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Abstract

The dynamics due to a periodic forcing (harmonic axial oscillations) in a Taylor–Couette apparatus of finite length is
examined numerically in an axisymmetric subspace. The forcing delays the onset of centrifugal instability and introduces
a Z2 symmetry that involves both space and time. This paper examines the influence of this symmetry on the subsequent
bifurcations and route to chaos in a one-dimensional path through parameter space as the centrifugal instability is enhanced.
We have observed a well-known route to chaos via frequency locking and torus break-up on a two-tori branch once the Z2

symmetry has been broken. However, this branch is not connected in a simple manner to the Z2-invariant primary branch. An
intermediate branch of three-tori solutions, exhibiting heteroclinic and homoclinic bifurcations, provides the connection. On
this three-tori branch, a new gluing bifurcation of three-tori is seen to play a central role in the symmetry breaking process.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Taylor–Couette flow is canonical for the
study of centrifugal instabilities and the study of low
co-dimension bifurcations with symmetry [8]. In the
classical setting, Taylor–Couette flow is studied in
the limit of infinite length cylinders and it is assumed
that the flow is periodic in the axial direction. This
imposes a certain symmetry group on the system,
SO(2) × O(2), where the SO(2) comes from the
invariance to rotations about the axis and the O(2)
from the axial periodicity which allows invariance
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to continuous translations in the axial direction and
to reflection about a plane orthogonal to the axis. In
physical settings with annular aspect ratios of length
to gap of the order of 10 times the gap or less, the
presence of end walls has a profound influence on
the dynamics [3,4], principally due to the change in
symmetry group from O(2) to Z2 [15]. The Z2 sym-
metry comes from the invariance to reflection about
the mid-plane orthogonal to the axis.

In this study, we are interested in exploring the dy-
namics due to a periodic forcing in a Taylor–Couette
setting with aspect ratio of order 10, where end-wall
effects will be predominant. The particular forcing of
interest here is that due to harmonic oscillations of the
inner cylinder in the axial direction. Experiments [33]
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have clearly demonstrated that this forcing is very ef-
ficient in postponing the onset of centrifugal instabil-
ity to significantly higher rotation rates of the inner
cylinder. This forcing changes the symmetry group in
a subtle manner, although the symmetry group con-
tinues to be SO(2)×Z2, the Z2 now mixes space and
time. The Z2 in the forced system is generated by
the combined reflection about the mid-plane together
with a half forcing period translation in time. As was
pointed out some years ago [23], Z2 is the important
symmetry in the Taylor–Couette problem. Our main
objective is to study how this particular form of Z2

influences the nonlinear dynamics.
To isolate the influence of the Z2 symmetry, we

study the flow in an SO(2)-invariant subspace. Exper-
iments [33] and Floquet analysis [20,21] have shown
that the onset of centrifugal instability in the large
aspect ratio limit is axisymmetric over an extensive
range of parameter space, including the values con-
sidered in this study; in addition, the bifurcations
we have found take place in a very small parame-
ter region, close to the bifurcation point, making the
assumption of axisymmetry highly plausible. Further-
more, experiments in Taylor–Couette with the same
aspect ratio [6,31,32] show the presence of an axisym-
metric very low frequency (VLF) mode, analogous
to the three-tori we have found, although the flow
is fully three-dimensional. Numerical simulations in
cylindrical flows driven by rotation [17] show that the
dynamics is governed by axisymmetric secondary bi-
furcations of the base flow, although the flows are fully
three-dimensional; in this case, the nonaxisymmetric
modes have less than 1% of the kinetic energy of the
flow [5], and the agreement between experiments and
axisymmetric simulations is impressive [27]. All these
evidences provide further motivation for the restriction
to an axisymmetric subspace for the present study.

In this study, we hold constant the parameters gov-
erning the geometry of the apparatus and the axial
forcing, and consider a one-dimensional path through
parameter space, where the rotation of the inner cylin-
der is progressively increased to see how the centrifu-
gal instability manifests itself. Along the way, the Z2

symmetry is broken and a generic route to chaos via
frequency locking and torus break-up follows. The

manner in which Z2 is broken, however, is new in-
volving heteroclinic and homoclinic bifurcations of
three-tori (T3). In fact, the Z2-symmetry breaking that
is found corresponds to a gluing bifurcation of T3.
This bifurcation was first reported in [16] and here,
we provide a comprehensive analysis of how it plays a
central role in the nonlinear dynamics of this system.

In Section 2, we describe the governing equations
and symmetries of the system and the numerical tech-
niques used. In Section 3, the primary branch which
undergoes a supercritical Naimark–Sacker bifurcation
is analyzed and the physical mechanism responsible
for the second frequency is elucidated. In Section 4,
the T3 branch which undergoes the gluing bifurca-
tion and symmetry breaking is examined. The route
to chaos on the secondary branch is presented in Sec-
tion 5. Finally, in Section 6, an overview of how all
the various branches are interrelated is presented.

2. Governing equations

The system in question is the flow between two
co-axial cylinders of finite extent, the outer one being
stationary and the inner one rotating at constant an-
gular velocity Ωi and oscillating in the axial direction
with velocityW sinΩf t . The top and bottom end-walls
are stationary. The geometry is shown schematically
in Fig. 1. The radii of the cylinders are ri and ro (in-
ner and outer, respectively), and their length is L; the
annular gap between the cylinders is d = ro − ri.
These parameters are combined to give the following

Fig. 1. Schematic representation of the flow configuration.
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nondimensional governing parameters: the radius ra-
tio, e = ri/ro; the aspect ratio, Λ = L/d; the Cou-
ette flow Reynolds number, Ri = driΩi/ν; the axial
Reynolds number, Ra = dW/ν; the nondimensional
frequency, ωf = d2Ωf/ν, where ν is the kinematic
viscosity of the fluid.

The length and time scales used are the gap, d, and
the diffusive time across the gap, d2/ν, respectively.
With these scalings, the Navier–Stokes equations and
the incompressibility condition become

∂tv + (v · �)v = −�p + �v, � · v = 0. (1)

The boundary conditions are no-slip on all walls.
This leads to discontinuous boundary conditions for
the axial and azimuthal components of velocity where
the moving inner cylinder meets the stationary top and
bottom end-walls. These discontinuities in a physical
experiment correspond to a small, but finite gap (see
for example, Refs. [27,33]) and in Section 2.2, we
describe how this is treated numerically.

The basic flow is time-periodic with period Tf =
2π/ωf and synchronous with the forcing, and it is
independent of the azimuthal coordinate. The imposed
periodic forcing in this problem implies the existence
of a global Poincaré map, P, i.e. strobing with the
forcing frequency ωf .

2.1. Symmetry considerations

The Navier–Stokes equations governing this prob-
lem are invariant under rotations of angle α, Rα ,
around the common axis of the cylinders, generating
the symmetry group SO(2). Moreover, the equations
are invariant under an additional discrete symmetry,
S, involving time and the axial coordinate; it is a
reflection about the mid-plane orthogonal to the axis
with a simultaneous time-translation of a half period.
Using cylindrical coordinates, they read

(Rαv)(r, θ, z, t) = v(r, θ + α, z, t),

α ∈ R mod 2π, (2)

(Sv)(r, θ, z, t) = (u, v,−w)
(
r, θ,−z, t + 1

2Tf

)
(3)

where v is the velocity field and (u, v,w) are the com-
ponents in cylindrical coordinates. The symmetry S

satisfies S2 = I , and the symmetry group of our prob-
lem is SO(2)×Z2. The SO(2) factor comes from Rα

and the Z2 factor is generated by S.
The basic state, a limit cycle, is invariant under the

full symmetry group of the equations, SO(2) × Z2.
It can lose stability when at least one Floquet multi-
plier λ crosses the unit circle. In general, this may oc-
cur through λ = +1 (synchronous bifurcation), λ =
−1 (subharmonic bifurcation) or a pair of complex
conjugate multipliers cross (Naimark–Sacker bifurca-
tion). In a system without symmetries, the λ = +1
case corresponds to the saddle-node bifurcation, the
λ = −1 case corresponds to a period doubling and
the complex conjugate case is the Naimark–Sacker bi-
furcation. However, when the Z2 symmetry group is
present, it inhibits the period doubling (λ = −1) bi-
furcation [29], the synchronous bifurcation becomes a
pitchfork and the Naimark–Sacker bifurcation results
in a Z2-invariant T2 [14].

In this study, we solve the system in an axisym-
metric subspace invariant to SO(2). Linear stability
analyses in the limit Λ → ∞, as well as experiments
with Λ = 150 have shown that over an extensive
range of parameter space, the primary bifurcation is
to an axisymmetric state, periodic in the axial direc-
tion and synchronous with the forcing, and only in
small windows of parameter space have nonaxisym-
metric flows been observed [20,21,33]. Therefore, the
only nontrivial symmetry of the axisymmetric system
considered is S.

2.2. Numerical solution technique

The nonlinear axisymmetric Navier–Stokes equa-
tions (1) are solved employing a highly efficient and
accurate spectral-projection method [19] in which the
time variable is discretized by using a second-order
projection scheme [25,30] and the spatial variables
are discretized by using a spectral-Galerkin method
[24,26].

The flow starts either from rest or as a continuation
from a solution with different parameter values and
satisfies the following boundary conditions:

u = 0, v = Ri, w = Ra sinωf t at r = ri,

u = v = w = 0 at r = ro and z = ± 1
2Λ. (4)
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This flow has discontinuous boundary conditions for
the azimuthal, v, and axial, w, components of ve-
locity where the inner cylinder meets the stationary
end-walls. Since spectral methods are very sensitive to
the smoothness of the solutions, it is crucial to design
a sensible treatment for the discontinuous boundary
conditions. This discontinuity is a mathematical ide-
alization of the physical situation (a small finite gap).
Therefore, it is appropriate to use a regularized bound-
ary layer function to approximate the actual physical
situation. In fact, the discontinuous boundary condi-
tions at z = ± 1

2Λ

v = 0 for r ∈ (ri, ro] and v = Ri at r = ri,

and

w = 0 for r ∈ (ri, ro] and

w = Ra sinωf t at r = ri

can be approximated, respectively, by

vε(r) = Ri exp

(
− r − ri

ε

)
, r ∈ [ri, ro], (5)

and

wε(r) = Ra sinωf t exp

(
− r − ri

ε

)
, r ∈ [ri, ro]

(6)

to within any prescribed accuracy by choosing an ap-
propriate ε. Such an approach has been proven suc-
cessful in [19] for treating the discontinuous boundary
condition for the v component. Numerical modeling
of the corner singularity for the Taylor problem has
been discussed previously in [10] using a different nu-
merical method.

In this study, the axisymmetric Navier–Stokes equa-
tions have been solved with the spectral scheme de-
scribed in [18], using 80 axial and 64 radial modes,
and a time-step δt = 1

200Tf . With 64 modes in the ra-
dial direction, we were able to use ε = 0.005 in (5)
and (6), which corresponds to the physical separation
between the end-wall and side wall in typical exper-
iments with d ∼ 1 cm. Note that further reducing ε

without increasing the radial resolution would intro-
duce unwanted oscillations. We only consider varia-

tions in Ri, keeping all other parameters fixed (Λ =
10, e = 0.905, Ra = 80, ωf = 30).

For axisymmetric flows in cylindrical geometries,
it is typical to present the solutions in terms of the
streamfunction ψ , the azimuthal component of vortic-
ity η and the axial component of the angular momen-
tum γ = rv. The velocity vector can be written as

v = (u, v,w) =
(

−1

r

∂ψ

∂z
,
γ

r
,

1

r

∂ψ

∂r

)
,

and the vorticity vector as

� × v =
(

−1

r

∂γ

∂z
, η,

1

r

∂γ

∂r

)
,

where

η = ∂u

∂z
− ∂w

∂r
= −1

r

(
∂2ψ

∂z2
+ ∂2ψ

∂r2
− 1

r

∂ψ

∂r

)
. (7)

We solve the governing equations using velocity and
pressure, and then the azimuthal vorticity η is found
by spectral differentiation of u and w, the stream func-
tion ψ is found by solving the Helmholtz equation (7)
and γ by spectral multiplication of rv. Note that in a
meridional plane (r, z), contours of ψ are projections
of the streamlines and contours of γ are projections
of the vortex lines.

3. The primary branch

In this section, we describe the dynamics along
the primary branch, the branch of solutions that is
smoothly connected to the basic state at Ri = 0. This
basic state corresponds essentially to an annular Stokes
flow, the annular analogue of the flow driven by the
in-plane harmonic oscillation of a plate [28], but is
modified by: (i) the presence of end-walls and (ii) the
outer cylinder. The presence of these walls enforces
a zero mass flux, so that on the up (down) stroke of
the inner cylinder there is a return flow down (up) the
outer cylinder. Most of the features of the basic state
are common to the limiting case Λ → ∞ [20], but
here the end-walls will be shown to play a significant
role in the subsequent dynamics of the flow as Ri is
increased.
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Fig. 2. Contours depicting: (a) vortex lines and (b) streamlines at 10 equispaced phases over one complete forcing period T for the T1

solution on the primary branch for Ri = 280.0.

In the limiting case Λ → ∞, increase in Ri led to
centrifugal instability of the basic state, however, the
presence of end-walls separated by a finite distance
leads to a smooth transition. In the Λ → ∞ case, the
bifurcation is a pitchfork of revolution and the bifur-
cating solutions differ in phase (a spatial translation
along the axis). In fact, in most numerical settings, a
planar pitchfork is obtained because the phase is fixed
except for a � shift (a sign in the amplitude); a de-
tailed discussion, both theoretical and experimental in
the Taylor–Couette problem can be found in [9]. The
presence of end-walls generates a z-dependent flow
close to the end-walls that progressively fills the whole
domain when Ri is increased. At finite Ri, the flow on
the primary branch is characterized by the presence
of jets emanating from the inner cylinder boundary
layer that advect the vortex lines into the interior (see
Fig. 2(a)) and associated with these jets, the stream-
lines have a cellular structure reminiscent of Taylor
vortices (see Fig. 2(b)). The jets are dragged up and
down by the motion of the inner cylinder, synchronous
with the forcing. This basic state is a limit cycle (T1)

and retains all the symmetries of the system.
When Ri is increased beyond a critical value, a

Naimark–Sacker bifurcation [14] leads to flow on a
T

2. The basic state, being a T1, is a point in the

Poincaré section whereas the T2 is a closed loop in P.
Fig. 3(a) shows the Poincaré sections of the solutions
for Ri = 280.1–280.8 in steps of 0.1. Ri = 280.1 is
before the supercritical Naimark–Sacker bifurcation.
The amplitudes of the loops corresponding to the T2

scales with
√

Ri − Ric, where Ric is the critical Ri at
the bifurcation. In Fig. 3(b), these amplitudes and the
corresponding fit are shown, and allow an estimate of
Ric = 280.188. The phase portraits are in the (Γ,U)

plane, where Γ and U are the γ and u evaluated at
a convenient Gauss–Lobato point in the annulus (r =
ri + 0.573, z = 0.969).

Although resonance horns (Arnold’s tongues) are
often associated with Naimark–Sacker bifurcations,
over the range of Ri where the T2 bifurcating from
the primary T1 branch is stable, we have not observed
any intervals of frequency locking. On the T2, one fre-
quency is fixed, determined by the forcing frequency
ωf = 30, and the second frequency, ωs, varies with Ri
in the range 5.2–5.4. So, the bifurcated solutions are
quasi-periodic and hence are not S-invariant. However,
the T2 on which the solutions reside is S-invariant; we
have taken a bifurcated solution, applied the S sym-
metry, and found that this transformed solution re-
sides on the same T2. Naimark–Sacker bifurcations in
ODE systems with Z2 symmetry (not involving time)
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Fig. 3. Poincaré sections of the solutions on the primary branch depicting the T1 solution at Ri = 280.1 as a point and the successive T2

solutions for Ri = 280.2 + 0.1n with n ∈ [0, 6] as the cycles with amplitude increasing with Ri and (b) variation of the amplitudes in (a)
with Ri.

always result in an Z2-invariant T2 [14]. Our Z2 gen-
erated by S does involve time, yet we observe the same
behavior (an invariant T2 following the bifurcation) in
our system.

To determine what the second frequency, ωs, cor-
responds to, we have strobed the streamfunction at
the forcing frequency. Fig. 4 shows these strobed im-
ages over 10 forcing periods. A T1 solution would be
constant in such a sequence. The T2 solution shows
variations that are concentrated in the top and bottom
thirds of the cylinder while the central third does not
change. This suggests that ωs corresponds to an un-
steady coupling between the end-wall vortices and the
jets emanating from the boundary layer on the inner
cylinder. This is further discussed when comparing the
flows on other branches in Section 5.

The T2 solution branch bifurcating from the pri-
mary branch at Ri = 280.188 ceases to be stable be-
yond Ri = 280.88. Attempts to continue the T2 solu-
tion branch beyond Ri = 280.88 result in an evolution
to a three-torus (T3) solution. The theoretical study
of bifurcations of tori is difficult, some scenarios have
been rigorously analyzed by generalizing Floquet the-
ory in systems without symmetries [7]. To our knowl-
edge, no such studies with Z2 symmetry have been
published.

Fig. 4. Streamlines of a solution on the primary branch with
Ri = 280.88, strobed over 10 periods at a fixed phase. Thirty
contour levels in the range [−75, 75] are used, solid (broken) lines
indicate positive (negative) contour levels.

4. Three-tori branch

We have located a range (Ri ∈ [280.89, 281.26])
where stable T3 solutions exist. Their characteristics
are elucidated with the aid of the global Poincaré map
P, time series and phase portraits in the (Γ,U) plane.
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Fig. 5. (a) Power spectra of a T3 solution at Ri = 280.98, and (b) a zoom of the PSD in (a) near the origin.

The power spectral density (PSD) of the time se-
ries of Γ , shown in Fig. 5(a), has a main peak at the
forcing frequency, ωf = 30, a second frequency at
ωs ≈ 5.2, and their linear combinations since these
are incommensurate. This second frequency is very
close to ωs of the T2 on the primary branch following
the Naimark–Sacker bifurcation. The PSD also pos-
sesses a VLF, ωVLF, which is three orders of magni-
tude smaller than ωs. Fig. 5(b) is a zoom of (a) near
the origin showing the peak at ωVLF and its harmon-
ics. Due to the large spectral gaps between these three
incommensurate frequencies, we have been able to un-
ambiguously characterize these solutions as T3.

Over the range of Ri where T3 solutions exist, ωs =
5.2 ± 3%. In contrast, TVLF = 2π/ωVLF experiences
dramatic changes over this range, as shown in Fig. 6.
This figure indicates that there are two Ri values where
TVLF becomes unbounded. For ease of discussion,
we now represent T3 as limit cycles and T2 as fixed
points. This analogy works since the two suppressed
frequencies, ωf and ωs are almost constant (in fact,
ωf is constant), over the range of Ri of interest and
they do not play an essential role in the dynamics near
the bifurcation points. Infinite-period bifurcations are
usually associated with homoclinic or heteroclinic be-
havior. The two most typical are the following: (i)
a limit cycle collides with a hyperbolic fixed point

resulting in a homoclinic connection and then van-
ishes; (ii) a saddle-node occurs on the limit cycle.
These two scenarios are distinguished by the asymp-
totic behavior of the period of the limit cycle as the
bifurcation point is approached. In case (i), the pe-
riod close to the bifurcation point would have the
form [12]

TVLF ∼ λ−1
hom ln

(
1

|Ri − Ricrit|
)

+ d, (8)

Fig. 6. Variation of TVLF = 2π/ωVLF with Ri. Symbols are com-
puted values and solid lines are log fits.
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while in case (ii) it has the form [14]

TVLF ∼ c√|Ri − Ricrit|
+ d.

Our computed TVLF fits the logarithmic form very
well, whereas it does not adjust to the square root
form. The fitted logarithmic curves are the solid lines
in Fig. 6 and the symbols are the computed periods.
The fits are uniformly good over the whole range of
existence of the T3, strongly suggesting that the ho-
moclinic/heteroclinic behavior dominates the dynam-
ics over the whole interval. The expression for the
logarithmic profile in the first section is given by

TVLF = λ−1
het ln

1

|Ri−Rihet|+λ−1
hom ln

1

|Ri − Rihom| + c.

In the entire second section, the logarithmic fit (8)
was used. The logarithmic fits give the critical Ri for
the two infinite period bifurcations, Rihet = 280.88736
and Rihom = 281.00884. The factors λhet and λhom are
the eigenvalues corresponding to the unstable direction
of the hyperbolic fixed points [12], in our case these
are unstable T2. The values obtained are λhet = 2.43×
10−3 and λhom = 5.81 × 10−3.

Fig. 7 shows the iterates of Γ under the map P

(for brevity, we shall refer to these as time series of
P (Γ )) and phase portraits in the (Γ,U) plane. These
are given at three values of Ri, each close to the infinite
period bifurcation points depicted in Fig. 6. Fig. 7(a)
corresponds to Ri = 280.89, the closest Ri value to
Rihet computed. The time series shows that the solu-
tion trajectory spends a long time close to not one, but
two unstable T2 with rapid excursions between them;
this behavior is also apparent in the phase portrait.
The two unstable T2 appear as two cycles and the tra-
jectory in the phase portrait spends a long time near
them. The rapid excursions appear as tubular mani-
folds connecting them. As Ri → Ri+het, the T3 depicted
in Fig. 7(a) becomes a heteroclinic three-manifold.
This is illustrated schematically in Fig. 8. In this fig-
ure, T2 are represented by fixed points and T3 by limit
cycles, the bold (thin) cycles being (un)stable. The
T

3 is S-invariant, whereas the pair of unstable T2 to
which it connects heteroclinically at Rihet are not, but
are related to each other via the S symmetry. The T3

collides with the two unstable T2 simultaneously due
to the S symmetry.

The infinite period bifurcation at Ri = Rihom is
more complicated as T3 exist on both sides of the bi-
furcation. Approaching Rihom from below, the T3 is
S-invariant and approaches an unstable T2 which is
also S-invariant. This is seen in the time series and the
phase portrait (Fig. 7(b)) for Ri = 281.008, which is
very close to Rihom. The figure shows the presence of
two distinct fast homoclinic excursions. At the bifur-
cation point, Rihom, there exists two homoclinic loops
that are related by the S symmetry. This is also illus-
trated schematically in Fig. 8.

For Ri > Rihom, but close to the bifurcation, the
behavior is qualitatively different. Fig. 7(c) shows at
Ri = 281.009, the existence of a T3 close to an un-
stable T2 with a single homoclinic excursion. We also
note from Fig. 6 that for Ri > Rihom, the period TVLF

is significantly reduced from that when Ri < Rihom.
Beyond Rihom, the double homoclinic loop splits into
two T3 as shown in the schematic Fig. 8. The solu-
tion in Fig. 7(c) corresponds to one of these T3, which
is no longer S-invariant. We have explicitly computed
the S-related partners for Ri > Rihom by applying
the symmetry S to a trajectory on the first obtained
T

3, a trajectory on a different T3 results. These two
distinct T3 are S-symmetrically related. We have not
been able to continue the T3 solution branches beyond
Ri = 281.26; the system evolves to another one corre-
sponding to a T2 branch that is described in Section 5.

The range of Ri where T3 exist consists of two
branches, for Rihet < Ri < Rihom there is a single
S-invariant T3 and for Ri > Rihom a pair of non-
symmetric, but symmetrically related, T3. The first
branch starts in a heteroclinic bifurcation schemati-
cally shown in Fig. 8 and is related to the second
branch via a homoclinic bifurcation at Ri = Rihom.
In this homoclinic bifurcation an S-invariant T3 splits
in two S-related T3. Analogous gluing bifurcations of
limit cycles in systems with Z2 symmetry have been
analyzed in [13] and in [1] for systems with more
complex (D4) symmetries. Here, we have a gluing bi-
furcation of T3 in a real fluid system.

From Fig. 8, we see that three unstable T2 play a
key role as organizing centers for the dynamics of the
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Fig. 7. Time series of P(Γ ) (left) and phase portraits in the (Γ,U) plane (right) for Ri = 280.89 (a), 281.008 (b), 281.008 (b), 281.009 (c).
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Fig. 8. Schematic representation of the bifurcation sequence for the
T

3 solutions. In this schematic representation, T2 are represented
as fixed points and T3 as cycles. The labels (a), (b) and (c)
correspond to the three parts of Fig. 7.

stable T3. The unstable T2 in the center of Fig. 8 is
S-invariant since it is central to the gluing bifurcation.
Further, ωs is continuous along the primary branch and
the T3 branches, with the connection between these
branches occurring at the homoclinic point Rihom.

We are able to explore the flow characteristics as-
sociated with the S-invariant unstable T2 at points in
parameter space where the stable T3 is almost homo-
clinic to it, i.e. Ri ≈ Rihom. From Fig. 7(b), we see
that for approximately 3 × 105 iterates of P, the T3

remains very close to the unstable T2. In Fig. 9, we
show streamlines at 10 consecutive iterates of P, start-
ing after the first 105 iterates in Fig. 9. Note that since
ωs ≈ 5.28, this sequence almost repeats itself every
ωf/ωs ≈ 5.7 iterates of P for the subsequent 2 × 105

iterates of P. Fig. 9 displays the same behavior as

Fig. 9. Streamlines of a solution on the primary branch with
Ri = 281.008, while it is close to the unstable symmetric T2 at
indicated multiples of the forcing period; contours levels as in
Fig. 4.

that in Fig. 4 which corresponds to the stable T2 on
the primary branch. This suggests that the unstable T2

and the stable T2 are on the same S-invariant solution
branch (the primary branch).

For Ri ≈ Rihet, since the T3 passes close to two
unstable T2 and remains close to them for long time
(about 5 × 105 iterates of P), we are also able to ex-
plore the flow characteristics associated with these T2.
Fig. 10 shows the streamlines at 10 consecutive iter-
ates of P; part (a) corresponds to times when the T3

is close to one of the unstable T2 and (b) to the other.
The behavior is very similar to that in Fig. 9, show-
ing the modulation due to ωs as oscillations near both
end-walls, the difference between each of the three
cases is in the phase difference between the oscilla-
tions near the top and bottom end-walls.

We have not been able to continue the T3 beyond
Ri > 281.26; the system evolves to another far off
branch that is described in the next section.

5. A route to chaos through resonance horns

The branch to be described here is robust in the
sense that time evolution from an initial state of rest
evolves to this branch, even for Ri values for which



F. Marques et al. / Physica D 156 (2001) 81–97 91

Fig. 10. Streamlines of a solution on the T3 branch for Ri = 280.89 while it is close to the: (a) unstable nonsymmetric T2 and (b) its
symmetric counter part, at indicated multiples of the forcing period; contours level as in Fig. 4.

the primary and the T3 branches coexist and are sta-
ble. We have been able to continue this branch, which
we shall denote as the secondary branch, down to
Ri = 280.46. For Ri < 280.46, the attempts to con-
tinue this branch led to evolutions onto the primary T2

branch.

Fig. 11. Streamlines, at Ri = 280.9, strobed at a fixed phase of the forcing at indicated multiples of the forcing period for a solution on:
(a) the secondary branch; (b) its S-related solution branch, contours level as in Fig. 4.

The main distinction between this secondary T2

branch and the primary T2 branch described in Sec-
tion 3 is that the T2 here is not S-invariant. This is
readily determined by taking a solution on this branch,
applying the S-symmetry and observing that the resul-
tant solution trajectory resides on a different T2. We



92 F. Marques et al. / Physica D 156 (2001) 81–97

Fig. 12. Profiles of ψ at the mid-gap, r = 1
2 (ro + ri), strobed at the forcing frequency and all at the same phase: (a) corresponds to the

stable T2 shown in Fig. 4 and the unstable T2 in Figs. 9 and 10; (b) corresponds to the stable T2 shown in Fig. 11(a).

have done this for several Ri, the particular case Ri =
280.9 is illustrated in Fig. 11, showing the stream-
lines strobed at consecutive iterates of P along with
the S-related solution.

The flow characteristics on this branch differ from
those on the primary and T3 branches in three main
features. First, the modulations due to ωs are confined
to one of the end-wall regions rather than having os-
cillations near both end-walls. Fig. 12 illustrates this
by showing the profiles of ψ at the mid-gap, r =
1
2 (ro + ri), strobed at the forcing frequency and all at
the same phase for the T2 shown in Fig. 4 (stable sym-
metric on primary branch), 10 (unstable nonsymmet-
ric on the T3 branch) and nine (unstable symmetric
on the T3 branch), and contrasts them with the ψ pro-
files for the T2 in Fig. 11(a) (stable nonsymmetric on
the secondary branch). Second, the modulations have
a traveling wave characteristic rather than being pul-
sations and third, ωs is substantially smaller (≈ 3.5
rather than ≈ 5.2). The distinction between the two
S-related secondary branches is exemplified in Fig. 11,
where it is seen that on one branch the ωs modula-
tions occur near the top end-wall and on the other it
is near the bottom end-wall. For the rest of this sec-
tion, we shall describe how the dynamics of one of
the secondary branches evolves with increasing Ri.

The one-dimensional path through parameter space
that we follow on the secondary branch reveals the
characteristics of a quasi-periodic Ruelle–Takens route
to chaos. The Ruelle–Takens scenario requires two pa-
rameters to describe its complete dynamics. Generi-
cally, there is a curve in this two-dimensional parame-
ter space that separates stable T1 from invariant T2. In
this curve (the Naimark–Sacker bifurcation curve), the
ratio between the two frequencies of the T2, ωs/ωf ,
varies continuously along the curve. At any point with
a rational ratio,ωs/ωf = p/q, a resonant horn emerges
into the T2 region of the parameter space. The width
of these resonant horns varies as d(q−2)/2, where d is
the distance from the curve. This scaling and the dis-
cussion to follow are valid for q ≥ 5; the so-called soft
resonances. For q < 5, the hard resonances, the situ-
ation is much more complicated and complete results
are not yet available [14]. On our one-dimensional
path, we do not observe any hard resonances and so
we limit what follows to the soft resonances.

Near the Naimark–Sacker curve, on the T2 side,
an invariant T2 exists. Outside horn regions, near the
Naimark–Sacker curve, solutions are dense on the T2,
leading to quasi-periodic flow with two incommensu-
rate frequencies. On the horn boundary, a saddle-node
bifurcation takes place on the T2, and inside the horn
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Fig. 13. Phase portraits for Ra = 80, ωf = 30, e = 0.905,Λ = 10 and Ri = 280.48 (a), 280.5 (b), 282 (c). For the locked cases, the order
in which the trajectory passes through the Poincaré map is indicated.

a stable/unstable pair of limit cycle solutions exist on
the T2. In the generic two parameter scenario, at large
distance from the curve, the T2 may be destroyed.
The Afraimovich–Shilnikov theorem [2] asserts three
distinct scenarios: (i) breakdown due to some typi-
cal bifurcation of limit cycles, e.g. period doubling or
subsequent Naimark–Sacker bifurcations; (ii) abrupt
transition to chaos via the appearance of a homoclinic
trajectory; (iii) breakdown due to the loss of smooth-
ness, i.e. wrinkling of the T2. On our one-dimensional
path, we have observed scenarios (i) and (iii).

The phase portrait shown in Fig. 13(a) correspond-
ing to Ri = 280.48, is that of an invariant circle. The
second frequency, ωs ≈ 3.8, is incommensurate with
ωf = 30. We have only been able to continue this
branch down to Ri = 280.46, where ωs = 3.896. In-
creasing Ri, our one-dimensional path passes through

Fig. 14. (a) Phase portrait for Ra = 80, ωf = 30, e = 0.905,Λ = 10 and Ri = 282.1; (b) a zoom of the boxed region in (a).

various resonance horns. The first, a 1:8 locking, is en-
countered at Ri = 280.49 and extends to Ri = 280.7.
The phase portrait in Fig. 13(b) shows this 1:8 lock-
ing at Ri = 280.50, where we have labeled the order
in which the solution trajectory crosses the Poincaré
section. Following an interval of quasi-periodicity at
Ri = 281.4, the 1:9 horn is encountered (at Ri =
281.0, ghosting behavior near the 2:17 horn has been
detected). The 1:9 horn extends to Ri = 282 and
Fig. 13(c) shows the phase portrait at this Ri.

On leaving the 1:9 horn, the T2 displays evidence of
having lost smoothness. Fig. 14 shows the phase por-
trait at Ri = 282.1 together with a zoom of the boxed
region. The solution at this Ri is actually a limit cycle
due to a 3:28 locking; as the resonance horn is very
narrow, the transient approach to the limit cycle is very
slow. The transient trajectory allows us to visualize the
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Fig. 15. Phase portraits for Ra = 80, ωf = 30, e = 0.905,Λ = 10 and Ri = 282.4 (a), and 282.5 (b). The order in which the trajectory
passes through the Poincaré map is indicated.

underlying T2. It is clear that the T2 has lost smooth-
ness, displaying the characteristic wrinkling observed
in [11].

The 2:19 horn is entered on increasing Ri to 282.3.
A phase portrait at Ri = 282.4 is shown in Fig. 15(a).
The sequence of horns visited so far is as expected
from their Farey tree structure; we began with 1:8, then
1:9, with a ghost of the 2:17 in between, then the 2:19,
which is the widest horn between the 1:9 and 1:10. We
also observed the wrinkling at the 3:28 between the
1:9 and 2:19. Now, inside the 2:19, at Ri = 282.5 the
2:19 limit cycle undergoes a period doubling to 4:38.
In the range 282.5 ≤ Ri ≤ 282.7, we have observed
the 4:38 limit cycle. Fig. 15(b) shows the phase portrait
at Ri = 282.5. This type of period doubling is one of
the standard scenarios by which the T2 is destroyed
according to the Afraimovich–Shilnikov theorem.

Fig. 17. Phase portraits for Ra = 80, ωf = 30, e = 0.905,Λ = 10. (a) Ri = 283.1, (b) a zoom of the boxed region in (a) and (c) Ri = 285.

Fig. 16. Schematic representation of the one-dimensional path
along the secondary branch.

Along our one-dimensional path, the period doubled
region is exited and we re-enter the 2:19 region of
the horn. A schematic representation of our path is
shown in Fig. 16. On further increasing Ri, the 2:19
horn is exited and from this point on, the T2 becomes
increasingly less smooth and eventually the flow is
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chaotic. At Ri = 283.1, the wrinkling is illustrated in
Fig. 17(a) together with a zoom in (b) and the phase
portrait of a chaotic state at Ri = 285 is given in
Fig. 17(c).

6. Summary and conclusions

We have studied a one-dimensional route in param-
eter space of a periodically forced flow with symmetry.
As this parameter, Ri, is increased, the system under-
goes a sequence of local and global bifurcations and
becomes chaotic. The route to chaos obtained involves
a new and convoluted symmetry breaking, involving
heteroclinic, homoclinic and gluing bifurcations ofT3.

An overall description of our one-dimensional
path is schematically presented in Fig. 18. The solid
curves correspond to stable T1,T2 and T3 solution
branches which were encountered. The dashed curves
connecting them are conjectured based on the prop-
erties of the stable solutions. The primary branch,
consisting of S-invariant T1, undergoes a supercrit-
ical Naimark–Sacker bifurcation to an S-invariant
T

2. This is the generic scenario of a Z2-symmetric
Naimark–Sacker [14]. The resulting T2 is S-invariant,
but obviously the solutions (trajectories) on it are not
S-invariant by virtue that the two frequencies on the
T

2 are incommensurate. This T2 loses stability, but
remains S-invariant as Ri is increased, and solution
trajectories evolve to a T3.

Continuing the T3 branch to lower Ri, the branch
ceases to exist at a heteroclinic bifurcation as it col-

Fig. 18. Bifurcation diagram showing the primary, secondary and
T

3 branches; the dashed lines are the unstable branches.

lides with two S-symmetrically related unstable T2;
the T3 is S-invariant. Increasing Ri, the T3 becomes
homoclinic to an S-invariant unstable T2, which we
conjecture is the unstable T2 from the primary branch.
The conjecture is based on the close similarities of
the corresponding oscillatory flows on the stable T2

and the unstable T2 to which the T3 becomes homo-
clinic to. The secondary frequency, ωs, is continuous
between the two T2, further supporting this conjec-
ture. At the homoclinic point, the T3 suffers a sym-
metry breaking gluing bifurcation. This is the only
symmetry breaking bifurcation we have observed in
this system. The importance of the Z2 symmetry in
the Taylor–Couette problem and its association with
complex dynamics (e.g. homoclinic and Shilnikov bi-
furcations) was pointed out by [23], and was also re-
viewed in [22].

Increasing Ri beyond a critical value, the T3 branch
cannot be continued further and the flow evolves onto
a T2 that is not S-invariant. In fact, there are two
such T2 branches, symmetrically related, along which
a standard (i.e. not influenced by symmetries) route to
chaos via quasi-periodicity and locking in resonance
horns and torus break-up is observed.

The three T2 to which the T3 are either hetero-
clinically or homoclinically asymptotic to the orga-
nizing centers of the dynamics of the T3. In fact, the
T

3 flows are essentially slow drifts, with VLF, be-
tween the unstable T2. Similar VLF states have also
been observed experimentally [6,31,32] in an unforced
Taylor–Couette flow with aspect ratio of order 10, as is
the aspect ratio in our computations. Since their system
was unforced, the VLF states manifested themselves
as T2. Furthermore, those observed VLF states are
reported to be axisymmetric modes of oscillation be-
tween the end-walls, even though the underlying flow
is nonaxisymmetric [32]. We can reasonably expect
that our axisymmetric T3 solutions, even if they are
unstable to nonaxisymmetric disturbances continue to
play an important role in the flow dynamics.

How are the various observed stable and unstable
T

2 connected? As Ri decreases along the secondary
branch, ωs increases from 3.2 to 3.9, getting close to
ωs values on the primary T2 and the T3 branches. This
leads us to conjecture that the unstable T2 heteroclinic
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to the T3 and the stable secondary T2 branch merge
at a saddle-node bifurcation of T2 and cease to ex-
ist at lower Ri. This is the lowest co-dimension bifur-
cation consistent with the observed characteristics of
the respective T2. All possible bifurcations of T2 is a
subject that has not yet been exhaustively studied, but
[7] describe the most likely scenarios associated with
a real eigenvalue crossing the unit circle through ±1
or the crossing of a pair of complex conjugate eigen-
values. Both the −1 and the complex conjugate cross-
ing would introduce a new frequency, which is not the
case in our system; the +1 crossing, since there is no
symmetry involved, corresponds to a saddle-node.

We also conjecture that on increasing Ri, the unsta-
ble T2 associated with the T3 branch merge in a pitch-
fork bifurcation of T2. We have been able to observe
the flows on (near) these three T2 and they are all very
similar (see Figs. 9 and 10), so it is reasonable that at
large enough Ri, they merge. The simplest bifurcation
consistent with one symmetric and two symmetrically
related T2 is the pitchfork.

To further clarify these conjectured connections be-
tween the stable and unstable T2, two tools are re-
quired: (i) the computation and continuation with pa-
rameter variation of unstable T2; (ii) a generalized
Floquet analysis for T2.
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