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Transient drop deformation upon startup of shear in viscoelastic fluids
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Recent experiments show that upon abrupt start of a shear flow, a suspended drop undergoes an
overshoot in deformation if either the drop or the matrix is a polymeric fluid. Using a
diffuse-interface formulation, we carry out two-dimensional numerical simulations that trace the
origin of the transient to the mismatch of two time scales: a capillary time for drop deformation and
a relaxation time for the polymers in the viscoelastic component. The results are in qualitative
agreement with experiments. © 2005 American Institute of Physics. [DOI: 10.1063/1.2139630]

I. INTRODUCTION

In engineering applications, mixtures and blends are of-
ten made of components that are non-Newtonian fluids.
Thus, drop dynamics with non-Newtonian rheology in either
phase has been studied intensively, both experimentally"5
and theoretically.&10 Recently, a pair of experimental
studies'™'? focused on the transient reaction of a drop to
startup of simple shear when either component is viscoelas-
tic. Sibillo ef al."' measured the transient deformation param-
eter D=(L-B)/(L+B), L and B being the major and minor
axes seen along the vorticity axis, of a Newtonian drop in a
Boger fluid matrix. When the capillary number Ca is very
small, the deformation D increases gradually and monotoni-
cally toward a steady-state value D;. For larger values of Ca,
however, D undergoes an overshoot before settling down to
D,. The drop orientation angle @ initially decreases from 45°
as the drop rotates toward the flow direction. Then 6 under-
shoots before reaching the steady orientation. For Ca above
the critical value for breakup, D increases monotonically, of
course. In all cases, the matrix fluid is a dilute polymer so-
lution that exhibits no stress overshoot when sheared in a
rheometer. Thus, the overshoot in D and undershoot in 6 for
intermediate shear rates must have been due to the interface.
The experimental systems of Cherdhirankorn et al.'? are
more complex in that both the drop and matrix are molten
polymers. The transient deformation D undergoes several
cycles of oscillations before stabilizing at the final value.

This paper describes numerical simulations that explore
the physical origin of the nonmonotonic drop behavior upon
startup of shear flow. We use a diffuse-interface model based
on the system’s free energy, which accounts for evolving
interfaces and non-Newtonian rheology in a unified way.”’14
By treating the interface as a physically diffuse layer across
which properties change continuously, we determine the in-
terfacial position and thickness by a phase-field variable ¢,
whose evolution is governed by Cahn-Hilliard dynamics.
This introduces short-range molecular forces and allows to-
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pological changes to be simulated naturally as in film
rupture.15 In the current context, however, the phase field is
mostly a numerical device for simulating a moving and de-
forming interface. The polymeric component is modeled as
an Oldroyd-B fluid.

Il. THEORETICAL AND NUMERICAL MODELS

Yue et al."® have described the theoretical model and the
numerical method in detail, and presented numerical experi-
ments to validate the methodology. Therefore, we only give a
brief summary here. For an “immiscible” mixture of a New-
tonian fluid and an Oldroyd-B fluid, we introduce a phase-
field variable ¢ such that the concentrations of the
Oldroyd-B and Newtonian components are (1+¢)/2 and
(1—¢)/2, respectively. The interface is simply the level set
of ¢=0. For simplicity, we take the two components to have
the same density though their viscosities may differ. For the
governing equations, we first write the usual continuity and
inertialess momentum balance: V-v=0, Vp=V-7. The total
stress tensor is

.= (%ﬁw l%ﬁm)[vmvw’]—w ny
1
+ ;(bﬂ'p, (1)

where wu, is the viscosity of the Newtonian component, u, is
the viscosity of the Newtonian solvent in the Oldroyd-B
fluid, and A is the interfacial mixing energy density.]3 The
polymer stress 7, obeys the Maxwell equation:

T, + Ny Ty = [ Vo + (Vo)T], (2)

where the subscript (1) denotes the upper convected deriva-
tive, Ay is the polymer relaxation time, and w,, is the polymer
viscosity. The evolution of ¢, and consequently the interface,
is governed by the Cahn-Hilliard equation:
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where the mobility parameter y controls the relaxation time
of the interfacial profile and the capillary width € represents
the small thickness of the interfacial layer.

We use a spectral method to solve the above equations
on a two-dimensional (2D) rectangular domain. Along the
flow direction, we impose periodic boundary conditions and
use a Fourier expansion. In the transverse direction, we im-
pose Dirichlet conditions with a Chebyshev-Galerkin dis-
cretization. The treatment of nonperiodic boundary condi-
tions is numerically nontrivial; it entails splitting the Cahn-
Hilliard equation into two Helmholtz equations to which
Neumann boundary conditions apply as in Shen.'® Refine-
ments of grid size and time step have been tested to ensure
adequate spatial and temporal resolution, and the numerical
code has been validated by comparison with prior results.”?
The Cahn-Hilliard equation, with proper boundary condi-
tions, guarantees mass conservation in the simulation.

lll. RESULTS AND ANALYSIS

Initially, a drop of radius a is suspended in the matrix
fluid bounded by two solid plates 8a apart. The drop is at the
center of the channel. At r=0, the two plates abruptly start to
slide in opposite directions, creating a far-field shear rate of
v. To explore the effect of viscoelasticity on transient drop
deformation D(r), we have simulated three cases: a Newton-
ian drop in a Newtonian matrix (N/N) as the baseline, an
Oldroyd-B drop in a Newtonian matrix (O/N), and a New-
tonian drop in an Oldroyd-B matrix (N/O). The steady-shear
viscosity is matched between the two components except for
a few N/N runs with viscosity ratio A # 1. For the Oldroyd-B
component, we fix u,=pu,. The magnitude of viscoelasticity
is represented by the Deborah number De=\y 7, and the cap-
illary number is defined by Ca=pu,,y/ o, u,a being the ma-
trix viscosity. Time is scaled by 1/7, length is scaled by a,
and the following dimensionless model parameters are used
for all the simulations: €=0.04, y=1.6X1073.

Analyzing the transient drop deformation requires an un-
derstanding of how viscoelasticity inside and outside the
drop affects the steady-state drop deformation. The steady-
state problem has recently been studied by Yue et al."* For
O/N, the polymer molecules are highly stretched near the
short-axis of the drop (or the “equator”), and the large tensile
stress there engenders a high pressure pushing the equator
outward, thereby reducing drop deformation. For N/O, the
steady-state D decreases with De first, reaches a minimum,
and then increases with De for larger De. The decrease is due
to flow modification that reduces the viscous normal stress in
the matrix, while the increase is caused by the hoop stress
near the equator of the drop where the polymer molecules are
stretched the most. These insights will be used in the follow-
ing to explain the transient drop deformation in terms of the
viscoelastic stress field.
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FIG. 1. Transient deformation of an Oldroyd-B drop in a Newtonian matrix
(O/N) after abrupt start of shear at Ca=0.1. Overshoot in D occurs at suffi-
ciently large De. N/N runs with viscosity ratios A=1 and 0.5 are also shown
for comparison.

A. A viscoelastic drop in a Newtonian matrix

Figure 1 shows the transient drop deformation D(z) for
an Oldroyd-B drop in a Newtonian matrix (O/N) at several
De values. Two runs with a Newtonian drop in a Newtonian
matrix at different viscosity ratios are also shown for com-
parison. For large enough Deborah numbers (De>0.25 for
these runs), the D curve shows an overshoot, and the ampli-
tude of the overshoot increases with increasing De. It has
been suggested”’3 that such an overshoot may arise from the
mismatch of two time scales: the polymer relaxation time Ay
and the capillary time 7,=pu,a/o for relaxation of the drop
shape. This idea will be validated here by tracking the tem-
poral variation of the polymer stress.

The polymer stress inside the drop is known to suppress
drop deformation,'* but it takes a finite time to build up. For
two Deborah numbers De=0.25 and 1, Fig. 2 plots the
growth of the polymer stress at two points on the drop: the
normal stress at the tip of the drop and the fangential stress
at its equator. For the smaller De=0.25, the stress adjusts
quickly to the relatively slow drop deformation; at both the
tip and the equator the stress grows more quickly than the
drop deforms. Thus D increases monotonically in Fig. 1,
achieving a D, below that for N/N. For the larger De=1, the
normal stress at the tip develops relatively quickly. But the
polymer stretching at the equator is too slow to keep up with
the drop deformation. This tensile stress plays the most im-
portant role in suppressing drop deformation.'* The polymer
remains mostly coiled during the first phase of drop defor-
mation, contributing little resistance to drop deformation.
Only after the drop has deformed significantly does the ten-
sile stress at the equator become large enough to suppress D.
Hence the overshoot. D approaches steady state at roughly
the same time (¢=~6) as the polymer stress at the equator
does. For still higher De, the maximum D increases with De
(cf. curve for De=2), evidently because the Oldroyd-B fluid
is less viscous initially and offers less resistance to deforma-
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FIG. 2. Growth of the polymer normal stress n-7,-n at the tip and the
tangential stress n- 7,-f at the equator of the drop for O/N, n and ¢ being the
local normal and tangent vectors. Ca=0.1, De=0.25 and 1. The normal
stress at the tip and the tangential stress at the equator are the major vis-
coelastic agents for suppressing drop deformation (Ref. 14). The apparent
nonsmoothness of the curves is due to our sampling the solution at large
time intervals.

tion. In fact, as De — o, the polymer will contribute little to
the stress at any finite time, and we expect the D(z) curve for
O/N to approach the N/N curve for a viscosity ratio A=0.5,
with zero polymer contribution to the viscosity of the
Oldroyd-B component.

Note that the time scales for polymer relaxation and drop
deformation are represented by De and Ca, respectively.
Based on the above analysis, one may naively expect
De/Ca>1 to be a criterion for the onset of overshoot in D.
The real picture is complicated by several other factors. The
drop deformation depends on the viscosity ratio as well; it
tends to occur more quickly for smaller N in Fig. 1, but in
any event takes much longer than 7, (or Ca in dimensionless
terms). Thus, the onset of overshoot appears to be near
De/Ca=5. More importantly, the polymer stretching, say at
the equator, depends on the deformation history of the fluid
particles passing through that region, and is not completely
determined by the nominal De that is based on the far-field
shear rate. This point will be revisited toward the end of the

paper.

B. A Newtonian drop in a viscoelastic matrix

For a Newtonian drop in an Oldroyd-B matrix, the tran-
sient deformation D(z) exhibits an overshoot only for mod-
erate values of De. For the conditions in Fig. 3, one may
roughly set this De range as 0.25<De < 1. This behavior can
be explained by the same idea of mismatched time scales as
for the O/N case. If De is very small, the polymer relaxes
very fast and remains more or less in equilibrium with the
instantaneous deformation field as the drop deforms and the
flow field evolves. There is no overshoot in this case for the
same reason that there is no overshoot for small De in O/N.
The effect of viscoelasticity here is merely to diminish the
final D, somewhat. If De is large enough so that the polymer
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FIG. 3. The deformation of a Newtonian drop in an Oldroyd-B matrix (N/O)
at Ca=0.2. D(r) overshoots only for intermediate values of De.

relaxation lags behind the drop retraction, the mismatch in
the time scales produces the overshoot as explained before
for O/N. This is because for the intermediate De range, vis-
coelasticity in the matrix in fact acts to suppress drop
deformation.*

As De exceeds the upper bound of this intermediate
range (e.g., De=1.5 in Fig. 3), the trend is reversed; the
polymer stress in the matrix now enhances drop deformation
in the steady state. Therefore, the drop deformation grows
monotonically. For still larger De, the polymer unravels so
slowly in the matrix that it initially contributes little addi-
tional viscosity to the fluid. Consequently, D() first reaches a
“shoulder” at a level close to that for the same Newtonian
drop in a Newtonian matrix with just the solvent viscosity
(Fig. 4), which is half of the total steady-shear viscosity in
this case. Subsequently, the polymer stress increases steadily
to very high levels, creating a second phase of drop defor-
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FIG. 4. Two-stage drop deformation for N/O at high De. N/N cases with
viscosity ratios A=1 and 2 are also shown for comparison. Ca=0.1 for all
runs except the N/N case with =2, for which the reduced matrix viscosity
yields a smaller Ca.
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FIG. 5. Comparison between N/O simulations with the experiment of Sibillo ez al. (Ref. 11). For the experimental data at Ca=0.43, time has been scaled by
a factor of 1/4. (a) Transient deformation D(z); (b) transient orientation angle 6(z).

mation. This phenomenon of two-stage drop deformation has
been observed previously by Tretheway and Leal® in planar
extensional flows. No similar observation has been reported
in shear flows.

Numerical experiments indicate that even a Newtonian
drop in a Newtonian matrix (N/N) may experience a slight
overshoot at relatively high Ca, say Ca=0.5. This corrobo-
rates the recent result of Zheng et al."® However, the over-
shoot disappears in their 3D simulations, and has apparently
never been reported experimentally. In fact, a 3D drop would
break at a lower Ca. Within the context of 2D simulations,
the N/N overshoot may have originated from competing in-
terfacial modes at high Ca. The viscoelastic overshoot dis-
cussed above is due to a distinct mechanism, one that does
occur in reality.

We have calculated the transient drop deformation using
the experimental parameters of Sibillo et al.,"" and the results
are compared in Fig. 5. The experimental runs were carried
out by varying the shear-rate for the same fluid pair. Thus, Ca
and De vary in proportion. For Ca=0.06 and De=0.09, the
simulation and experiment agree almost quantitatively. The
drop deforms gradually as in a Newtonian matrix, with no
overshoot in the D(t) curve.

For Ca=0.43 and De=0.645, the simulation and experi-
ment both show an overshoot in D(¢), but with two important
quantitative differences. First, the overshoot takes a much
longer time in the experiment than in the simulation. To fa-
cilitate visual comparison, we have shrunk ¢ by an arbitrary
factor of 4 for this set of experimental data in Fig. 5. Second,
the magnitude of the experimental overshoot is much larger
than that in our calculation. The different dimensionality
might account for part of the differences. Maffettone et al.”
applied a phenomenological ellipsoidal drop model to the
transient deformation of a Newtonian drop in a viscoelastic
matrix. Their 3D predictions show the same trend as ours: at
higher shear rates the overshoot is smaller in magnitude and
occurs faster than in experiments. However, the discrepan-
cies do seem to be reduced in 3D. In addition, the fact that
there is good agreement for small De suggests another pos-

sibility: the rheology of the experimental fluid may not be
adequately represented by the Oldroyd-B model at higher
De. Numerical dissipation has been ruled out as a cause for
the discrepancy by refining the time steps.

Finally, for Ca=0.47 and De=0.705, the experimental
drop has no steady shape; D continues to increase until the
drop breaks up (curve not shown). For our 2D simulation, on
the other hand, there is no capillary breakup and the D(r)
curve merely exhibits a more prominent overshoot. Because
their De was not varied independently of Ca, Sibillo et al"
could not explore higher De values where the two-stage de-
formation in Fig. 4 might be observed.

Figure 5(b) shows the transient orientation angle 6(r) of
the long axis of the drop. The jitters in the computed curves
are a numerical artifact due to interpolation errors in deter-
mining the exact location of the drop’s tip. Guido et al’
reported that viscoelasticity in the matrix tends to align the
drop more with the flow direction, producing a smaller
steady-state @ for larger De. The simulations show the same
trend. For Ca=0.06 and De=0.09, the decline of # is mono-
tonic. For Ca=0.43 and De=0.645, the numerical 6(¢) curve
shows a smaller undershoot than the experimental curve. The
rotation of the drop toward the flow direction is a conse-
quence of the polymer normal stress near the tip.4’14 Thus, a
more elongated drop will experience a larger torque. This
explains the close correspondence between # and D, includ-
ing their transients. Incidentally, for O/N the orientational
angle hardly changes with drop viscoelasticity, for the obvi-
ous reason that there is no viscoelastic torque from the ma-
trix. There is also no overshoot in the orientation angle for
O/N.

We have also explored the effect of increasing Ca while
keeping De fixed for both N/O and O/N (Fig. 6). This is most
conveniently thought of as due to reduction of the interfacial
tension with all other parameters unchanged. The magnitude
of the overshoot increases with Ca, in apparent contradiction
to the idea of competing time scales. A more careful inves-
tigation shows that the polymer stress at the equator in fact
grows more slowly at higher Ca, and this is due to the
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FIG. 6. Increase of the overshoot in D with Ca at a fixed De=0.75. (a) Newtonian drop in Oldroyd-B matrix (N/O); (b) Oldroyd-B drop in Newtonian matrix

(ON).

“weaker” kinematics of the flow, which tends to have more
rotation and less elongation as the drop is more elongated.
For a small Ca, the drop deviates little from the circular
shape. Thus, there is a strong converging flow on the upwind
side of the drop.14 The resulting extension causes the tensile
stress near the equator to develop quickly, and may explain
the lack of an overshoot for Ca=0.1 in Fig. 6(a). With in-
creasing Ca, the drop becomes more elongated and stream-
lined, and the extensional component of the flow near the
interface is damped down relative to vorticity. Then the poly-
mer stress grows more slowly and the discrepancy in drop
and polymer relaxation times is effectively amplified at
higher Ca. This bears out the caveat given before on using
De/Ca as an indication for the overshoot in D.

IV. SUMMARY

Our diffuse-interface simulations show interesting tran-
sients in drop deformation upon startup of shear when either
component is viscoelastic. The transients are generally due to
the mismatch between the times taken for the drop to deform
and for the polymer to stretch. The numerical solutions agree
qualitatively with observations,'! having captured the over-
shoot in D and undershoot in # for moderate De. Quantita-
tive discrepancies are attributed to difference in dimension-
ality and possibly also simplistic representation of the non-
Newtonian rheology. For a Newtonian drop in a viscoelastic
matrix, the numerical predictions of the disappearance of
overshoot for larger De and the two-stage deformation for
still larger De are similar to observations in extensional
flows,> but remain to be confirmed by shear-flow experi-
ments. Although we have restricted viscoelasticity to only
one component, it is possible that the same mechanism is at
work for mixtures of polymer melts. ' Simulating such com-
plex systems will certainly require more sophisticated con-
stitutive equations than the Oldroyd-B model used here.
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