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NONLINEAR GALERKIN METHOD USING CHEBYSHEV AND
LEGENDRE POLYNOMIALS I. THE ONE-DIMENSIONAL CASE*

JIE SHEN' anD ROGER TEMAM#

Abstract. A new strategy, stemming from the nonlinear Galerkin method [M. Marion and R.
Temam, STAM J. Numer. Anal., 26 (1989), pp. 1139-1157], for solving linear elliptic and nonlinear
dissipative evolution equations by using Chebyshev and Legendre polynomials is presented. The
essential idea is to decompose the solution into a low mode part and a high mode part and to treat
them separately. The robustness of the method over the classical Galerkin method is substantiated
by rigorous error estimates and preliminary numerical experiments.

Key words. spectral-Galerkin method, spectral-tau method, Chebyshev polynomial, Legendre
polynomial, nonlinear Galerkin method

AMS subject classifications. 35A40, 65J15, 65M15, 65M70

1. Introduction. The exchange of energy between the low and high mode
components of a flow is an important aspect of nonlinear phenomena that needs to
be understood. An attempt to address this question from the computational point of
view appeared with the nonlinear Galerkin method, which was introduced in relation
with dynamical systems theory and the concept of inertial manifolds (see, e.g., [4],
(5], [7], [8], [14], [20], [22]. The nonlinear Galerkin method, which has proven to be
computationally efficient (cf. [6], [12], [11], is based upon a differentiated treatment
of the low and high mode components of a flow.

More generally, even for linear evolution equations and in the absence of turbu-
lence, certain forms of discretization produce, as we shall see, a coupling between the
small and large scale components of a flow. In this case too there is need, for computa-
tional efficiency, to study the coupling between the small and large scale components.
Indeed it is computationally inefficient to allocate as much computing resources to
compute the small scale component of the flow carrying little energy as we do with
the large scale component of the flow which carries most of the energy.

Our aim in this article is to study the coupling of the low and high mode com-
ponents of a flow when spectral discretizations, using Chebyshev or Legendre polyno-
mials, are implemented. This question is addressed for both linear elliptic equations
and nonlinear dissipative evolution equations. We restrict ourselves in this article to
the one-dimensional (1-D) case. In a subsequent article, we shall address the multidi-
mensional cases. We consider the special approximation methods based on Chebyshev
and Legendre polynomials, namely, the Galerkin approximation and the tau approx-
imation: our objective is to derive simplified versions of the classical algorithms that
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produce better conditioned systems and a reduction in computing time without affecting
the discretization error of the scheme under consideration.

The paper is organized as follows. In the next section, we introduce several
discrete spaces and related projectors that will be used in this work and we recall some
basic properties of approximations by Legendre and Chebyshev polynomials. In §3, we
describe in detail how we decompose the 1-D Poisson equation and Helmholtz equation.
We have also performed some preliminary numerical experiments that confirm the
theoretical results in this section. Finally, in §4, we propose and analyze two schemes
of nonlinear Galerkin type, followed by a discussion and a comparison with the classical
Galerkin scheme.

2. Preliminaries. Let ®,(z) be either the nth order Chebyshev T,,(z) or the
Legendre L, (z) polynomial; we set

Sm= span{®y(z), ®1(z),..., Pm(z)},

Qdam= span{®,,_1(z), ®m(z),..., Pam(z)}, where d is some integer of our
choice that may depend on m (the relation between d and m will be clarified later).
We set also

Qim= span{®y,_1(z), ®m(z),..., Pim—2(z)},

Vim={v € S : v(x1) = 0},

Wam= {w € Qam : w(£1) = 0}.

We recall that ®,(z) is a polynomial of degree n and therefore

(2.1) Sm =span{l,z,...,z™}.
It is also an easy matter to show that
(22) Sm—2 @ Qdm = Sdmv Sm—2 52 Q~dm = Sdm—2, Vm & de = Vdm-

For the latter relation, we observe that V,,N\Wy,, = @. Indeed this space is spanned by
®,,—1 and ®,,. Taking into account the homogeneous boundary condition at x = +1,
we conclude that any element in this space is 0.

Let I = (—1,1), we denote by

L2 (I): the weighted L? Hilbert space with the scalar product

(u,v)w = /u(x)v(x)w(m)dm Yu,v € L (I),
I

and the norm |u|, = (u, u)i,/Q, where w(z) = 1 in the Legendre case and w =
(1 —22)~1/2 in the Chebyshev case. In some cases, we will drop the subscript w when
w=1

H™(I) = {v e L}(I) : d*v/dz* € L2(I), k = 0,1,... ,n} the weighted Sobolev
spaces with the norm [|v||nw = (Xp_, J; [d*v/dz*|?wdz)/2. For any s > 0, H5(I)
can then be defined by interpolation. We set in particular

H,, (1) = {v € Hy(I) : v(*1) =0},
and for u € L2(I), we define

fillorp = sup Ve
veH} ,(I) vll1,0

We recall that the {®,(z)} satisfy the following orthogonality relations
(23) (Qz(w)’éj(x))w = Ci,wéij VZ’J Z Oa
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for some constants {c;,, }. From the above orthogonality relation and (2.1), we derive
that

(2.4)  (y,2)w =0 Vy € Sm-2, z € Qdm; and (Yzz,2)w =0 VY € Sm, 2 € Qdm.

These two simple relations are essential for the decompositions that we will address
in the next section.
Let us denote

aw(u,v) = /Ium(vw)zdm.

We recall that a(-,-)'/2 is a norm in H{,(J) equivalent to || - ||, and furthermore

au(-,-) is coercive and continuous on H} () x Hj ,(I). Namely, there exist a, 8 >0,
0,w O,w Y

such that

(2.5) au(u,v) < allulliollvlie  Yu.v € Hou (D),

(2:6) 0 (u,u) > Bllul, Vu € Ho (D).

The above two inequalities are trivially satisfied when w = 1. For the Chebyshev
weight, we refer to [2]. Hence a,(-,-)!/? can be viewed as an equivalent norm on
H} ,(I). To simplify our presentation, we set ||ul|1o = aw (u,u)/? and we will use C
to denote a generic constant that does not depend on d, m, and on any function.

We now introduce several projectors that will be used in the sequel:

P,,: the orthogonal projector in LZ(I) onto Sy,, namely,

(u— Ppu,v)o =0 YvESm, uE€ Li(I);
II,,.: the projector in H{ ,(I) onto Vi, defined by
ay(u—pu,v) =0 YWEVy, ue€ Hj ,(I);

II2,: the projector in H2(I) N Hj,(I) onto Vi, defined by
(2.7) —((u—T2,1)32,v)0 =0 V0 € Spm—2, u€ H2(I)n Hg ,(I).

We recall that for s > 0 (see [3]),
(28) Ju= Pl < Om~llullw Vu € H(D),
and for s > 1 (see, for instance, [16, Thm. 4.2]),
(2.9) vienvfm =)0 < Cm**|lullsw YO<v<s, weH(I)N Hg (D).

As for the two other projectors, we can prove Lemma 2.1.
LEMMA 2.1. For s >1 and u € H5(I)N Hg (1),

(2.10) lu — Tpullyw < Cm"°lluflsw VO<v <1

For s >2 and u € H(I) N Hy ,(I),

(2.11) lu — T2u)lyw < Cm"~*lullsew VO<v <2

Proof. The proof of (2.10) is standard and can be found, for instance, in [13].
Hence we will only prove (2.11).
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For v = 2, using (2.7) and since vz, € S,—2 for all v € V,,,, we find
llu = ull3, <Cll(u - M u)asll = ((u — T w)as, (u — Mint)es)w

= inf ((u—Ihu)ss, (u =)l

<Cllu— Tl inf [lu—vlz.
Hence, by (2.9), we obtain
(2.12) o= T2yl < C inf flu=vlz.0 < Cm2~*fullu
For v = 0, we use the following modified duality argument. Let v be the solution of
(2.13) —(VW)ge = (u — T2, u)w, v(£1) = 0.
In fact (2.13) is equivalent to
(2.14) au($,v) = (bs, (W)s) = (u — I u,¢) Vo € Hy ().

By (2.5) and (2.6), we find that (2.14) has a unique solution v € Hg ,(I) and, further-
more,

(2.15) [vll2w < Cllu = I ullw.
Hence, by (2.13), (2.12), (2.10), and (2.15), we derive
lu = 5 ull? = (v~ I u,u — I u)e = —(u — I, (vw)es)
=—((u- H%%u)m, V) = ¢€i§1"i:_2(—(u - anu)zm V=9

< Oll(u — MR w)azllo , inf  Jlv =8l
< O [luls w(m = 2)2||v]l2,0 < O™ |lulls wllu — I ullo.

The result for any v € (0,2) can be derived by interpolation. 0
Finally, let us define a new operator B,, from H(},w(I ) into V,,, by

(2.16) Bpu € Vy, (u— Bnu,v), =0 Yv € Sy_a,

i.e., v and B,,u share the first m — 2 modes, and the last two modes of B,,u are

determined by imposing the boundary conditions.
LEMMA 2.2. For s > 1 and u € H5(I) W Hg ,(I),

(2.17) lu — Bntu|lyw <Cm"*|ullsy V—1<wv <1
Proof. By definition, we have
(u — Bpu,v), =0 Yv € Sp,_s.
Since vy € Sp—2 for any v € V,,,, we get
(U — B, Uzg)w =0 Yo €V,,.
Hence, by (2.5) and (2.6), we find
lu — Bmu||?|w = ay(t — B, u — Bpu) = —(u — Bpu, (4 — Bpi)zz)w
= u;lsnvfm(—(u — Bpu), (U — 0)gz)w = vienvfm ay(u — v,u — Bu)

<a inf fu—vliulu—Buulr.
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Therefore, by (2.9),
(218) lu=Bnulw < a inf [lu—vlie < Cmt=*|ullow.

For v = —1, we use the standard duality argument. For any v € Hj ,(I), let w be the
solution of

(2.19) —Wyy =V, w(xl) =0.
Then, by using (2.5), (2.9), (2.18), and the regularity of w, we find

— B _ _
|luw— Bmu“—l,w = sup u’_& = sup (u — Bmu, Waz)w
veH] ,(I) ”’U“l,w veH} (1) “U”Lw
= sup inf (u = Bmt, (¢ ~ W)za)w
veH} (1) $€Vm lvll1,0
: aw(w — ¢7u - Bmu)
= sup inf
veH} (1) #€Vm lvll1,0

<alu-Bpuliw sup inf llw = ¢l
verd () #€Vm [l

< Om = ullogm? sup LB < opmi-sy,,.
veH} ,(I) vll1,w

We then conclude by using the interpolation for v € (—1,1). 0
Remark 2.1. Tt is interesting to note that in the Legendre case, B, = II,,. Indeed
by definition of II,,,

0 =a(u—Mpu,v) = —(u — Mo, vzz) Vv € Vi,
and it is obvious that the map di:f : Vin = Sm_2 is surjective and therefore
(u —pu,v) =0 Yv € Sp—2.

Hence II,,u coincides with B,,u.
For an introduction and a more detailed presentation of the spectral methods
using Chebyshev or Legendre polynomials, we refer to [10] and [1].

3. Low and high modes decomposition for solution of the 1-D Helmholtz
equation. In this section, we shall approximate the 1-D Helmholtz equation

(3.1) A —Ugy = fin T, u(£1) =0

with a new strategy. In fact, we shall decompose the approximate solution of (3.1)
into two parts: one with only “low modes” and one with only “high modes” (we refer
to the low (resp., high) mode as the low (resp., high) order Chebyshev or Legendre
polynomials). We then obtain the approximate solution by adding the solutions of
two decoupled subsystems.

3.1. Decomposition of the 1-D Poisson equation. The variational formula-
tion of the Poisson equation ((3.1) with A = 0) with homogeneous boundary condition
in the 1-D case is the following.

Find u € H{ ,(I) such that

(3.2) aw(u,v) = (f,v) Vv e Hg ().
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The Galerkin approximation of (3.2) in Vy, is the following,.
Find ugm € Vg such that

(3.3) au(Udgm,v) = (f,v)0 YV € Vim.

Legendre—Galerkin case. We decompose (3.3) as follows.
Find y,, € V,;, and zg,, € Wy, such that

(3.4) a(Yym,v) = (f,v) Vv € Vi,

(3.5) a(zdm,w) = (f,w) Yw € Wyp,.

By integration by parts and thanks to (2.4), we find a(ym,w) = —(d?ym/dz?,w) =
0 Yw € Way,. Similarly we have a(zdgm,v) = —(d?24m/dz?,v) = —(2am, d*v/dz?) =
0 Vv € V,,,. Therefore, we derive that y,, + 24gm = Ugm, which is the solution of the
Legendre-Galerkin approximation (3.3) in V.

Chebyshev—Galerkin case. We decompose (3.3) as follows.

Find y,, € Vi, and 24, € Wy, such that

(3.6) Ay (Ym + 2dm,v) = (f,0)w Vv € Vi,
(3.7) ay(zam, w) = (fyw)w Yw € Wyp,.
Once again since a, (Ym,w) = —((d?Ym/dz?),w), =0 Vw € Wy, we conclude also

that ¥, + 2agm = Udm.-

Therefore, from the error estimates for (3.3) (see, for instance, [10], [2]), we
have the following results for both Legendre (3.4)-(3.5) and Chebyshev (3.6)—(3.7)
approximations.

LEMMA 3.1.

lym + zam — ullv,w < CdM)"~°||flls—2w YVO<v <1<s.

We note that the system (3.4)—(3.5) or (3.6)—(3.7) can be solved efficiently by
using the new technique for spectral-Galerkin methods introduced in [17].

Chebyshev-tau and Legendre-tau cases. To avoid redundancy, we will treat
Legendre and Chebyshev cases simultaneously. The tau approximation of the 1-D
Poisson equation in Vg, is the following (see, for instance, [10]).

Find ugm € Vym such that

dPugm,
(3.8) - (—df?—,v> = (f,0)e Y0 E Sgm—2.

We can decompose (3.8) as follows.
Find y., € Vi, and z4,, € Wy, such that

d2 Ym d2 Zdm
dz? dz? ’

(3.9 v) =(f,v)0 YvE Sp_q,

dz2 ’

(3.10) - (dzzdm w) =(f,w)o Yw € Qum.
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Since ((d?ym/dz?),w), =0 for all y,, € Vin, w € Qum, and Sp—2 ® Qém = Sdm—2, it
is an easy matter to verify that ym, + 2dm = Udm, Which is the solution of the tau ap-
proximation (3.8) in V. Therefore, from the error estimate of the tau approximation
(cf., for instance, [18]), we have

LEMMA 3.2.

Yym + 2am — ullv,w < C(dm)""°||flls—2w YO<v<2<s.

It is well known that the system (3.8) (hence (3.9) once zam is known from (3.10))
can be transformed into an essentially diagonal system (cf. [10]). Similarly, we can
also transform (3.10) into an essentially diagonal system. In fact, in the Chebyshev
case, let f =3 o fuTn(z) and zgm = S anTn(z), then (3.10) is equivalent to
the following essentially diagonal system:

fn—2 en+2fn en+afn+2
W= D) 21 dnm+1) MTISPSA™
(311) dm
> (&D)"an =0,
n=m-—1

where e, = 1 for n < dm and e, =0 for n > dm. _
Knowing zgm, we let f + (d2zam/dz?) = S oo o fnTn(z) and ym = Y0 obnTn(z),
then (3.9) is equivalent to:

Cn—2fn—2 én+2fn én+4fn+2
bn = - ) S
(312) (4n(n—1)) 2(n%2-1) + dn(n+1) "
: N

> (&1)"b, =0,

n=0

A
3

Wherec():2andcn=1fornz1;én=1forn§m;andén=0forn>m.
Hence we can determine ., and 24, by solving two essentially diagonal systems.

3.2. Decomposition of the 1-D Helmholtz equation.

Case a (Galerkin approximation). As before, we will treat Chebyshev and Le-
gendre approximations together. The variational formulation of (3.1) (with A =1 for
simplicity) is the following.

Find u € Hj ,(I) such that

(3.13) (U, V)0 + aw(u,v) = (f,v) YV E H&W(I).
The Galerkin approximation of (3.13) in Vg, is
(3.14) (Udm, V)w + Gw(Udm,v) = (f,V)w YU € Vam.

We recall that the error estimate in Lemma 3.1 holds as well in this case. Unlike
the previous case, we will not seek an exact decomposition of (3.14). Instead we are
searching for an approximate decomposition maintaining the accuracy of (3.14). We
propose to approximate (3.13) as follows:

Find ym € Vi and z4m € Wap, such that

(3'15) (ym,v)w + ay, (Ym + 2dm, v) = (fa U)w, v E Vi,

(3.16) (Zdm, W)w + @ (2dm, w) = (f,W)w, w € Wy
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We note that in the Legendre case, since w = 1, the term a(zgm,v) in (3.15) is
equal to zero and hence can be deleted from the formulation. Once again the system
(3.15)—(3.16) can be solved efficiently by using the new technique for spectral-Galerkin
methods introduced in [17].
Since (y,w), # 0 and (2,v)y, # 0, Ym + 24m is no longer the solution of the
Galerkin approximation ugy, in (3.14). However, we have the following result.
THEOREM 3.1.

(3.17) v = Ym — 2aml1.0 < C((dm)' ™ +m™17°) || flls—2,0-
Proof. Let us prove first the following inverse triangular inequality:
(318)  36>0, st ly+zliy 260l + 2. VY€ Vin, 2 € Wan.

In fact by the definition of B,,, we have B,,y =y and B,z =0 for any y € V,,,, 2z €
Wam. Hence

Yy = Bm(y + 2), z= (I - Bn)(y+ 2).
It then follows from Lemma 2.2 that there exists v > 0, such that

lyll10 < Ylly + 2l1ws lzll1,0 < Ylly + 2ll10-

(3.18) follows from the above inequalities with § = v2/2.
Using the operator Ilg,,, we derive from (3.13) that

(3.19) (u, v+ w)y + au(gmu, v +w) = (fLv+w)y YweEVy,, we Wiy

Let us denote £ = Bpy,u—ym, N = (Bam—Bm)u—2z4m, and e = £+1 = BgmU—Ym — 2dam.
First we need to prove nn € Wy,,. By definition, we have

(v — Bpu,v), =0 Yv € Sp—2; (4 — Bamu,v)y, =0 Yv € Sgm—_2.

Therefore (Bgmu— Bnu,v) = 0 Vv € Sp—o. Hence Bymu— Bnu € Wy, and n € Wyy,.
Now subtracting (3.15) and (3.16) from (3.19), we obtain

(3.20) (U = Ym, V)w + (U — 2Zdm, W)w+aw (gmu — Banu, v + w)
ta,(e,v+w)=0 Yw eV, we Wi
Set v = ¢ and w = 7 in (3.20), since
(= Ym,v)w = (v = Bnu, v}y, + (€, v)u,
(u = zdm, W)w = (U — (Bgm — Bm)u, w)w + (7, w)w.
Thanks to (3.18), we find

8 1
IE1E + ImlE+5 UENT + InliF L) + S llellfu

<IENZ + Inll2 + llell3,, = —(u — B, €)w — (w,n).,
+ ((Bam — Bm)u,n)w — aw(Ilgmu — Bamu, €).

(3.21)

Using the Schwarz inequality, we can bound the right-hand side of the above equation
as follows:

—(u = Bmw, §)w < [lu— Bnul-10[l€llh,0 <
—(u,Mw = (I = Pm—2)u,N)w

- 6
< = Pzl -1ollnllie < 267 u = Posgully o, + 70l ..

1 .
567 = Bl + 81€13.0);
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Similarly,
(Bdmu — Bhu, n)u :(Bdmu —u, n)w + (u - Bmuv n)u

6 -
<l +267 (lu ~ Bmul2y o + llu = Bamull21,);

1
~au(Mamv = Bamu, €) < llel},, + [Tamu — Bamul3,,
1 -
< 7lel o + (Mamu — ullf, + lu = Bamull? )-

To bound ||u — Pp—2ul|| -1, We need to prove
(3.22) lu = Prull-10 < Cm—l_sHuHs’w.

Indeed, by (2.8),

o= Pot| 1 = sup (u = Ppu,v)w sup (u — Ppu,v — Ppo),
mU||-1,w = . —
veH} (1) l[vll1,e veH} (1) vll1,e
lv — Pnollw

< Cm—l—s”u”s,w-

<C|u— Pnu|, sup
veH} () llvll1,w

Combining these inequalities into (3.21), by virtue of (2.8), Lemmas 2.1 and 2.2, and
(3.22), we find

IENZ + 1Iml12 + llell? . <C(llu = Bmul® 1, + llu = Bamul2 + lu — Pm—gul?,,,)
+C(Jlu— Hdmu”%,u + [ju - Bdm“”%,w)
<CM* 179+ (dm)?0=9)||u||2,,.

Therefore, using the triangular inequality and Lemma 2.2, we conclude that

e = ym — zamll1w <llelliw + [lu = Bamull1w
<C((dm)'~* +m™ ) ullsw < C((dm)' ™ +m ™ )| f ls-20- O

Remark 3.1. We note that the first term of the error estimate (3.17) is inherited
from the classical Galerkin approximation (3.14), and the second term of the error
estimate (3.17) is introduced by dropping (ym,w). and (z4m,v). from (3.15)—(3.16).
However, as long as d*~  m?, (3.15)-(3.16) is as accurate as (3.14). See also some
related comments in Remark 4.5.

Case b (Tau approximations). The original tau approximation in Vg, for (3.1)
with A =11is

dugm,
dz?

(3.23) (Udms V)w — ( ,v) =(f,v)0 Vv € Sim—2.
w
It is easy to show that the optimal error estimate in Lemma 3.2 holds as well in
this case. We propose to decompose approximately (3.23) by the following decoupled
system.
Find y,, € Vi, and 24, € Wy, such that

d2ym dzzdm
(324) (ym,v)w — (W + W‘,’U){y = (f,’l))w V’U € Sm__z,
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d2 Zdm

(325) (zdmaw)w - (W’w) = (fa w)u Yw € Qm-

We note that similar to (3.9)—(3.10), the systems for (3.24)—(3.25) can be transformed
into two essentially tridiagonal form and can be efficiently solved in practice. As in

the Galerkin case, ¥, + 2dm # u4m. However, we can prove the following result in
Theorem 3.2.
THEOREM 3.2. For m sufficiently large, we have

”U —Ym — 2dm”2,w < C((dm)2_s + m_s)||f||s_2,w.
Proof. Using the operator I12_, we derive from (3.1) with A = 1 that

d?113, u ~
(u,v—}—w)w—(#—,v—Fw) =(f7v+w)w V’UESm_z, weQdm-

Let us denote § = 12 u—ym, n = (113, —T12,)u— 24, and e = £+1 = 113, U—Yum — Zdm.
Subtracting (3.24) and (3.25) from the above equation, we obtain

d2e

(3.26) (1 = Yy 0)us + (1 — 2, W)y — ( i

U+’w> =0 WweS,_,, wEQdm.

Now we set v = —P,_gez; and w = —(I — Pp,_2)ny, in (3.26) and treat each terms
as follows.

Since £z € Sm_2, we derive that w = —(I — Py—2)0zz = —(I — Ppi_2)es, and
v+ w = —ez,. Therefore, for the last term in (3.26), we have

1 1
zi(ezwv eza:)w + E(U +w,v+ w)w

1
=5 (lleaell% + lIvIE + [lwl2)

_(em:ca _ezz)w

1
=§(||em||i + ”Pm—2€xz”i +I(I - Pm—2)"lww||i)-
For the first and second terms in (3.26), we have

(3'27) (u — Ym, _Pm—Zeww)w = _(u - H12nuv Pm—2ezz)w - (67 Pm—Zezz)wa

(3.28) (U = zdm, W)w = (U, W)y — ((Him - an)u, w)y + (17, W)w-

To treat the five terms on the right-hand sides of (3.27)—(3.28), we will use frequently
integration by part, (2.8), and the Schwarz inequality. Indeed,

(M w)w = (1, —(I = Pm—2)Nez)w = (0, —Nea)w = ”"7”1 w>
(ga _Pm—2exz)w = _(gafm‘z)w - (EaPm—2n:c:c)u = “é“%,w + ((I - Pm—?)f,nxx)w
> €130 = 1 = Pra2)€llull( = Pr-2)ac |l
1
> l€l30 = I = Po2)ee 13 = 201 = Pr2)€lle

> ”6” - —” I Pm 2)77zz||2 - C(m 2) 1”5“1 w:

Therefore, for m sufficiently large, we have

1
_”(I - Pm—Z)nzz”Ef

(E, _Pm—Ze:z:x)w > C||77||%,w - 8
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Similarly,
(u, W)y = (u, =(I = Pm—2)Nez)w > — (I = Prn2)ullw||(I = Pr—2)nze|lw
2 = 21T = Pra)neall?, 200 ~ o)l
The last two terms can be easily bounded:

1
|(u = T u, Progea)u] < 2w = T0ulg + ol Prosecs |,

|((H§m - H?n)u, W)y =|((H3m - Hrzn)u» (I - Pr—2)Nzz)w|
1
<2183, ~ T2)ul + 3 (7 — P2,

Combining these inequalities into (3.26), using (2.8), Poincaré’s inequality, and Lemma
2.1, we find

lleae 12 + €113 + In1F o + (T = Pr—2)naellZ
< C{llu = IR ull?, + llu — Tl + (I = Pa—z)ul|?}
<C{m™ 4 (dm)™* + (m — 2)7*} [[u||2,,
< Cm7% |l

Finally, by Lemma 2.1, we conclude that

lu = Ym = Zamll2.w <llellaw + llu = MG pulzw < lezallo + lu - M3 ul.0
<C(m™* + (dm)**)lullsw < C(m™° + (dm)* )| flls-20- O

Remark 3.2.

(a) From Theorem 3.2, we realize that as long as d*~2 < m?, (3.24)-(3.25) is as
accurate as the tau approximation in Vg, (see also Remark 3.1).

(b) For each of the cases considered above, we have successfully decomposed the
system in V., into two decoupled subsystems. One of the nice features of the de-
compositions is that the two subsystems have substantially smaller condition numbers
than the original system. Hence, in general, the larger d is, the better conditioned
the system becomes. However, the smoother the solution is, the larger s is and the
smaller can we take d.

(c) Similarly, we can also apply our decomposition techniques to the biharmonic
equation or more generally to an equation of the form DZ*y + Lu = f with k = 1 or
2 and with a lower order (compared with D2*) constant coefficient linear operator L.
In fact, instead of using two coupled modes between V,,, and Wy, for the Laplacian
operator, we should use four coupled modes between V,,, and Wy, for the biharmonic
operator.

(d) See some related comments in Remark 4.5.

3.3. Numerical results. We have implemented the algorithm (3.15)—(3.16)
using the Legendre polynomials for solving the following Helmholtz equation

(3.29) U—tUgg = f(z)in], u(-1)=0, wu(+1)=1,
where f(x) is given by

fla) = { 0, z€[-1,0],

¥ —y(y-1)z72, z € (0,+1].
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The exact solution of this problem is

_ [0 z € [-1,0],
) = { 27, x € (0,+1].

We note that in solving (3.29), we actually use the so-called pseudo-spectral
Galerkin method, which is a common practice in the implementation of the spectral
method. More precisely, f is replaced by I4m f, the polynomial of degree less than or
equal to dm, which interpolates f at the Gauss-Lobatto points. Hence the pseudo-
spectral treatment introduces an extra error term: |f — Iymfllw < C(dm) ™| fllow
(see, for instance, [1]). In summary let ugm (resp., Ym + 2am) be the approximate
solution given by the pseudo-spectral Galerkin (resp., nonlinear Galerkin) scheme,
then (cf. Theorem 3.1)

e = wdmll1w < C ((dm) [ flls-2w + (dm) "7 [Ifllow) »
lu = Ym = Zamll10 < C ((dm)' =2 +m7 ) flls=2,0 + (dm) 7 [ fllow) -
Since, for any v > 2, we have
f(z) € HY™3/275(I), w(z) € H'™/?7¢(I) Ve >0.

Hence, we should expect a convergence rate of order v — % for the error in Hg (I) norm.

In Table 1, we have listed the errors in H}(I) by using the classical Galerkin
scheme (denoted by GAL) (3.14) in Vg, and the “nonlinear” Galerkin scheme (denoted
by NLG) (3.15)-(3.16) in V;;, X Wy, with various choices of d for v = 2. For the
Galerkin scheme (3.14), the errors in Hg (I) norm are defined as

Brr(dm) = {d L Z () — (am)s (le)zl"’}

SUPp<i<dm uz (2:)

For the scheme (3.15)—(3.16), the errors are computed according to

Err(dm) :={ 1 2‘% (@) = (Wm)o(@:) = (zdmmxmz}"’

d + 1 Sup0<z<dm I’U,I(.’L'z)lz

In Table 2, the same type of errors are listed for the case v = 3.

In Table 3, we have tabulated Err(dm)/Err(2dm) for the Galerkin scheme (3.14)
with 4 = 2 and vy = 3. The results clearly indicate that for v = 2, the scheme (3.14) is
first order convergent and for v = 3, it becomes second order convergent. The results
led us to conclude that in practice (3.14) has a convergence rate of order v —1 for the
given problem, which is essentially half order better than the theory predicted.

Therefore, to keep the scheme (3.15)—(3.16) as accurate as (3.14), the following
condition should be satisfied:

(3.30) 7 g mP

The results in Tables 1 and 2 indicate that as long as (3.30) is satisfied, the
solutions of (3.15)—(3.16) are essentially the same as that given by (3.14). However,
when (3.30) is violated, the solutions of (3.15)-(3.16) are less accurate than that of
(3.14), which are sometimes substantially less. Hence (3.30) is indeed the correct
criterion for choosing d.
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TABLE 1
Error in H}(I) Norm: v =2.

GAL NLG NLG NLG NLG NLG
dm | (d=1) | d=2 | d=4 | d=8 | d=16 | d=32
16 | 6.23E—-2 | 6.24E—2 | 6.25E—-2
32 | 3.02E—2 | 3.02E-2 | 3.02E—2 | 3.04E—-2
64 | 1.47E—-2 | 1.47TE—2 | 1.47TE—-2 | 1.47E—-2 | 1.52E-2
128 | 7.22E-3 | 7.22E—-3 | 7.22E-3 | 7.22E-3 | 7.22E-3 | 8.12E—3*
256 | 3.56E—3 | 3.56E—-3 | 3.56E—3 | 3.56E—3 | 3.56E—3 | 3.56E—3
* Condition (3.30) is violated!

/ TABLE 2
Error in HY(I) Norm: v =3.

GAL NLG NLG NLG NLG NLG
dm | (d=1) d=2 d=4 d=28 d=16 d=32
16 | 9.25E—3 | 9.26E—3 | 1.10E—2
32 | 2.23E-3 | 2.23E—3 | 2.24E-2
64 | 5.50E—4 | 5.50E—4 | 5.50E—4 | 5.55E—4 | 4.60E—3*
128 | 1.36E—4 | 1.36E—4 | 1.36E—4 | 1.36E—4 | 1.41E—4*
256 | 3.38E—5 | 3.38E—5 | 3.38E—5 | 3.38E—5 | 3.39E—5 | 3.88E—5*
* Condition (3.30) is violated!

TABLE 3
Err(dm)/Err(2dm) of the Galerkin approzimation.

16/32 | 32/64 | 64/128 | 128/256
y=2| 2.06 2.05 2.04 2.03
y=3| 4.15 4.05 4.04 4.02

4. Nonlinear Galerkin method. We consider a class of nonlinear evolution
equations of the form

(4.1) % — Vlugg + B(u)=f inlIx[0,T)]
Equation (4.1) is supplemented with initial condition u(x,0) = uo(z) and with the ho-
mogeneous Dirichlet boundary conditions u(+1,t) = 0. We assume that the nonlinear
term can be written as B(u) = B(u,u), where B(:,-) is a bilinear form.

To simplify our presentation, we will restrict ourselves to the Legendre-Galerkin
case. Hence w = 1 and we write || - lmw = || - [[m- We set V = H§(I) and b(u, v, w) =
(B(u,v),w) and assume that the trilinear form b satisfies

(4.2) b(u,v,v) =0 Yu,v €YV,
and
(4.3) b(u, v, w) < Cllullv|vllvilw] Vu,v,weV.

The variational formulation of (4.1) supplemented by the initial and boundary condi-
tions is
d
(4.4) %(u,v) + va(u,v) + b(u,u,v) = (f,v) YveV, tel0,T],
u(+,0) = uo(+).
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It is standard to show that there exists a unique solution u of (4.4) such that u €
C((o,T]; V).

In the sequel, we will use M to denote a generic constant that depends on v, T,
o, and on the solution u through M1 = sup,¢(o 7y llu(t)|lv-

Ezample 1 (1-D Burgers’ equation).

2 1
B(u) = UUg, B(u,'l)) = guvx + '?;U’U,z.

It is an easy matter to verify by using the Sobolev and Young inequalities that (4.3)
holds.
Ezample 2 (The Kuramoto—Sivashinsky equation). This equation reads as follows:

Ut — VUgggr + Ugg +uug = f, inl x [0,T],

with appropriate initial and boundary conditions. This equation is not exactly of the
type (4.1) since the principal linear operator is of fourth order. However, as noted in
Remark 3.2(c), the fourth order operator can also be decomposed accordingly; note
that the fourth order term is dissipative while the second order one is antidissipative
and drives the flow. As for the nonlinear term, we can define B(u) and B(u, v) similar
to those for the Burgers’ equation, and relations corresponding to (4.2) and (4.3) can
also be established accordingly (with || - ||v = || - [l2)-

The Galerkin approximation for (4.1) in Vg, is as follows.

Find ugm € Vgm such that

d
(4.5) zﬁ(udm,v) + va(ugm,v) + b(Uam, Uam,v) = (f,v) Vv € Vi,

with udm(-,O) = HdeO(')'

4.1. A first scheme. We assume here f is independent of time t; the cases
with a time dependent force f will be treated later in this section. We propose to
approximate (4.4) by the following scheme of nonlinear Galerkin type.

Find y,,, € V,,, and z4,, € Wy, such that

d
(4.6) Zﬁ(ym,v) + va(Ym, ) + b(Ym + 2dm, Ym + Zam,v) = (f,v) Vv € Vi,

(4.7 va(Zdm, W) + b(Ym + Zdm, Ym,v) = (f,w) VYw € Wy,

with yy,(+,0) = Hmuo(:).

Remark 4.1. The scheme (4.6)-(4.7) is a variation of the original nonlinear
Galerkin scheme proposed in [14]. The treatment of the nonlinear term here is com-
putationally more efficient.

THEOREM 4.1. Under the assumptions (4.2) and (4.3), and for m sufficiently
large, we have

1
2

T
(4.8) </O (v — ym — zdm)(p)”%dp> < M(dm)l's||u||Lz(0‘T;Hs)

+ Mm_s||u||L2(0,T;Hs) + Mml_"”ut“Lz(OyT;H-,—z).

Proof. The existence and uniqueness of Y, (t) and z4m, (t) on some interval [0, T},]
with Ty, < T follow directly from standard results on the Cauchy problem for a system
of ordinary differential equations. From the a priori estimate given below, one can
conclude that T,,, = T.
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Let us first derive an a priori estimate for y,, and zg4,. Using (4.2), we find

b(ym + Zdm,Ym + Zdm, ym) + b(ym + Zdm, Ym, de)
= b(Ym + 2dm, Ym + Zdm, Ym) + b(Ym + Zdm, Ym + Zdm, Zdm)
= b(ym + Zdms Ym + Zdm, Ym + zdm) =0.

Setting v = ¥, in (4.6) and w = 24, in (4.7), summing up the two relations and using
the above identity, we obtain

1d

v
5 g lvml? + vlymll} + vlizamll} = (f4m + 2zam) < CIFIP + 5 IymlIT + l1zam1D)-

Integrating the above inequality from 0 to ¢, since ||II,uo|| < C|luo||1, we derive

t T
(4.9) lym @) +1//0 (Igm 1} + l2amlI3)ds < C (Ilu()||?+/0 ||f||2d3) vt € [0,T].

We now turn our aitention to the error estimates. From the definition of I,
we find that the solution u satisfies
(4.10)

d
a(u,v+w)+u((ﬂdmu)m, (v+w)z) +b(u,u,v+w) = (fiv+w) Yve Vp,we Wyn.
Set e = Mugmt — (Ym + 2dm), € = it — Y, and n = (g — Iyn)u — 24m. We note

that e = €+, € € Vi, N € Wy, and since we have set ||ul|? = a(u,u), we have, in
particular,

(4.11) lelf? = lI€NT + lInl.

Subtract (4.6) and (4.7) from (4.10), since (yz,25) =0, for all y € Vi, 2 € Wap,
we find

(&,v) +va(e,v + w) =((Tlmpu — u)e, v) — (ug, w)
+ [6(Ym + Zdm, Ym + Zdm,v) — b(u, u, v)]
+ [b(ym + Zdms Ym. ’U)) - b(u, u, ’U))]

Now set v = £ and w = 7 in the above relation; we obtain

| &

CEN + vlell? =[((MTmu — u)e, §) = (ue,m)]
(412) + [b(ym + Zdm, Ym + zdm)g) - b(uv u, E)]
+ [b(ym + Zdms Ym. 77) - b(u’ u, "7)] = Il + I2 + IB-

| =
U

In the following, we will use frequently the Cauchy-Schwarz inequality, the Young
inequality, the Poincaré inequality, (4.2), and (4.3) to bound the three terms on the
right-hand side of (4.12).

First, since n € Wy, we get easily

I =[((Mmu — w), §) = ((I = Pm—2)uz,)]
(4.13) Sg(llﬁllf + [7113) + Cll(Mamu — w)el2y + CI(I = Prn-2)uel®,

v
=gllellt + Cll(Mamu — w)el|Zy + Ol = Prz)ue]2s.
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We rewrite I, as follows:

I = b(Ym + 2dm, Ym + 2am, €) — b(u, u, €)
= b(Ym + 2dm, Ym + Zdm, £) = b(Ym + 2dm, 4, §) + b(Ym + 2dm, u, £) — b(u, u,§)
= b(Um + zdm, Ym + 2am — 4, &) + b(Ym + 2am — u, u,§)
= =b(Ym + Zam,u — Mgmu + €,€) — b(u — Mgmu + €,u, §)
= —b(Ym + 2dm, v — Hamu, &) — b(Ym + 2Zam, €,€) — b(u — Ugmu + e, u, £)
= Iy + Iz2 + Ip3.
Similarly,
I3 = b(ym + 2dm, Ym,n) — b(u,u,n)
= b(Ym + Zdms Ym — ©, M) + b(ym + 2am — U, u,n)
= —b(Ym + 2dm,u — pu+&,n) — b(u — Hgnu + e, u,n)
= =b(Um + Zdm, v — mu,n) — b(ym + 2dm, &) — b(u — Mamu + e,u,n)
= I31 + I3z + I33.
Thanks to (4.2), we find

Ipo + Iz = =b(Yym + 2am, €,€) — b(Ym + 2dm, &, 1)
= =b(ym + zam, €,€) — b(Ym + zam, €,M) = =b(Ym + Zdm, €, €) = 0.
Using (4.3) and the Young inequality, we find
Iz + Is3 = —b(u — Hgmu + €, u, €)
< CO(llv — Mamully + [lell)llull el
< M(|lv — Hamull1llel| + [lel[llell1)
< 2 el + M(llu = Tamull? + [le]?).
Using (4.2), we find

Iy + I3y = =b(Yym + Zam, % — Mamu, &) — b(Ym + Zam,u — I, n)

= —b(Ym + zam, U — Hamu, €) — b(Ym + zam, Mamu — Mmu, n)

= ble — Hgmu,u — Mgnu, e) + ble — Mgpnu, Mgnu — yu,n)

= F; + FEs.
We derive from (2.18) that ||II,ull; < C|lu|l;. Then thanks to (4.3) and the Young
inequality, we get

Ey < C(|Mamullr + llell)llu — Mamull1[le]l
< Mlju — Hamul|1[le]| + Cllu — Hamull1lle]l[le]l1

v

< M(lu — Mamull? + le]*) + S llell} + Cllw = Mamul? el
v

< M(Ju = Tamull? + lle]®) + g llell?,

where we have used the fact that ||u — Igull; < C|lull; < M.
To estimate Ey, we use the following enhanced Poincaré inequality, which will be
proved below:

(4.14) l2]lw < Cm~ 2|10 V2 € Wapn.
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Using (4.3), (4.14), and the fact that ||n||; < ||le||; (see (4.11)), we find for m sufficiently
large,

Ey < C(Mamully + llell1) [Mmw — Mamul|1[In]|

< Cm™ (| Mamully + [lell1) ITmu — Mamull1 Il

< Mm ™[ Mnu — Mamulllelly + Cm™ [ Mnu — amul e}

v _ -
< ygllellt + Mm 2| lnu — Mamul[} + Mm™ [l
v
< Sllell + Mm ™2 — Mamu 3.
Therefore, combining the above inequalities, we derive
d _
Sl +vllel? < Mlel® + Mm™2 My — Tamul}
+C(|lu = Mamull} + [I(w = Tm)ue|2y + [|(I = Prz)ue|2y)-

(4.15)

By virtue of the enhanced Poincaré inequality (4.14), we find

llell® =l€ +nll* < 2[|€]1* + 2{in]|>
<2[¢ll* + Cm2|In} < 20|€lI* + Cm~2lel3.

Hence for m sufficiently large, we can rewrite (4.15) as

d -
€I + vllell} <MIIEI* + Mm=2|| T — Mamul}
+CO(Ilu = Mamullf + [I(u = Tmw)ell2y + (7 = Prz)uell2,).

Applying the Gronwall lemma to the above inequality and using Lemma 2.1, (3.22),
and noticing that £(0) = 0, we derive that for all ¢ € [0, 7], we have

t t
le(t) 2+ /0 le(e)dp < Mm~2 [ (1M =l + u = Tl
t
M / (I = Tamyll? + 1 = ool + (I = Prac)uel?.1)dbo
T T
<M o+ (@m)2) [ ulZdp+ M~ [l o
0 0

We then conclude from the above inequality and Lemma 2.2 that
T T
/0 1 = m — 2am) (o) |3dp < / lu — MamulZdp
T T
+ M(m~% + (dm)*~%) /0 lul2dp + Mm?=>" /O luel2_adp

T T
< MG+ (@mp*=) [ fuldp + M2 [ o

It remains only to prove (4.14). For any z € Wy, let w be the solution of the Poisson
equation —wgg; = 2, w(£1) = 0. Then by using (2.4) and (2.5), we find that

"2"2 = (2, ~Wgz) = vlel%f (2, —(w — V)zz)

<alzll inf flw-vll < Cllzlim™ lwll2 < Cllzim ™2l O
VEV,
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Remark 4.2. (a) Error estimates for the classical Galerkin scheme can be easily
recovered from the above process. In fact, taking d = 1, we have Wgm = {0} and
therefore 24, = 0. In this case, (4.6)—(4.7) reduce to the classical Galerkin scheme in
Vin, and y,, becomes the solution of the classical Galerkin scheme in V,,,. Repeating
the proof of Theorem 4.1 with z4, = 0, we can obtain the following error estimates
for the solution ugm, of (4.5):

1
T 2
(/O Il - Udm)(p)llfdp> <M (dm)'~*||ullz2(0,7:1%)

(4.16)

+ M (dm)' =7 [Jugl| L2 0,7 1v-2),
and
(4.17) () — wgm ()| <M (dm)'=* {||ull Lo 0,711y + el 20,72 }

+ M(dm)l_')’“ut||L2(0,T;H7—2) YVt € [O,T]

(b) Comparing (4.8) with (4.16), it is clear that the first term of the error estimate
in (4.8) is inherited from the classical Galerkin approximation, while the second term
of the error estimate is due to our nonlinear Galerkin treatment. However, since we
assume f is independent of time, we can show (see [9]) that u is analytic in time with
value in V. Using Cauchy’s formula for analytic functions, we can prove [|ut||s ~ [|lul|s.
Therefore by taking v = s + 2 in (4.8), we find that as long as d*~* < m, (4.6)-(4.7)
is as accurate as the classical Galerkin scheme (4.5) in Vgm,. Note that (4.16)—(4.17)
as well as the results in Theorem 4.1 are only valid for finite time intervals since the
constant M may depend (exponentially) on T'. It would be nice if this last result could
be extended in some way to unbounded time intervals.

(c) Error estimates in L*(0,T; H'(2)) norm can also be derived. We shall not
pursue this direction since the main purpose of our error analysis is to determine a
quantitative guideline for the proper choice of d.

We note that recently Marion and Xu [15] has derived similar error estimates for
the nonlinear Galerkin method in the context of two-grid finite elements.

4.2. A second scheme. For a general function f € L2(0,T; L*(I)), the solution
u will not be analytic in time, and therefore the term dzgm/dt may not be negligible
by comparison with v(2¢m )z and hence cannot be neglected in the approximation.
Consequently, we propose to approximate (4.4) by the following multilevel scheme of
nonlinear Galerkin type.

Find ym € Vi, and z4gm € Wy such that

d
(4.18) E(ym + Zdm, V) + va(Ym, V) + b(Ym + Zdm, Ym + 2dm) = (f,v) Vv € Vi,

d
(4.19) a(ym + Zdm, V) + Va(Zdm, W) + b(Ym + Zdms Ym,v) = (fw) Vw € Wam,

with ym(0) = Inuo and z4m (0) = (Mam — Im)uo.
The following results can be established for the above scheme.
THEOREM 4.2. Under assumptions (4.2) and (4.3), we have for m sufficiently
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large,
1
2

T
(/0 (v — ym — de)(p)llfdp) < M(dm)'~*|lull L2 (0,1, 17

+Mm™*ull L2 2oy + M(dm) = |luell L2 0,592

() =ym (t) = 2zam ()] < M(dm)'~* {||ull poo o, 7;m5-1) + lull L2(0,71) }
+ Mm™*|lullL20,7:m0) + M (dm) ™ |lug|| p20. 15042y VE € [0, T).

The proof of this result is very similar to, and in fact a little easier than, that of
Theorem 4.1. Hence we leave it to the interested readers.

Remark 4.3. (a) The linear part of the system (4.18)—(4.19) is not totally decou-
pled but it is indeed quasidecoupled since there are only two modes of coupling in
each direction.

(b) Comparing the result in Theorem 4.2 with (4.16)—(4.17), we find that again
as long as d*~! < m, (4.18)—(4.19) is as accurate as the classical Galerkin scheme in
Vim.

Remark 4.4. (a) It has been shown (cf. [19], [21]) that the stability conditions for
time discretized nonlinear Galerkin schemes of implicit-explicit or explicit-type only
depend on the number of low modes, while the stability conditions of accordingly
time discretized classical Galerkin schemes depend on the number of total (low and
high) modes. Hence the larger d is, the better the stability condition of the nonlinear
Galerkin scheme becomes.

(b) It is now transparent that the stronger the nonlinearity is, the more restrictive
the condition on d becomes. The error estimates in Theorems 4.1 and 4.2 and the
condition d*~! < m are optimal with respect to assumption (4.3) on the nonlinear
term. However for equations with weaker nonlinearities, such as the reaction-diffusion
equation and the Kuramoto—-Sivashinsky equation, the condition can be relaxed ac-
cordingly to d*~! < m* for some « € (1, 2].

Remark 4.5. The condition d*~! < m should be understood properly. At first
sight, it seems that for highly smooth functions (s >> 1) we are forced to choose
d ~ 1, which means no gain for the nonlinear Galerkin approach. However we should
keep in mind that the spectral accuracy can only be achieved when the structure of
the solution is fully resolved, otherwise the convergence rate of the spectral method
is only algebraic in m™!, even if the solution is infinitely differentiable. Thus for
intermediate realistic values of m, the proposed algorithm with the appropriate value
of d as indicated above may be most efficient. This remark applies as well for the
previous linear schemes since these schemes also produce a coupling between low and
high modes.
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