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ON ERROR ESTIMATES OF PROJECTION METHODS FOR
NAVIER-STOKES EQUATIONS: FIRST-ORDER SCHEMES*

JIE SHENT

Abstract. In this paper projection methods (or fractional step methods) are studied in the semi-
discretized form for the Navier—Stokes equations in a two- or three-dimensional bounded domain.
Error estimates for the velocity and the pressure of the classical projection scheme are established
via the energy method. A modified projection scheme which leads to improved error estimates is
also proposed.
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1. Introduction. We consider the time-dependent Navier—Stokes equations in
the primitive variable formulation

a—u—I/Au-+—(u-V)u+Vp=f Y(z,t) in Q= x[0,T],

ot
(1.1) divu=0 V(z,t) in Q,
u(0) = wo,

where (2 is an open bounded domain in R? (d = 2 or 3) with a sufficiently smooth
boundary I'. The unknowns are the vector function u (velocity) and the scalar function
p (pressure).

The equations (1.1) should be completed with appropriate boundary conditions
for the velocity u. For the sake of simplicity, we will consider the homogeneous
boundary condition u(t)|r = 0 for all ¢ € [0, T].

In (1.1), the velocity u and the pressure p are coupled together by the incompress-
ibility condition divu = 0 which makes the equations difficult to solve numerically. In
the late 60s, Chorin [2] and Temam [15] constructed the so-called projection method
(or. fractional step method), which decoupled the velocity and the pressure. The
semidiscretized version of the projection method can be written as follows.

We start with u® = ug and solve successively 4"*! and {u"*!, 4"t} by

@+ —u™) — vAI + (ut - V)E" ! = f(tng1),

ol

(1.2)

@ H|p =0,
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58 JIE SHEN
and

1

E(un-{—l _ ,an+1) + V¢n+1 — O,
(1.3) divunt! =0,

yntl. "_iII" — 0’

where k is the timestep, t,1 = (n+ 1)k, and 7 is the normal vector to I'. Note that
we have omitted the dependency to z of the function f to simplify our notations; we
will do so for {u,p} as well.

The scheme (1.2)—(1.3) is in a slightly different form than that of [15] and it
has two advantages: (i) (1.2) is a linear elliptic equation; (ii) the artificial stabilizer
introduced in [15] is not required.

If we denote

o H={uec (L*(Q))¢: divu = 0,u-i|r = 0},
e Py: the orthogonal projector in (L?(€2))¢ onto H,
we can readily check that (1.3) is equivalent to

u"+1 = PHﬂn+1 .

In the first step (1.2), we solve an intermediate velocity @"t!, which does not satisfy
the incompressibility condition. Then, in the second step we project @"t! onto the
divergence free space H to get an adequate velocity approximation u™tl, However,
by definition, u™*! is only in H. Consequently, it does not necessarily satisfy the
homogeneous boundary condition. This particularity will eventually prevent us from
obtaining error estimates in a stronger norm.

The numerical efficiency of the scheme is obvious since the velocity and the pres-
sure are totally decoupled: (1.2) is a second-order linear elliptic problem for antl
which can be solved by a standard procedure; by applying the divergence operator to
(1.3), we find that (1.3) is equivalent to the following Poisson equation for ¢"*1:

Agnt! = %divﬁ"“,
(1.4)
a¢n+1
on

|F=0’

un+1 — ’[ln+l _ kv¢n+1.

We immediately remark that ¢"t! satisfies the homogeneous Neumann boundary
condition, which is not necessarily verified by the exact pressure. Nevertheless, Chorin
[3] and Temam [15] were still able to prove the convergence of @"*! and u"*! towards
u(t,41) in appropriate norms. However, there has been confusion about whether pnt!
is, and how we can get, a proper pressure approximation. We will clarify this point
during the course of our presentation (see, in particular, Remark 2).

The scheme (1.2)—(1.3) and its variations have been widely used in practice (see,
among others, [1], [2], [4], [7], [10], [11], [19]). The numerical experiences suggest
that the scheme provides a first-order (in an appropriate sense) approximation for the



PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS 59

velocity u. However, to the author’s knowledge, there is still no rigorous theoretical
justification that proves the scheme is of first-order accuracy. Chorin in [3] proved
that the rate of convergence of the projection method with a finite difference space
discretization, applied to Navier—Stokes equations with periodical boundary conditions,
was of order 1; for Dirichlet boundary conditions he only mentioned that he could prove
the rate of convergence of the scheme to be O(k% ). In [14], Shen and Temam proposed
a more complicated fractional step scheme, providing a better pressure approximation,
and proved its rate of convergence to be O(k%). The author was recently informed
that Lu, Neittaanmaéki, and Tai [8] proved that the convergence rate of the scheme
(1.2)—(1.3) to be O(k%) with a rather restrictive condition on the solution of (1.1).
Orszag, Israeli, and Deville in [9] analyzed the scheme (1.2)—(1.3) applied to a one-
dimensional linear model, i.e., the two-dimensional Stokes equations with Dirichlet
boundary condition in one direction and periodical boundary condition in the other.
They used normal mode analyses to show that for this simple model case, the rate of
convergence of the scheme was of order 1.

In this paper, we will consider the full nonlinear Navier—-Stokes equations with
Dirichlet boundary conditions and derive rigorously precise error estimates for both
the velocity and pressure. To classify order of the precision of a scheme, the following
terminology will be used.

DEFINITION. Let X be a Banach space equipped with norm ||-||x and f : [0,T] —

X is continuous. Let {t%’“)}zzg/ * be a family of discretization of [0,T] such that

0=t <. <t® <t,(f+)1<~-<t,fr’°/)k=T; and

(k) _ (k)| <
ognlg%)/(k—l [tni1 —tn’| <6 — 0 (ask —0).

Then, we say fi is a weakly order o approximation of f in X if there exists a constant
¢ independent of k such that

T/k
k) £ @) — FEP)I < ok
n=0

and we say fi is a strongly order o approzimation of f in X if there exists a constant
¢ independent of k and n such that

1 (85) = FEENI% < ek VO <n < T/k.

Our results can then be summarized as follows.

We will prove that both @"*! and u™*! are weakly first-order approximations to
u(tny1) in L2(Q)?. And despite the incompatible Neumann boundary condition of
¢"*1, we will prove that ¢"+! as well as (I — kvA)¢™*! are weakly order 3 approxi-
mations to p(t,41) in L2(2)/R. We will also propose a modified scheme that provides
strongly first order approximations to the velocity and weakly first-order approxima-
tions to the pressure.

Let us emphasize that higher-order projection schemes can be constructed while
keeping the simplicity of (1.2)—(1.3). Orszag, Israeli, and Deville described in [9] how
to use extrapolations and improved pressure boundary conditions to achieve higher
accuracy. Kim and Moin [7] proposed a second-order projection scheme (based on the

Crank and Nicolson-Adams and Bashforth scheme) which removes the large splitting
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errors at the boundary by imposing an appropriate boundary condition for the inter-
mediate velocity 4"t!. Satisfactory results were obtained by using this scheme with
various space discretizations (see, for instance, [7], [11]). Van Kan [19] proposed an
interesting second-order variant of the projection method via pressure correction. A
similar idea was also used by Bell, Colella, and Glaz [1] to construct a second-order
projection scheme. In fact, when applied to the linear Stokes equations, the scheme
in [1] with one iteration for each timestep is essentially identical to the scheme in [19].
In a forthcoming paper [13], we will study several higher order projection schemes.

The purpose of this paper is to derive error estimates for the projection methods.
We will study the semidiscretized scheme (1.2)—(1.3) directly instead of considering
fully discrete schemes, since the technicalities vary depending on the spatial discretiza-
tions and may obscure the essential goal of the paper. To simplify our presentation,
we will only consider a finite time interval, i.e., 0 < T' < +o00. Related uniform (in
time) stability and convergence analyses for T = 400 can be done as in [12]. As for
uniform error estimates in time for T = +00, we need to assume the solutions of (1.1)
to be exponentially stable, which is generally not true; we refer to [6] for more details
on this subject. Since the stability and convergence of the velocity approximations
have been established in [16], our focus will be on error estimates, which certainly
requires some sort of regularity of the solution (u,p). Sufficient regularity is provided
by assuming the data up and f are sufficiently smooth (but without any compatibil-
ity condition of the data). A by-product of the error analysis is that it automatically
implies the stability and convergence of the scheme. The problem with rough data
will not be addressed here.

The paper is organized as follows: in the next section, we begin with some nota-
tion and lay out some assumptions which enable us to derive some regularity results
required by error analyses. In §3, we will establish a first error estimate for both #™+!
and u"*!. Then in §4, we will improve the error estimate of §3 for the velocity, and
provide an error estimate for the pressure as well. Finally, in §5, we will propose a
modified projection scheme and show that it provides improved error estimates for
both the velocity and pressure.

2. Preliminaries. Let |- |,|| - | denote, respectively, the norms in L?(Q) and
H}(R), ie.
0 ’ ’

luf? = / |u(z)|?dz and |lul? = / |Vu(z)|de.
Q Q

The norm in H*(2) (for all s) will be denoted simply by ||-||s. We will use, respectively,
(-,-) to denote the inner product in L?(€2) and (-, -) to denote the duality between H~*
and H§() for all s > 0.

In addition to H and Py, which are already defined in §1, we define
V = {ve (H(Q))? : dive = 0},
and the Stokes operator

Au= —PgAu Yu€ D(A)=Vn(H}(Q))%

The Stokes operator A is an unbounded positive self-adjoint closed operator in H
with domain D(A), and its inverse A~! is compact in H.



PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS 61

Let us prove first the following relations which will be used in the sequel:

A7 ulls < erflufls—z  for s =1,2;

(2.1) 3¢1,¢2 >0, suchthatVue H:
collull2; < (A1, u) < cfflull?;.

Given u € H, by definition of A, v = A~lu is the solution of the following Stokes
equations:

—Av+ Vp = u,
(2.2) divv = 0,

’U|p =0.
The regularity results for (2.2) immediately give

||A_1u||_9 = ||v|ls < c1llufls—2 fors=1,2; and

(A7 u,u) = (v,u) = —(Av,v) + (Vp,v) = [|v]® < Flull2,.
On the other hand, since u = Av,
(u, w) (Av, w)

lul-1 <c sup =c sup ~———" <clo|.
weri@ [l wemi@ vl

This completes the proof of (2.1). For the sake of simplicity, we will use (A~1u, u)?
as an equivalent norm of H~1(2)? for u € H.
We define the trilinear form b(, -, ) by

b(u,v,w) = /Q(u -V)v - wdz.
It is a easy matter to verify that the trilinear form b(-,-,-) is skew-symmetric with
respect to its last two arguments, i.e.,
(2.3) b(u,v,w) = —b(u, w,v) Yu€ H, v,we (HiQ))"
In particular, we have
(2.4) b(u,v,v) =0 Yu€ H, ve (HMQ))"

We can also readily check (see, for instance, [18]) that b(:, -, -) is continuous in H™* () x
H™2+1(Q) x H™3(Q) provided

d d
my +mg+mg > = 1fm,7é-2—, ’l,=1,2,3

V]

In particular, for d < 4, we have

cllelivllwll,
clull|vllz(lwll;
(2.5) b(u,v,w) < ¢ cllulll|vllz|wl,

clulllvllflwllz,

cllullzllvllfw]-
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Under the above notation, the system (1.1) is equivalent to the following abstract
equation:

Z—u +vAu+ Py(u-V)u= Pyf,
(2.6) ¢

u(0) = uo.

To simplify our presentation, we will assume that the data ug and f are sufficiently
smooth; and if d = 3 we will also assume that a strong solution of (2.6) exists in the
whole interval [0,T]. More precisely, we assume

(A1) w e (HXQ)'NV,  feL®0,T;(L*(Q)%)NL* 0, T; (H'(2))%);
in the three-dimensional case, we assume additionally

(A2) sup |[lu(t)| < M.
te[0,T)

We recall that (A2) is automatically satisfied with some appropriate constant M;
when d = 2.

Hereafter, we will use ¢ to denote a generic positive constant which depends only
on 2, v, T, and constants from various Sobolev inequalities. We will use M as a
generic positive constant which may additionally depend on g, f and the solution u
through the constant M; in (A2).

Under the assumption (A1) and (A2), we can show that (see, for instance, Hey-
wood and Rannacher [5))

2.7) sup {lu(®)llz + bue(®)] + [Vp)} < M
te[0,7T]
and
T 2
(28) / lue (8)12dt < M.

For our purpose, we also need the following regularity result.
LEMMA 1. Assuming (A1), (A2), and f; € L?(0,T; H™!), we have

T
/ a2 1t < M.
0

Proof. Taking the time derivative in (2.6), we find
(2.9) (utt, v) + v(Vug, Vo) + b(ug, u, v) + b(u, ug,v) = (fr,v) Yv eV

Taking v = A~ luy, using (2.1) and the Schwarz inequality, we obtain

vd _ _ _
llugell® + §E|ut|2 < bug,uy A ) + b, ugy A7 ug) + || fell =1 ]| A g |

_ _ 1
< b(ug, uy A7 uge) + b(u, ug, A uge) + || £ell2y + Z”utt”al'
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The nonlinear terms on the right-hand side can be majorized as follows. Using (2.5),
(2.1), and the regularity result (2.7), we have

[b(ue, u, A7 ue)| < elluellllulll A7 ueell < clluellllullllueell -1

< Mluellllusell -1 < Mlluell® + F el
similarly, by using (2.3) and (2.5), we derive

b(u, ug, A uge) = —b(u, A uge, ue) < Jluflll A g |||

< Mlugell-1lluell < Mljugll® + F llewsel|? -
The summation of the last three inequalities leads to
vd
2 dt
Integrating the above inequality over [0,T], using (2.7)—(2.8), we derive

1
Z““tt||2_1 + luel® < N1 fell2q + Mluel®

1 (T v T T v
1 [ Mealade+ 2P <M [ fudPar+ 1R e+ Flu)P < M. 0

0 2 0 0 2

3. A first error estimate. Equation (1.2) is a linear elliptic system for 4"*?
whose existence and uniqueness are ensured by the classical Lax—Milgram theorem
thanks to (2.4). Our purpose in this section is to show that @"*! and u™*! are both
strongly order % approximations to u(tn4+1) in L?(2)%. This result will be needed to
improve the error estimates to weakly first order in the next section. More precisely,
we want to establish the following lemma.

LEMMA 2. Let us denote

n+ +1 +1 +1

e"t! = u(tpyy) — u™ and €™ =u(tyy1) —a" .

Then under the assumptions of Lemma 1, we have

N
|6N+1|2+ |éN+1|2+kVZ{”én+1“2_+_ |[e"+1||2}

n=0

N
+ Z{Ien+1 _ é-n+1|2 + |é”+1 _ en|2} < Mk
=0
YOS N <T/k—1.

Proof. Let R™ be the truncation error defined by

L (Wltns1) — ©ltn) — vAU(tns1) + (ultnrs) - V)ultnsn)

(3.1) k
+ Vp(tnt1) = f(n +1) + R™,

where R™ is the integral residual of the Taylor series, i.e.,

1

(3.2) R =1 / " b un(O)dt,

tn
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By subtracting (1.2) from (3.1), we obtain

1
(3.3) Z(ET =) —vAEH = (u" - V)T — (ultns1) - V)ultni)
+Rn - Vp(tn+1).
The nonlinear terms on the right-hand side can be split up into three terms:

(u - V)@t — (utn+1) - V)u(tns1)

(3.4) = —(e" - V)a" ! + (u(tn) — ultnt1) - V)@ = (u(tnya) - V)EMH.
We now take the inner product of (3.3) with 2ké™*!; using the identity

(3.5) (a—b,2a) = |a|* — |b]2 + |a — b|?,

we derive

Ién+1|2 _ Ien|2 + |é"+1 _ €"|2 + 2kl/||én+1“2
(3.6) = 2k(R"™, &™) + 2k(Vp(tnt1), €™ 1) — 2kb(e™, anF1, entl)

+ 2kb(u(tn) — ultnsr), @, EMFL) — 2kb(u(tny1),enFY, &Y.
We majorize the right-hand side as follows:

26(R", &™) < ZRlEH |7 + okl R72,

tn+1

v, . . _
= ZHE R ok [ e
V. and12 _y [t 2 b1 2
S Zk“e ” +Ck “utt”_ldt (t—tn) dt
tn tn
< YVgjent12 2 [t 2
< Ve 4okt [
tn

Since e™ € H, we have
b

2k(Vp(tnt1),€"+) = 2k(Vp(tnt1),€"F! — ™)

< 31EM — e ? + 2k%|Vp(tni1) %

We will see later that the last term on the right-hand side actually prevents us from
obtaining a first-order error estimate in this section.
By using (2.3), (2.5), and (2.7),

2kb(e™, a1, ) = —kb(e™, &, amtY) = —kb(e™, &M u(tny))

< ckle™ (€ lllu(tns1)ll2 < MEle™|[[€"H

vk
< —4—||é""'1||2 + Mk|e"|2.
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Likewise, we have

2kb(u(tn) — u(tny1), @™+, €M) = —2kb(u(t,) — u(tny:), e, U(tnt1))

< cklu(tn) = utnrn) € I lu(tnrs)l2

tnt1
< MK|je+| / wedt]
t

n

v tnt1
< Srle P+ 2 [ fup,
tn
and by (2.3),
2kb(u(tny1), ", e = 0.

Combining the above estimates into (3.6), we obtain

1
Ié-n+1|2 _ Ien|2 + I/k”én+1“2 + §|én+1 _ en|2

tn41 tny1
(3.7) < Mk? ( / e |2t + / |ut|2dt)
tn

tn
+2k%|Vp(tns1)|? + Mk|e™|2.
On the other hand, we derive from (1.3) that
1
(3.8) E(e”+1 —e&ntl)y —ventl = 0.

Taking the inner product of the above equality with 2ke™*!, since dive™t! = 0, we
obtain

(39) €12 — [P 4 et — g < o,

Taking the sum of (3.7) and (3.9) for n from zero to N (for all 0 < N < T/k — 1),
using the regularity of u, we arrive at

N
1
|€N+1|2 + Z {|€"+1 _ é’”+1|2 + §|'é"+1 _ en|2 + kV“én+1“2}

n=0
N T T
<Mk |e"? + Mk <k/ ||utt||i1dt+k/ |u¢|2dt + sup |Vp(t)|2)
=0 0 0 te(0,T]
N
< Mk |e"? + Mk.
n=0

By applying the discrete Gronwall lemma to the last inequality, we derive

N
|eN+1|2 + Z {kll“én+1||2 + Ien+1 _ é’"+1|2 + |é’"+1 _ enlz} < Mk
n=0

VO<N<T/k—1.
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Thanks to (3.9) and the inequality (see [16, Remark 1.6]
(3.10) 1Parullos @y < @)l Vu € H(®),

we also have

N
N2 + kv Y e 2 < Mk YOS N < T/k-1.

n=0

The proof of the lemma is complete. 0
Remark 1. It is unlikely that the right-hand side of the estimate of Lemma 2 can
be improved to Mk?, because such an estimate and (3.8) would lead us to derive

N N
kz |V¢'n+1|2 = % Z Ien+1 _ én+1|2 < Mk — 0 (as k — 0)'
n=0 =

Yet this is in contradiction with the pressure error estimate in the next section. There-
fore, we will try to improve the error estimate in a weaker norm.

4. Improved error estimate. In this section, we will use the results of §3 to
improve the error estimates for the velocity and establish an error estimate for the
pressure as well. Our main result in this section is the following theorem.

THEOREM 1. Under the assumptions of Lemma 1, both 4! and u™t! are weakly
first-order approzimations to u(tny1) in L*(Q)%, and ¢"t! as well as (I — kvA)pn+!
are weakly order § approzimations to p(tn+1) in L2(92)/R. More precisely, we have

T/k—1
(4.1) k Z {le" 1 + "M )?} < MK

(4.2)
T/k—1

k Z { 9" — p(tns1)|T2(0) r + 1T — kvA)g™ ! — (tn+1)|%2(ﬂ)/R} < Mk.

Proof. (i) Error estimate for the velocity. Taking the sum of (1.2) and (1.3), we
obtain

(4.3) %(u""’l —u") — AT 4 (@ VYA 4 VT = F(tnrn)-
Let us denote

§* = p(tnr) — @™
Subtracting (4.3) from (3.1), we obtain
1

E(en+l _ en) _ I/Aén+l + vqn+1

(4.4) ) = (u"- V)& — (utn41) - V)u(tntr) + R”,

dive™t! =0,

entl. ’r_i|1" =0.
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As mentioned in §1, e"*! is only in H and consequently it is not appropriate to
take the inner product of (4.4) with e"*! due to the extra tangential boundary terms
appearing when integrating by parts. Hence, we will take the inner product of (4.4)
with a smoother function A=!e"*!. The main difficulty here is how to treat the term
_(Aén-{—l, A—len-{—l).

Let u = e™*! in (2.2) and {v,p} be the solution of the corresponding Stokes
equations. Then we have v = A~1e"*! and

lvllz + V| < cle™*;

—AAle"! = _Ap = et — Vp.
Since é"t1, A~lent! € H}(Q)9, by integration by parts,

—<Aén+l,A_len+l> = (én'H, _AA—len+1) — (én+1,e"+1 _ Vp)
— (é"+1, en+1) _ (én+1’vp)

— Ien+1|2 _ (é’"+1 _ e”“,Vp).
On the other hand,

(é”+1 _ en+1,vp) S Ien+1 _ én+1“Vp| S clen+1 _ é-n+1“en+1|

< —1—|€n+1|2 + clen+1 _ é"+1|2_

— 16
We derive from the above relations that
(4.5) e B

We now take the inner product of (4.4) with 2kA~1e™+!, splitting the nonlinear
terms into three parts as in §3, using (2.1), and noticing that

(A7, Vp) =0 Vue H,
we obtain

n n 15kv .
le™ 12y = lle™I2y + [le™+ —e™[|2, + Tle P
(4.6) < 2k(R", A~1lemt1)
—2kb(e™, @™, A7 e ) — 2kb(u(tny1), e, A7 e )

+2kb(u(tn) — u(tns), @, A1) 4 chlent] — g,
We will majorize the right-hand side as follows: Using (2.1), (3.2), and the fact that
(4.7) lull-1 < clu| Vu e L*(Q),
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we have

2k<Rn,A_len+1> S Ck”Rn“_ll|A_len+1”

1 tn41
< ckllz / (t — tn)ueedt]| 1 [l€™ ]| -1
tn

vk babr
< et i 4 M [ et
tn

Using (2.3), we derive

2kb(e™, a"t, A"len ) = —2kb(e™, A7 te™ T )
= 2kb(e™, A" lem ! gntl)
—2kb(e™, A7 e u(tny1))

= I11 + Lo,
by using (2.5) and (2.1),

Iy < ckle™|[[ A7 e [lo[E™ 1| < ckle™{le™* [+

(since |e"| < Mk? from Lemma 2)

k
< MEHem 6| < MEZ e + S jen 1,

and by (2.5),
112 = —2kb(6n, A_16n+1, u(tn+1)) = 2kb(e", u(tn+1), A_1€n+1)

< ckle”|[[ultns1)ll2ll A e[| < MEle™|[le™ -1

< ME{le™H] + [en*t — & + (e — e [Hle™ |-

kv - -
< ?{Ien+1|2 + |en+1 _ en+1|2 + |en+1 _ en|2} + Mk||e”+1||2_1.

Also by using (2.3), (2.5), and (3.9), we derive

2kb(u(tny1), €L, A7 e ) = —kb(u(tny1), A~ e™ T, e
< ckl[u(tnia)ll2ll A7 ™| |E"

S Mk“en+l “_1 Ién+1|

vk

< SR (e + [t — ) + Ml
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Similarly,

2kb(u(tn) — u(tntr), @™, A71e™) = —2kb(u(t,) — u(tny1), A" le™ 1 ant1)
= 2kb(u(tn) — u(tny1), A~ et ent)
—2kb(u(tn) — u(tnt1), A" ™ u(tny1))

= Iy + Izs;
using (2.1) and (2.7), we have

Iy < cklu(tn) — u(tnsa)lle™+H]]E"

n vk
< Mfu(ta) — u(tns2) PIE 2 + - lem?

vk 12 2 [ 12
< ?|e"+ [+ Mk / |ue|2dt|| €™t

tn
k
S %|6n+1|2+Mk3”én+1“2.
Likewise,

Izo < cklu(tn) — u(tni1)|le™ | lu(tnss) |
2, vk ai1p2
< Mklu(tn) — u(tns1)|® + —8—|€ |

tnt+1 k
< Mk2/ |ue|?dt + %|e"+1|2.
tn

Combining these inequalities into (4.6), we arrive at

le™ 12y — lle™ 12y + vkle™ [ + e+t — em||2,

S Mk”en+l||2_1 +M(k:2 +k3)”én+1“2 + Mk|é-n+1 _ 6"'2

tnt1
+ME|en ! — g2 4 k2 / (lusel®., + [us]?)dt.

n

Taking the sum of the last inequality for n from zero to N (forall0 < N < T/k — 1),
we derive from Lemma 2 that

N N
¥ 2, + 37 {llem — €2, + kvle™ 2} < ME® + MES ("],
n=0

n=0

By applying the discrete Gronwall lemma to the last inequality, we obtain

N
||eN+1||2_1 + Z {“en+l _ en“2_1 + kl/|6n+1|2} < Mk2
n=0
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(4.8) VYOS N<LT/k-1.
We then derive from (3.9) and Lemma 2 that
N N
kY 1t =k {le"T P + (&t — et P} < ME?
n=0 n=0

YOS N <T/k—1.

(ii) Error estimate for the pressure. We rearrange (4.4) to

Vgit! = %(e”"’1 —e") — vAert?
(4.9) +(u(tns1) - V)u(tns1) — (W™ - V)@t — R™,

where {ent1 gnt1} = {gn+1 gntl}.
If we denote ¢" ! = p(t,41) — (I — kvA)¢"t!, we derive that (4.9) is also true for
{entl gntl} = {e"t1,¢"*1}. Hence we can consider simultaneously the two pressure
approximations.
We first split up the nonlinear term on the right-hand side of (4.9) as

(u(tn-H) : V)u(th) — (u" . v),an+1

(4.10) = (u(tng1) — u(tn)) - Vultng1) + (€ - Vu(tnsr) + (u™ - V).
We derive from Lemma 2 that

(4.11) [u™(| < lle™]| + lluta)l| < M Vn.

Hence, by using (2.5), we can derive that, for all v € H}(R2)?,

((ultnt1) - VIultntr) = (" - V)@, v)
< cfultnir) — u(tn)lllultns)li2ll]
(4.12) +clle™ [lutns)llloll + cllu™ e vl

< MA{IE™H | + lle™ | + [utns1) — ultn) Hivll-

Using the Schwarz inequality, we have also, for all v € H}(Q)?,

1
(E(e"""1 —e") —vAet! — R", v)
1 n n
(4.13) < (e = et loa 4 IR+ o421 ) ol

We then derive from the inequality
(4.14) IplL2@)/r < ¢ sup (ZE’—U)-,
vEHL (D)4 ||U||
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and (4.9), (4.12), (4.13) that

n+1 M
gt t |2 < ¢ sup e, v) < =le™tt —e™||-1
veHL(Q)4 el Tk

M([[B™ |1 + [lE™*H ] + |+

Flle™ | + lu(tnt1) — ultn)l)-

Therefore, by using Lemma 2 and (4.8), we derive

T/k—1 T/k—-1
kY16 eqym < Mk Y {JlE"H2 + [lem 2
n=0 n=0

IR, + fultn1) — u(ta)|?}

T/k 1
+ Z le™** — ™12, < Mk.

The proof of Theorem 1 is then complete. ad

Remark 2. We emphasize that 4"+ is not merely an auxiliary velocity introduced
for computing u™*1. It is in fact an approximation to u(tn+1), most likely as accurate
asymptotically as u™t!. This is also true for our modified scheme presented in the
next section.

Despite the incompatible Neumann boundary condition of ¢™*!, we showed that
@™+ was still a legitimate approximation to p(t,1). Given the velocity error estimate
(4.1), the pressure error estimate (4.2) seems to be the best we can expect. Hence,
whether (I —kvA)¢™+! is a better approximation to p(t,,1) than ¢"t1, as is believed
by many authors, needs more careful analysis and must be tested in practice.

5. A modified scheme. The scheme (1.2)—(1.3) can be slightly modified such
that it becomes strongly first order while keeping the simplicity of the classical scheme.
We modify the scheme (1.2)—(1.3) as follows.

We start with u® = up and an arbitrary ¢°, then we solve successively @"*! and
{untl, ¢nt1} by

(@ — ) — AT (- V)E 4V = f(ta),
(5.1)
@+ =0,
and
1
E(un-kl _ ,an-}—l) + av(¢n+1 _ ¢n) — 0,
(5.2) divumt =0,

u”+1 . ﬁlp = 0,

where o can be any constant greater than or equal to one.
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Once again, the existence and uniqueness of @' defined by (5.1) are ensured by
the Lax-Milgram theorem, and u™t! = Pga™*!. It is clear that the scheme (5.1)—
(5.2) is numerically equally as effective as scheme (1.2)-(1.3). Furthermore, if we
make the additional assumption (see Remark 3 below)

T
(A3) / Ith(t)|2dt <M and sup ||uu(t)|-1 <M,
0 0,T]

te(

we can prove the following theorem.
THEOREM 2. Let us denote

p-n+1 — ¢n +a(¢n+1 _ ¢n)’ pn+1 =p~n+1 _ kaI/A(¢”+1 _ ¢n)

Then, under the assumptions of Lemma 1 and (A3), @"*! (in case a > 1) and u™+?!
from (5.1)~(5.2) are strongly first-order approzimations to u(tn,4+1) in L2(Q)? and
weakly first-order approzimations to u(tni1) in HY(Q)%. p**! as well as p"*! are
weakly first-order approzimations to p(t,41) in L2(2)/R. More precisely, we have

N
VR + (= DIEVH + kv Y (1€ + [lemH?) < MA?
n=0

(5.3) VO<S N <T/k-1;

N
kY {lp™" = pltns1) 32y r + 1™ — P(tns1) 320y r} < MK

n=0

(54 VYOS N<T/k—-1.

Remark 3. The verification of (A3) involves some compatibility conditions of
the data which are not generally satisfied (see, for instance, [17], [6]). We make this
assumption merely to simplify the presentation. In fact, assuming only (A1)-(A2), it
can be proven that (see, for instance, [6])

T
/ min(t, 1)|Vp,(t)|?°dt <M and sup min(t,1)|uw(t)]-1 < M.
0 te(0,T]

Consequently, without assuming (A3), we can prove the following alternative to The-
orem 2:

N
tner(|eN T+ 18V + kYt (€72 + lle" P} < MK
n=0

YO< N <T/k-1;

N
kYt {0 = pltns1) 32y /m + B — Ptns) 32 () r) < MK

n=0

VO< N <T/k—1.
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Proof of Theorem 2. (i) Error estimate for the velocity. The procedure is similar
as in the proof of Lemma 2 except for the treatment of the pressure terms. As in §3,
we can formulate the following error equations:

1 ~n n ~n

E(e 1 _e) —vAettt
(5.5) = (" V)& — (ultns1) - VYu(tnsr) + B + V(6" — pltns1)),
(5.6) L(e &) = a V(4 - g7,

Taking the inner product of (5.5) with 2ké™"*!, repeating the computation in §3 except
for the pressure terms, we can derive the following inequality similar to (3.7):

~ . 1.
Ien+1|2 _ Ien|2+’/”en+1”2 + §|en+l _ en|2

tn+1 tnt
(5.7) < MK? ( / e |2t + / |ut|2dt>
tn t

n

+2k(V (9" — p(tn+1)),€™1) + Mkle .
Taking the inner product of (5.6) with %%l&e”“, we obtain

a-—1

(5.8) -

(|en+1|2 _ Ién+1|2 + |en+1 _ é"+1|2) =0.

Taking the inner product of (5.6) with £(e"*1 4 é"*1), because of (2.4), we derive

(5.9) é(le"“l2 — [ P) = K(V(gmT - ¢, &),

Adding (5.7), (5.8), and (5.9); we arrive at

1 -1
€™+ 2 — |enP+ky @ P + S (e — o2 4+ T

tnyl tn41
(5.10) < MR? ( [ Il e+ [ |ut|2dt)
tn tn

+MEle™? + k(V(¢™* + ¢" — 2p(tn+1)),€" ).

|entl _ gntl 2

Now we have to deal with the last term on the right-hand side.
Let us denote now ¢™ = p(t,) — @™, so we can write

(5.11) k(V(¢™t! + ¢" — 2p(tns1)), ")
= —k(V(¢"*" + ¢" + p(tns1) — p(n)),E™).

On the other hand, we derive from (5.6) that

gntl = ntl _ 2k (g™t — ¢7)
=" +2k{V(¢"*" —¢") = V(p(n + 1) - p(n)) } .
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Putting this into (5.11), using (2.4) and the estimate

tn+1
/ Vp:(t)dt

tn

2 tnit
V(p(n+1) — p(n))|* = <k / Vpu(t) 2dt,

we obtain
k(V(¢™t! + ¢™ — 2p(n + 1)),e" )

=2k%(|Vq"? — Vg™t |?) + 2K?|V(p(n + 1) — p(n))|?
(5.12) +4k%(Vq", V(p(n + 1) — p(n)))

< 262(|Vg™|? — Vg™t ?)

tn+1
+2k3|V g™ ? + 2(k* + K°) / |Vpe(t)|2dt.
tn

Now, taking the sum of (5.10) and (5.12) for n from zero to N, because of (A3), we
arrive at

N
-1 1
leN+1|2 + kzlqu+1|2 + Z {aa lén+1 _ en+1l2 + §|én+1 _ enlz + kV”én+1“2}

n=0

N
< Mk {le"]? + KV *} + K|V

n=0

T
M [ (lual?y + ool + (Tpe(0) )t
0

N
< MEY_ {le"? + K*|Vg" [P} + ME?.
n=0

By applying the discrete Gronwall lemma to the last inequality, we derive
N Y (a-1 1
N+1)2 k sn+1(|2 — n+l _ sn+112 | 2izn+l _ _n|2
e ° + Vn§=0||e | +n2_0{———a e enty +2le e”| }

(5.13) <Mk® YOS N<T/k-1.
In case a > 1, thanks to the last inequality and (5.8), we also have
"2 = entl2 4 et —em P2 < MEk? YOS N<T/k-1.

The proof of (5.3) is complete thanks to (3.10).
(ii) Error estimate for the pressure. Taking the sum of (5.1) and (5.2), we obtain

(5.14) %(un—f-l _ un) _ VAﬁn+1 + (un . V)ﬂn+1 + Vﬁn+1 — f(tn+l)-

Subtracting (5.14) from (3.1), we obtain

(5.15)
1
E(e"+1 —e") —vAertl + Vgt = (v - V)a" ! — (u(tnt1) - V)u(tnt1) + R,
dive™*! =0,

en+1 . ﬁll" — 0’
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where ¢! = p(t,41) — "L

Let us first prove the following lemma.
LEMMA 3. Under the assumption of Theorem 2, we have

N
D et — e, < ME* VO< N <T/k—-1.

n=0

Proof. Taking the inner product of (5.15) with kA~1(e"*! — e™), using (2.1), we
have

(Vgt, A1 (et! —e™)) =0,
(e = en, AN (e = em) = [+ — e, and

k(R AN — ) S KIRM-1fle™! = e™[l-1 < glle™ — eZy + K7 R™|2,.

As for the nonlinear terms, we again use the splitting of (4.10); using (2.1), (2.5), and
(4.11), we can derive

k((u™ - V)@ = (ultne1) - V)u(tasr), A7 (e — ™))
= kb(u(tns1) — u(tn), u(tng1), A71(e™t! — ™))
Hhb(e™, u(tngn), AL (€ — €M) + kb(u®, &L, AL (e — ¢™)
< Klu(tn+1) — u(tn)lllu(tnrn) et — €™]-1
+kle™[[utnri)ll2lle™t! — €rll-1 + kllum|{le* || [le™ ! — e[|
< Gl —eMlo1 + ME {Ju(tns1) — ulta))? + le™|? + [[€" (|7}
It remains to estimate —(Aé&"*t! kA~1(e"*t! — e™)). As in the last section, we take

u = el —e™ in (2.2) and let {v,p} be the solution of the corresponding Stokes
equations; we have

—(AEL EAT (M — ) = (8L, —RAATI (M — o))
— k(én+1,€n+1 —em — vp)
— k(6n+1,€n+1 _ en) _ k(én+1, Vp)

k
= S{lem I = [en? + fent — &2} - k(&™) V).

Since |Vp| < c|e™*! — e"|, the last term on the right-hand side can be majorized by

k(E"1, Vp) = k(&™H! — &, Vp) < kle™H! — || V|
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< s(je™t —e? + [Vp?)

N &

< ME(je™t — e 4 [t — e ).

Finally, thanks to (5.13), we can derive from (5.15) and the above inequalities that

N N
Do llemtt —erZy < MEPY {IIRMZ, + lultner) — ulta)® + €72}

n=0 n=0
N
+Mk? Z {|e"t! —em® + et — e *} < ME®
n=0

Y0O<n<T/k-1 O

We now return to the proof of Theorem 2.
Let us denote ¢"*! = p(t,41) — p"*1. As in the last section, we have

(5.16) Vgt = %(enﬂ N
+(U’(t’n+1) ¢ V)u(tn+1) — (,un . V)ﬂn+1 _ R'n"

where {ePt!, g0t} = {e"*!, "1} or {€"*+1, g !}. Exactly as in the last section, we
can derive

n+1
g2t 2@y r < ¢ sup (V" ,v)
veEHL ()4 ljl|

1 -
<M {;ne"“ My IR o+ [+ e+ uenu} .

Hence, by using (5.13), Lemma 3, and (A3), we finally obtain

N N
1 n
B 6 Baayn < MEY { gl - 2+ IR,

n=0 n=0
e 4 e + ue”w}
<Mk* YO<n<T/k-1

The proof of Theorem 2 is complete. 0

Remark 4. It is interesting to observe that the choice of a does not affect the
precision of the scheme as long as & > 1. We note that the choice of ¢° only introduces
an extra error term of order O(k|V(p(0) —¢°)|). Hence, it does not affect the precision
of first order schemes.

We immediately observe from (5.2) that once again we have

3¢n+1 _ ad)n _ a¢0

on o o
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Therefore,

™! _ B(¢ntt + a(gmH — ¢7) _ 0¢°
on on - on’

which is certainly not satisfied by the exact pressure. However, as for the classical
projection scheme (1.2)—(1.3), we were still able to prove that 5"*! was a legitimate
approximation to p(t,1).

If we consider a coupled first-order backward Euler scheme for (1.1), we would
end up with exactly the same error estimates as stated in Theorem 2. Consequently,
we have showed the decoupled projection scheme (5.1)—(5.2) has the same order of
accuracy as the coupled conventional scheme.

Acknowledgments. The author thanks R. Temam for his valuable suggestions
and encouragement.
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