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Abstract. We present in this paper several extremely efficient and accurate spectral-Galerkin
methods for second- and fourth-order equations in polar and cylindrical geometries. These methods
are based on appropriate variational formulations which incorporate naturally the pole condition(s).
In particular, the computational complexities of the Chebyshev–Galerkin method in a disk and the
Chebyshev–Legendre–Galerkin method in a disk or a cylinder are quasi-optimal (optimal up to a
logarithmic term). As an indication of efficiency, the CPU time for the Poisson solver on a disk
by our Chebyshev–Galerkin method is only about 70% of the corresponding finite-difference code in
FISHPACK.
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1. Introduction. This paper is the third part in a series for developing efficient
spectral-Galerkin methods for elliptic problems. In the first part [14] and the second
part [15], we presented efficient algorithms for solving elliptic equations in rectangular
domains. In this part, we shall deal with polar and cylindrical geometries, which
have important applications in many fields of science and engineering, especially in
computational fluid dynamics.

The most effective way to deal with polar or cylindrical geometries is to map
them to rectangular domains by using polar or cylindrical coordinates. Thus, spectral
methods are extremely well suited in this case, since the actual computational domains
are of rectangular type, and the axial direction can be treated efficiently by fast Fourier
transform (FFT). There exist already a number of good algorithms based on the
spectral-collocation or spectral-tau methods (see, for instance, [9], [5], [6], [10], and
[7]), but they may not be entirely satisfactory in terms of either efficiency or accuracy.
To the best of my knowledge, only the algorithm in [6], which is limited to second-
order equations and polar geometries, has a quasi-optimal computational complexity.
However, the algorithm may not be easy to generalize and to implement because it is
based on an odd–even parity argument and the tau method. The aim of this paper is
to develop spectral-Galerkin algorithms whose computational complexities are quasi-
optimal for second- and fourth-order equations in polar and cylindrical geometries.

There are apparently two difficulties in developing efficient spectral methods for
polar and cylindrical geometries. Namely, (i) the polar transformation introduces
singularity at the pole(s) so that appropriate pole condition(s) should be imposed to
ensure the desired smoothness in the Cartesian coordinates, and (ii) even simple equa-
tions with constant coefficients in Cartesian coordinates will have variable coefficients
of the form r±k in polar coordinates. However, these two difficulties can be naturally
resolved by using a variational formulation which incorporates the pole condition(s)
and by choosing a set of appropriate basis functions for the spectral-Galerkin methods
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which would lead to sparse matrices even for problems with variable coefficients of
the form r±k.

The rest of the paper is organized as follows. In the next section, we provide a de-
tailed presentation for the Legendre, Chebyshev, and Chebyshev–Legendre–Galerkin
methods for a model Helmholtz equation in a disk. In section 3, we deal with the
same model equation but in a cylinder. In section 4, we treat fourth-order problems.
In section 5, we present various extensions including, in particular, problems with
variable coefficients. Numerical results demonstrating the efficiency and accuracy of
our methods are presented in section 6 followed by some concluding remarks.

2. Polar geometries. As a model problem, we consider the Helmholtz equation
on a unit disk

−∆U + αU = F in Ω = {(x, y) : x2 + y2 < 1},(2.1)
U = 0 on ∂Ω.

Its variational formulation is to find U ∈ H1
0 (Ω) such that

A(U, V ) :=
∫

Ω

∇U ∇V dx dy + α

∫
Ω

U V dxdy =
∫

Ω

F V dxdy ∀V ∈ H1
0 (Ω).(2.2)

We will develop approximation schemes which are consistent with (2.2) in a sense to
be specified below.

Applying the polar transformation x = r cos θ, y = r sin θ to (2.1), and setting
u(r, θ) = U(r cos θ, r sin θ), f(r, θ) = F (r cos θ, r sin θ), we obtain

− urr −
1
r
ur −

1
r2
uθθ + αu = f, (r, θ) ∈ Q = (0, 1)× [0, 2π),(2.3)

u(1, θ) = 0, θ ∈ [0, 2π), u periodic in θ.

Similarly, the variational formulation (2.2) becomes

a(u, v) :=
∫
Q

ur vr r dr dθ +
∫
Q

1
r
uθ vθ dr dθ(2.4)

+α

∫
Q

u v r dr dθ =
∫ 1

0

f v r dr dθ.

Since the polar transformation is singular at the pole r = 0, additional pole
conditions should be imposed for the solution of (2.3) to have desired regularity in
the Cartesian coordinates. In fact, if the function

u(r, θ) =
∞∑
|m|=0

(u1m(r) cosmθ + u2m(r) sinmθ)(2.5)

were to be infinitely differentiable in the Cartesian coordinates, the following pole
conditions would need to be satisfied (cf. [13]):

u1m(r) = O(r|m|), u2m(r) = O(r|m|) as r → 0, |m| = 1, 2, . . . .(2.6)

Obviously, it is computationally impractical to impose all the pole conditions in (2.6).
Since our approximations will be based on the variational formulation (2.4) which is
well defined if uθ(0, θ) = 0 for θ ∈ [0, 2π), or equivalently

u1m(0) = u2m(0) = 0 for m 6= 0,(2.7)
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we will term (2.7) as the essential pole condition for (2.3), while all other conditions in
(2.6) will be termed as natural or nonessential. Although it is possible to impose any
given number of pole conditions in (2.6) in a numerical scheme, it is generally ineffi-
cient and may lead to ill-posed linear systems if more than necessary pole conditions
are imposed so that the total number of boundary conditions in the radial direction
exceeds the order of the underlying differential equation. On the other hand, ignoring
the essential pole condition(s) will lead to inaccurate results.

We emphasize that the accuracy of a spectral approximation to (2.4) is only
affected by the smoothness of the solution u in polar coordinates. In particular, the
singularity of the solution u at the pole in Cartesian coordinates will not degrade the
accuracy of the spectral Galerkin schemes presented below (see also the numerical
results in Table 6.2).

We now describe our spectral approximations to (2.3). Given a cutoff number
M > 0, let (f1m(r), f2m(r)) be defined by the discrete (in θ) Fourier expansion

f(r, θj) =
M∑
m=0

(f1m(r) cos(mθj) + f2m(r) sin(mθj)),(2.8)

θj =
jπ

M
, j = 0, 1, . . . , 2M − 1.

We define a Fourier-spectral approximation to the solution u of (2.3) by

u
M

(r, θ) =
M∑
m=0

(u1m(r) cos(mθ) + u2m(r) sin(mθ)),(2.9)

where (u1m(r), u2m(r)) (m = 0, 1, . . . ,M) are solutions of the following system:

−u1m
rr −

1
r
u1m
r +

(
m2

r2
+ α

)
u1m = f1m(r), 0 < r < 1,(2.10)

−u2m
rr −

1
r
u2m
r +

(
m2

r2
+ α

)
u2m = f2m(r), 0 < r < 1,

u1m(0) = u2m(0) = 0 if m 6= 0, u1m(1) = u2m(1) = 0.

Remark 2.1. The extra pole condition u1,0
r (0) = u2,0

r (0) = 0 used by many authors
(see, for instance, [9], [5], [6], [10], and [7]) is derived from the parity argument on
the expansion (2.9). It is, however, not part of the essential pole condition for (2.3).
Although in most cases there is no harm to impose the extra pole condition, we
choose not to do so since its implementation is more complicated and it may fail to
give accurate results in some extreme (but still legitimate) cases, e.g., when the exact
solution is a function of r − 1.

Now, we only have to consider the approximation of the following prototypical
one-dimensional equation:

−u′′ − 1
r
u′ +

(
m2

r2
+ α

)
u = f, 0 < r < 1; u(0) = 0 if m 6= 0, u(1) = 0,(2.11)

where u and f now represent generic functions. Most of the existing spectral algo-
rithms treat (2.11) directly by using either a collocation (cf. [10] and [7]) or a tau
method exploring the inherent parity conditions in (2.11) (cf. [13], [6]). However, it
is important to note that a direct treatment of (2.11) is not quite appropriate since
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the measure rdrdθ related to the polar coordinate transformation is not taken into
account. Instead, it is more appropriate to use the following variational formulation
originated from (2.4): find u ∈ Y (m) such that∫ 1

0

ur vr r dr +
∫ 1

0

(
m2

r2
+ α

)
u v r dr =

∫ 1

0

f v r dr ∀ v ∈ Y (m),(2.12)

where Y (m) = H1
0 (0, 1) if m 6= 0 and Y (0) = {v ∈ H1(0, 1) : u(1) = 0}.

The formulation (2.12) has the advantage of being symmetric, while direct treat-
ment of (2.11) leads to nonsymmetric systems which may introduce additional diffi-
culties in practice.

Now, let us derive a weighted variational formulation which is suitable for both
the Legendre and Chebyshev methods. Although it is possible to extend (2.11) to
the interval (−1, 0) by parity argument (cf. [6] and [7]), it is more efficient, at least
from our point of view, to make a coordinate transformation r = (t+ 1)/2 in (2.11).
Setting v(t) = u

(
(t+ 1)/2

)
, we get

− v′′ − 1
t+ 1

v′ +
(

m2

(t+ 1)2
+
α

4

)
v =

1
4
f

(
t+ 1

2

)
, t ∈ I = (−1, 1),(2.13)

v(−1) = 0 if m 6= 0, v(1) = 0.

Thus, a weighted variational formulation for (2.13) (compare with (2.12)) is to find
v ∈ X(m) such that(

(t+ 1)v′, (wω)′
)

+
(
m2

t+ 1
v, w

)
ω

+ β
(
(t+ 1)v, w

)
ω

= (g, w)ω ∀w ∈ X(m),(2.14)

where X(m) = H1
0,ω(I) if m 6= 0, and X(0) = {v ∈ H1

ω(I) : u(1) = 0}, β = α
4 ,

g(t) = 1
4 (t+ 1)f

(
(t+ 1)/2

)
. ω is a certain weight function and (u, v)ω =

∫
I
u v ω dt.

Let PN be the space of polynomials of degree less than or equal to N , and let

X
N

(m) = {v ∈ PN : v(±1) = 0} for m 6= 0, X
N

(0) = {v ∈ PN : v(1) = 0}.

The spectral-Galerkin methods will seek approximations in X
N

(m). The key for effi-
cient implementation of the spectral-Galerkin methods is to choose appropriate basis
functions for X

N
(m). In most cases, we use basis functions of the form

φi(t) = pi(t) + ei1pi+1(t) + · · ·+ eikpi+k(t), i = 0, 1, . . . , N − k,(2.15)

where pi(t) is either the Legendre or Chebyshev, or, more generally, Jacobi polynomial
of degree i, k is the number of underlying boundary conditions, and {eij, i = 1, . . . , k}
should be chosen so that φi(t) satisfies the corresponding homogeneous boundary
conditions.

Remark 2.2. The basis functions in (2.15) usually lead to matrices with the
simplest structure. However, in some special cases, other basis functions may be
more suitable; see Remark 2.3 and Lemma 4.2 for two examples.

We now consider several alternative spectral approximations for (2.14).

2.1. Legendre–Galerkin approximation. Setting ω ≡ 1 in (2.14), the Legendre–
Galerkin approximation to (2.14) is to find v

N
∈ X

N
(m) such that ∀w ∈ X

N
(m)(

(t+ 1)v′
N
, w′
)

+m2

(
1

t+ 1
v
N
, w

)
+ β

(
(t+ 1)v

N
, w
)

= (I
N
g, w),(2.16)
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where I
N

is the operator of interpolation based on the Legendre–Gauss–Lobatto
points, i.e., (IN g)(ti) = g(ti), i = 0, 1, . . . , N, where {ti} are the roots of (1− t2)L′N(t).

We now treat the cases m 6= 0 and m = 0 separately.

2.1.1. Case m 6= 0. Let Lk(t) be the kth degree Legendre polynomial; it is
easy to verify that

X
N

(m) = span{φi(t) = Li(t)− Li+2(t), i = 0, 1, . . . , N − 2}.

Setting

aij =
∫
I

(t+ 1)φ′j φ
′
i dt, A = (aij)i,j=0,1,...,N−2,

bij =
∫
I

1
t+ 1

φj φi dt, B = (Bij)i,j=0,1,...,N−2,

cij =
∫
I

(t+ 1)φj φi dt, C = (Cij)i,j=0,1,...,N−2,(2.17)

fi =
∫
I

I
N
g φi dt, f = (fi)i=0,1,...,N−2,

v
N

=
N−2∑
i=0

xiφi(t), x = (xi)i=0,1,...,N−2,

then (2.16) becomes the matrix equation

(A+m2B + βC)x = f .(2.18)

It turns out that the variable coefficients of the form (t ± 1)±1 do not lead to dense
matrices. In fact, we have the following.

LEMMA 2.1. The matrices A and B are symmetric tri-diagonal with

aij =

{
2i+ 4, j = i+ 1,
4i+ 6, j = i,

bij =


− 2
i+ 2

, j = i+ 1,

2(2i+ 3)
(i + 1)(i+ 2)

, j = i.
(2.19)

The matrix C is symmetric seven-diagonal with

cij =



− 2(i+ 3)
(2i+ 5)(2i+ 7)

, j = i+ 3,

− 2
2i+ 5

, j = i+ 2,

2
(2i+ 1)(2i+ 5)

+
2(i+ 3)

(2i+ 5)(2i+ 7)
, j = i+ 1,

2
2i+ 1

+
2

2i+ 5
, j = i.

(2.20)

Proof. It is obvious from the definition that the matrices A, B, and C are sym-
metric positive definite. The formula for aij can be easily established by using the
following properties of Legendre polynomials:

φ′i(t) = −(2i+ 3)Li+1(t),(2.21)
(i+ 1)Li+1(t) = (2i+ 1)t Li(t)− i Li−1(t).(2.22)
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We can also easily verify that

φi(t) =
2i+ 3

(i + 1)(i+ 2)
(1 − t2)L′i+1(t).(2.23)

Therefore, temporarily setting αj = 2j+3
(j+1)(j+2) , and using successively (2.23), integra-

tion by parts, and (2.21), we have

bij =
∫
I

1
t+ 1

φj φi dt = αj

∫
I

(1 − t)L′j+1 φi dt

= −αj
∫
I

Lj+1
d

dt

(
(1− t)φi

)
dt

= αj

∫
I

Lj+1

(
(2i+ 3)(1− t)Li+1 + φi

)
dt.

The formula for bij can now be easily established by using (2.22). The formula for cij
can be derived similarly.

2.1.2. Case m = 0. In this case, (2.16) becomes(
(t+ 1)v′

N
, w′
)

+ β
(
(t+ 1)v

N
, w
)

= (I
N
g, w) ∀w ∈ X

N
(0).(2.24)

It is easy to verify that

XN (0) = span{φi(t) = Li(t)− Li+1(t) : i = 0, 1, . . . , , N − 1}.

Using again the definitions in (2.18) with the index i and j extending to N − 1, we
find that (2.24) is equivalent to the matrix equation

(A+ βC)x = f .

LEMMA 2.2. The matrix A is diagonal with aii = 2i + 2. The matrix C is
symmetric penta-diagonal with

cij =



− 2(i+ 2)
(2i+ 3)(2i+ 5)

, j = i+ 2,

4
(2i+ 1)(2i+ 3)(2i+ 5)

, j = i+ 1,

4(i+ 1)
(2i+ 1)(2i+ 3)

, j = i.

Proof. It is easy to see that aij = 0 for i 6= j. On the other hand, we have

aii =
(
(t+ 1)φ′i, φ

′
i

)
= −(φ′i, φi)−

(
(t+ 1)φ′′i , φi

)
.

Direct computations using (2.22) will lead to aii = 2i + 2 and the formula
for cij .

2.2. Chebyshev–Galerkin approximation. The Legendre–Galerkin method
suffers from the lack of fast transform between the physical and frequency spaces.
Therefore, it is natural to use the Chebyshev polynomials for which a fast transform
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is available. Setting ω = (1− t2)−
1
2 in (2.14), the Chebyshev–Galerkin approximation

to (2.14) is to find vN ∈ XN (m) such that

(
(t+ 1)v′

N
, (wω)′

)
+m2

(
1

t+ 1
vN , w

)
ω

(2.25)

+ β
(
(t+ 1)v

N
, w
)
ω

= (Ic
N
g, w)ω ∀w ∈ XN (m),

where Ic
N

is the operator of interpolation based on the Chebyshev–Gauss–Lobatto
points, i.e., Ic

N
f ∈ PN with (Ic

N
f)(ti) = f(ti), ti = cos( iπN ), i = 0, 1, . . . , N .

2.2.1. Case m 6= 0. Let Tk(t) be the kth degree Chebyshev polynomial; we
have

X
N

(m) = span{φi(t) = Ti(t)− Ti+2(t) : i = 0, 1, . . . , N − 2}.

Setting

aij =
∫
I

(t+ 1)φ′j (φiω)′ dt, A = (aij)i,j=0,1,...,N−2,

bij =
∫
I

1
t+ 1

φj φi ω dt, B = (Bij)i,j=0,1,...,N−2,

cij =
∫
I

(t+ 1)φj φi ω dt, C = (Cij)i,j=0,1,...,N−2,(2.26)

fi =
∫
I

Ic
N
g φi ω dt, f = (fi)i=0,1,...,N−2,

vN =
N−2∑
i=0

xiφi(t), x = (xi)i=0,1,...,N−2,

then (2.25) becomes the matrix equation

(A+m2B + βC)x = f .(2.27)

The direct computation of elements of A, B, and C is very involved, but it can be
substantially simplified by using the following results (cf. (2.6), (2.5), and (4.6) in
[15]):

ãij = −
∫
I

φ′′j φi ω dt =


2π(i+ 1)(i+ 2), j = i,

4π(i+ 1), j = i+ 2, i+ 4, i+ 6, . . . ,
0, otherwise,

(2.28)

b̃ij =
∫
I

φj φi ω dt =


di + 1

2
π, j = i,

−π
2
, j = i− 2 or i+ 2,

0, otherwise,

,(2.29)

c̃ij =
∫
I

φ′j φi ω dt =


π(i + 1), j = i+ 1,
−π(i+ 1), j = i− 1,
0, otherwise,

(2.30)

where d0 = 2 and di = 1 for i ≥ 1.
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LEMMA 2.3. A is an upper Heisenberg matrix with

aij =


(i + 1)2π, j = i− 1,
2(i+ 1)(i+ 2)π, j = i,

(i + 1)(i+ 5)π, j = i+ 1,
4(i+ 1)π, j ≥ i+ 2.

(2.31)

B is a symmetric tri-diagonal matrix with

bij =


2π, j = i,

−π, j = i+ 1,
0, otherwise.

(2.32)

C is a symmetric seven-diagonal matrix with

cij =



di + 1
2

π, j = i,

di−1

4
π, j = i− 1,

−π
2
, j = i− 2,

−π
4
, j = i− 3.

(2.33)

Proof.

aij = −
∫
I

(
(t+ 1)φ′j

)′
φi ω dt = −

∫
I

φ′′j φi ω dt−
∫
I

(tφ′j)
′ φi ω dt(2.34)

= ãij − c̃ij −
∫
I

φ′′j t φi ω dt.

It is clear from the definition that aij = 0 if j < i− 1. On the other hand, from the
relations above and

tφi = t(Ti − Ti+2) =
1
2

(Ti−1 − Ti+3) =
1
2

(φi−1 + φi+1), i ≥ 1,(2.35)

we derive immediately that

aij = ãij − c̃ij +
1
2

(ãi−1,j + ãi+1,j).

The formula (2.31) is then a direct consequence of the above relation, (2.28), and
(2.30).

It is easy to see from the definition that bij = 0 if |i−j| > 1. By using the formula
(A.22) in [9] we can show that

φj(t) = (1 − t2)
∑

0≤k≤j
k+j even

4
dk
Tk(t).(2.36)



EFFICIENT SPECTRAL-GALERKIN METHODS III 1591

Therefore,

bij =
∫
I

1
t+ 1

φj φi ω dt =
∑

0≤k≤j
k+j even

4
dk

∫
I

(1 − t)φi Tk ω dt(2.37)

=
∑

0≤k≤j
k+j even

4
dk

∫
I

(
φi −

1
2

(φi−1 + φi+1)
)
Tk ω dt.

bii and bi,i+1 can then be easily computed from the above relation.
Finally, by using (2.35), we find

cij = b̃ij +
1
2

(b̃i−1,j + b̃i+1,j).

Hence, (2.33) is a direct consequence of the above relation and (2.29).
Remark 2.3. Although the matrix A is not sparse, (2.27) can still be solved in

O(N) operations by taking advantage of the special structure of A, namely, aij =
4(i+ 1)π for j ≥ i+ 2.

An alternative is to use a new set of basis functions φi(t) = (1 − t2)Ti(t). It is
easy to see that in this case B and C are symmetric sparse matrices with bij = 0 for
|i− j| > 3 and cij = 0 for |i− j| > 5. One can also show by using integration by parts
that A is a nonsymmetric sparse matrix with aij = 0 for |i− j| > 3. Thus, (2.27) can
also be solved in O(N) operations.

2.2.2. Case m = 0. In this case, (2.25) becomes(
(t+ 1)v′

N
, (wω)′

)
+ β

(
(t+ 1)v

N
, w
)
ω

= (I
N
g, w)ω ∀w ∈ XN (0),(2.38)

where

X
N

(0) = span{φi(t) = Ti(t)− Ti+1(t) : i = 0, 1, . . . , N − 1}.

Using again the definitions in (2.26) with the index i and j extending to N −1, (2.38)
is equivalent to the matrix equation

(A+ βC)x = f .

LEMMA 2.4. A is an upper-triangular matrix with

aij =


(i + 1)π2, j = i,

(i− j)π, j = i+ 1, i+ 3, i+ 5 . . . ,
(i + j + 1)π, j = i+ 2, i+ 4, i+ 6 . . . .

(2.39)

C is a symmetric penta-diagonal matrix with nonzero elements

cii =
π

2
, i = 0, 1, . . . , N − 1,

ci,i+2 = ci+2,i = −π
4
, i = 0, 1, . . . , N − 3,(2.40)

c01 = c10 =
π

4
.
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Proof. The computation of cij is straightforward by using the orthogonality of
the Chebyshev polynomials and the relation

tφi(t) = t
(
Ti(t)− Ti+1(t)

)
=

1
2
(
φi−1(t) + φi+1(t)

)
, i ≥ 1.

The computation of aij is quite involved. The idea is to use the relations (A.9)–
(A.10) in [9] to expand

(
(t+ 1)φ′j(t)

)′ in Chebyshev series. The details are left to the
interested readers.

Remark 2.4. Once again, the matrix A is not sparse. But (2.38) can still be solved
in O(N) operations by exploring the special structure of A. We refer to pages 80–81
in [15] for more details on this procedure for a similar problem.

2.3. Chebyshev–Legendre–Galerkin approximation. The Chebyshev–
Legendre–Galerkin method was introduced in [16] to take advantage of both the
Legendre and Chebyshev polynomials. The idea is to use the Legendre–Galerkin
formulation which preserves the symmetry of the underlying problem and leads to a
simple sparse linear system, while the physical values are evaluated at the Chebyshev–
Gauss-type points. Thus, we can replace the expensive Legendre transform by a fast
Chebyshev–Legendre transform (cf. [1] and [16]) between the coefficients of Legendre
expansions and the values at the Chebyshev–Gauss-type points. More precisely, the
Chebyshev–Legendre–Galerkin approximation for (2.14) is to find v

N
∈ X

N
(m) such

that ∀w ∈ XN (m)

(
(t+ 1)v′

N
, w′
)

+m2

(
1

t+ 1
vN , w

)
+ β

(
(t+ 1)vN , w

)
= (Ic

N
g, w),(2.41)

where Ic
N

is the interpolation operator based on the Chebyshev–Gauss–Lobatto points.
The only difference with the Legendre–Galerkin approximation (2.16) is that the
interpolation operator I

N
is replaced by Ic

N
which allows fast discrete transform.

2.4. Computational complexity. The computational complexity for each of
the methods presented above is O(NM)+2T (NM), where N and M are, respectively,
the cutoff number of the spectral expansion in radial and axial directions, and T (NM)
is the cost of one forward or inverse discrete transform of the form

g(ti, θj) =
N∑
n=0

( M∑
m=0

(
g1m
n cosmθj + g2m

n sinmθj
))
pn(tj),(2.42)

i = 0, 1, . . . , N, j = 0, 1, . . . , 2M − 1,

where pn(t) is the nth degree Chebyshev or Legendre polynomial. Therefore,

T (NM) = N2M +O(NM log2M)

for the Legendre–Galerkin method, while

T (NM) = O(NM log2M) +O(NM log2N)

for the Chebyshev–Galerkin or Chebyshev–Legendre–Galerkin method. Thus, the
computational complexity of both the Chebyshev–Galerkin and Chebyshev–Legendre–
Galerkin methods is quasi-optimal.
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3. Cylindrical geometries. Consider the Helmholtz equation in a cylinder

−∆U + αU = F in Ω = {(x, y, z) : x2 + y2 < 1, z ∈ I},(3.1)
U = 0 on ∂Ω.

Applying the cylindrical transformation x = r cos θ, y = r sin θ, z = z, and setting
u(r, θ, z) = U(r cos θ, r sin θ, z), f(r, θ, z) = F (r cos θ, r sin θ, z), we obtain

− urr −
1
r
ur −

1
r2
uθθ − uzz + αu = f, (r, θ, z) ∈ (0, 1)× [0, 2π)× I,(3.2)

u = 0 at r = 1 or z = ±1, u periodic in θ,

with the essential pole condition

∂

∂θ
u(0, θ, z) = 0, (θ, z) ∈ [0, 2π)× I.(3.3)

As before, let (f1m(r, z), f2m(r, z)) be defined by

f(r, z, θj) =
M∑
m=0

(f1m(r, z) cos(mθj) + f2m(r, z) sin(mθj)),(3.4)

θj =
jπ

M
, j = 0, 1, . . . , 2M − 1.

Then, a Fourier-spectral approximation to u is given by

u
M

(r, θ, z) =
M∑
m=0

(u1m(r, z) cos(mθ) + u2m(r, z) cos(mθ))

with uim(i = 1, 2) satisfying the following two-dimensional equation

− uimzz − uimrr −
1
r
uimr +

(
m2

r2
+ α

)
uim = f im(r, z) in Ω = (0, 1)× I,(3.5)

uim = 0 at r = 0 if m 6= 0, uim = 0 at r = 1 or z = ±1.

We then make a coordinate transformation r = (t+1)/2, denoting v(t, z) = uim(r, z),
g(t, z) = 1

4 (t + 1)f im(r, z), and β = α
4 , we obtain the prototypical two-dimensional

equation

− t+ 1
4

vzz −
(
(t+ 1)vt

)
t

+
(
m2 1

t+ 1
+ β(t+ 1)

)
v = g, (t, z) ∈ I × I,(3.6)

v = 0 at t = −1 if m 6= 0, v = 0 at t = 1 or z = ±1.

Let us denote ψi(z) = pi(z)− pi+2(z) and φi(t) = pi(t)− pi+s(m)(t), where s(m) = 2
if m 6= 0 and s(0) = 1, and pj is either the jth degree Legendre or Chebyshev
polynomial. Let

X
N

(m) = span{φi(t)ψj(z) : 0 ≤ i ≤ N − s(m), 0 ≤ j ≤ N − 2}.

Then a spectral-Galerkin approximation to (3.6) is to find vN ∈ XN (m) such that

1
4
(
(t+ 1)∂zvN , ∂z(wω)

)
+
(
(t+ 1)∂tvN , ∂t(wω)

)
+m2

(
1

t+ 1
v
N
, w

)
ω

(3.7)

+β
(
(t+ 1)v

N
, w
)
ω

= (I
N
g, w)ω ∀w ∈ XN (m),
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where ω ≡ 1 in the Legendre case and w =
(
(1−t2)(1−z2)

)− 1
2 in the Chebyshev case,

(·, ·)ω is the weighted L2-inner product in I × I, and I
N

is the interpolation operator
based on the Legendre- or Chebyshev–Gauss-type points. Setting

aij =
∫
I

(t+ 1)φ′j
(
φiω(t)

)′
dt, A = (aij)i,j=0,1,...,N−s(m),

bij =
∫
I

1
t+ 1

φj φi ω(t) dt, B = (Bij)i,j=0,1,...,N−s(m),

cij =
1
4

∫
I

(t+ 1)φj φi ω(t) dt, C = (Cij)i,j=0,1,...,N−s(m),(3.8)

dij =
∫
I

ψj ψi ω(z) dz, D = (Dij)i,j=0,1,...,N−2,

eij =
∫
I

ψ′j
(
ψi ω(z)

)′
dz, E = (Eij)i,j=0,1,...,N−2,

and

fij =
∫
I

∫
I

I
N
g φi(t)ψj(z)ω(t, z) dt dz, F = (fij),

vN =
N−s(m)∑
i=0

N−2∑
j=0

xijφi(t)ψj(z), X = (xij),(3.9)

i = 0, 1, . . . , N − s(m), j = 0, 1, . . . , N − 2.

Then (3.7) becomes the matrix equation

CXE + (A+m2B + βC)XD = F.(3.10)

The entries of A, B, and C in the Legendre or Chebyshev case are explicitly given in
the previous section, while those of D and E are given in [14] for the Legendre case
and [15] for the Chebyshev case. This matrix equation can be efficiently solved, in
particular, by using the tensor product (or matrix decomposition) method (see, for
instance, [12], [14]). More precisely, we consider the following generalized eigenvalue
problem Etg = λDg (Et being the transpose of E), and let Λ be the diagonal matrix
formed by the eigenvalues and let G be the matrix formed by the corresponding
eigenvectors. Then

EtG = DGΛ or GtE = ΛGtD.(3.11)

It is well known that the eigenvalues are all real positive (the Legendre case is trivial
while the Chebyshev case can be proved as in [8]). Making a change of variable
X = Y Gt in (3.10), we find

CY GtE + (A+m2B + βC)Y GtD = F.

We then derive from (3.11) that

CY Λ + (A+m2B + βC)Y = FD−1G−t.(3.12)

The above matrix equation is nothing but a sequence of N − 1 one-dimensional equa-
tions considered in the previous section. In summary, after the preprocessing for
the computation of the eigenpair (Λ, G) and G−1 (in the Legendre case, G is a or-
thonormal matrix, i.e., G−1 = Gt), the solution of (3.7) for each m consists of three
steps:
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1. Compute FD−1G−t: N3 +O(N2) flops.
2. Solving Y from (3.12): O(N2) flops.
3. Set X = Y Gt: N3 flops.

The above matrix decomposition method is very easy to implement and quite efficient
for small to moderate N . But its computational complexity is not optimal. How-
ever, for the Legendre or Chebyshev–Legendre method, the matrix equation (3.10)
can be solved by the generalized cyclic reduction method (cf. [18]) whose compu-
tational complexity is O(N2 log2N). Hence, the computational complexity of the
Chebyshev–Legendre–Galerkin method for the three-dimensional equation (3.1) will
be O(N2M log2(NM)) which is again quasi-optimal. We refer to [16] for a perfor-
mance comparison of Poisson solvers in rectangular domains by Legendre, Chebyshev,
and Chebyshev–Legendre–Galerkin methods.

The above method can be applied in particular to the axisymmetric problem in a
cylinder; see [11] for an example of solving the axisymmetric Navier–Stokes equations.

4. Fourth-order equations. Consider the biharmonic equation on a unit disk

∆2U = F in Ω = {(x, y) : x2 + y2 < 1}, U =
∂U

∂n
= 0 on ∂Ω,(4.1)

whose variational formulation is to find U ∈ H2
0 (Ω) such that

A(U, V ) :=
∫

Ω

∆U ∆V dx dy =
∫

Ω

F V dxdy ∀V ∈ H2
0 (Ω).(4.2)

Let us denote

∆̃v :=
1
r

(rvr)r +
1
r2
vθθ.

Applying the polar transformation x = r cos θ, y = r sin θ to (4.1), we obtain

∆̃2u = f, (r, θ) ∈ Q = (0, 1)× [0, 2π),(4.3)
u(1, θ) = ur(1, θ) = 0, θ ∈ [0, 2π), u periodic in θ,

where u(r, θ) = U(r cos θ, r sin θ) and f(r, θ) = F (r cos θ, r sin θ). The corresponding
variational formulation is

a(u, v) : =
∫
Q

∆̃u ∆̃v r dr dθ

=
∫
Q

(
1
r

(rur)r +
1
r2
uθθ

) (
1
r

(rvr)r +
1
r2
vθθ

)
r dr dθ =

∫
Q

f v r dr dθ.

(4.4)

Thus, the essential pole conditions, which make the bilinear form a(·, ·) meaningful,
are

(rur)r|(0,θ) = uθθ|(0,θ) = (uθθ)r|(0,θ) = 0, θ ∈ [0, 2π).(4.5)

Since (rur)r = rurr + ur, the above conditions reduce to

ur(0, θ) = uθθ(0, θ) = uθθr(0, θ) = 0, θ ∈ [0, 2π).(4.6)
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As before, let

u
M

(r, θ) =
M∑
m=0

(u1m(r) cos(mθ) + u2m(r) sin(mθ))

be a Fourier-spectral approximation to u. Then the pole conditions in (4.6) imply
that

u1m(0) = u2m(0) = 0 if m 6= 0, u1m
r (0) = u2m

r (0) = 0.

Let δ̃mv = 1
r (rvr)r − m2

r2 v. Then, uim (i = 1, 2) will satisfy the equation

δ̃2
mu

im = f im(r), r ∈ (0, 1),(4.7)
uim(0) = 0 if m 6= 0, uim(1) = uimr (0) = uimr (1) = 0,

where (f1m(r), f2m(r)) are defined in (2.8). Hence, we only have to consider the
following prototypical one-dimensional fourth-order equation:

δ̃2
mv = g, r ∈ (0, 1),(4.8)

v(0) = 0 if m 6= 0, v(1) = v′(0) = v′(1) = 0.

The variational formulation corresponding to (4.2) is to find v ∈ Y (m) such that

ãm(v, w) :=
∫ 1

0

δ̃mv δ̃mw r dr =
∫ 1

0

g w r dr ∀w ∈ Y (m),(4.9)

where Y (m) = H2
0 (0, 1) if m 6= 0 and Y (0) = {w ∈ H2(0, 1) : w(1) = w′(0) =

w′(1) = 0}.
LEMMA 4.1.

ãm(u, v) =
∫ 1

0

r u′′ v′′ dr + (2m2 + 1)
∫ 1

0

1
r
u′ v′ dr

+ (m4 + 4m2)
∫ 1

0

1
r3
u v dr ∀u, v ∈ Y (m).

(4.10)

Proof. By definition

am(u, v) =
∫ 1

0

1
r

[
(rur)r −

m2

r
u

] [
(rvr)r −

m2

r
v

]
dr

=
∫ 1

0

1
r

(rur)r(rvr)r dr +m4

∫ 1

0

1
r3
u v dr(4.11)

−
∫ 1

0

m2

r2
[(rur)rv + (rvr)ru] dr.

Thanks to the homogeneous boundary conditions in Y (m), we can integrate by parts
to get

−m2

∫ 1

0

1
r2

[(rur)rv + (rvr)ru] dr = m2

∫ 1

0

[
rur

( v
r2

)
r

+ rvr

( u
r2

)
r

]
dr

= 2m2

∫ 1

0

[
1
r
urvr −

1
r2

(uv)r

]
dr = 2m2

∫ 1

0

[
1
r
urvr + 2

1
r3
uv

]
dr,
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and ∫ 1

0

1
r

(rur)r (rvr)r dr =
∫ 1

0

[
rurrvrr + (urvr)r +

1
r
urvr

]
dr

=
∫ 1

0

r urr vrr dr +
∫ 1

0

1
r
ur vr dr.

Then (4.10) is a direct consequence of the above relations.
Setting X

N
(m) = PN ∩H2

0 (I) if m 6= 0 and X
N

(0) = PN ∩ {w ∈ H2(I) : w(1) =
w′(±1) = 0}, and making a coordinate transformation r = (t + 1)/2 in (4.9), the
Legendre– or Chebyshev–Legendre–Galerkin method for (4.9) is to find v

N
∈ X

N
(m)

such that ∫
I

(t+ 1) v′′
N
w′′ dt+ (2m2 + 1)

∫
I

1
t+ 1

v′
N
w′ dt

+ (m4 + 4m2)
∫
I

1
(t+ 1)3

v
N
w dt =

∫
I

I
N
hw dt ∀w ∈ X

N
(m),

(4.12)

where h(t) = 1
16 (t + 1)g

(
(t + 1)/2

)
, I

N
is the interpolation operator based on the

Legendre- or Chebyshev–Gauss-type points.
Thus, by setting

aij =
∫
I

(t+ 1)φ′′j φ
′′
i dt, A = (aij),

bij =
∫
I

1
t+ 1

φ′j φ
′
i dt, B = (bij),

cij =
∫
I

1
(t+ 1)3

φj φi dt, C = (cij),(4.13)

hi =
∫
I

INhφi dt, h = (hi),

vN =
∑

xiφi(t), x = (xi),

(4.12) becomes the matrix equation(
A+ (2m2 + 1)B + (m4 + 4m2)C

)
x = h .

It is clear that the matrices A, B, and C are symmetric and positive definite. However,
the exact structures of these matrices depend on the choice of basis functions.

Case m 6= 0. If we look for basis functions in the form (2.15), we obtain

φj(t) = Lj(t)−
2(2j + 5)

2j + 7
Lj+2(t) +

2j + 3
2j + 7

Lj+4(t),

and

XN (m) = span{φ0(t), φ1(t), . . . , φN−4(t)}.(4.14)

But, unfortunately, C will be a full matrix in this case. Hence, we shall use the basis
functions defined by

φj(t) = (1− t2)2L′j+1(t)(4.15)

which will lead to a sparse matrix (see Lemma 4.2 below).
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Case m = 0. In this case, C is not needed so we can use the basis functions
defined by

φj(t) = Lj(t)−
(2j + 3)(j + 4)

2j + 5
Lj+1(t)

− j(j + 1)
(j + 2)(j + 3)

Lj+2(t) +
(j + 1)(j + 2)(2j + 3)

(j + 3)(2j + 5)
Lj+3(t),

(4.16)

and
X
N

(0) = span{φ0(t), φ1(t), . . . , φN−3(t)}.(4.17)

LEMMA 4.2. Case m 6= 0. For the basis functions (4.15), the matrices A, B, and
C are symmetric banded matrices such that

aij = bij = 0 for |i− j| > 5; cij = 0 for |i− j| > 3.

Case m = 0. For the basis functions (4.16), the matrix A is diagonal and bij =
0 for |i− j| > 3.

Proof. Thanks to the symmetry, we only have to consider the case i ≥ j.
Case m 6= 0. By definition and thanks to (2.23)

cij =
∫
I

(1 + t)(1− t)4L′i+1L
′
j+1dt =

(i + 1)(i+ 2)
2i+ 3

∫
I

(1− t)3(Li − Li+2)L′j+1dt.

Thus, cij = 0 for j < i− 3 since (1− t)3L′j+2 is a polynomial of degree ≤ j + 3.
Likewise, we can show by integration by parts that aij = bij = 0 for |i− j| > 5.
Case m = 0. Thanks to the boundary conditions satisfied by φj(t) in (4.16), we

can integrate by parts twice for aij and once for bij without introducing new boundary
terms. In virtue of the orthogonality relations of the Legendre polynomials, we can
then conclude that aij = 0 for i 6= j; bij = 0 for |i− j| > 3.

The evaluation of the entries of A, B, and C is tedious by hand, but these entries
can be precomputed numerically by using Gaussian quadrature formulas. The details
are left to the interested readers.

Thus, the above matrix equation can be solved in O(N) operations. In particular,
the computational complexity of the Chebyshev–Legendre–Galerkin method for (4.1)
is quasi-optimal.

Remark 4.1. The biharmonic equation in a cylinder can be decomposed, as in the
previous section, into a set of two-dimensional fourth-order equations which can also
be solved efficiently; see [14, 3] for more details.

The above method can be used to solve the two-dimensional Stokes problem in
a disk by either transforming it to a biharmonic equation for the stream function
or using the Fourier expansion in θ to reduce it to a sequence of one-dimensional
fourth-order equations (see [9, pp. 146–148] and [15, pp. 83–84]).

We can also develop a Chebyshev–Galerkin method for (4.1). More precisely, let

w(r) =
(
1− (2r− 1)

)− 1
2 be the Chebyshev weight function in (0, 1), then the bilinear

form associated to the Chebyshev–Galerkin approximation for (4.8) is

ãcm(u, v) =
∫ 1

0

δ̃mu δ̃m(v w(r)) rdr.

5. Extensions. The spectral-Galerkin methods presented above can be used to
treat more general problems. Below are some immediate extensions.
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5.1. Other boundary conditions. For problems with homogeneous Neumann-
or Robin-type boundary conditions, the procedure is exactly the same as with the
homogeneous Dirichlet boundary condition except that the basis functions should be
chosen to satisfy the underlying homogeneous Neumann- or Robin-type boundary
conditions. It is shown in [16] that such basis functions in the form of (2.15) can
be uniquely determined so long as the underlying boundary conditions leads to a
well-posed problem.

For problems with nonhomogeneous boundary conditions, we need to construct a
simple discrete function satisfying the discrete nonhomogeneous boundary conditions
and reduce the original problem to a problem with homogeneous boundary conditions.
To illustrate this procedure, we consider the case where the homogeneous boundary
condition in (2.3) is replaced by u(1, θ) = h(θ). Let (h1m, h2m) be defined by the
discrete Fourier expansion

h(θj) =
M∑
m=0

(h1m cos(mθj) + h2m sin(mθj)),(5.1)

θj =
jπ

M
, j = 0, 1, . . . , 2M − 1.

Then the boundary condition for uim(r) at r = 1 in (2.10) should be replaced by
uim(1) = him, i = 1, 2. Therefore, ũim(r) := uim(r) − himr will satisfy the following
equation with homogeneous boundary condition:

− ũimrr −
1
r
ũimr +

(
m2

r2
+ α

)
ũim = f im(r)− him

r
(m2 + αr2 − 1), r ∈ (0, 1),

ũim(0) = 0 if m 6= 0, ũim(1) = 0.

5.2. Other domains in polar and cylindrical coordinates. The spectral-
Galerkin methods can also be used for problems in other domains that can be conve-
niently represented by polar and cylindrical coordinates.

Consider for instance the Helmholtz equation in an annular domain Ω = {a <
x2 + y2 < b} with homogeneous Dirichlet boundary conditions

−∆U + αU = F in Ω, U = 0 on ∂Ω.(5.2)

Then we need to solve (2.11) with a < r < b. Applying the coordinate transformation
r = b−a

2 (t + c) with c = b+a
b−a and setting v(t) = u(r), g(t) = 4

(b−a)2 f(r), then (2.11)
becomes

−δmv := −v′′ − 1
t+ c

v′ +
(

m2

(t+ c)2
+

4
(b − a)2

α

)
v = g(t), v(±1) = 0.(5.3)

Unfortunately, the standard bilinear form am(φj(t), φi(t)) = −
∫
I δmφj(t)φi(t) (t +

c)dt cannot be evaluated exactly and would result in a linear system with full matrices,
since (t+c) is generally not a factor of the basis functions when c 6= pm1. One can, of
course, consider the problem as having a variable coefficient (t+ c)−1 and solve it by
using an iterative method, but a more efficient way is to use the nonstandard bilinear
form

bm(φj(t), φi(t)) := −
∫
I

δmφj(t)φi(t) (t+ c)2 dt

which would lead to a sparse but nonsymmetric system.
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With the above in mind, problems in a domain between two cylinders

Ω = {(x, y, z) : 0 < a < x2 + y2 < b, c < z < d}

can be easily treated, for instance, by using the matrix decomposition method in
section 3.

Efficient spectral-Galerkin algorithms for problems in unbounded polar domains
such as Ω = {(x, y) : x2 + y2 ≥ 1} can be similarly constructed by using, for the
radial direction, Laguerre polynomials if the solution converges to zero exponentially
at infinity, or orthogonal rational functions introduced in [4].

For a pie-shaped domain Ω = {(x, y) = (r cos θ, r sin θ) : 0 ≤ a < r < b, 0 <
c < θ < d < 2π}, one can no longer apply the Fourier method in the θ direction;
instead, double Legendre or Chebyshev expansion, similar to those used in [14] and
[15], should be directly used.

5.3. Problems with variable coefficients. For problems with variable co-
efficients in the Cartesian coordinates, the unmodified spectral-Galerkin method is
usually impractical since the stiffness and mass matrices are dense and expensive to
evaluate. However, such problems are usually spectrally equivalent to a problem with
constant coefficients (in the Cartesian coordinates) which can be efficiently solved by a
spectral-Galerkin method. Therefore, one can use the constant-coefficient problem as
a preconditioner for the variable-coefficient problem and apply a conjugate–gradient-
type iterative method. Thanks to the spectral equivalence, the iterative procedure
will converge in a finite number of steps, independent of the discretization parame-
ters. Let us illustrate the procedure by considering the following elliptic problem with
variable coefficients in a unit disk:

−∇ · (D(x )∇U) + β(x )U = F in Ω = {(x, y) : x2 + y2 < 1},(5.4)
u = 0 on ∂Ω,

where β(x ) ≥ 0 in Ω, and D(x ) is a 2×2 matrix satisfying the usual elliptic condition.
Let B, u, α, and f be, respectively, D, U , β, and F under the transformation

x =
t+ 1

2
cos θ, y =

t+ 1
2

sin θ.(5.5)

Let I
NM

be the interpolation operator based on the Fourier–Chebyshev Gauss–Lobatto
points, i.e.,

(I
NM

f)(ti, θj) = f(ti, θj), i = 0, 1, . . . , N, j = 0, 1, . . . , 2M − 1,

with ti = cos iπN and θj = jπ
M , and

XNM = span
{
φmn (t) cosmθ, φmn (t) sinmθ : n = 0, 1, . . . , N − s(m), m = 0, 1, . . . ,M

}
with φmn (t) = Tn(t)−Tn+2(t) if m 6= 0 and φ0

n(t) = Tn(t)−Tn+1(t), s(m) = 2 if m 6= 0
and s(0) = 1. Then a pseudospectral Fourier–Chebyshev approximation to (5.4) is to
find u

N
∈ X

NM
such that

(ApsuN , v) := −
∫ 2π

0

∫ 1

−1

(t+ 1) ∇̃ ·
(
I
NM

(B∇̃u
N

)
)
vω dr dθ

+
∫ 2π

0

∫ 1

−1

(t+ 1) I
NM

(αu
N

) v ω dr dθ =
∫ 2π

0

∫ 1

−1

(t+ 1) I
NM

f v ω dr dθ ∀ v ∈ X
NM

,
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where ω(t) = (1 − t2)−
1
2 , ∇̃ and ∇̃· are, respectively, ∇ and ∇· under the transfor-

mation (5.5).
It is easy to see that the operator Aps is spectrally equivalent to Hsp defined by

(Hspv, w) := −
∫ 2π

0

∫ 1

−1

(t+ 1) ∇̃ · (∇̃v)wω dr dθ.

Hence, we can use Hsp as a preconditioner for Aps. Since both Apsv and H−1
sp v can be

evaluated in O(NM log2(NM)) operations, and the number of iterations required is
independent of N and M , the computational complexity of a conjugate–gradient-type
method (e.g., CGS [17]) for problems with variable coefficients is still quasi-optimal.
We refer to [16] for a more detailed presentation on a similar problem.

5.4. Collocation approach. Other types of approximations, including spectral-
collocation, finite-difference or finite-element, can also be easily developed by using
the variational formulations. For instance, a spectral-collocation method based on a
variational formulation differs from a spectral-Galerkin method in only two aspects:

1. It uses Lagrange polynomials based on Gaussian-type collocation points as ba-
sis functions. For instance, a Chebyshev-collocation method for (2.13) should
use Chebyshev–Gauss–Lobatto points when m 6= 0, while Chebyshev–Gauss–
Radau points should be used when m = 0 to avoid explicit computation at
the singular points t = −1.

2. The integrals are approximated by using Gaussian-type quadrature rules.
The main advantage of the collocation method is that variable coefficients can be easily
handled without extra effort, while its main disadvantage is that the corresponding
linear system has a full matrix, even for problems with constant coefficients; hence, it
is usually more expensive than the spectral-Galerkin methods presented above, even
for problems with variable coefficients.

6. Numerical results. In this section, we present some numerical experiments
and compare them with existing algorithms. All computations are performed in dou-
ble precision on a SUN Sparc 10 workstation Model 30 with standard optimization
option “−O”.

The first example is the computation of the eigenvalues of Bessel’s equation

−urr −
1
r
ur +

m2

r2
u = λu(6.1)

subject to the conditions that u(1) = 0 and that u(r) be finite in [0, 1]. This problem
has been the standard test problem for algorithms dealing with the pole singularity
(see, for instance, [9], [6], [10], and [7]). We approximate (6.1) (when m 6= 0) by the
following spectral approximations: find u

N
∈ XN = PN ∩H1

0 (0, 1) such that∫ 1

0

r u′
N

(vω)′ dr +m2

∫ 1

0

1
r
u
N
v ω dr = λ

∫ 1

0

r u
N
v ω dr ∀u

N
∈ XN ,(6.2)

where ω = 1 in the Legendre case and ω = (1 − (2r − 1)2)−
1
2 in the Chebyshev case.

The matrix form of (6.2) is a generalized eigenvalue problem of the form Au = λBu
which will be solved by using LAPACK (cf. [2]) routines dsygv.f and dgeev.f for
the Legendre and Chebyshev methods, respectively. In Table 6.1, we list the relative
errors for the approximation of the first eigenvalue when m = 7 by using, respectively,
the Legendre–Galerkin, Legendre-collocation, Chebyshev–Galerkin and Chebyshev-
collocation methods. The collocation approximations are obtained by simply replacing
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TABLE 6.1
Approximation of the eigenvalue of the Bessel’s equation.

N 4 8 12 16 20 128 256
Legen–G 1.8E-2 6.5E-5 3.9E-9 1.1E-14 1.2E-16 2.7E-14 3.4E-14
Legen-c 6.6E-2 8.7E-5 2.8E-9 9.9E-15 5.4E-15 8.8E-13 1.1E-11

Cheby–G 6.1E-2 4.9E-5 4.4E-7 4.4E-10 1.6E-13 3.0E-14 1.4E-13
Cheby-c 2.0E-2 8.5E-5 6.6E-7 7.2E-10 2.8E-13 1.6E-13 1.4E-12

[10] ∼ 10−2 ∼ 10−3 ∼ 10−5 ∼ 10−8 ∼ 10−11

TABLE 6.2
Approximations of the Poisson’s equation.

N 8 16 32 64 128 256

u(r, θ) = er cos θ+r sin θ

Cheby–G 2.6E-8 1.8E-15 1.8E-15 2.7E-15 2.7E-15 4.4E-15
FISHPACK 1.6E-2 3.8E-3 9.2E-4 2.3E-4 5.6E-5 1.4E-5

[6] 2.9E-8 2.7E-15 2.7E-15
N 8 16 32 8 16 32

u(r, θ) = r2.5 u(r, θ) = r3

Cheby–G 1.3E-4 5.9E-6 2.3E-7 3.8E-16 3.3E-16 1.3E-15
[6] 7.7E-2 1.6E-2 3.4E-3 2.9E-2 4.2E-3 6.0E-4

TABLE 6.3
CPU time of the Poisson solvers.

N 64 128 256 512
Cheby–G 0.10 0.46 2.02 9.23

FISHPACK 0.14 0.62 2.90 14.53

the integrals in (6.2) by Gaussian quadrature rules. For the sake of comparison, we
also list the results in [10] obtained by a direct Chebyshev-collocation approximation
to (6.1).

A few remarks are in order: all four methods produce significantly more accurate
results than those reported in [10]. The fact that our Chebyshev-collocation method
is more accurate than the Chebyshev-collocation method in [10] indicates another ad-
vantage of using algorithms based on variational formulations. The Galerkin methods
lead to better results than the collocation methods, especially for large N , since the
integrals in the Galerkin methods are computed exactly while those in the colloca-
tion methods are approximated by Gaussian quadrature rules whose accuracy may
decrease as N increases due to the singularity at the pole.

The second example is the Poisson equation on a unit disk. For the sake of
comparison, we consider several exact solutions which were used in [6]. In Table 6.2,
we list the maximum errors by the Chebyshev–Galerkin method, which is the most
efficient in this case, and by FISHPACK (cf. [20]) routine hwsplr.f which implements
the second-order finite-difference algorithm presented in [19]. N is the number of
points used in the radial direction, while 2N−1 points are used in the axial direction.
The FFTPACK routines are used for the discrete Fourier and Chebyshev transforms.
The CPU times for both Poisson solvers are listed in Table 6.3.

For u = er cos θ+r sin θ which is smooth in both the Cartesian and polar coordinates,
all spectral methods converge exponentially fast. For u = r3 which is smooth in the
polar coordinates but has a singularity at the pole in Cartesian coordinates, the rate
of convergence of our Chebyshev–Galerkin method is still exponential while that of
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the method in [6] is only algebraic. For u = r2.5 which has a singularity in the polar
(and Cartesian) coordinates, the rate of convergences of the two methods are algebraic
as expected, but the Chebyshev–Galerkin method still gives much better results than
those in [6]. The poor performance of the method in [6] for problems with singularity
at the pole is caused by the parity argument which assumes implicitly the smoothness
of the solution at the pole.

We also note that the effect of roundoff errors is very limited in the Chebyshev–
Galerkin method since the approximate solutions have almost full machine accuracy
for N as large as 256. A more striking fact is that, in addition to its superior accuracy,
the Chebyshev–Galerkin method only consumes about 70% of the CPU time of the
finite difference code hwsplr.f in FISHPACK.

7. Concluding remarks. We have presented in this paper several extremely
efficient and accurate spectral-Galerkin methods for some second- and fourth-order
problems in polar and cylindrical geometries. These methods are based on variational
formulations which incorporate the essential pole condition(s) for the underlying equa-
tion. Their rate of convergence only depends on the smoothness of the solution in the
polar coordinates, while the singularity at the pole in the Cartesian coordinates does
not affect their accuracy. The computational complexity of the Chebyshev–Legendre–
Galerkin method is quasi-optimal for two-dimensional polar and three-dimensional
cylindrical domains, while that of the Chebyshev–Galerkin method is quasi-optimal
only for two-dimensional polar domains. The Chebyshev–Galerkin method, being less
expensive than the finite difference code hwsplr.f in FISHPACK, is the most efficient
for two-dimensional polar domains while the Chebyshev–Legendre–Galerkin method
will become the most efficient for three-dimensional cylindrical domains as the number
of unknowns increases. Furthermore, the algorithms presented in this paper are easy
to implement, very stable to the propagation of roundoff errors, and more efficient
and/or more accurate than other spectral algorithms.

A potential disadvantage of these methods is that the Gaussian-type collocation
points are clustered near the pole(s), which would result in a severe CFL condition if
an explicit scheme is used to solve a time-dependent problem. However, this difficulty
can be alleviated by using a semi-implicit scheme, i.e., treating the principle elliptic
operator implicitly and other lower-order operators explicitly, whose costs at each
time step is about the same as an explicit scheme, thanks to the fast direct solvers
presented in this paper.

In a forthcoming paper, we shall develop efficient spectral methods for spherical
geometries.
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