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Summary. A Laguerre-Galerkin method is proposed and analyzed for the
Burgers equation and Benjamin-Bona-Mahony (BBM) equation on a semi-
infinite interval. By reformulating these equations with suitable functional
transforms, it is shown that the Laguerre-Galerkin approximations are con-
vergent on a semi-infinite interval with spectral accuracy. An efficient and
accurate algorithm based on the Laguerre-Galerkin approximations to the
transformed equations is developed and implemented. Numerical results in-
dicating the high accuracy and effectiveness of this algorithm are presented.
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1. Introduction

While the Legendre- or Chebyshev-spectral approximations for PDEs in
bounded domains have achieved great success and popularity in recent years
(see e.g. [11,8,5]), spectral approximations for PDEs in unboundeddomains
using Laguerre polynomials have only received limited attention. Pioneer
work on Laguerre approximation was developed in Gottlieb and Orszag,
[11] and Maday, Pernaud-Thomas and Vandeven [15], see also Funaro [10].
In [16,9,14] are numerical investigations to model linear elliptic equations
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using Laguerre-collocation or Laguerre-tau approximations, where difficul-
ties associatedwith the extremely ill-conditioned behaviors of the Laguerre-
spectral approximations were reported. Furthermore, there seems to be no
theoretical result available on Laguerre-spectral approximation for nonlin-
ear PDEs. Here, in addition to the numerical difficulties mentioned above,
another serious difficulty lies in the fact that the original formulations of
many nonlinear PDEs of interest, e.g. Burgers equation, BBM equation,
KDV equation and Kuramoto-Sivashinsky equation, are not well-posed in
a weighted (with weighte−x) variational formulation on which Laguerre-
spectral approximations are often based. Thus, the key to construct a stable
and convergent Laguerre-spectral approximation for such a nonlinear PDE
is to find a suitable transform such that the weighted variational formulation
of the transformed equation becomes well-posed.

The aim of this paper is to develop and analyze a Laguerre-Galerkin
approximation and to construct an efficient, accurate and stable numerical
algorithm for the Burgers equation and Benjamin-Bona-Mahony (BBM)
equation on a semi-infinite interval.

The Burgers equation can be viewed as an one-dimensional model for
theNavier-Stokes equations.Hence, solving theBurgers equation on a semi-
infinite interval is a first step towards solving the Navier-Stokes equations
in exterior domains which is an extremely challenging numerical task. The
BBM equation was introduced in [4] to model the movement of regularized
long waves. Numerous papers have been devoted to studying the BBM
equation both analytically and numerically (see for instance [6,1,3,7,13]).
However, most of the investigations were concerned with pure initial value
problems or initial-boundary value problems. In many practical cases, e.g.
water waves in a narrow and shallow stream coming from a large water
reservoir or waves originated by a wave maker, we are also interested in
studying the BBM equation on a semi-infinite interval.

For nonlinear PDEs on a semi-infinite interval, it may not be convenient
to use finite-difference method or finite-element method, since we have to
set up an artificial boundary and impose certain artificial boundary condi-
tions which may contaminate the accuracy of approximate solutions. Since
the Laguerre polynomials form an orthogonal system on the half line, it is
natural to approximate nonlinear PDEs on a semi-infinite interval by using
a Laguerre-spectral approximation. The techniques presented in this paper
will beuseful for studyingother linear andnonlinearPDEs in fluiddynamics,
quantum mechanics and other fields.

The rest of the paper is organized as follows. In Sect. 2, we provide some
basic results on Laguerre approximations. In Sect. 3, we propose a suitable
Laguerre-Galerkin approximation for the BBM equation and present the
stability and error analysis. In Sect. 4, we consider the Burgers equation. In
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Sect. 5, we construct efficient algorithms for the Burgers equation and BBM
equation, and present some numerical results. Some concluding remarks are
given in the final section.

2. Some preliminary results on Laguerre approximation

The Laguerre polynomial of degreel is defined by

Ll(x) =
1
l!
ex dl

dxl
(xle−x), l = 0, 1, 2, . . . .

Note thatLl(x) is the l-th eigenfunction of the singular Sturm-Liouville
problem

d

dx
(xe−xdv(x)

dx
) + λe−xv(x) = 0

with the corresponding eigenvalueλl = l. For anyl ≥ 0, we have

|Ll(x)| ≤ e
x
2 , x ∈ R+.(2.1)

Let us now define some suitable functional spaces for Laguerre approx-
imation. Letω(y) = e−y and

Lp
ω(R+) = {v| ‖v‖Lp

ω
< ∞}

where

‖v‖Lp
ω
=




(
∫

R+
|v(y)|pω(y)dy) 1

p , if 1 ≤ p < ∞,

ess sup
y∈R+

|v(y)|, if p = ∞.

In particular,L2
ω(R+) is a Hilbert space equipped with the following inner

product and norm

(u, v)ω =
∫ ∞

0
u(y)v(y)ω(y)dy, ‖u‖ω = (u, u)

1
2
ω .

Furthermore, for any non-negative integerm, we define

Hm
ω (R+) = {v| d

kv

dxk
∈ L2

ω(R+), 0 ≤ k ≤ m},

which are associated with the following semi-norm and norm

|v|m,ω = ‖d
mv

dxm
‖

ω
, ‖v‖m,ω =

(
m∑

k=0

|v|2k,ω

) 1
2

.
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Then for anyr > 0, the spaceHr
ω(R+) and its norm‖v‖r,ω can be defined

by interpolation as in Adams [2]. We denote in particular

H1
0,ω(R+) = {v| v ∈ H1

ω(R+) and v(0) = 0}.
It is well-known that∫ ∞

0
Li(x)Lj(x)e−xdx = δij , ∀i, j ≥ 0.(2.2)

In other words, the set of Laguerre polynomials form an orthonormal basis
for L2

ω(R+), and any functionv ∈ L2
ω(R+) can be expanded as

v(x) =
∞∑
l=0

v̂lLl(x) with v̂l =
∫

R+

v(x)Ll(x)e−xdx.

Let N be any positive integer, andPN be the space of polynomials of
degree at mostN . P0

N = PN ∩H1
0,ω(R+). LetPN : L2

ω(R+) → PN be the
L2

ω–orthogonal projector, i.e., for anyv ∈ L2
ω(R+),

(v − PNv, φ)ω = 0, ∀φ ∈ PN .

For any positive integerβ, we define the space

Hr
ω,β(R+) = {v ∈ Hr

ω(R+)| x
β
2 v ∈ Hr

ω(R+)}

with the norm‖v‖r,ω,β = ‖v(1 + x)
β
2 ‖r,ω. As usual,ω will be omitted from

the notations in case ofω ≡ 1. Hereafter,C will denote a generic positive
constant independent ofN .

Maday, Pernaud-Thomas and Vandeven [12] proved the following im-
portant result (see also [10] and [5]):

Lemma 2.1 Letr ≥ µ ≥ 0andβ be the largest integer forwhichβ < r+1.
Then

‖v − PNv‖µ,ω ≤ CNµ− r
2 ‖v‖r,ω,β , ∀v ∈ Hr

ω,β(R+).

We define theH1
ω–projectorP

1
N : H1

ω(R+) → PN by

(
d

dx
(v−P 1

Nv),
d

dx
φ)ω+(v−P 1

Nv, φ)ω = 0, ∀φ ∈ PN , v ∈ H1
ω(R+).

Similarly, we define theH1
0,ω–projectorP

1,0
N : H1

0,ω(R+) → P
0
N by

(
d

dx
(v − P 1,0

N v),
d

dx
φ)ω = 0, ∀φ ∈ P

0
N , v ∈ H1

0,ω(R+).
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Lemma 2.2

‖e− x
2 v‖L∞(R+) ≤

√
2‖v‖

1
2
ω |v|

1
2
1,ω,

‖v‖ω ≤ 2|v|1,ω,
∀v ∈ H1

0,ω(R+).

Proof. For anyx ∈ R+,

e−xv2(x) =
∫ x

0

d

dy
(e−yv2(y))dy

= 2
∫ x

0
e−yv(y)

dv(y)
dy

dy −
∫ x

0
e−yv2(y)dy,

from which we derive

e−xv2(x) +
∫ x

0
e−yv2(y)dy ≤ 2

∫ ∞

0
e−y|v(y)dv(y)

dy
|dy ≤ 2‖v‖ω|v|1,ω,

(2.3)

which implies the first conclusion. Lettingx → ∞, we get the second result.
��

Lemma 2.3 Let r ≥ 1 andβ be the largest integer for whichβ < r. Then

‖v − P 1
Nv‖1,ω ≤ CN

1
2− r

2 ‖v‖r,ω,β , ∀v ∈ Hr
ω,β(R+).

Proof. Let

u(x) = v(0) +
∫ x

0
PN−1

dv(y)
dy

dy.

Thenv − u ∈ H1
0,ω(R+). Thanks to Lemma 2.1, we find

‖v − P 1
Nv‖1,ω ≤ ‖v − u‖1,ω ≤ C|v − u|1,ω = ‖dv

dx
− PN−1

dv

dx
‖ω

≤ CN
1
2− r

2 ‖dv
dx

‖r−1,ω,β ≤ CN
1
2− r

2 ‖v‖r,ω,β . ��

Lemma 2.4 Let r ≥ 1 andβ be the largest integer for whichβ < r. Then

‖v − P 1,0
N v‖1,ω ≤ CN

1
2− r

2 ‖v‖r,ω,β , ∀v ∈ H1
0,ω(R+) ∩ Hr

ω,β(R+).

Proof. By Lemma 2.2 and the definition ofP 1,0
N ,

‖v − P 1,0
N v‖2

1,ω ≤ C|v − P 1,0
N v|21,ω = C(

d

dx
(v − P 1,0

N v),
d

dx
(v − φ))ω

≤ C‖v − P 1,0
N v‖1,ω|v − φ|1,ω, ∀φ ∈ P

0
N .
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Thus

‖v − P 1,0
N v‖1,ω ≤ C inf

φ∈P0
N

|v − φ|1,ω.

Then, the desired result can be proved as in Lemma 2.3 by takingφ(x) =∫ x
0 PN−1

dv
dydy in the above inequality. ��

3. Laguerre-Galerkin method for the BBM equation

The BBM equation (see [4]) on a semi-infinite interval reads:



∂tv +

1
2
∂yv

2 − δ∂t∂
2
yv = h, y ∈ R+, t ∈ (0, T ],

v(y, 0) = v0(y), y ∈ R+,

v(0, t) = g(t), lim
y→∞ v(y, t) = lim

y→∞ ∂yv(y, t) = 0, t ∈ (0, T ],

(3.1)

whereT > 0, δ is a positive constant,h(y, t) andg(t) are respectively the
source term and the boundary value aty = 0, v0(y) is the initial value. We
assume that the compatibility conditionv0(0) = g(0) holds and thath(y, t)
andv0(y) decay fast enough wheny → ∞. The well-posedness of (3.1) in
the classical sense can be found in [6,7].

Weshall consider theLaguerre-Galerkinapproximationof (3.1).Without
loss of generality, we assumeg(t) ≡ 0. In order to take advantage of the
orthogonality of the Laguerre polynomials, it seems natural to consider the
following weak formulation for (3.1):
Findv∈L∞(0, T ;H1

0,ω(R+)) such that


(∂tv, φ)ω +

1
2
(∂yv

2, φ)ω + δ(∂t∂yv, ∂y(φω)) = (h, φ)ω,∀φ∈H1
0,ω(R+),

v(·, 0) = v0(·).

(3.2)

Unfortunately, this formulation is not suitable for the reasons specified be-
low. In fact, takingφ = v in (3.2) and integrating by parts, we obtain

1
2
d

dt

{‖v‖2
ω + δ|v|21,ω

}− δ(∂t∂yv, v)ω = −1
2
(∂y(v2), v)ω + (h, v)ω.

Notice that the last term on the left-hand side may not be positive and
can not be properly controlled. Furthermore, as explained in Sect. 2, even
in the absence of the nonlinear term, the above formulation will not lead to
satisfactory approximation forx large. Thus,we shall consider an alternative
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formulation of (3.1). We first make a change of variable:y =
√

δ
2 x, and let

w(x, t) = v(y, t), h̃(x, t) = h(y, t). Then, (3.1) becomes

∂tw +
1√
δ
∂x(w2) − 4∂t∂

2
xw = h̃.

Setting

u(x, t) = e
x
2 w(x, t) = e

x
2 v(

√
δ

2
x, t),

f(x, t) =
1
4
e

x
2 h̃(x, t) =

1
4
e

x
2 h(

√
δ

2
x, t),

the BBM equation (3.1) withg(t) ≡ 0 becomes




1
4
√
δ
e

x
2 ∂x(e−xu2) + ∂t∂xu − ∂t∂

2
xu = f, x ∈ R+, t ∈ (0, T ],

u(x, 0) = u0(x) = e
x
2 v0(

√
δ

2
x),

u(0, t) = 0, t ∈ (0, T ].

(3.3)

Let us denote

a(u, v) =
∫ ∞

0

du

dx

dv

dx
e−xdx,

b(u, z, v) = b1(u, z, v) + b2(u, z, v),
(3.4)

with

b1(u, z, v) = −1
4

∫ ∞

0
e− 3x

2 u(x)z(x)
dv

dx
dx,

b2(u, z, v) =
1
8

∫ ∞

0
e− 3x

2 u(x)z(x)v(x)dx.
(3.5)

The key property which imply the suitability of (3.3) is

Lemma 3.1
b(u, u, u) = 0, ∀u ∈ H1

0,ω(R+).

Proof. The result follows from the definition and by integration by parts,
since

b1(u, u, u) = −1
4

∫ ∞

0
e− 3x

2 u2du

dx
dx = − 1

12

∫ ∞

0
e− 3x

2 du3

= −1
8

∫ ∞

0
e− 3x

2 u3dx = −b2(u, u, u), ∀u ∈ H1
0,ω(R+). ��
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Hence, we shall consider the following variational formulation of (3.3):
find u ∈ L∞(0, T ;H1

0,ω(R+)) such that


1√
δ
b(u(t), u(t), φ) + a(∂tu(t), φ) = (f(t), φ)ω,

∀φ ∈ H1
0,ω(R+), t ∈ (0, T ],

u(0) = u0.

(3.6)

The Laguerre-Galerkin approximation for (3.6) is:
find uN (t) ∈ P

0
N for all 0 ≤ t ≤ T , such that



1√
δ
b(uN (t), uN (t), φ) + a(∂tuN (t), φ) = (f, φ)ω,

∀φ ∈ P
0
N , t ∈ (0, T ],

uN (0) = uN,0 = P 1,0
N u0.

(3.7)

Let us first establish the following result:

Lemma 3.2 Let f ∈ L2(0, T ;L2
ω(R+)) andu0 ∈ H1

0,ω(R+). Let u and
uN be respectively the solution of(3.6)and(3.7). Then

‖u(t)‖1,ω, ‖uN (t)‖1,ω ≤ C(‖f‖L2(0,T ;L2
ω(R+)) + ‖u0‖1,ω), t ∈ (0, T ].

Proof. Takeφ = u(t) in (3.6), thanks to Lemmas 3.1 and 2.2, we find

d

dt
|u(t)|21,ω = 2(f(t), u(t))ω ≤ 2‖f(t)‖ω‖u(t)‖ω ≤ C‖f(t)‖ω|u(t)|1,ω.

Applying theGronwall lemma to the above inequality, we obtain the desired
result foru(t). The result foruN (t) can be proved similarly. ��

Hereafter, we useC1 to denote a generic positive constant which may
depend on the data (i.e.u0, f , r), but is independent ofN . We now analyze
the stability of (3.7) in the sense of Guo [12,13] and Stetter [19].

Theorem 3.1 LetuN andûN be respectively the solutions of(3.7)with data
(f, uN,0) and(f̂ , ûN,0). We denotẽf = f̂ − f andũN = ûN − uN . Then

|ũN (t)|21,ω ≤ C1(|ũN,0|21,ω +
∫ t

0
‖f̃(s)‖2

ωds), ∀t ∈ (0, T ].

Proof. By definition in (3.4–3.5), we have

b(u, v, φ) = b(v, u, φ), ∀u, v, φ ∈ H1
0,ω(R+).(3.8)
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Hence,̃uN satisfies the following equation:


1√
δ
b(ũN (t), ũN (t), φ) +

2√
δ
b(ũN (t), uN (t), φ)

+ a(∂tũN (t), φ) = (f̃(t), φ)ω,∀φ ∈ P
0
N ,

ũN (0) = ũN,0.

(3.9)

By takingφ = 2ũN in (3.9), it follows from Lemma 3.1 that

d

dt
|ũN (t)|21,ω +

4√
δ
b(ũN (t), uN (t), ũN (t)) ≤ 2‖f̃(t)‖2

ω + |ũN (t)|21,ω.

Thanks to Lemma 2.2, we find

4|b1(ũN (t), uN (t), ũN (t))| ≤ ‖e− x
2 uN (t)‖L∞‖ũN (t)‖ω|ũN (t)|1,ω

≤ C1‖ũN (t)‖ω|ũN (t)|1,ω ≤ C1|ũN (t)|21,ω.

Similarly, we have

4|b2(ũN (t), uN (t), ũN (t))| ≤ C1‖ũN (t)‖2
ω ≤ C1|ũN (t)|21,ω.

Thanks to the above estimates, we find that
d

dt
|ũN (t)|21,ω ≤ C1(‖f̃(t)‖2

ω + |ũN (t)|21,ω).(3.10)

We conclude by applying the Gronwall lemma to the above inequality.��
We now consider the error analysis for (3.7). LetwN = P 1,0

N u. Then it
follows from (3.6) that




1√
δ
b(wN (t), wN (t), φ) + a(∂twN (t), φ)

+ e(u(t), wN (t), φ) = (f(t), φ)ω, ∀φ ∈ P
0
N ,

wN (0) = P 1,0
N u0

(3.11)

where

e(u(t), wN (t), φ) = b(u(t), u(t), φ) − b(wN (t), wN (t), φ).

Let us denotẽuN (t) = uN (t) − wN (t) and subtract (3.11) from (3.7), we
obtain that




1√
δ
b(ũN (t), ũN (t), φ) +

2√
δ
b(ũN (t), wN (t), φ)

+ a(∂tũN (t), φ) = e(u(t), wN (t), φ),∀φ ∈ P
0
N ,

ũN (0) = ũN,0 = 0.

(3.12)
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Theorem 3.2 Letu anduN be respectively the solution of(3.3)and(3.7).
Let r ≥ 1 andβ be the largest integer for whichβ < r. Then

‖uN (t) − u(t)‖1,ω ≤ C1N
1
2− r

2 (‖u0‖r,ω,β + ‖u‖L2(0,T ;Hr
ω,β(R+))),

∀t ∈ [0, T ].

Proof. Lettingφ = 2ũN (t) in (3.12), thanks to Lemma 3.1, we find

d

dt
|ũN (t)|21,ω = 2e(u(t), wN (t), ũN (t)) − 4√

δ
b(ũN (t), wN (t), ũN (t)).

In virtue of Lemmas 2.2 and 3.2, we have

|4b(ũN (t), wN (t), ũN (t))| ≤ C1|ũN (t)|21,ω,

and

|b1(u(t), u(t),ũN (t)) − b1(wN (t), wN (t), ũN (t))|

=
1
4

∣∣∣∣
∫ ∞

0
e− 3x

2 (u(t) + wN (t))(u(t) − wN (t))∂xũN (t)dx
∣∣∣∣

≤
√
2
4

‖u(t) + wN (t)‖
1
2
ω |u(t) + wN (t)|

1
2
1,ω

‖u(t) − wN (t)‖ω|ũN (t)|1,ω

≤ 1
8
|ũN (t)|21,ω +

√
2|u(t) + wN (t)|21,ω‖u(t) − wN (t)‖2

ω

≤ 1
8
|ũN (t)|21,ω + CN1−r|u(t)|21,ω‖u(t)‖2

r,ω,β .

Similarly, we can estimate the term

|b2(u(t), u(t), ũN (t)) − b2(wN (t), wN (t), ũN (t))|.

The theorem is then a consequence of the above inequalities and Gronwall
lemma. ��

Wecan nowderive an error estimate for the approximation of the original
BBM equation (3.1).

Theorem 3.3 Let vN (y, t) = e− y√
δ uN ( 2y√

δ
, t) be the approximation of

v(y, t), the original solution of(3.1). Then

‖vN (t) − v(t)‖1 ≤ C1N
1
2− r

2 ‖v‖L∞(0,T ;Hr
β(R+)), ∀t ∈ [0, T ].
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Proof. Since(v − vN ) = e−x/2(u − uN ), we find

∂y(v − vN ) =
2√
δ
e−x/2(∂x(u − uN ) − 1

2
(u − uN )).

Hence

‖(v − vN )(t)‖1 ≤ C‖u − uN (t)‖1,ω ≤ CN
1
2− r

2 ‖u(t)‖r,ω,β .

We conclude from the above and the fact that‖u(t)‖r,ω,β ≤ C‖v(t)‖r,β

which can be proved straightforwardly.��
Remark 3.1The above result indicates that the Laguerre-Galerkin approx-
imation may converge exponentially, even ifv only delays algebraicly at
infinity, as long as‖v‖L∞(0,T ;Hr

β(R+)) are finite for allr > 0 (see numerical
results in Sect. 5).

4. Laguerre-Galerkin method for the Burgers equation

The Burgers equation on a semi-infinite interval reads:

∂tv +

1
2
∂yv

2 − ν∂2
yv = h, y ∈ R+, t ∈ (0, T ],

v(y, 0) = v0(y), y ∈ R+,

v(0, t) = 0, lim
y→∞ v(y, t) = lim

y→∞ ∂yv(y, t) = 0, t ∈ (0, T ],

(4.1)

whereν is a positive constant. We assume a homogeneous boundary con-
dition without loss of generality. As for the BBM equation, the original
Burgers equation is not suitable for the Laguerre approximation. Hence,
similarly as in the previous section, we set

u(x, t) = e
x
2 v(x, t), f(x, t) = e

x
2 h(x, t).

Therefore, (4.1) becomes


∂tu − ν(∂2
xu − ∂xu+

1
4
u) +

1
2
e

x
2 ∂x(e−xu2) = f,

x ∈ R+, t ∈ (0, T ],

u(x, 0) = u0(x) = e
x
2 v0(x),

u(0, t) = 0, t ∈ (0, T ].

(4.2)

Let us denote

a(u, v) =
∫ ∞

0
(
du

dx

dv

dx
− 1

4
uv)e−xdx,

b(u, z, v) = 2(b1(u, z, v) + b2(u, z, v)),
(4.3)
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whereb1 andb2 are defined in (3.5). We recall from Lemma 3.1 that

b(u, u, u) = 0, ∀u ∈ H1
0,ω(R+).(4.4)

We also derive from Lemma 2.2 that

a(u, u) = |u|21,ω − 1
4
‖u‖2

ω ≥ 0, ∀u ∈ H1
0,ω(R+).(4.5)

A variational formulation for (4.2) is:
find u ∈ L∞(0, T ;H1

0,ω(R+)) such that




(∂tu(t), φ)ω + νa(u(t), φ)
+ b(u(t), u(t), φ) = (f(t), φ)ω,

∀φ ∈ H1
0,ω(R+), t ∈ (0, T ],

u(0) = u0.

(4.6)

Its Laguerre-Galerkin approximation is:
find uN (t) ∈ P

0
N for all 0 ≤ t ≤ T , such that




(∂tuN (t), φ)ω + νa(uN (t), φ)
+ b(uN (t), uN (t), φ) = (f(t), φ)ω,

∀v ∈ P
0
N , t ∈ (0, T ],

uN (0) = uN,0 = PNu0.

(4.7)

Lemma 4.1 Let f ∈ L2(0, T ;L2
ω(R+)) andu0 ∈ L2

ω(R+). Letu anduN

be respectively the solution of(4.6)and(4.7). Then

‖u(t)‖ω, ‖uN (t)‖ω ≤ C(‖f‖L2(0,T ;L2
ω(R+)) + ‖u0‖ω), t ∈ (0, T ].

Proof. Takeφ = 2u in (4.6), thanks to (4.3–4.4), we find

d

dt
‖u(t)‖2

ω ≤ 2(f(t), u(t))ω ≤ ‖f(t)‖2
ω + ‖u(t)‖2

ω.(4.8)

Applying theGronwall lemma to the above inequality, we obtain the desired
result foru(t). The result foruN (t) can be proved similarly. ��
Theorem 4.1 LetuN andûN be respectively the solutions of(4.7)with data
(f, uN,0) and(f̂ , ûN,0). We denotẽf = f̂ − f andũN = ûN − uN . Then

‖ũN (t)‖2
ω ≤ C1(‖ũN,0‖2

ω +
∫ t

0
‖f̃(s)‖2

ωds), ∀t ∈ (0, T ].
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Proof. Thanks to (3.8), we find that̃uN satisfies the following equation:



(∂tũN (t), φ) + νa(ũN (t), φ) + b(ũN (t), ũN (t), φ)

+ 2b(ũN (t), uN (t), φ) = (f̃(t), φ)ω,∀φ ∈ P
0
N ,

ũN (0) = ũN,0.

(4.9)

By takingφ = 2ũN in (4.9), it follows from (4.4) that

d

dt
|ũN (t)|2ω + 2ν(|ũN (t)|21,ω − 1

4
‖ũN (t)‖2

ω)

+ 4b(ũN (t), uN (t), ũN (t)) ≤ ‖f̃(t)‖2
ω + ‖ũN (t)‖2

ω.

Thanks to Lemmas 2.2, 4.1 and Young’s inequality, we have

4|b1(ũN (t), uN (t), ũN (t))| ≤ C‖e− x
2 uN (t)‖L∞(R+)‖ũN (t)‖ω|ũN (t)|1,ω

≤ C1‖ũN (t)‖
1
2
ω |ũN (t)|

3
2
1,ω

≤ ν

2
|ũN (t)|21,ω + C1‖ũN (t)‖2

ω.

Similarly, we have

4|b2(ũN (t), uN (t), ũN (t))| ≤ ν

2
|ũN (t)|21,ω + C‖ũN (t)‖2

ω.

Thanks to the above estimates, we find that

d

dt
|ũN (t)|2ω + ν|ũN (t)|21,ω ≤ C1(‖f̃(t)‖2

ω + ‖ũN (t)‖2
ω).

We conclude by applying the Gronwall lemma to the above inequality.��
Theorem 4.2 Letu anduN be respectively the solution of(4.2)and(4.7).
Let s, r ≥ 1, α andβ, be the largest integers for whichα < s andβ < r.
Then,

‖uN (t) − u(t)‖1,ω ≤ C1

(
N

1
2− s

2 ‖u‖L∞(0,T ;Hs
ω,α(R+))

+N
1
2− r

2 ‖ut‖L2(0,T ;Hr
ω,β(R+))

)
, ∀t ∈ (0, T ].

Proof. LetwN = P 1,0
N u and we denote

eN = u − uN = (u − wN ) + (wN − uN ) = ξN + ηN .

From Lemmas 2.2 and 2.4, we have

‖ξN‖ω ≤ 2|ξN |1,ω ≤ CN
1
2− s

2 ‖u‖s,ω,α.(4.10)
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Subtracting (4.7) from (4.6), we get

(∂teN , v)ω + νa(eN , v) = b(uN , uN , v) − b(u, u, v),

= −b(uN , eN , v) − b(eN , u, v), ∀v ∈ P
0
N .

(4.11)

Takingv = ηN in the above relation, we obtain

1
2
d

dt
‖ηN‖2

ω + ν(|ηN |21,ω − 1
4
‖ηN‖2

ω) = −(∂tξN , ηN )ω − νa(ξN , ηN )

− b(uN , eN , ηN ) − b(eN , u, ηN ).

(4.12)

The terms on the right-hand side of (4.12) can be bounded as follows:

−(∂tξN , ηN )ω ≤ 1
2
(‖∂tξN‖2

ω + ‖ηN‖2
ω);

−a(ξN , ηN ) ≤ ν

4
|ξN |21,ω + C‖ηN‖2

1,ω.

Using Lemmas 2.2, 4.1 and Young’s inequality repeatedly, we have

b1(uN , eN , ηN ) ≤ C‖e− x
2 eN‖L∞(R+)|ηN |1,ω‖uN‖ω

≤ C1‖eN‖
1
2
ω |eN |

1
2
1,ω|ηN |1,ω

≤ C1(‖ξN‖
1
2
ω + ‖ηN‖

1
2
ω )(|ξN |

1
2
1,ω + |ηN |

1
2
1,ω)|ηN |1,ω

≤ ν

8
|ηN |21,ω + C1(‖ηN‖2

ω + ‖ξN‖2
1,ω).

(4.13)

The termsb2(uN , eN , ηN ) andb(eN , u, ηN ) can be bounded similarly and
relatively easily. Combining all the above inequalities, we arrive at

d

dt
‖ηN‖2

ω + ν|ηN |21,ω ≤ C1(‖ηN‖2
ω + ‖ξN‖2

1,ω + ‖∂tξN‖2
ω).(4.14)

Therefore, we derive by applying Gronwall lemma that for allt ∈ (0, T ],

‖ηN (t)‖2
ω + ν

∫ t

0
|ηN (s)|21,ωds

≤ C1(‖ηN (0)‖2
ω +

∫ t

0
(‖ξN (s)‖2

1,ω + ‖∂sξN (s)‖2
ω)ds).



Laguerre-Galerkin method for nonlinear PDEs 649

Hence, we derive from the above and (4.10) that for allt ∈ (0, T ],

‖u − uN (t)‖2
ω + ν

∫ t

0
|u − uN (s)|21,ωds

≤ C1(‖ξN (0)‖2
ω + ‖ξN (t)‖2

ω

+
∫ t

0
(‖ξN (s)‖2

1,ω + ‖∂sξN (s)‖2
ω)ds)

≤ C1

(
N

1
2− s

2 ‖u‖L∞(0,T ;Hs
ω,α(R+))

+N
1
2− r

2 ‖ut‖L2(0,T ;Hr
ω,β(R+))

)
. ��

Now, let vN = e− x
2 uN be the approximation ofv, the solution of the

original Burgers equation (4.1). Similarly to the proof of Theorem 3.3, we
can establish the following result:

Theorem 4.3 Let s, r ≥ 1, α and β, are the largest integers for which
α < s andβ < r. Then, for allt ∈ (0, T ],

‖vN (t) − v(t)‖1

≤ C1

(
N

1
2− s

2 ‖v‖L∞(0,T ;Hs
α(R+)) +N

1
2− r

2 ‖vt‖L2(0,T ;Hr
β(R+))

)
.(4.15)

Remark 4.1The result in Theorem 4.3 indicates that the Laguerre-Galerkin
approximationmayconvergeexponentially, even ifv onlydelaysalgebraicly
at infinity, as long as the norms on the right-hand side of (4.15) are bounded
for all s, r > 0.

5. Efficient implementations and numerical results

We consider first the Laguerre-approximation of the transformed Burgers
equation (4.7). After discretizing it in time by using a semi-implicit scheme,
i.e. the linear term is treated implicitly while the nonlinear term is treated
explicitly, we need to solve, at each time step, a linear system of the form:
findwN ∈ P

0
N such that

α1(
dwN

dx
,
dv

dx
)ω + α2(wN , v)ω = (g, v)ω, ∀v ∈ P

0
N .(5.1)

As in [17,18], the efficiency of the spectral-Galerkin method depends heav-
ily on the choice of a suitable basis. We present an efficient implementation
for (5.1) below.

Let φi(x) = Li(x) − Li+1(x). SinceLi(0) = 1 for all i, we have
φi(0) = 0 which implies that

P
0
N = span{φ0, φi, . . . , φN−1}.
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Furthermore, letv′(x) = dv
dx(x).We have

φ′
i(x) = L′

i(x) − L′
i+1(x) = Li(x).(5.2)

Therefore,

a(φi, φj) = (φ′
i, φ

′
j)ω = (L′

i, L
′
j)ω = δij .(5.3)

In other words,{φi}i=0,1,...,N−1 form an orthonormal basis ofP0
N with

respect to the inner producta(·, ·). We can then look forwN in the form of
uN =

∑N−1
i=0 hN,iφi. Let us denote

h = (hN,0, hN,1, . . . , hN,N−1)T,

gi = (g, φi)ω, g = (g0, g1, . . . , gN−1)T,
cij = (φj , φi), C = (cij)i,j=0,1,...,N−1.

(5.4)

Then, (5.1) is reduced to the following linear system:

(α1I + α2C)h = g.(5.5)

Thanks to (2.2) and (5.2), we find

cij =



2, i = j

−1, i = j − 1, j + 1
0, otherwise

.(5.6)

Hence (5.5) is a linear symmetric tridiagonal system which can be easily
solved. Note that the Laguerre-Galerkin method above does not suffer from
the ill-conditioning usually related to Laguerre-collocation/tau methods.

We now consider the Laguerre-Galerkin approximation for the trans-
formed BBM equation (3.7). Using the same notations as above, and denot-
ing additionally

uN (x, t) =
N−1∑
i=0

hN,i(t)φi(x),

HN (t) = (hN,0(t), hN,1(t), . . . , hN,N−1(t))T,

P 1,0
N u0(x) =

N−1∑
i=0

h0
N,iφi(x), H0

N = (h0
N,0, h

0
N,1, . . . , h

0
N,N−1)

T,

(5.7)

and

Gi(HN , t) = (f, φi)ω − b(uN , uN , φi),

G(HN , t) = (G0(HN , t), G1(HN , t), . . . , GN−1(HN , t))T,
(5.8)
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Fig. 1. Exact and approximation solutions: Example 1 withk = 2 andh = 3.5 is on the
left, Example 2 is on the right

we find that, thanks to (5.3), (3.7) becomes the following system of ordinary
differential equations:

d

dt
HN (t) = G(HN , t), HN (0) = H0

N .(5.9)

We can then apply a standardexplicit Runge-Kutta method to the above
system without suffering from stringent time step constraint.

We now present some numerical results. We discretize the transformed
Burgers equation (4.2) by a third-order BDF scheme for the linear terms and
third-order Adams-Bashforth scheme for the nonlinear term; for the trans-
formed BBM equation (3.3), a standard forth-order Runge-Kutta method is
used for (5.9). To illustrate the spectral accuracy, the time step is chosen to be
sufficiently small so that the error is dominated by the spatial discretization
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Fig. 2. Maximum Error att = 1 of the Laguerre-Galerkin approximation for the Burgers
and BBM equations

error. We consider the following two examples where one solution decays
algebraicly at infinity while the other decays exponentially at infinity.

Example 1.The exact solution of the original Burgers equation (4.1) and
BBM equation (3.1) beingv(x, t) = sin kt

(1+x)h . (algebraic decay at infinity)

Example 2.The exact solution of the original BBM equation (3.1) being a
solitary wavev(x, t) = sech2(ax − bt − c) with a = .3, b = .5 andc = 3.
(exponential decay at infinity)

In Fig. 1, we plot the exact and approximate solutions for the original
BurgersandBBMequationsobtainedwithN = 64 in thespace-timedomain



Laguerre-Galerkin method for nonlinear PDEs 653

[0, 10] × [0, 10].The exact and approximate solutions are indistinguishable
in both cases.

To illustrate the quantitative behaviors of the Laguerre-Galerkin approx-
imations, we plot in Fig. 2log10(‖vN − v‖L∞(R+)) vs.N at t = 1 for
the original Burgers and BBM equations. Note that exponentially conver-
gence for the original Burgers and BBM equations is achieved in all cases
regardless whether the exact solution decays exponentially or algebraicly at
infinity.

6. Concluding remarks

We have presented an efficient and accurate Laguerre-Galerkin method for
the Burgers and BBM equations on a semi-infinite interval. We used a suit-
able functional transform which not only removes growing numerical er-
rors forx large but also makes the transformed equations well-posed with
a weighted variational formulation. Our theoretical and numerical results
shown that the Laguerre-Galerkin approximations are stable and conver-
gent on a semi-infinite interval with spectral accuracy. Furthermore, the
Laguerre-Galerkin approximation may converge exponentially, even if the
solutionv only delays algebraicly at infinity, as long as‖u(t)‖r,β are finite
for all r > 0.
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