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Abstract

We propose and analyze a new pseudocompressibility method which is obtained by introducing a pressure
stabilizing/regularizing term in the equation of mass conservation. The perturbed system can be viewed as an
approximation to the incompressible Navier-Stokes equations, and its discretization can lead to efficient and
accurate numerical schemes for the Navier-Stokes equations. An error analysis for a related artificial compress-
ibility method for the Navier—Stokes equations is also carried out.
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1. Introduction

Let 2 € R? (with d = 2 or 3) be an open bounded set with a sufficiently smooth boundary. We
consider the unsteady incompressible Navier-Stokes equations:

u—vAu+ (u-Vi)u+Vp=F in2x][0,7], (1.1)
dive=0 in {2x[0,7], uli—g = uyp, (1.2)

subject to, for the sake of simplicity, the homogeneous Dirichlet boundary condition for the velocity u,
ie., ulpp = 0, Vt € [0, T). The purpose of this work is to propose and study a new pseudocompress-
ibility approximation for the system (1.1)—(1.2).

On of the main difficulties in a numerical procedure for approximating the solution of the Navier—
Stokes equations is introduced by the incompressibility constraint “div w = 07, which not only couples
the velocity w and the pressure p, but also requires that the approximation spaces for the velocity and
the pressure satisfy the so called Babu$ka—Brezzi inf-sup condition. There exists a vast literature on
numerical approximations of the Stokes equations and the incompressible Navier—Stokes equations in
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primitive-variable formulation. These numerical methods can be classified in three categories according
to how the incompressibility constraint is treated:

(i) Using a divergence-free subspace for the velocity approximation (see, for instance, [17,19]):
the pressure is then eliminated from the system, resulting in a well-behaved discrete system with a
significant smaller number of unknowns. However, the divergence-free subspaces are usually not easy
to construct and they involve in general tedious programming.

(ii) Using a pair of compatible subspaces which satisfy the Babuska—Brezzi inf-sup condition for
the velocity and the pressure (cf. [3,9] for finite element methods and cf. [5] for spectral methods):
the resulting discrete system is coupled and unfortunately indefinite.

(iii) Relaxing the incompressibility constraint in an appropriate way: this leads to a class of pseu-
docompressibility methods, among which are: the penalty method (cf. [12,24,26]) and the artificial
compressibility method in which the pressure can be eliminated but the resulting discrete system be-
comes ill-conditioned when the perturbation parameter £ < 1 (cf. [6,28]); the pressure stabilization
method (cf. [2,4,11] for the steady case and cf. [18,21] for the unsteady case) which results in a
coupled discrete system which is positive definite, though in general nonsymmetric; and the projection
method which leads to a cascade of decoupled discrete Helmholtz equations for the velocity and for
the pressure (see, for instance, [7,8,20,27]). The projection method is perhaps the most efficient and
the easiest to implement for solving the unsteady Navier—Stokes equations.

In this work, we introduce a new pseudocompressibility method, very similar to the pressure-
stabilization method (see [18,21]) in the sense that the artificial compressibility method is similar to
the penalty method. The new pseudocompressibility method we propose is to approximate the solution
(u, p} of the Navier-Stokes equations (1.1)—(1.2) by (u®, p°) satisfying the following perturbed system:

uj — vAu® + E('uf,ue) +Vp© = f, (1.3)
- op;

© _eApf =0 ~0 14

divu” — eAp; , on lan ) (1.4)

with ©®|i=p = uf, p°|i=0 = pf. We note that B(u,v) = (u-V)v+ 1(V - w)v is the modified bilinear
term, introduced in [26] to ensure the dissipativity of the velocity.

The perturbed system, similar to the system in artificial compressibility method, should be viewed
as an approximation to the system (1.1)—(1.2). We emphasize that efficient and accurate numerical
schemes for the Navier-Stokes equations can be constructed by discretizing (1.3)—(1.4). For instance,
we consider the following second-order scheme for (1.3)-(1.4) (corresponding to € = BAL?):

un—H —

14
YR EA(u”H +u") + Vp"2 = f(t,,12) — NLT,

. (1.5)

apn-H
on

op

a0 on

El

af

vV -u™t - gaA(ptt! — pt) =0,

where [ is an appropriate constant, NLT is a certain second-order approximation to B(wu(t,+1/2),
u(tyq1/2)). We shall consider two different choices for prt1i2,

(i) p"t1/2 = (1/2)(p"*! + p™). Then (1.5) is a coupled positive definite, though nonsymmetric,
system for (uw”*!,pn ).
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@iy p" 172 = (1/2)(3p™ —p™~"). In this case, ™! and p"*! in (1.5) are totally decoupled and can
be obtained very efficiently by solving a vector Helmholtz equation (for u™*!) and a scalar Poisson
equation (for p™*1).

Furthermore, the scheme (1.5) is very flexible in the sense that one can use virtually any discretization
pair for the velocity and the pressure, in particular, finite elements of equal order which are otherwise
unstable.

Moreover, the projection methods proposed in [13,31] can also be interpreted as time discretizations
of the perturbed system (1.3)—(1.4) (cf. [23,25]). Indeed, let us consider the following projection
scheme considered in [22]:

( ﬁn-}—l —unt

— ZA@ ") + Vp" = F(tns1j2) - NLT,

4 At 2 (1.6)
| (6n+l + un)|a.Q — O,
r un+l _ ,’l‘in+l 1
S v/ n+l _ .n =0
— (p p") =0,
§ . wrt — o, (1.7)

Lu"T! njpn =0.
Let P be the projector in L?(§2) onto the divergence free subspace

H={ve L*(22): V-veL*N), v-nlsg =0}. (1.8)
Then we have u™t! = Pu™*!, which explains why we refer (1.6)—(1.7) as a projection scheme. Note

that ™! can be eliminated from (1.6)—(1.7). Taking the sum of (1.6) at step n and (1.7) at step n — 1,
and applying the divergence operator to (1.7), we obtain

ﬁn+l A )

~n __— n one
- u" gA(u 4 py )+5V(3p —p"™ Y = f(tni1/a) — NLT, (1.9
("' + Pa")|,, =0.
1 opnt! dpn
vt n+l _ony _ p _or
V. SAtA(p ") =0, - ‘ag = - (1.10)

Thus, (1.9)—(1.10) is a second-order time discretization of the perturbed system (1.3)—(1.4) with ¢ =
(1/2)At%.

Therefore, the error behaviors of the scheme (1.5) and the projection method (1.6)~(1.7) are inti-
mately related to the approximation error of (1.3)—(1.4) with respect to (1.1)-(1.2). The goal of this
work is to study the perturbed system (1.3)—(1.4) and carry out an error analysis in term of the perturba-
tion parameter €. The results here may serve, in particular, as the guideline for obtaining second-order
error estimates for the scheme (1.5) and the projection methods proposed in [31] and [13]. Moreover,
it is hoped that the system (1.3)~(1.4) would lead to new efficient schemes for approximating the
incompressible Navier—Stokes equations.

One of the main difficulties in analyzing (1.3)-(1.4) is that it lacks a dissipative mechanism for
the pressure and does not possess the smoothing property enjoyed by (1.1)-(1.2). In fact, certain
compatibility conditions for the initial data are needed for the solution of (1.3)—(1.4) to be more regular
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or to have e-independent a priori estimates which are essential to the error analysis. These compatibility
conditions are conveniently satisfied by using the solution of (1.1)-(1.2) at a positive time #; as the
initial data for (1.3)—(1.4). The above comments apply as well to the artificial compressibility method
introduced in [6,28]. For the sake of comparison, we will also derive error estimates for an artificial
compressibility method. The results should be interesting for its own sake, although convergence rate
of some slightly compressible flows to the incompresible flows in different contexts and by totally
different techniques are also available (cf. [14,15]).

The rest of the paper is organized as follows. In the next section, we study the existence, uniqueness
and regularity of the perturbed system (1.3)—(1.4). In Section 3, we perform an error analysis for the
perturbed system with respect to (1.1)-(1.2). Then in Section 4, we derive error estimates for an
artificial compressibility method with respect to (1.3)—(1.4).

2. Study of the perturbed problem
2.1. Preliminaries

We describe below some of the notations and results which will be frequently used in this paper.

We will use the standard notations L?(£2), H*(12) and Hf(£2) to denote the usual Sobolev spaces
over £2. The norm corresponding to H*(£2) will be denoted by || - |¢.. In particular, we will use || - || to
denote the norm in L?(§2) and (-, ) to denote the scalar product in L?({2). As usual, the dual space of
H}(£2) will be denoted by H~!(£2) and the duality between them will be denoted by (-, -). The vector
functions and vector spaces will be denoted by bold face letters. To simplify the notation, we shall
omit the space variables from the notation, i.e., v(¢) should be considered as a function of ¢ with value
in a Sobolev space. We will use C to denote a generic constant which may depend on the data (2, v,
f. ..., but will be independent of the perturbation parameter <. Since we are only interested in the
case £ < 1, we will assume throughout the paper that 0 < £ < 1.

We now introduce some operators usually associated with the Navier-Stokes equations and its
approximations.

B(u,v) = (u - V), B(u,v) = (u-V)v + %(V u)v,

b(u, v, w) = (B(u,v),w), b(u,v,w) = (B(u,v),w).
We note that
bu,v,v) =0, YucV, VYoc H)(), (2.1)

where V = {v € H}({2): Vv = 0}. One can also easily check with integration by part that

1
b(u,v,w) = i{b(u,v,w) — b(u,w,v)}, Yu,v,w € H(;(Q). 2.2)
Therefore, we have

b(w,v,v) =0, Yu,ve HL ). (2.3)
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The inequality (cf. [1]) is useful for dealing with the trilinear form b:
ol 2l if d =2,
vl ooy < C Vv € H2(£2) N HY(92). 2.4)
/2, /2 .
ol ol if d =3,
The following three inequalities will be used repeatedly in the sequel.

b, v,w) < Cllulliloly ol Jw], Vv € HX(2) 0 H{(®), ww € HY(®). @25)

The above inequality is valid for d < 3. Occasionally, we will use the following inequality which is
only valid for d = 2:
7 1/2 1/2 /2
b(u, v,w) < Cllull [l (ol |wll ' llwly + Jwii ol o]l ),
Vu, v, w € H}(02). (2.6)
In most cases, the following inequality, which is valid for d < 4, is sufficient for our purposes:
lullifolhllwl, Y, v,w € Hy($2),
~ ulls||v|||wl];, Yue€ H* ()N H} (), v,w e H. (),
b, 0, w) < [[wll2]lv]l{]w] 2( ) (:( ) ?( ) @
[ull2llvlhllwll, vue H(2)NHy(£2), v,w € Hy(f2),
lullillvl2llwll, Yo e H*(2) N Hy(2), w,w € Hy(52).

These inequalities can be proved by using (2.2), (2.4), Holder’s inequality and Sobolev inequalities
(see, for instance, [29, Lemma 2.1]).
We shall frequently use, without mentioning, the following norm equivalences:

[olly ~ Vo]l Yo € Ho(52) or H'(R)/R,  [ull2 ~ ||Au]l, Vv € H(£2) N H(£2).

The following lemma of Gronwall type will be repeatedly used.

Lemma 2.1 (Gronwall lemma). Let y(t), h(t), g(t), f(t} be nonnegative functions such that
foTQ(t) dt < M and either

y(t) + /h(s) ds <y(0) + / (g(s)y(s) + f(s))ds, VO<t<T,
0 0

or
d

S+ () gy + f(), YOLLLT.

Then
y(t) + / h(s)ds < exp(M) (y(O) + /f(s)ds), VOo<t<T.
0

0
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2.2. Existence, uniqueness and regularity for the perturbed problem
Let us first establish the following results.

Theorem 2.1. We assume that
uf € Hy(2), p~ € H'(D)/R,  feL>(0,T:L* (D).
Then there exists Ko = Ko(v, f,T, 2, u§, p§) such that for
T, d=2,
To="Tole) = { min{T,s2/Ko}, d=3,
the problem (1.3)(1.4) admits a unique solution (u®,p®) in [0, Ty) satisfving
u® € L*(0,To; H*(£2)) N L™(0, To; Hy (£2)), p° € L=(0,To: H'(2)/R).
Proof (Outline). We use c; to denote constants only depending on {2 and use K; to denote constants
depending on v, f, T, {2, ug and pf.
The proof is based on a sequence of a priori estimates. We assume first that (u®, p®) is a sufficiently

smooth solution of the problem (1.3)-(1.4). Taking the inner product of (1.3) with u® and of (1.4)
with p®, summing up the two relations and using (2.3), we obtain

1 d £112 €112 e d
7 Gl P+ vlVes|® + 5 —

We then integrate the above inequality to get

c v 5 1
IVp*|? = (f,uf) < SIVu” + 5|\f||2_1.

4
e (8)||* + v/ [Vus (s)|’ds + | Vos (&) < K1, VEe [0,T), (2.8)
0
with
1
Ki = f a0z + lu§1® + V0512

To obtain further a priori estimates, we rewrite (1.3) as an equation for u® only, considering Vp°® as
a source function:

Ul — vAu® + B{uf, uf) = f — Vi,

u®(0) = ugp. 2.9)
Taking the inner product of (2.9) with —Auf, we derive

1 d -

5 IV P+ vllaw|? = —(F - Vp*, auf) + blw, u®, Au)

v 2 = e e
< gl + = (IFIP + 1VP°I2) + blw, us, Auf). (2.10)

Now the computation is different according to the space dimension.
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(1) For d = 2, we derive from the Sobolev inequality (2.4) that

b(u®, u®, Au®) <cp|[uf| Lo (@) luf |1 ||’

1/2 in _ v 2,6 2
N “13 < yiiaadl e [l Aw?|®.

< el 7wt ||

Thanks to the estimate (2.8), we have
200 [ 2c3 K?
2 [Pt s < 22 5L = o,
v v 14
0
Hence, integrating (2.10) and applying Lemma 2.1, we obtain
t

t
HVuE(t)H2 + V/ ||Vu5(s)||2ds <exp(K>) (HVUSH2 + / (Hf(s)“2 + HVpg(s)Hz) ds)
0 0
g%, vt € [0, 7). (2.11)
(ii) For d = 3, we use (2.4) and Young’s inequality to derive
b(u”, u, Au®) < cal|[uf|| Lo ) 111 [f 12
< esl| Vs P2 At P2 < S A 4+ 2 vul .
Thanks to (2.8) and the last inequality, we derive from (2.10) that
%HVUFHZ + I/||AU.EH2 < %ﬁ + KS||VUE||6. (2.12)
Setting y(t) = Ky/e + ||[Vus(t)||%, since we can always assume K5 > 1, we infer from (2.12) that y

satisfies the differential inequality:

d 3 Ky e2
—u< k =24 )
GV S Ksy, y(0) - + || Vug||

Solving the above inequality, we get

y(t) < ——20 1

fort{ —————
which also implies

2Ksy(0)?”°

1
4Ksy(0)2
Since there exists Ky > O such that
L 1 _ &
4Ksy(0)2  4Ks(Kafe +|[Vu§l?)? ~ Ko’

we conclude from the last inequality that

y(t) < 2y(0), fort <

£ 2 K4 £112 K . 52
|Vu (1)]|” < 2y(0) =2 — [Vugll* ) < — VO<t< Ty(e) = min T @13
0



78 J. Shen / Applied Numerical Mathematics 21 (1996) 71-90

Finally, we derive from the last estimate, (2.8) and (2.12) that

/HV'U,E(S Ids < —27 Vvt € [0, Ty). (2.14)

Now we have derived all the necessary a priori estimates. The remainder of the proof is then
standard with an implementation of the Galerkin method and an utilization of a compactness theorem.
We refer to [16] and [30] for more details on this matter,. O

By using the e-independent a priori estimate (2.8) for u®, one can prove by standard technique
(see, for instance, [30, Chapter 3]) the existence of a weak solution (uf,p®) € L*(0,T; H}(2)) N
L>®(0,T; L*(2)) x H™'(Q) in the three dimensional case. One can also establish the following
convergence results.

Proposition 2.1. Let (u,p) be the unique strong solution of (1.1)-(12) in Q@ =[0,T1]| x 2 (T1 =T
ifd =2, and T\ < T is a constant depending on the data if d = 3). Then under the assumption of
Theorem 2.1 and as € — 0, we have:

u® = in L*(0,T); Hy(R2)) and in L9(0,T1; L*(£2)) for all | < ¢ < 0,
Vpt = Vp in H(Q),
where (u®,p®) is the strong solution of (1.3)~(1.4) when d = 2, and (u®,p°) is any weak solution of

(1.3)-(1.4) when d = 3.

We note that the convergence of Vp® is too weak to have any practical significance, owing to the
lack of e-independent estimate of || Vp®||. In the next section we shall derive, by using a special initial
data (uf,py), e-independent estimates on 7 and improved convergence results for the velocity and
the pressure.

The solution of (1.3)—(1.4) possesses further regularities provided that the data is more regular. For
instance, we have the following regularity results.

Theorem 2.2. We assume that

ui € HY(2), pfe HY(Q)/R,  feL®0,T:L*2)), f.el*(0,T;H ().
Then the solution (u®,p®) of (1.3)~(1.4) satisfies

us € LOO(O,TO;HZ(Q) NHY(2),  uf e L0, To; L*(2)) N L*(0, To; Hy (£2)),

v, 0§ € L2(0,To; H' (2)/R).

Proof. Taking the time derivative of (1.3)—(1.4), we obtain
uj, — vAug + B(ug,u’) + B(u', uf) + Vi = fi, (2.15)

ap%t

divu; — eAp§, =0,
t Pit an lag

=0. (2.16)
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We complete the system (2.15)—(2.16) with the initial condition (u$(0),p%(0)) defined by

u§(0) = £(0) + vAuf — B(uf, u§) — Vpj, Q.17
op; (0)
£ _ P i —
eApE(0) = V - s, L }aﬂ 2.18)
The assumption on f, uf and pg implies that
. C C
ol <o (VO] < Zlugl < < 2.19)

We note that (2.17)~(2.18) can be rigorously justified by using the a priori estimates below and by
implementing a Galerkin method.
Taking the inner product of (2.15) with u; and of (2.16) with p§, in view of (2.3), we obtain

2SI+ ViR + 5 SRR = (o) — B(wf, )

v ~
< ZIVuil? + CIFE ) — blug, u®,wf). (2:20)

We now bound the nonlinear term as follows according to the space dimension.
(i) For d = 2, we use (2.6) and Young’s inequality to derive

Y e 3/2 enl/2
blug, s, u) < Cllus |l |l |+ Cllug /2 g |17 s /2] [l
< —||Vutn2 + O (|l |? + 1) [l e |12

Using (2.8), (2.19) and applying Lemma 2.1 to (2.20), we get
t

2 2 C
us ()| +/Hvu§(s)|\ ds + || Vo ||* < — Vte 0T,
0
(1) For d = 3, we use (2.5) and Young’s inequality to obtain

7 I3 5 5 enl/2 enl/2 14 £ £
blus, u, ) < Cllaag| [l [l 1y w1} < ZHVUszJrCHu [IRIETREY A (221)

By using (2.13), (2.14) and Schwartz inequality,

Ty 1/2 o
/ el <o o)< 5

then application of Lemma 2.1 to (2.20) with (2.21) implies that

t
[l ()| +/Hvui(s)nzds+5va§(t)|12 < % exp (;?/—2) vt € [0, Th).
0

We now rewrite (1.3), for each ¢, as an elliptic equation:

—vdut () + Blut (), w5 (1) = £(8) - uf() - Vp©(2),
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with u*(t)|a> = 0. Taking the inner product of the last relation with —Aw®(t), using (2.5) and previous
estimates, we derive readily that

s (®)]|, < M(e), Ve (0,To),

where M (¢) is some function — +o0o as € — 0. The proof of the theorem is then complete. O

Remark 2.1. We note that further regularity for the solution (u¢, p®) is only possible if the initial data
(ug, pg) satisfies certain compatibility conditions. In fact, in order to have u§ € L°°(0, Tp; H{ (2)),
we must have u5(0), as defined in (2.17), in H}(£2). In other wards, the data (u5,p§) must satisfy
the following compatibility condition

F0) + vAu§ — B(u§, u§) — Vi € HY(12). (2.22)
The above condition is reminiscent to the first compatibility condition for the Navier-Stokes equations
(see, for instance, [10,29]), but there is an essential difference. In the Navier-Stokes equations, p|;=o
is determined by (ug, f, {2) so that the compatibility conditions are of nonlocal nature and in general
cannot be satisfied no matter how smooth are the data (ug, f, {2). On the other hand, the compatibility

condition (2.22) is not of nonlocal nature since pfj is of our choice and for sufficiently smooth (u, f)
one can always choose pj to satisfy (2.22) and even further compatibility conditions.

3. Error estimates

In the last section, we have derived some a priori estimates for the solution of (1.3)—(1.4). However,
most of these estimates are e-dependent. Therefore, they are not suitable for the error analysis with
respect to €. Here we shall first derive some ¢-independent a priori estimates by using {u(to), p(to)),
the solution of (1.1)—(1.2) at t = fy, as the initial data for the system (1.3)—(1.4). We then use these
e-independent estimates to derive the desired error estimates.

Let us recall first some regularity results for the Navier—Stokes equations (1.1)-(1.2). It is well
known that (see, for instance, [10, Theorem 2.4]) for

ug € H*(2)nV,  feC([0,T); L*(2)), (3.1)
there exists 77 < T (I = T if d = 2) such that the solution of (1.1)—(1.2) satisfies
lu@®)||, + lu®)] + |p®)]], <C, Vte[o,T]. (3.2)

Higher regularity for the solution at ¢ = 0 requires that the data ug and f(0) satisfy certain nonlocal
compatibility conditions. However, thanks to the smoothing property of the Navier—Stokes equations,
the solution becomes as smooth as the data allows for ¢t > 0. We now state a regularity result which
1s sufficient for our error analysis (see, for instance, [10]).

Proposition 3.1. In addition to (3.1), we assume that
fi, fu € C([0, T); L*(£2)). (3.3)
Then for any to € (0,T), the solution of (1.1)~(1.2) satisfies
¢

Juee) |+ 0+ [ (e + (o) s < €. vee (.7 G4

t)
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Due to the lack of dissipative mechanism in the pressure variable, the system (1.3)—(1.4) does not
possess a similar smoothing property. In fact, for the solution of (1.3)—(1.4) to be more regular or to
have e-independent a priori estimates, the initial data must satisfy certain compatibility conditions.
In the rest of this section, we fix tp > 0 and consider the system (1.3)-(1.4) for t € [to, T;] with the
initial condition at ¢ given by

uf(to) = ulto),  p°(to) = p(to). (3.5)

We note that the initial data in (3.5) satisfies in particular the compatibility condition (2.22). Moreover,
it allows us to obtain further e-independent a priori estimates required by the error analysis.
The main results are collected in the following theorem.

Theorem 3.1. We assume (3.1) and (3.3). Then for to sufficiently small, there exists e-independent
To € (to, T1) (To =T if d = 2) and C > O such that V't € [to, Ty], we have

t
/“U(s) - uf(s)”zds +51/2Hu(t) — u‘f(t)“2 +e(||lu(t) - u‘e(t)HT + ||p(t) —pf(t)Hz) < Ce°.

ty

Remark 3.1. It appears that the results in Theorem 3.1 are comparable to those for the pressure
stabilization method in term of ¢ (see [18,21]). However, as pointed out in the introduction, the
projection schemes based on the pressure stabilization method are stable only if € ~ At, while the
projection schemes based on the system (1.3)—(1.4) are stable for £ ~ (At)z. Therefore, Theorem 3.1
suggests that the schemes (1.5) and (1.6)—(1.7) are second-order accurate for the velocity.

The remainder of this section is devoted to the proof of this theorem. We will first derive some
e-independent a priori estimates. Then we will split the errors into two parts and treat them separately.
The first part, which is the dominating part of the error, is the error introduced by perturbing the
linear operator. The second part, which is relatively smaller and easier to handle, is associated with
the nonlinear term.

3.1. e-independent a priori estimates

In order to prove Theorem 3.1, we need some e-independent a priori estimates which become
available thanks to the special initial data given in (3.5).

Lemma 3.1. We assume (3.1) and (3.3). Then for ty sufficiently small, there exists e-independent
Ty € (to, To] (To =T if d = 2) such that

[ O[3+ I @} <€, vt € [to, T, (3.6)

BT <O, vte [to, To). (3.7)

t
[ i)l ds + o + |
to

Furthermore, we have the following error estimates:

S () — we(2)||* < Ce, Vit € [to, To)- (3.8)
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Proof. Let us denote e = u — u®, ¢ = p — p°. Subtracting (1.3)—(1.4) from (1.1)—(1.2), we obtain the
error equation for (u®, pf):

e; — vie + E(ue,e) + E(e, u)+Vg=0, (3.9)
(V-e,7) +e(Va, V) = e(Vp, V), Vv € H'(2)/R, (3.10)

with e(?y) = 0 and ¢(ty) = 0.
Taking the inner product of (3.9) with e and setting v = q in (3.10), thanks to (2.3) and (2.5), we
obtain

1d
> =llell? + v Ve|? + = IIVCIII2 =&(Vpi, Vq) — ble, u, €)
2 dt

2 dt
<e(Vpu Va) + Clell llellfull *lull;
<SIVpP + 5190l + 21 9el + Cllufl ful el

Applying Lemma 2.1 to the above inequality and using (3.2), we obtain

t
He@ﬂf+ﬂC/HVe@NFds+sﬂvmfs;CS/Whh%@ﬂfdsng, vt € [to, T). (3.11)
ty to
We now take the inner product of (3.9) with —Ae, using (2.5) and (2.7), we derive

1d

2 2
5 Vel + el

Vq,Ve) + b(uf, e, Ae) + b(e, u, Ae)

=
(Vg,Ae) +b(u — e, e, Ae) + ble, u, Ae)
< (Vg, Ae) + C||V€H3/2||A€H3/2 + Cllul2[Ve] [Ae]

174
EIIAEII2 HVQII2 + C(|lull3 + IVe]Y) Vel (3.12)
Thanks to (3.2) and (3.11), we infer from the above inequality that
d
E(C’l + I|Ve||2) < Cz(Cl + ||Ve||2)3.

As 1n the proof of Theorem 2.1, we can derive from above that

IVe®)|* <2C1, Vto <t < Ty =min {Tl, 401012 } (3.13)
Using the above result and (3.12), we also get

t

/HVe WPds < C, Vg <t Th. (3.14)

to

We note that if d = 2, by using (2.6) on the nonlinear terms in (3.12), we have Tp = 7.
We now take the time derivative of (3.9)—(3.10) to obtain

ey — vAe; + E(uf, e)+ E(us, et) + E(et,u) + E(e, u) + Vg =0, (3.15)
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(v - €, 7) + 5(tht, V’Y) = S(VPtt» V’Y), V’Y € HI(Q)/R’ (316)
with
ei(to) =0,  qilto) = pu(to), (3.17)

as determined by (3.5) and (3.9)—(3.10) at t = {;.
Taking the inner product of (3.15) with e; and setting v = ¢; in (3.16), summing up the two
relations, we obtain

L e + vV + 5 vl
=e(Vpu, V) — bui, e, e;) — bler, u, e;) — ble, uys, e;)
€ € ~ ~ ~
< §||Vqt|\2 + §||tht||2 —b(uj, e, e;) — ble, u,e;) — ble,ut, e). (3.18)

We shall use (2.5), (2.7) and Young’s inequality to bound the nonlinear terms on the right-hand side
as follows:

B(ui, e e )= B(ut — €, e,e;)
/2, 1/2
< Clludlllelli Vel + Cllecl [ Vel el llelly
v
< gllV&tH2 + Clluditllellt + Cllelllell2lle:ll;

~ 12
bler, u, eq) < lec] | Ve [[ull < glIVer]* + Cllulille;

|2.

?

124
ble, ur, er) < Cllefliflueli| Ve < 3| Verl + Cllud el

Thanks to (3.13)—(3.14), we have
To T) Ty 1/2
| tecol el as < [ o< flelia) <
to to to

Collecting the above inequalities into (3.18), thanks to (3.2), (3.4), (3.11) and (3.17), we derive by
using Lemma 2.1 with y(t) = |le()]|* + &|| Vg (t)||* that

¢
Het(t)H2 + 1// HVet(s)szs + sHVqt(t)Hz < Ce, Vi€ fty, To)-
ty
Rewriting (3.9), for each ¢, in the following form:
—vAe(t) + B(uf(t), e(t)) + Ble(t), u(t)) = —e(t) — Vq(t),

taking the inner product of the above equation with —Ae(t) and using the available estimates on
IVa(), lle®)]l: and |es(t)|, we conclude that

le®ll, <C, Vte[to,Ta].

In order to get the remaining estimates in (3.7), we only have to consider Vg; in (3.15) as a source
term and apply the standard procedure. We leave the details to the interested reader. O
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Remark 3.2. We note that further differentiation in time to (3.15)—(3.16) would not lead to further
e-independent estimates. Indeed, we derive from (3.15)—(3.17) that e (to) = —Vaq;(to) = —Vp(to) #
0 which prevents us from obtaining

IVPe(t)| < C, Vte [to, To)- (3.19)
3.2. Error estimates for a linearly perturbed problem

Let (u,p) be the solution of the Navier-Stokes equations (1.1)-(1.2), we consider the linearly
perturbed problem:

v; — VAV + Vr® = f — B(u,u), (3.20)
£ £ ar'f
V.v® —eAr; =0, =0, (3.21)
on lan

where u(t) is the solution of the Navier—Stokes equations (1.1)—(1.2) and v*(¢p) = wu(to), 7°(to) =
p(to).
Denoting £ = u — v® and @ = p — 7%, subtracting (3.20)-(3.21) from (1.1)—(1.2), we obtain:

& —vAE+Vy =0, (3.22)

with S(to) =0 and '(,b(to) =0
It is obvious that the results in Lemma 3.1 are also valid for the linear case. In particular, we have

=@, + IOl + 1l <6 l&®| < Ce, Vit € [to, Tol. (3.24)

Lemma 3.2. Assuming (3.1) and (3.3), we have
t

/ &) ds + [ je@)||* + (@)} + w@)]*) < Ce2, V€ [to, To).

Ly
Proof. We begin by using a parabolic duality argument. Given ¢ € [to, To), let (w,¢) be defined by
the dual problem:
w, + vAw + Vg = £(s), s € [to,t],
V-w=0, sé€[t,t], (3.25)
wlan =0, w(t) = 0.

It is standard to show that
t

| ol + 9oy as < [ oo 626)

Taking the inner product of the first equation of (3.25) with £(s), using the error equations (3.22)~(3.23)
and the fact that “V - w = 07, we get
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E,ws +V(£ Aw) (q7V£)

ds

= 2 (6w) — (6 w) + V(A€ w) — <(V, V7)) = (€, w) -

e(Vq, Vrs).

85

Integrating the above relation in s from ¢, to ¢, since £(to) = 0 and w(t) = 0, we derive that for any

>0,

[ eGP as<e [ vae)[9r)]| ¢

ty

ty

<5/|!Vq(s)||2ds+520(5)/HVri(s)szs.

ty to

For ¢ sufficiently small, we derive from (3.26) and (3.24) that

[4
/H&(S)szs < CEz, Yt € [t(),T()].

to

We now consider another dual problem: Given t € [t, Tp], we define (w, q) by
ws + vAw + Vq = £,(s), s € [to, t],
V.-w=0,
wlap =0,

s & [to,t],

w(t) = 0.

Again, the solution (w, q) of (3.28) satisfies

[ Qo) + [vafyas < [ feof s

ty

ty

Taking the time derivative in (3.23), we get

(v : gtzﬁ)/)

+ &(Vu, V) = £(Vpy, V), Vv e H'Y(2)/R.

Taking the inner product of (3.22) with £; and using (3.30), we obtain
€l + = —I\Vélll (¥, V- &) = e(VY, Vpy) — e(VY, Viye)

Integrating the above equation and dropping some unnecessary terms, since ¥ (tp) = 0, we get

2 dt

(V. Vi) — e%ww,wt) + ][ T2

t

[ 1P ds + o9l < Ce [ (el + [6s)17) ds

ty

ty

+Celfin@)] o), + Ce [l s

to

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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By using the estimate (3.24), we have
le@)||, < C, Vte [to, Ty, i=0,1.
We then conclude from (3.4) and (3.31) that

t
/1I£t||2ds+ IVe®)|* < Ce, V€ [to, Th).

to
Now, taking the inner product of the first equation of (3.28) with £(s), we derive as above that

LGP = ) — e(va, w1

Integrating the above relation in s from ¢y to ¢, using (3.29) and (3.24), we obtain

e << [ 19a I9r5as <7 [ [Tato)]as + [ 9rs(o) s

Ly ty to

t
<Cel? / 1€5(s)|)*ds + C¥2 < O, i € [to, Th.
ty
Finally, we derive from (3.22), (3.24) and the previous estimates that
Y(t),V-v t),v) +(Vg§, Vo
Il <C WP((ﬁ ) _ o (£u(t), v) + (VE, Vo)
ve H) (1) vl[; veH} (1) vl

<C(|&®|| + |Ve®|) < ce'?, vie [t T O

3.3. Error estimates for the nonlinear problem

Let us denote p = v* — ©° and ¢ = r* — p°. Subtracting (1.3)—(1.4) from (3.20)—(3.21), we obtain
ni — vAn + V¢ = B(u®, uf) — B(u,u), (3.32)
(V-n,9) +£(Vey, Vy) =0, Vye H'(Q)/R, (3.33)

with n(to) =0, ¢(to) = 0.

Lemma 3.3. Under the assumption (3.1) and (3.3), we have

t

ln(t) +/HVn(s)szers”Vcb(t)Hz <0, telt,T)

ty

Proof. We recall that u — u®* = u — v* + v® — u® = £ + 7, hence

b(us,us,n) — B(U,u,n) = —b(u, &+ n,n) — 5(5 +n,u,n). (3.34)
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Taking the inner product of (3.32) with 1 and setting y = ¢ in (3.33), using (3.34) we obtain

1 d ) , €d T ~

S Sl 4 vl + 5 SIVEIE = ~bw? &,m) — B(& +m.u,m). (335)
The nonlinear terms can be bounded as follows:

~ v
b(u®,€,m) < Cllwc2lImlli gl < ZIVml* + Ol (311N,

b(& +n,u,m) < C(IEN+ IInl) wll2lnl < %Ilvn\l2 + Cllul2 (1€ + llnl*)-

Collecting the above inequalities into (3.35), thanks to Lemmas 2.1, 3.1 and 3.2, we get
t

Hn(t)”z-}—u/HVn(s)szs—l-sHng(t)Hz <0, vielto,Tol. O

ty

Proof of Theorem 3.1. We note that u — u® = £ + 7 and p — p* = 9 + ¢. Taking the inner product
of (3.32) with —An, in light of the results in Lemmas 3.1-3.3, it is an easy matter to get the crude
estimate: ||n|[? < ¢, V¢ € [to, To]. Then the results in Theorem 3.1 are direct consequences of this
inequality and Lemmas 3.2 and 3.3. O

4. Error estimates of an artificial compressibility method

As mentioned in the introduction, the new method (1.3)—(1.4) is similar to the artificial compressibil-
ity method in the sense that the pressure stabilization method in similar to the penalty method. Hence, it
is interesting and informative to compare the approximation properties of the new method (1.3)-(1.4)
with the artificial compressibility method. We consider here the following artificial compressibility
method:

uf—VAu5+§(u€,u5)+Vp€:f in 2 x [to, T, 4.1
V.ut + 6p§ =0 in 2 x [tQ,T]; ’u,a‘ag =0, (4.2)

subjected to the initial conditions: u®(tg) = u(to) and p°(t9) = p(to)-

Similar to (1.3)—(1.4), the main value of (4.1)—(4.2) is that its time discretizations are easier to solve
than direct time discretizations of (1.1)—(1.2). Let us consider for instance the following second-order
scheme for (4.1)—(4.2) with € = BAt?:

ul —ur v
At 2
v - un+l + ﬁAt(pn+l _pn) =0,

Al 4 u) + Vpr 2 = f(t,,) — NLT, (4.3)

As in (1.5), 3 is an appropriate constant and NLT is a certain second-order approximation to
B(w(tny1/2)s wltns1j2)). If we choose p™t1/2 = (1/2)(p"*! + p"), then we can either view (4.3)
is a coupled positive definite nonsymmetric system for (u"+!,p"*!), or eliminate p"*' from (4.3)
to obtain a positive definite symmetric, though ill-conditioned for At < 1, system for u™*! only.
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Hence, (4.3) is easier to solve than a direct discretization of the Navier-Stokes equations (1.1)—(1.2).
However, the scheme (4.3) becomes unstable if we choose p™t1/2 = (1/2)(3p™ — p™~ ).

Theorem 4.1. We assume (3.1), (3.3) and let to € (0,T)). Then for € sufficient small, we have

| (t) —ue(t)Hz‘f'/Hu(S) —u ()| ds + e||p(t) — F()|| < O3, Vi€ [to, Th),

where T is the same as in the Proposition 3.1.

Proof. Let us denote € = u — u® and ¢ = p — p®, subtracting (4.1)~(4.2) from (1.1)-(1.2), we obtain
e; — vAe + Vq = —B(e,u) — B(u®, e), (4.4)
V-e+eq = pt, 4.5)

with e(tp) = 0 and ¢(tg) = 0. Taking the inner product of (4.4) with e and of (4.5) with ¢, thanks
to (2.3), (3.4) and (2.7), we denive that

1 d ed -
= —llell* + v[Ve|* + 5 EEHQHZ =¢e(pt,q) — b(e,u, e)

2 dt
<e(pi,q) + Cllulzllel] Vel
<e(p ) + 5lIVelP + Cllell”. (4.6)

Since py, pu € C([to, T1]; L*(£2)) (cf. (3.4)), by the stability of the divergence operator (cf. [9,30)),
we can find, for each ¢, ¢(t) € H}(£2) such that

V- p(t) = pi(t), le@®]|, < Cllp:®)|l, vt € [to, T, 4.7)

and

V- pi(t) = pul(t), H<Pt(t)”l < Cllpa(®)]|,  Vt € [to, T]. (4.8)
Therefore, we infer from (4.4) that

e(pi,q) =e(V-p,q9) = —e(p,Vg)
=s(p,e) +£(Vep, Ve) + eb(u’, e, ) + cb(e, u, )

d ~ -
= E(‘Pa 6) - E((Pt, e) + E(V(P, VE) + Eb(us’ €, 90) + Eb(ea u, QO)

d v - -
<e 5w e) + ZlIVel® + Ce* (el + lellh) + eb(u®, e,0) + cble, u, p).
In view of (2.7), (4.7) and (3.4), we have
~ ~ v
eb(us e, ) =<b(u — e,e,0) < C=(llully + el lell el < (% + Ce) Vel + Ce*
~ v
hle.u, @) < Cellull el < £IVel? +C=*

Collecting the above results in (4.6) and integrating in time, we derive that for € sufficient small,
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t

el +v [ [Vets)|P ds + a0 < Celple). e(0) + €=

t
1
< EHe(t)”z +CEe®)||* + Ce?, Vi€ [, Th].
We conclude from (4.7) and (3.4) that

t
le®]|* + V/ IVe(s)|*ds +<llg®)|* < €2, Vie[t,Ti]. O
to

Remark 4.1. As an approximation to (1.1)—(1.2), (4.1)—(4.2) appears to be more accurate than (1.3)—
(1.4) is. However, for the reason mentioned above, appropriate time discretizations of (1.3)—(1.4) such
as (1.5) and (1.6)—(1.7) are more efficient and more flexible than time discretizations of (4.1)—(4.2)
such as (4.3).
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