

assuming ( 25 )  is true up to q = n ,  then by using ( 1 2 ) ,  the inequality ( 24 )  

becomes 

lun+l12 - 1unl2 + 61un+' - un12 + kd611un+1112 < k(cl  + c3KO)IRI. ( 2 6 )  

Therefore by using the Poincark inequality 

After dropping some unnecessary terms, we arrive to 

We can now apply Lemma 1 to this last inequality with an = lun12, bn = 

(cl + c3Ko)(S21 and X = d&$, from which we derive 

The proof of ( 25 )  is complete. 

In order to  prove the last inequality of Theorem 3 ,  we take the sum of ( 2 6 )  for n 

from no to  no + i - 1,  which lead to  

This completes the proof of Theorem 3. 7 



APPROXIMATIONS OF REACTION-DIFFUSION EQUATIONS 

3.2 Absorbing Set in V 

Let us denote 

We prove first 

Lemma 3 There exists ci > 0 such that V u ,  v E H ,  we have 

PROOF: By the definitions of G and g ,  we find 

Since 

where 
1 k 

We then derive that 

o j  = (u - v)s(v) + (u - v ) ~  C - fj(U, v). 
j=o jtl 

Since > 0, by using Young's inequality, we can find ci > 0 such that 

Therefore, integrating (31) over 0, taking into account (32), we recover (30). 7 
Now we are in position to prove 
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Theorem 4 There exist two constants b s ,  b4 > 0 only depending on  d ,  S2 and JuOJ 

such that if k and N satisfy 

then we have 

f o r u o  in  H, a n d V r >  O,noZ 0 ,  

m t i - 1  

[ X l u n t l  - un12 + (luntl - un112] < G l ( m , r )  . V m 2 + n o .  
n=m 

k 

Moreover, if uo E V n L ~ P ,  

where b s ,  b 4 ,  c10 and clz are to be estimated in  the process of the proof, 

Remark 2 Let pl  = $ ( c l  + cziKo)lfl1(& + 2c12) + 4ciolRI. Then  pi > p i ,  we infer 

form this theorem that for n s f l c i en t l y  large, we have 

I n  other word, B1  = BVnLZP(O, P i )  is an absorbing set of the discrete semi-group 

{ s ( N ,  k)") i n  V n L ~ ~ .  

PROOF: We take the inner product of (9) with 2 9 ,  

By using lemma 3, we derive 
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Let us first majorize J, U ~ V ~ P - ~ ~ X  for u, v E S N .  We apply Holder inequality with 

4 + & + = 1, using H a  c ~ ~ p - ~  (see Thm. 3) and the inverse inequality, we 
derive 

Since (unI2 _< bo , V n (see Thm. 3), we have 

By choosing bs ,  b4 sufficiently small in (33), we can derive from (35) and (37) that 

1 1 -lun+l - Un12 + - ( ~ ~ u ~ + l l l ~  - llunl12 + llun+l - u ' y 2 )  
k2 k 

+ :(/ G(untl)dx - Jn G(un)dr) 5 0. 
k n (38) 

For uo E H ,  by dropping some unnecessary terms in (38), we obtain 

We intend t o  apply Lemma 2 (the discrete uniform Gronwdl lemma) to  this in- 

equality with dn = llun112 + 2J, G(un)dx, hn = gn  = 0. 

By Young's inequality, there exists clo > 0 such that 

b2p-1 
s2' - c10 5 G(s) 5 %p-1 

s 2 p  + c10. 
2 ( 2 ~  - 1) 2 ( 2 ~  - 1) (40) 

We infer from Theorem 3 and (40) that V r  > 0, we have 

notf 
k c llunt1112 5 GO(no' r )  , \I no > o 

n=no d6 
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Hence 

We then derive from Lemma 2 that 

11un+1112 + 2 / G(unC1)dx 5 
r 

G2(no,r)  , v n > - + no. 
n k 

Then by using (40), we find 

We now take the sum of (38) from m to m + i - 1, by using (41)) we derive 

Therefore, it follows from (40) that 

m+j-1 
r 

[t1un" - un12 + I~u"" - un/12] < Gl(m, r )  , V r > 0,m 2 - + no 
n=m k 

If uo E V n L'P, we derive from (39) that 

We infer from (40) and (43) that 

~, 
no+$-1 
C [:lun+' - un12 + /1un+' - un1121 < dl , v r > 0, no 2 O. (45) 

n=no 

This ends the proof of theorem 4. lI 

3.3 Lipschitz Continuity of the Discrete Semi-group 

Lemma 4 We assume (33) is satisfied with b g ,  b4 sufficiently small. Then the dis- 
crete semi-group { s ( N ,  k)n) are Lipschitz continuous from S N  (associated with the 

norm in H)  to itself. 
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PROOF: Let uO, v0 E SN and {un} , {vn) denote the corresponding solutions of (9)- 

(10). Then en = un - vn  satisfies 

where 

f (a, b) = b1 + z b j  ~ ~ b j - l - ~ .  

j=2  k=O 

Taking the inner product of (46) with 2ken+', we obtain 

Since bzP-' > 0, by using Young's inequality, we can find cl4 > 0 such that 

3hp-1 h ( a 2 p - 2  + b2p-2) - c14 5 f ( a ,  b) 5 T(a2p-2 + b2p-2 
2 

) + c14  (49) 

By using (49), we have 

Using Hijlder inequality with + + & = 1, since H a  c L ~ P - ~ ,  we derive 

-2k(enf (un. vn) , en+' - en) 5 cIaklenlLrp-21 f (un ,  vn)lLq Ie n+l e n J  
P- 

< c ~ r k l l e ~ l l ~ l f  (un, vn)lLSlen+' - enl 

We infer from (49) that 

Let p = maz(0,a  - I), By using the inverse inequality (20) and the results of 

Theorem 3, we find 

Putting these inequalities into (50), and using the relation 

we arrive to  
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If we chose b3, 64 in (33)  small enough, we can derive from (53)  that 

Therefore 

len12 < ( 1  + < exp(c~zkn)le012 

which means the semi-group is Lipschitz continuous from S N  to  itself. 7 
We have then proven that the discrete semi-groups { s ( N ,  k ) " )  are continuous 

from S N  t o  itself and they possess absorbing sets in H as well as in V (see Remark 

1 & 2).  Therefore by applying the abstract existence theorem (Thm. 1.1 of [13]) in 

the discrete case, we have 

Theorem 5 The discrete semi-group { s ( N ,  k ) n )  possesses a maximal attractor AN,k 

i n  S N .  Moreover, { A N , k )  are uniformly bounded (independently of N and k) in  V. 

More precisely we have 

where B1 is given in the remark 2. 

4 Convergence of the Approximate Solutions 

Let us first introduce some approximate functions of u( t ) .  

DEFINITION: . U 1 ( t )  = ~ p ' ~ ) ( t )  : IR+ -+ H ,  is the piecewise constant function which equals 

to  un on [ n k ,  ( n  + 1)k ) ;  

( k ' N ) ( t )  : IFt+ -+ H ,  is the piecewise constant function which equals 0 u 2 ( t )  = u2 

to  un on [ n k ,  ( n  + 1)k ) ;  . 4 1 )  = ~ f ' ~ ) ( t )  : IR+ -+ H ,  is the continuous function which is linear on 

[ n k ,  ( n  + 1 ) k )  and u s ( n k )  = un,  ug((n + 1 ) k )  = un+l. 

As in [ I l l ,  we can prove 

Theorem 6 Under the hypothesis (931, for uo E H, we have . ujkvN)  -+ u (a, k ,  N - I  -+ 0) i = 1,2 ,3 ,  in Lm(to,  CQ; L ~ P ( O )  n V )  weak-star, 

vto > 0;  
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u{k'N) + u (as k, N-' 4 0) i = 1,2,3,  in L2(0, T;  V) n Lq(0, T ;  H )  strongly, 

V T > 0, 1 q < fco, provided k~~ 4 0 in case of i=1,3. 

SKETCH OF T H E  PROOF: By the definitions of u;, we can reformulate the scheme 

(9) as 

au3(t)l  v) f da(u2(t), Y) f ( ~ ( u ~ ( t ) ) ,  v) = 0 , V v E VN. (T (55) 
From the definitions of u,, One can readily check that (see for instance [ l l ] )  

Similarly, 
k /oT Iu2(t) - u3(t)12dt 5 -Go(no, T). 
36 (57) 

Then Theorem 3 and Theorem 4 (under uo E H )  can be reinterpreted as 

ujksN)(t)(i = 1,2 ,3)  are bounded independently of k, N in Lm(to, co; L2p(R) n 
V) and L2(0, T; V )  , V to, T > 0; 

&uFfN)(t) is bounded independently of k, N in ~ ~ ( 0 ,  T ;  V'); 

(k'N)(t)) is bounded independently of 6, N in Lq((0, T)  x 52). 4 %  

where q is given by the relation $ f $ = 1. 

Hence there exist Ui E LC0(to, co; L2p(a) n V) n ~ ' ( 0 ,  T; V )  , V to, T > 0 and a 

subsequence (k', N') such that 

(kt'Nt) 4 Ui (as k, N-l 4 0) in L2(0, T; V) weakly , i = 1 ,2 ,3  ui = ui 

,~(u( lk '~) )  + g(U1) (as k-, N-' + 0) in Lq((0, T )  x 52) 
a u ( k f ' ~ o ( t )  

( 5 8 )  

= + (as k, m -+ 0) in ~ ' ( 0 ,  T;V') weakly 

where V' = H - ~  is the dual space of V. 

In virtue of a classical compactness theorem (see for example Lions [GI), we derive 

from (58) that 
u3 = ~ f " ~ ' )  + U3 in ~ ' ( 0 ,  T;  H) strongly. 

We infer from (56)-(57)that U1 = U2 = U3 = u* and 

u, = u{kt'Nt) - u* in L2(0, T;  H)  strongly, i = 1,2 .  

With these strong convergence results, the passage to  the limit in (55) is standard 
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(see for instance Temam [12] for more details) and we find out that u* is indeed the 

solution of (1)-(2). 

The strong convergence in ~ ~ ( 0 ,  T ;  I/) can be proven by the following arguments 

similar as those used in [12]. 

Let us define 

From (58), we derive that 

Taking the sum of (14) for n from 0 to $ - 1, we obtain 

Let k ,  N-' -+ 0 in the last relation, we derive from (58) that 

By taking the inner product of (1) with u, we have 

a1u(t)12 t 2dl l~( t )11~ + 2(g(u( t ) ) ,~ ( t ) )  = 0. 
at  

The integration of which over [O,T] implies 
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This implies 

u2 -' u in L 2 ( 0 ,  T ;  V )  strongly 

Findly, by the definition of u l ( t ) ,  u 2 ( t ) ,  we have 

Similarly as in ( 5 6 )  

Therefore 

u1,  u s  + u in L2(0 ,  T; V )  strongly provided k~~ -, 0 .7  

5 Converaence of the Attractors 

For some technical reasons, more precisely due to  the lack of the uniform L"o(IR+ x 

0 )  stability for the approximate solutions, we will restrict ourselves in this section 

to  the cases 

I 5 2  or I = 3 , p = 2  (59) 

which ensure the following continuous embedding 

Let us first establish the following 

Lemma 5 We assume (33) and (59). Then V 0  < to  < T < m ,  s, u 2 1 ,  we have 

for uo E H ,  

Iun - u(nk)12 d3exp(d4(nk  - t o ) )  { k 2  + IW(to)  - u(to)12 -k N - ~ ~ I I u I I ~ ~ ( ( ~ , T ; H ~ )  

+~-~(~+')llu'11i~(,,~;~~~} , V to  < n* 5 T. ( 6 1 )  

where d3 ,  d4 > 0  depends on d ,  O , t o ,  T and luol; F3, F4 depends on d ,  R,  T and Iluoll. 

PROOF: Let us denote 
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and e0 = 0. 

Subtracting (9) from (I), by using (8), we find 

Hence 

(e', v )  + da(e, v )  = ( ~ ( u I )  - g(u ) ,  v )  - ( F ' ,  v )  , V v E V N .  (63)  

Since e E V N ,  we can take v = 2e in (63)  which gives 

where f is the function given in (47).  

By using (49), we derive 

It follows from (60)  and the results of Theorem 4 that 

Therefore 

where we have set G 4  = ~ ~ ( 0 ,  r )  = c ~ ~ G ~ ( O ,  r)'. 

For t o  given in (0 ,  T), we can choose r ,  no such that r + nok < to for k sufficiently 

small, it follows from (64)  and (66)  that 

d 1 
-~e(t)l' 5 ~ 4 l e 1 '  -k [ z 1 ~ e ' ~ ~ 2 1  4- G 4 ( b l  - u,l2 -k ill2)] , v t 2 to. (67 )  dt 

By using the Gronwall lemma, we derive that V t  E ( to ,  T ) ,  we have 

T 1  
l 2  5 4 - o l o 1 2  + [ille'll!~ + Gr(lu1 - UJI '  + l(l2)ldt}. (68)  

t o  

We infer from Theorem 4 that 



APPROXIMATIONS OF REACTION-DIFFUSION EQUATIONS 

We recall that (see for instance Canuto et al. [3]) 

and by using Lemma 6 (see below) 

Combining these resuIts into (68), we derive 

Therefore by taking t = n k in (71), we conclude that (61) is true with some constants 

d ~ ,  d4 only depending on d, Q, t o ,  T ,  luol. 

For uo E V n L 2 p ,  we proceed exactly as above with t o  replaced by 0, by using 

the results of Theorem 4 and e(0) = 0, we recover ( 6 2 ) .  1 

Remark 3 For uo E V n L 2 p ,  this theorem provides an optimal uniform error es- 

timate in  any inteval [to, T ]  (20 > 0) without further regularity assumptions on the 

solution. 

It remains to prove 

Lemma 6 

PROOF: Let us define an operator T by 
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One can readily check that T is continuous from H a  into H ' + ~  n H; for all s 2 0  

(see Maday & Quarteroni [ l o ] ) .  

Therefore, V u  E H; n HS, we infer from ( 7 3 )  and (8) that 

We then derive from (69) that 

Thanks to Theorem 2, we can apply Lemma 5 with s = 2 and a = 1, which gives 

Corollary 1 For luol < Ro,  there exist two constants d 5 ,  ds only depending on 

d ,  f2,to, T ,  Ro such that 

lun - u(nk)12 < dgexp(dg(nb - t o ) )  { I U ?  - u(t0)12 + N - ~  + k 2 )  , V lo < nk < T .  

( 7 4 )  

We are now in position to state our main theorem. 

Theorem 7 Under the assumption (331,  AN,^ converges to A  in the sense of serni- 

distance 

d ( A N , k , A )  -+ 0  as k ,  N-' -+ 0 .  

Equivalently, this means that for any neighborhood V  of A  in H ,  there exists N o ( V )  

and k o ( V )  such that 

 AN,^ c V , V N 2 NO and k  5 ko.  

PROOF: In order to apply the general convergence theorem (Thm. 1.2 of (131) in 

the discrete case, the only condition to be verified is that 

(*) u n  converges to u ( n k )  uniformly for 910 in a bounded set of H and for nk in 
any compact set of ( 0 , o o ) .  

In virtue of Corollary 1, we see that (*) is true if we can show for to  > 0 fixed and 

nk = to ,  we have 

Iun - u(to)l  -* 0  uniformly for uo in a bounded set of H.  (75) 



APPROXIMATIONS OF REACTION-DIFFUSION EQUATIONS 

We will prove (75) by a contradiction argument. 

If (75) were not true, we could find R l ,  b > 0, subsequences k,, N;' -+ 0 and 

uoj  satisfying luojl 5 R1 , V j such that 

where u j  is the solution of (1)-(2) with initial value u0,j; and u," = u;(k,, Nj) is the 

corresponding approximate solution of (9)-(10). 

By extracting a subsequence, still denote by { j ) ,  we can assume 

uo,j -4 vo weakly in H as j -+ m. 

Let v(t) denote the solution of (1)-(2) with initial value vo, the a priori estimates 

we obtained in Thm. 4 for un and the analog estimates for v(t) enable us to prove, 

in a standard manner, the following convergence results 

uj(tO) -+ v(tO) weakly in V as j -+ oo, 

uy -+ v(to) weakly in V as j - co. 
Hence 

uy - uj(to) + 0 weakly in V as j -+ co 

Since the embedding of V in H is compact, the above convergence holds strongly in 

H ,  in contradiction with (76). 7 
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