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ON ERROR ESTIMATES OF THE PROJECTION
METHODS FOR THE NAVIER-STOKES

EQUATIONS: SECOND-ORDER SCHEMES

JIE SHEN

Abstract. We present in this paper a rigorous error analysis of several pro-
jection schemes for the approximation of the unsteady incompressible Navier-
Stokes equations. The error analysis is accomplished by interpreting the re-
spective projection schemes as second-order time discretizations of a perturbed
system which approximates the Navier-Stokes equations. Numerical results in
agreement with the error analysis are also presented.

1. Introduction

In this paper, we are concerned with the accuracy of certain projection schemes
for the approximation of the Navier-Stokes equations. Let Ω ∈ Rd (with d = 2 or
3) be an open bounded set with a sufficiently smooth boundary. We consider the
unsteady incompressible Navier-Stokes equations in the primitive variable formu-
lation:

ut − ν∆u+ (u · ∇)u+∇p = f in Ω× [0, T ],(1.1)

divu = 0 in Ω× [0, T ], u|t=0 = u0,(1.2)

where the unknowns are the vector function u, which represents the velocity of
the flow, and the scalar function p, which represents the pressure field. The equa-
tions (1.1)–(1.2) should be completed with an appropriate boundary condition for
the velocity u. For the sake of simplicity, we consider the homogeneous Dirichlet
boundary condition, i.e., u|∂Ω = 0 , ∀ t ∈ [0, T ].

One of the main difficulties in solving (1.1)–(1.2) is that the unknowns (u, p)
are coupled together by the incompressibility constraint ∇u = 0. The projection
method, introduced by Chorin [2] and Temam [20], was designed to overcome this
difficulty. Although the projection methods have been widely used because of their
efficiency and simplicity (cf. [1,5,6,10,23] and the references therein), a rigorous
error analysis for these projection schemes has not been available until recently. In
[15,17], the author gave a first error analysis for some frequently used projection
schemes. Recently, Rannacher in [12] derived improved optimal first-order error
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estimates for the original projection scheme introduced in [2] and [20] (see also
[16] and [4]).

Consider, for instance, the following projection scheme analyzed in [17]:

(1.3)

{
ũn+1−un

k − ν
2 ∆(ũn+1 + un) + B̃( ũ

n+1+un

2 , ũ
n+1+un

2 ) +∇pn = f(tn+ 1
2
),

(ũn+1 + un)|∂Ω = 0,

(1.4)


un+1−ũn+1

k + 1
2∇(pn+1 − pn) = 0,

∇un+1 = 0,

un+1 · n|∂Ω = 0,

where k is the time step, tn+ 1
2

= (n+ 1
2 )k and B̃(u,v) = (u · ∇)v+ 1

2 (∇u)v is the

modified bilinear form which ensures the dissipativity of the scheme. We note that
an implicit treatment for the nonlinear term is used in order to ensure the uniform
stability of the semidiscretized system. When the system (1.3)–(1.4) is further
discretized in space, it is a common practice to treat the nonlinear term explicitly
so long as the discretization parameters satisfy the CFL stability condition.

Let P be the projector in L2(Ω) onto the divergence-free subspace

(1.5) H = {v ∈ L2(Ω) : ∇v ∈ L2(Ω),v · n|∂Ω = 0}.

We infer from (1.4) that un+1 = P ũn+1, which explains why we call (1.3)–(1.4) a
projection scheme.

We note that un+1 can be eliminated from (1.3)–(1.4). In fact, taking the sum
of (1.3) at step n and (1.4) at step n− 1, and applying the divergence operator to
(1.4), we obtain

(1.6)


ũn+1−ũn

k − ν
2 ∆(ũn+1 + P ũn) + B̃( ũ

n+1+P ũn

2 , ũ
n+1+P ũn

2 )

+ 1
2∇(3pn − pn−1) = f(tn+ 1

2
),

(ũn+1 + P ũn)|∂Ω = 0,

(1.7) ∇ũn+1 − 1

2
k∆(pn+1 − pn) = 0,

∂pn+1

∂n

∣∣∣∣
∂Ω

=
∂pn

∂n

∣∣∣∣
∂Ω

.

The advantage of reformulating (1.3)–(1.4) is that we can interpret the scheme
(1.6)–(1.7) as a second-order time discretization, with a decoupled system for
(ũn+1, pn+1), to the perturbed system (see similar interpretations in [18] and [13]):

uεt − ν∆uε + B̃(uε,uε) +∇pε = f , uε|∂Ω = 0,(1.8)

divuε − ε∆ pεt = 0,
∂pεt
∂n
|∂Ω = 0,(1.9)

with ε ∼ 1
2k

2. On the other hand, the perturbed system (1.8)–(1.9) can be viewed
as an approximation, when ε � 1, to the Navier-Stokes equations (1.1)–(1.2). It
was thoroughly studied in a recent work [14] in which the following theorem was
proved.
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Theorem 1.1. Let f ,ft,ftt ∈ C([0, T ];L2(Ω)), u0 ∈H2(Ω)∩H1
0 (Ω) and ∇u0 =

0. Then for any fixed t0 ∈ (0, T ), let (u, p) be the unique strong solution of (1.1)–
(1.2) in [0, T1] (with some T1 ≤ T ) and (uε, pε) be the solution of (1.8)–(1.9) with
the initial data (uε(t0), pε(t0)) = (u(t0), p(t0)). Then

‖u− uε‖2L2(t0,T1;L2) +
√
ε‖u− uε‖2L∞(t0,T1;L2)

+ ε(‖u− uε‖2L∞(t0,T1;H1) + ‖p− pε‖2L∞(t0,T1;L2)) ≤ Cε2,

where C is a constant depending on the data and t0.

Since (1.6)–(1.7) is a second-order time discretization of (1.8)–(1.9) with ε = 1
2k

2,
in light of Theorem 1.1, we can speculate that the scheme (1.6)–(1.7), or any other
similar discretization to (1.8)–(1.9), is of second order in L2(t0, T1;L2) for the
velocity and of first order in L∞(t0, T1;L2) for the pressure. Therefore, instead of
(1.6)–(1.7), we can also approximate (1.8)–(1.9) by the following scheme, which is
of second order for the velocity and of first order for the pressure.

Given (u0, p0) in H1
0 (Ω) ×H1

0 (Ω)/R, we define (un+1, pn+1) to be the solution
of the system

(1.10)

{
un+1−un

k − ν
2 ∆(un+1 + un) + B̃(u

n+1+un

2 , u
n+1+un

2 )+∇pn = f(tn+ 1
2
),

un+1|∂Ω = 0,

(1.11) ∇un+1 − βk∆(pn+1 − pn) = 0,
∂pn+1

∂n
|∂Ω =

∂pn

∂n
|∂Ω,

where β is a constant to be determined. We will carry out a rigorous error analysis
for the above scheme and indicate in §4 how the scheme (1.6)–(1.7) can be analyzed.

Although the projection step is never applied in (1.10)–(1.11), we will still refer
to (1.10)–(1.11) as a projection scheme because of its similarity with (1.6)–(1.7).
The key to the numerical efficiency and flexibility of the scheme (1.10)–(1.11) (resp.
(1.6)–(1.7)) is the explicit treatment of the pressure in (1.10) (resp. (1.11)). As
mentioned before, the nonlinear term in (1.10) (resp. (1.16)) is usually treated
explicitly if the space variables are discretized; then at each time step, we only need
to solve a vector Helmholtz equation and a scalar Poisson equation. In particular,
fast Poisson solvers, if available, can be used. Furthermore, since the velocity
and the pressure in a projection scheme are decoupled from each other, the space
discretizations for the velocity and the pressure can be chosen independently, and
they do not need to satisfy the Babuška-Brezzi inf-sup condition. In particular, one
can use equal-order finite element or spectral element methods for the velocity and
the pressure, which are otherwise incompatible in a conventional formulation.

In view of Theorem 1.1, we expect to prove the following error estimates for
(1.10)–(1.11):

(1.12) k
m∑
n=1

‖u(tn)− un‖2 + k2‖∇(u(tm)− um)‖2 + k2‖p(tm)− pm‖2 ≤ Ck4

for all 1 ≤ m ≤ T1−t0
k . It will be shown that the above estimates indeed hold

provided suitable assumptions are made on the data for (1.1)–(1.2) and (1.10)–
(1.11) (cf. Theorem 3.1 for a precise statement of the results).
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In order to take advantage of the results in Theorem 1.1, it is natural to split
the error u(tn)−un as (u(tn)−uε(tn))+(uε(tn)−un) and try to derive a second-
order estimate for uε(tn) − un. As usual, this process requires ε-independent a
priori estimates for uεttt and pεtt. Unfortunately, such estimates are not available
(cf. Remark 3.2 in [14]). Therefore, we have to estimate u(tn)−un directly, as we
did for u− uε in [14]. However, this process becomes much more complex, owing
to the additional difficulties introduced by the decoupled time discretization.

We note that the essential difficulty in the error estimation of projection schemes
is associated with the approximation of the time-dependent linear Stokes operator.
Although the treatment of the nonlinear term is very delicate and technical, the
error introduced by the nonlinearity is relatively small compared to that introduced
by the linear operator. In fact, the main results would remain the same should the
nonlinear term be dropped from (1.1)–(1.2) and (1.10)–(1.11). Hence, the reader
could skip the treatment of the nonlinear term at the first reading and thus obtain
a clearer picture for the process of error analysis.

It appears that any decoupled time discretization for (1.8)–(1.9) can only be
stable if k2 ∼ ε (cf. Remark 2.1). Hence, the accuracy of any decoupled time
discretization scheme for (1.8)–(1.9) is dictated by the error estimate in Theorem
1.1, which can only lead to second-order accuracy in L2(t0, T1;L2) for the velocity,
if no further restrictive conditions on the exact solution are assumed. This limited
accuracy is due to the singular perturbation nature of (1.8)–(1.9), i.e., to the large
error within the boundary layer introduced by the incompatible boundary condition
∂pεt
∂n
|∂Ω = 0. Therefore, we can only expect a projection (or splitting) scheme to

deliver higher than second-order accuracy if a more accurate boundary condition
for the pressure is employed. We note that some interesting higher-order split-
ting schemes with improved pressure boundary conditions have been proposed in
[11] and [9]. These schemes appear to achieve higher than second-order accuracy.
Although some normal-mode analyses for a simple one-dimensional linear model
were presented in [11] and [9], a rigorous analysis for more general cases is not yet
available.

We now describe some of the notations used in this paper. We will use the
standard notations L2(Ω), Hk(Ω) and Hk

0 (Ω) to denote the usual Sobolev spaces
over Ω. The norm corresponding to Hk(Ω) will be denoted by ‖ · ‖k. In particular,
we will use ‖ · ‖ to denote the norm in L2(Ω) and (·, ·) to denote the scalar product
in L2(Ω). The dual space of H1

0 (Ω) will be denoted by H−1(Ω), and the duality
between them will be denoted by 〈·, ·〉. We will frequently use, without mention,
the following norm equivalences:

‖v‖1 ∼ ‖∇v‖ , ∀ v ∈ H1
0 (Ω) or H1(Ω)/R; ‖v‖2 ∼ ‖∆ v‖ , ∀ v ∈ H2(Ω) ∩H1

0 (Ω).

The vector functions and vector spaces will be denoted by boldface letters. To
simplify the notation, we will omit the space variables from the notation, i.e., v(t)
should be considered as a function of t with value in a Sobolev space. We will use
C to denote a generic positive constant which may depend on the data and which
may vary at different places.

The rest of the paper is organized as follows. In the next section, we prove the
stability of the scheme and derive some additional a priori estimates for (un, pn).
In §3, we perform an error analysis for (1.10)–(1.11) by splitting the errors into
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two parts, one of which is associated with the linear operator and the other with
the nonlinear term. In §4, we indicate how the results in §3 can be extended to
some related projection schemes, and in §5 we present some numerical experiments
which are in agreement with our analysis. An appendix is provided at the end for
the estimation of the truncation errors and of the errors at the initial steps.

2. Stability and a priori estimates

We start by introducing some operators and relations for the treatment of the
nonlinear terms. Denote

B(u,v) = (u · ∇)v, B̃(u,v) = (u · ∇)v +
1

2
(∇u)v,

b(u,v,w) = (B(u,v),w), b̃(u,v,w) = (B̃(u,v),w).

We note that

(2.1) b(u,v,v) = 0, ∀u ∈H , ∀v ∈H1
0 (Ω),

where H is defined in (1.5), and

(2.2) b̃(u,v,w) =
1

2
{b(u,v,w)− b(u,w,v)}, ∀u,v,w ∈H1

0 (Ω).

Therefore, we have

(2.4) b̃(u,v,v) = 0, ∀u,v ∈H1
0 (Ω).

We will use occasionally the two inequalities below, which are valid for d ≤ 3 and
sharp for d = 3:

(2.4) b̃(u,v,w) ≤ C‖u‖1‖v‖
1
2
1 ‖v‖

1
2
2 ‖w‖, ∀v ∈H2(Ω) ∩H1

0 (Ω), u,w ∈H1
0 (Ω),

(2.5) b̃(u,v,u) ≤ C‖u‖ 1
2 ‖u‖

3
2
1 ‖v‖1 , ∀ u,v ∈H1

0 (Ω).

In most cases, the following inequality, which is valid for d ≤ 4, is sufficient for our
purposes:

(2.6) b̃(u,v,w) ≤


‖u‖1‖v‖1‖w‖1, ∀u,v,w ∈H1

0 (Ω),

‖u‖2‖v‖‖w‖1, ∀u ∈H2(Ω) ∩H1
0 (Ω), v,w ∈H1

0 (Ω),

‖u‖2‖v‖1‖w‖, ∀u ∈H2(Ω) ∩H1
0 (Ω), v,w ∈H1

0 (Ω),

‖u‖1‖v‖2‖w‖, ∀v ∈H2(Ω) ∩H1
0 (Ω), u,w ∈H1

0 (Ω).

These inequalities can be proved by using (2.2), Hölder’s inequality and Sobolev
inequalities (see, for instance, Lemma 2.1 in [21]).

The following lemma of Gronwall type will be repeatedly used (see, for instance,
[8] for a proof).
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Lemma 2.1 (Discrete Gronwall lemma). Let yn, hn, gn, fn be nonnegative se-
quences satisfying

ym + k
m∑
n=0

hn ≤ B + k
m∑
n=0

(gnyn + fn), with k

[Tk ]∑
n=0

gn ≤M, ∀0 ≤ m ≤ T

k
.

Assume kgn < 1 and let σ = max
0≤n≤Tk

(1− kgn)−1. Then

ym + k
m∑
n=1

hn ≤ exp(σM)(B + k
m∑
n=0

fn), ∀m ≤ T

k
.

2.1. Stability. We first establish a stability result for the scheme (1.10)–(1.11).
The techniques used here will be repeatedly used later in different circumstances.

Lemma 2.2. Let β ≥ 1
4 . Then there exists C > 0 such that for all m with

1 ≤ m ≤ T
k − 1,

(1− 1

4β
)‖um+1‖2 + k

m∑
n=1

‖∇(un+1 + un)‖2

≤ C
(
‖u1‖2 + k2‖∇p0‖2 + k2‖∇p1‖2 + ‖f‖2C([0,T ];H−1)

)
.

Proof. We derive from (1.11) that

(2.7) ∇(un+1 + un)− βk∆(pn+1 − pn−1) = 0,
∂pn+1

∂n
|∂Ω =

∂pn−1

∂n
|∂Ω.

Taking the inner product of (1.10) with k(un+1 + un) and of (2.7) with kpn and
summing up the two relations, thanks to (2.3), we derive

(2.8)

‖un+1‖2 − ‖un‖2 +
νk

2
‖∇(un+1 + un)‖2 + βk2(∇(pn+1 − pn−1),∇pn)

= k〈un+1 + un,f(tn+ 1
2
)〉

≤ νk

4
‖∇(un+1 + un)‖2 + Ck‖f(tn+ 1

2
)‖2−1.

Using the algebraic relations below,

(2.9)
(a− b, a) =

1

2
(|a|2 − |b|2 + |b− a|2),

(a− b, b) =
1

2
(|a|2 − |b|2 − |b− a|2),

we find that

(2.10)
(∇(pn+1 − pn−1),∇pn) =

1

2
{‖∇pn+1‖2 − ‖∇pn−1‖2}

+
1

2
{‖∇(pn − pn−1)‖2 − ‖∇(pn+1 − pn)‖2}.
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By summing up (2.1) for n = 1 to m, we derive that

(2.11)

‖um+1‖2 +
νk

4

m∑
n=1

‖∇(un+1 + un)‖2 +
βk2

2
(‖∇pm+1‖2 + ‖∇pm‖2)

≤ ‖u1‖2 + ‖f‖2C([0,T ];H−1) +
βk2

2
(‖∇p1‖2 + ‖∇p0‖2)

+
βk2

2
‖∇(pm+1 − pm)‖2.

From (1.11),

βk2‖∇(pm+1 − pm)‖2 ≤ 1

β
‖um+1‖2.

Therefore,

βk2

2
‖∇(pm+1 − pm)‖2 ≤ 1

4β
‖um+1‖2 +

1

4
βk2‖∇(pm+1 − pm)‖2

≤ 1

4β
‖um+1‖2 +

1

2
βk2(‖∇pm+1‖2 + ‖∇pm‖2).

The above inequality and (2.11) imply that

(1− 1

4β
)‖um+1‖2+

νk

4

m∑
n=1

‖∇(un+1 + un)‖2

≤ 2‖u1‖2 +
βk2

2
(‖∇p1‖2 + ‖∇p0‖2) + ‖f‖2C([0,T ];H−1). �

Remark 2.1. From the above proof and our numerical experiences, it appears that
the scheme becomes unstable if β < 1

4 . This, in particular, prevents us from
increasing the accuracy by setting β = kα for some α > 0 in (1.10)–(1.11). On the
other hand, since the truncation error increases as β increases, it is advised to use
β = 1

4 .

2.2. Some additional a priori estimates. We note that Lemma 2.2 does not
provide a k-independent stability result for ‖∇pn‖ and is not sufficient for obtaining
any meaningful error estimate. Further k-independent stability results, especially
for ‖∇pn‖, are required to conduct an error analysis. We can derive desired k-
independent stability results by choosing the initial data (u0, p0) for (1.10)–(1.11)
to be an approximation of the solution (u(t0), p(t0)) for some t0 > 0.

In the rest of the paper, we fix t0 > 0 and assume that we are given an initial
data (u0, p0) such that

(2.12) ‖u0 − u(t0)‖ ≤ Ck2, ‖∇(u0 − u(t0))‖+ ‖∇(p0 − p(t0))‖ ≤ Ck.

Remark 2.2. It is well known that the solution (u(t), p(t)) of the Navier-Stokes
equations (1.1)–(1.2) is smooth at t = 0 only if the data u(0) and f(0) satisfy
certain nonlocal compatibility conditions (cf. [7]). To avoid assuming these nonlocal
compatibility conditions, we opt to start the scheme (1.10)–(1.11) at time t0 > 0
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with an initial data (u0, p0) satisfying (2.12). Such an initial condition can be
obtained, for instance, by using a standard coupled scheme.

We should point out that this initialization process may not always be necessary
since many schemes have the ability to damp out the large initial errors, owing to
the singularity at the initial time (cf. [3]). �

As usual in an error analysis, we need some regularity results for solutions of
the Navier-Stokes equations (1.1)–(1.2). Let V = {v ∈H1

0 (Ω) : ∇v = 0}; it is well
known that (see, for instance, [7]) for

(2.13) u0 ∈H2(Ω) ∩ V , f ∈ C([0, T ];L2(Ω)),

there exists T1 ≤ T (T1 = T if d = 2) such that the solution of (1.1)–(1.2) satisfies

(2.14) ‖u(t)‖2 + ‖ut(t)‖+ ‖p(t)‖1 ≤ C , ∀ t ∈ [0, T1].

Although higher regularity at t = 0 requires that the data u0 and f(0) satisfy cer-
tain nonlocal compatibility conditions, the solution becomes as smooth as the data
allows for t > 0 thanks to the smoothing property of the Navier-Stokes equations.
In particular, we have the following regularity result, which is sufficient for our
error analysis (see, for instance, Theorem 2.4 in [7]).

Proposition 2.1. In addition to (2.13), we assume that

(2.15) ft,ftt ∈ C([0, T ];L2(Ω)).

Then for any t0 ∈ (0, T1), the solution of (1.1)–(1.2) satisfies

(2.16)

‖utt‖2 + ‖ut(t)‖22 + ‖pt(t)‖21

+

∫ t

t0

(‖uttt(s)‖2 + ‖utt(s)‖22 + ‖ptt(s)‖21)ds ≤ C , ∀ t ∈ [t0, T1].

To simplify the notation, we denote hereafter tα = t0 + αk and

w̃(tn+ 1
2
) =

1

2
(w(tn+1) + w(tn)), ãn+ 1

2 =
1

2
(an+1 + an)

for any function w(t) and any sequence {an}. We denote also M = [T1−t0
k ], the

integer part of T1−t0
k .

We shall derive some a priori estimates on (un, pn) and some crude error esti-
mates which will be used later.

Lemma 2.3. Assume (2.13) and (2.15). Then, given β > 1
4 and the initial data

satisfying (2.12), we have

‖∇um+1‖2 + ‖∆(um+1 + um)‖2 + ‖∇pm+1‖2 ≤ C , ∀ 0 ≤ m ≤M − 1.

Proof. We denote en = u(tn)−un and qn = p(tn)− pn. Subtracting (1.10)–(1.11)
from (1.1)–(1.2), we obtain the error equations

(2.17)
en+1 − en

k
− ν

2
∆(en+1 + en) +∇qn = Rn +Qn,
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(2.18)
(∇en+1, γ) + βk(∇(qn+1 − qn),∇γ)

= βk(∇(p(tn+1)− p(tn)),∇γ) , ∀ γ ∈ H1(Ω)/R,

or

(2.19)
(∇(en+1 + en), γ) + βk(∇(qn+1 − qn−1),∇γ)

= βk(∇(p(tn+1)− p(tn−1)),∇γ) , ∀ γ ∈ H1(Ω)/R,

where

(2.20)
Qn = B̃(ũn+ 1

2 , ũn+ 1
2 )− B̃(ũ(tn+ 1

2
), ũ(tn+ 1

2
))

= −B̃(ũn+ 1
2 , ẽn+ 1

2 )− B̃(ẽn+ 1
2 , ũ(tn+ 1

2
))

is the error related to the nonlinear terms and Rn is the truncation error defined
by

(2.21)

Rn =
u(tn+1)− u(tn)

k
− ν

2
∆(u(tn+1) + u(tn))

+B(ũ(tn+ 1
2
), ũ(tn+ 1

2
)) +∇p(tn)

=
u(tn+1)− u(tn)

k
− ν

2
∆(u(tn+1) + u(tn)) +B(ũ(tn+ 1

2
), ũ(tn+ 1

2
))

+∇p(tn+ 1
2
) +

(
∇p(tn)−∇p(tn+ 1

2
)
)
≡ Rn

1 +Rn
2 ,

where Rn
1 (resp. Rn

2 ) corresponds to the second-order (resp. first-order) part of
Rn.

Taking the inner product of (2.17) with k(en+1 + en) = 2kẽn+ 1
2 and of (2.19)

with kqn, and summing up the two relations, we obtain

(2.22)

‖en+1‖2 − ‖en‖2 +
νk

2
‖∇(en+1 + en)‖2 + βk2(∇(qn+1 − qn−1),∇qn)

= k〈en+1 + en,Rn〉 − 2kb̃(ẽn+ 1
2 , ũ(tn+ 1

2
), ẽn+ 1

2 )

+ βk2(∇(p(tn+1)− p(tn−1)),∇qn).

We infer from (2.9) that

(2.23)
βk2(∇(qn+1 − qn−1),∇qn) =

βk2

2
{‖∇qn+1‖2 − ‖∇qn−1‖2}

+
βk2

2
{‖∇(qn − qn−1)‖2 − ‖∇(qn+1 − qn)‖2}.

The terms on the right-hand side of (2.22) can be handled as follows:

k〈Rn, en+1 + en〉 ≤ νk

8
‖∇(en+1 + en)‖2 + Ck‖Rn‖2−1,

βk2(∇(p(tn+1)− p(tn−1)),∇qn) ≤ k3‖∇qn‖2 + Ck‖∇(p(tn+1)− p(tn−1))‖2.
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Using (2.6) and (2.14), we get

4kb̃(ẽn+ 1
2 , ũ(tn+ 1

2
), ẽn+ 1

2 ) ≤ Ck‖ũ(tn+ 1
2
)‖2‖ẽn+ 1

2 ‖‖∇ẽn+ 1
2 ‖

≤ νk

8
‖∇(en+1 + en)‖2 + Ck‖ẽn+ 1

2 ‖2.

Taking the sum of (2.22) for n = 1 to m, and using the above relations, we arrive
at
(2.24)

‖em+1‖2 +
νk

4

m∑
n=1

‖∇(en+1 + en)‖2 +
βk2

2

(
‖∇qm+1‖2 + ‖∇qm‖2

)
≤ ‖e1‖2 +

βk2

2

(
‖∇q1‖2 + ‖∇q0‖2 + ‖∇(qm+1 − qm)‖2

)
+ Ck

m∑
n=1

(‖Rn‖2−1 + ‖ẽn+ 1
2 ‖2 + k2‖∇qn‖2) + Ck2‖pt‖2C([0,T ];H1(Ω))

(thanks to (2.14), (2.12) and Lemmas A1 and A2 in the Appendix)

≤ Ck2 + Ck
m∑
n=1

(‖en+1‖2 + k2‖∇qn‖2) +
βk2

2
‖∇(qm+1 − qm)‖2.

The last term on the right-hand side needs to be treated with special care. Let
δ = β − 1

4 > 0 and p(tm+1)− p(tm) = kpt(ξm). Taking the inner product of (2.18)
with qn+1 − qn, we obtain

βk∇(qm+1−qm)‖2 = (em+1,∇(qm+1 − qm))

+ βk(∇(p(tm+1)− p(tm)),∇(qm+1 − qm))

≤ (
β

2
− 3δ

8
)k‖∇(qm+1 − qm)‖2 +

1

4k(β2 −
3δ
8 )
‖em+1‖2

+
3δk

8
‖∇(qm+1 − qm)‖2 + Ck‖∇(p(tm+1)− p(tm))‖2

=
βk

2
‖∇(qm+1 − qm)‖2 +

2

(δ + 1)k
‖em+1‖2 + Ck3‖∇pt(ξm)‖2.

We then derive from the above inequality and (2.16)

βk2‖∇(qm+1 − qm)‖2 ≤ 4

δ + 1
‖em+1‖2 + Ck4.

Hence,

(2.25)

βk2

2
‖∇(qm+1 − qm)‖2 =

(1 + δ
2 )βk2

4
‖∇(qm+1 − qm)‖2

+
(1− δ

2 )βk2

4
‖∇(qm+1 − qm)‖2

≤
1 + δ

2

1 + δ
‖em+1‖2 + Ck4

+
(1− δ

2 )βk2

2
(‖∇qm+1‖2 + ‖∇qm‖2).
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We derive from the above inequality and (2.24) that

δ

2(1 + δ)
‖em+1‖2 +

νk

4

m∑
n=1

‖∇(en+1 + en)‖2 +
δβk2

4
(‖∇qm+1‖2 + ‖∇qm‖2)

≤ Ck2 + Ck
m∑
n=1

(‖en+1‖2 + k2‖∇qn‖2).

Applying Lemma 2.1 with yn = ‖en+1‖2 + k2‖∇qn‖2 to the above inequality, we
obtain

(2.26) ‖em+1‖2+k
m∑
n=1

‖∇(en+1+en)‖2+k2‖∇qm+1‖2 ≤ Ck2 , ∀ 1 ≤ m ≤M−1.

In view of (2.14), the above inequality implies in particular that

(2.27) ‖∇(un+1 + un)‖2 + ‖∇pn‖2 ≤ C , ∀ 1 ≤ n ≤M − 1.

We now consider the term ∇pn in (1.10) as a source term and take the scalar
product of (1.10) with −2k∆(un+1 +un); denoting gn = f(tn+ 1

2
)−∇pn and using

(2.4), we obtain

2‖∇un+1‖2 − 2‖∇un‖2 + kν‖∆(un+1 + un)‖2

= 2k(gn,∆(un+1 + un)) + 4kb̃(ũn+ 1
2 , ũn+ 1

2 ,∆ ũn+ 1
2 )

≤ 2k(gn,∆(un+1 + un)) + Ck‖ũn+ 1
2 ‖

3
2
1 ‖∆ ũn+ 1

2 ‖ 3
2

≤ νk

2
‖∆(un+1 + un)‖2 + Ck‖gn‖2 + Ck‖ũn+ 1

2 ‖61.

Summing up the above relation over n, using (2.27), we derive that

(2.28) ‖∇um+1‖2 + kν
m∑
n=1

‖∆(un+1 + un)‖2 ≤ C , ∀ 1 ≤ m ≤M − 1.

Taking the inner product of (2.17) with −∆ ẽn+ 1
2 , thanks to (2.26) and Lemma

A1, we get

‖∆ ẽn+ 1
2 ‖2 ≤ C + C(Qn,−∆ ẽn+ 1

2 ).

On the other hand, using (2.4) and (2.6), we derive from (2.20) that

(Qn, ẽn+ 1
2 ) = −b̃(ũn+ 1

2 , ẽn+ 1
2 ,∆ ẽn+ 1

2 )− B̃(ẽn+ 1
2 , ũ(tn+ 1

2
),∆ ẽn+ 1

2 )

≤ C‖ũn+ 1
2 ‖1‖ẽn+ 1

2 ‖
1
2
1 ‖∆ ẽn+ 1

2 ‖ 3
2 + ‖ẽn+ 1

2 ‖1‖ũ(tn+ 1
2
)‖2‖∆ ẽn+ 1

2 ‖
(by using Young’s inequality, (2.14) and (2.28) )

≤ 1

2
‖∆ ẽn+ 1

2 ‖2 + C , ∀ 1 ≤ n ≤M − 1.

Therefore, ‖∆ ẽn+ 1
2 ‖ ≤ C , ∀ 1 ≤ n ≤M − 1. �
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Lemma 2.4. Under the assumption of Lemma 2.3, we have

‖en+1 − en‖+ k‖∇(pn+1 − pn)‖ ≤ Ck2 , ∀ 1 ≤ n ≤M − 1.

Proof. Denote

(2.29)

εn = en − en−1, wn = un − un−1, rn = qn − qn−1,

En
r = Rn −Rn−1, En

q = Qn −Qn−1,

Enp = (p(tn+1)− p(tn))− (p(tn−1)− p(tn−2)).

We derive from (2.17)–(2.19) that for n ≥ 2

(2.30)
εn+1 − εn

k
− ν

2
∆(εn+1 + εn) +∇rn = En

r +En
q ,

(2.31)
(∇(εn+1 + εn), γ) + βk(∇(rn+1 − rn−1),∇γ)

= βk(∇Enp ,∇γ) , ∀ γ ∈ H1(Ω)/R.

Taking the inner product of (2.30) with k(εn+1+εn) = 2kε̃n+ 1
2 and setting γ = krn

in (2.31), and summing up the two relations, we obtain

(2.32)

‖εn+1‖2 − ‖εn‖2 + 2νk‖∇ε̃n+ 1
2 ‖2 + βk2(∇(rn+1 − rn−1),∇rn)

= 2k(ε̃n+ 1
2 ,En

r +En
q ) + βk2(∇Enp ,∇rn)

≤ νk

4
‖∇ε̃n+ 1

2 ‖2 + Ck‖En
r ‖2−1 + k‖∇Enp ‖2 + Ck3‖∇rn‖2.

Once again, we infer from (2.9) that

(2.33)
βk2(∇(rn+1 − rn−1),∇rn) =

βk2

2
{‖∇rn+1‖2 − ‖∇rn−1‖2

+ ‖∇(rn − rn−1)‖2 − ‖∇(rn+1 − rn)‖2}.

The nonlinear term can be handled as follows. We derive from (2.20) that

En
q = Qn −Qn−1 =− B̃(w̃n+ 1

2 , ẽn+ 1
2 )− B̃(un−

1
2 , ε̃n+ 1

2 )

− B̃(ε̃n+ 1
2 , ũ(tn+ 1

2
))− B̃(en−

1
2 ,u(tn+ 1

2
)− u(tn− 1

2
)).

Thanks to (2.3), we have

(ε̃n+ 1
2 ,En

q ) =− b̃(w̃n+ 1
2 , ẽn+ 1

2 , ε̃n+ 1
2 )− b̃(ε̃n+ 1

2 , ũ(tn+ 1
2
), ε̃n+ 1

2 )

− b̃(en− 1
2 ,u(tn+ 1

2
)− u(tn− 1

2
), ε̃n+ 1

2 ).

Let u(tn+ 1
2
)− u(tn− 1

2
) = kut(t

′
n); by using (2.6) and (2.4), we derive

kb̃(w̃n+ 1
2 , ẽn+ 1

2 , ε̃n+ 1
2 ) = kb̃((u(tn+ 1

2
)− ut(tn− 1

2
))− ε̃n+ 1

2 , ẽn+ 1
2 , ε̃n+ 1

2 )

≤ Ck2‖ut(t′n)‖1‖ẽn+ 1
2 ‖1‖ε̃n+ 1

2 ‖1

+ Ck‖ẽn+ 1
2 ‖1‖ε̃n+ 1

2 ‖ 1
2 ‖ε̃n+ 1

2 ‖
3
2
1

(thanks to (2.16) and Lemma 2.3)

≤ νk

4
‖∇ε̃n+ 1

2 ‖2 + Ck3‖∇ẽn+ 1
2 ‖2 + Ck‖ε̃n+ 1

2 ‖2.
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Similarly, by using (2.6) and (2.14)–(2.16), we obtain

kb̃(en−
1
2 ,u(tn+ 1

2
)− u(tn− 1

2
), ε̃n+ 1

2 ) = k2b̃(en−
1
2 ,ut(t

′
n), ε̃n+ 1

2 )

≤ Ck2‖ut(t′n)‖1‖ẽn−
1
2 ‖1‖ε̃n+ 1

2 ‖1

≤ νk

4
‖∇ε̃n+ 1

2 ‖2 + Ck3‖∇ẽn− 1
2 ‖2,

kb̃(ε̃n+ 1
2 , ũ(tn+ 1

2
), ε̃n+ 1

2 ) ≤ Ck‖u(tn+ 1
2
)‖2‖ε̃n+ 1

2 ‖‖ε̃n+ 1
2 ‖1

≤ νk

4
‖∇ε̃n+ 1

2 ‖2 + Ck‖ε̃n+ 1
2 ‖2.

Taking the sum of (2.32) for n = 2 to m and using the above relations, we arrive at

(2.34)

‖εm+1‖2 + νk
m∑
n=2

‖∇ε̃n+1‖2 +
βk2

2

(
‖∇rm+1‖2 + ‖∇rm‖2

)
≤‖ε2‖2 +

βk2

2

(
‖∇r2‖2 + ‖∇r1‖2 + ‖∇(rm+1 − rm)‖2

)
+ Ck

m∑
n=2

{
‖ε̃n+ 1

2 ‖2 + k2(‖ẽn+ 1
2 ‖21 + ẽn−

1
2 ‖21)

}
+ Ck

m∑
n=2

{
‖En

r ‖2−1 + ‖∇Enp ‖2
}

+ Ck3
m∑
n=2

(‖∇rn‖2 + ‖∇rn−1‖2).

Similarly to (2.25), we have

βk2

2
‖∇(rm+1 − rm)‖2 ≤

1 + δ
2

1 + δ
‖εm+1‖2 + Ck4‖pt‖2C([t0,T1];H1(Ω))

+
1− δ

2

2
βk2(‖∇rm+1‖2 + ‖∇rm‖2).

We derive from Lemma A2 that

‖ε2‖2 = ‖e2 − e1‖2 ≤ 2(‖e2‖2 + ‖e1‖2) ≤ Ck4.

Taking the inner product of (2.18) with qn+1 − qn for n = 0, 1, we find

‖∇(qn+1 − qn)‖ ≤ C(
1

k
‖en+1‖+ ‖∇(p(tn+1)− p(tn))‖) ≤ Ck, n = 0, 1.

Taking into account the above estimates in (2.34) and using (2.26) and Lemma A1,
we obtain

δ

2(δ + 1)
‖εm+1‖2 +

νk

4

m∑
n=2

‖∇(εn+1 + εn)‖2 + δβk2(‖∇rm+1‖2 + ‖∇rm‖2)

≤ Ck4 + Ck
m∑
n=2

(‖εn+1‖2 + k2‖∇rn‖2).

Applying Lemma 2.1 to the above inequality, we conclude that

‖εm+1‖2 + k
m∑
n=2

‖∇(εn+1 + εn)‖2

+ k2
(
‖∇rm+1‖2 + ‖∇rm‖2

)
≤ Ck4 , ∀ 2 ≤ m ≤M − 1,

which completes the proof of Lemma 2.4. �
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3. Error estimates

The main result in this section is collected in the following theorem.

Theorem 3.1. Assume (2.13) and (2.15). Given t0 ∈ (0, T1), β > 1
4 and (u0, p0)

satisfying (2.12), there exists a positive constant C depending on the data and t0
such that

k
m∑
n=1

‖u(tn)− un‖2 + k2‖∇(u(tm)− um)‖2

+ k2‖p(tm)− pm‖2 ≤ Ck4 , ∀ 1 ≤ m ≤M = [
T1 − t0
k

],

where (u(t), p(t)) and (un, pn) are respectively the solutions of (1.1)–(1.2) and of
(1.10)–(1.11).

The remainder of this section is devoted to prove this theorem. We will introduce
an auxiliary linear problem and split the error into two parts. The first part is
associated with the time-dependent linear Stokes operator and the second part is
associated with the nonlinear term. It will become clear that the dominating error
term is introduced by the approximation of the linear operator (see Lemmas 3.1 and
3.2) while the approximation error associated with the nonlinear term is relatively
small and easy to handle (see Lemma 3.3).

3.1. Error estimates for a linear auxiliary problem. We define (vn+1, rn+1)
to be the solution of the following auxiliary linear problem:

(3.1)

{
vn+1−vn

k − ν
2 ∆(vn+1 + vn) +∇rn = f(tn+ 1

2
)− B̃(ũ(tn+ 1

2
), ũ(tn+ 1

2
)),

vn+1|∂Ω = 0,

(3.2) ∇vn+1 − βk∆(rn+1 − rn) = 0,
∂rn+1

∂n

∣∣∣∣
∂Ω

=
∂rn

∂n

∣∣∣∣
∂Ω

,

with (v0, r0) = (u0, p0). We will also use the following relation derived from (3.2):

(3.3.) ∇(vn+1 + vn)− βk∆(rn+1 − rn−1) = 0,
∂rn+1

∂n
|∂Ω =

∂rn−1

∂n
|∂Ω

Denoting ξn = u(tn) − vn and φn = p(tn) − rn, it is obvious that the results in
Lemmas 2.3 and 2.4 for (1.10)–(1.11) are also valid for this auxiliary linear system.
Namely, we have

(3.4) ‖vm+1‖21 + k
m∑
n=1

‖vn+1 + vn‖22 + ‖rm+1‖21 ≤ C , ∀ 1 ≤ m ≤M − 1,

(3.5) ‖ξ
m+1 − ξm

k
‖2 + ‖rm+1− rm‖21 + ‖φm+1−φm‖21 ≤ Ck2 , ∀ 1 ≤ m ≤M − 1.
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Lemma 3.1. Under the assumptions of Theorem 3.1, we have

k
m∑
n=1

‖u(tn)− vn‖2 ≤ Ck4 , ∀ 1 ≤ m ≤M.

Proof. Subtracting (3.1)–(3.3) from (1.1)–(1.2), we obtain the error equations

(3.6)
ξn+1 − ξn

k
− ν

2
∆(ξn+1 + ξn) +∇φn = Rn,

(3.7) ∇(ξn+1 + ξn) + βk∆(rn+1 − rn−1) = 0,
∂rn+1

∂n

∣∣∣∣
∂Ω

=
∂rn−1

∂n

∣∣∣∣
∂Ω

.

We note that Rn is the truncation error defined in (2.21).
For any 0 ≤ N ≤M−1, we define (wn, qn) to be the solution of the time-reversed

discrete parabolic duality problem:

wn+1 −wn

k
+
ν

2
∆(wn+1 +wn) +∇qn = ξn+1 + ξn,(3.8)

∇wn = 0, wn|∂Ω = 0,(3.9)

for n = N,N − 1, . . . , 0, with the “initial” condition wN+1 = 0. By successively
taking the inner product of (3.8) with ∆(wn+1 +wn) and with wn+1−wn, we can
derive by a standard procedure that

(3.10)

‖wm‖21+k
m∑
n=0

(
‖wn+1 +wn‖22 + ‖qn‖21

)
≤Ck

m∑
n=0

‖ξn+1 + ξn‖2 , ∀ 0 ≤ m ≤ N.

We now take the inner product of (3.8) with ξn+1 + ξn to obtain

(3.11)
‖ξn+1 + ξn‖2 =

1

k
(ξn+1 + ξn,wn+1 −wn)

+
ν

2
(∆(ξn+1 + ξn),wn+1 +wn)− (qn,∇(ξn+1 + ξn)).

Using the identity

1

k
(ξn+1 + ξn,wn+1 −wn) =

2

k
[(ξn+1,wn+1)− (ξn,wn)]

− 1

k
(ξn+1 − ξn,wn+1 +wn),

and taking into account (3.6)–(3.7) and (3.9), we derive from (3.11) that

k‖ξn+1 + ξn‖2 = 2[(ξn+1,wn+1)− (ξn,wn)]

− βk2(∇qn,∇(rn+1 − rn−1)) + k(Rn,wn+1 +wn).
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Summing up the last relation for n from 1 to N , since wN+1 = 0 and (Rn
2 ,w

n+1 +
wn) = 0, we derive

k
N∑
n=1

‖ξn+1 +ξn‖2 = −2(ξ1,w1)

−
N∑
n=1

{
βk2(∇qn,∇(rn+1 − rn−1)) + k(Rn

1 ,w
n+1 +wn)

}
≤ δ‖w1‖2 + C‖ξ1‖2 + δk

N∑
n=1

(‖qn‖21 + ‖wn+1 +wn‖21)

+ Ck
N∑
n=1

(k2‖rn+1 − rn−1‖21 + ‖Rn
1‖2−1).

From Lemma A2 (which holds also for the linear auxiliary problem), we have ‖ξ1‖ ≤
Ck2. Then, choosing δ sufficiently small, thanks to (3.10), (3.5) and Lemma A1,
we derive

k
N∑
n=1

‖ξn+1 + ξn‖2 ≤ Ck
N∑
n=1

(k2‖rn+1 − rn−1‖21 + ‖Rn
1‖2−1) + C‖ξ1‖2 ≤ Ck4.

Writing 2ξn+1 = (ξn+1 + ξn) + (ξn+1 − ξn), we derive from (3.5) and the above
inequality that

2k
M−1∑
n=1

‖ξn+1‖2 ≤ k
M−1∑
n=1

(‖ξn+1 + ξn‖2 + ‖ξn+1 − ξn‖2) ≤ Ck4. �

Lemma 3.2. Under the assumptions of Theorem 3.1, we have

‖u(tn)− vn‖21 + ‖p(tn)− rn‖2 ≤ Ck2 , ∀ 0 ≤ n ≤M.

Proof. Taking the inner product of (3.6) with (ξn+1 − ξn), we obtain

(3.12)

1

k
‖ξn+1 − ξn‖2 +

ν

2
(‖∇ξn+1‖2 − ‖∇ξn‖2)

= (Rn, ξn+1 − ξn) + (φn,∇(ξn+1 − ξn))

≤ 1

2k
‖ξn+1 − ξn‖2 +

k

2
‖Rn‖2 + (φn,∇(ξn+1 − ξn)).

We derive from (3.2) that

(∇(ξn+1 − ξn), γ)− βk(∇(rn+1 − 2rn + rn−1),∇γ) = 0 , ∀ γ ∈ H1(Ω)/R.

Therefore,

(3.13)

(φn,∇(ξn+1 − ξn)) = βk(∇φn,∇(rn+1 − 2rn + rn−1))

= βk
(
(∇φn,∇(rn+1 − rn))− (∇φn−1,∇(rn − rn−1))

)
− βk(∇(φn − φn−1),∇(rn − rn−1)).
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In view of (3.5), we get

‖∇φm‖2 = ‖∇
m∑
n=1

(φn − φn−1) +∇φ0‖2

≤ 2m
m∑
n=1

‖∇(φn − φn−1)‖2 + 2‖∇φ0‖2 ≤ C , ∀ 1 ≤ m ≤M.

Summing up (3.13), thanks to the above inequality and (3.5), we obtain that for
any 1 ≤ m ≤M − 1

m∑
n=1

(φn,∇(ξn+1 − ξn)) = βk(∇φm,∇(rm+1 − rm))− βk(∇φ0,∇(r1 − r0))

− βk
m∑
n=1

((∇(φn − φn−1),∇(rn − rn−1))

≤ β

2
(k2‖∇φm‖2 + ‖∇(rm+1 − rm)‖2 + k2‖∇φ0‖2 + ‖∇(r1 − r0)‖2)

+ Ck
m∑
n=1

{
‖∇(rn − rn−1)‖2 + ‖∇(φn − φn−1)‖2

}
≤ Ck2.

Taking the sum of (3.12) for n from 1 to m and collecting the above inequalities,
thanks to (2.12) and Lemma A1 (Lemma A1 is certainly applicable to the linear
auxiliary problem), we obtain

ν

2
‖∇ξm+1‖2 +

1

2k

m∑
n=1

‖ξn+1 − ξn‖2

≤ Ck
m∑
n=1

‖Rn‖2 + Ck2 ≤ Ck2 , ∀ 1 ≤ m ≤M − 1.

Finally, we derive from (3.6), Lemma A1 and the above inequality that

‖φn‖ ≤ C
(
‖ξ

n+1 − ξn
k

‖−1 + ‖Rn‖+ ‖ξn+1 + ξn‖1
)

≤ Ck , ∀ 1 ≤ n ≤M − 1. �

3.2. Error estimates for the nonlinear problem. We denote ηn = vn − un
and ψn = rn − pn. Subtracting (1.10)–(1.11) from (3.1)–(3.3), we obtain

(3.14)
ηn+1 − ηn

k
− ν

2
∆(ηn+1 + ηn) +∇ψn = −Qn,

(3.15) ∇(ηn+1 + ηn)− βk∆(ψn+1 − ψn−1) = 0,
∂ψn+1

∂n
|∂Ω =

∂ψn−1

∂n
|∂Ω,

with η0 = 0 and ψ0 = 0. We recall that Qn is defined in (2.20).
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Lemma 3.3. Under the assumptions of Theorem 3.1, we have

‖ηm+1‖2 + k
m∑
n=1

‖∇(ηn+1 + ηn)‖2 + k2‖∇ψm+1‖2 ≤ Ck4 , ∀ 1 ≤ m ≤M − 1.

Proof. We note that u(tn)− un = en = ξn + ηn. Therefore,

(3.16)

Qn = B̃(ũ(tn+ 1
2
), ũ(tn+ 1

2
))− B̃(ũn+ 1

2 , ũn+ 1
2 )

= B̃(ũn+ 1
2 , ẽn+ 1

2 ) + B̃(ẽn+ 1
2 , ũ(tn+ 1

2
))

= B̃(ũn+ 1
2 , ξ̃n+ 1

2 + η̃n+ 1
2 ) + B̃(ξ̃n+ 1

2 + η̃n+ 1
2 , ũ(tn+ 1

2
)).

Taking the inner product of (3.14) with kη̃n+ 1
2 and of (3.15) with k(3ψn − ψn−1),

and summing up the two relations for n = 1 to m, similarly as in the proof of
Lemma 2.2, we obtain
(3.17)

‖ηm+1‖2 + νk
m∑
n=1

‖∇η̃n+ 1
2 ‖2 + βk2(‖∇ψm+1‖2 + ‖∇ψm‖2)

≤ ‖η1‖2 +
βk2

2
(‖∇ψ1‖2 + ‖∇ψ0‖2 + ‖∇(ψm+1 − ψm)‖2)

− k
m∑
n=1

{b̃(ũn+ 1
2 , ξ̃n+ 1

2 , η̃n+ 1
2 ) + b̃(ξ̃n+ 1

2 + η̃n+ 1
2 , ũ(tn+ 1

2
), η̃n+ 1

2 )}.

We now bound the nonlinear terms above. Thanks to Lemma 2.3, we derive by
using (2.6) that

kb̃(ũn+ 1
2 , ξ̃n+ 1

2 , η̃n+ 1
2 ) ≤ Ck‖ũn+ 1

2 ‖2‖ξ̃n+ 1
2 ‖‖η̃n+ 1

2 ‖1

≤ νk

4
‖∇η̃n+ 1

2 ‖2 + Ck‖ξ̃n+ 1
2 ‖2.

Thanks to (2.6) and (2.14), we have

kb̃(ξ̃n+ 1
2 + η̃n+ 1

2 , ũ(tn+ 1
2
), η̃n+ 1

2 ) ≤ Ck‖ξ̃n+ 1
2 + η̃n+ 1

2 ‖‖ũ(tn+ 1
2
)‖2‖η̃n+ 1

2 ‖1

≤ νk

4
‖∇η̃n+ 1

2 ‖2 + Ck(‖ξ̃n+ 1
2 ‖2 + ‖η̃n+ 1

2 ‖2).

As in the proof of Lemma 2.4, for δ = β − 1
4 , we have

βk2

2
‖∇(ψm+1 − ψm)‖2 ≤

1 + δ
2

1 + δ
‖η‖2 +

1− δ
2

2
βk2(‖∇ψm+1‖2 + ‖∇ψm‖2).

Since η0 = 0 and ψ0 = 0, we can easily (as in Lemma A2) prove that

‖η1‖2 + k2‖∇ψ1‖2 ≤ Ck4.
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Collecting the above inequalities into (3.17) and using (2.12) and Lemma 3.1, we
arrive at

δ

2(δ + 1)
‖ηm+1‖2+

νk

2

m∑
n=1

‖∇η̃n+ 1
2 ‖2 +

δβk2

4
(‖∇ψm+1‖2 + ‖∇ψm‖2)

≤ Ck4 + Ck
m∑
n=1

‖ηn+1‖2 , ∀ 1 ≤ m ≤M − 1.

We conclude the proof by applying Lemma 2.1 to the above inequality. �
Proof of Theorem 3.1. We note that

u(tn)− un = ξn + ηn, p(tn)− pn = φn + ψn.

In view of Lemmas 3.1–3.3, the result in Theorem 3.1 holds provided that the
following additional crude estimate can be established:

(3.18) ‖∇ηn‖2 ≤ Ck2 , ∀ 0 ≤ n ≤M.

In order to derive (3.18), we take the inner product of (3.14) with (ηn+1 − ηn) to
obtain

(3.19)

1

k
‖ηn+1 − ηn‖2+

ν

2
(‖∇ηn+1‖2 − ‖∇ηn‖2) = −(∇ψn +Qn,ηn+1 − ηn)

≤ 1

2k
‖ηn+1 − ηn‖2 +

k

2
‖∇ψn‖2 − (Qn,ηn+1 − ηn).

Thanks to Lemma 2.3 and (2.14), we derive from (3.16) and (2.6) that

(Qn ,ηn+1 − ηn) = b̃(ũn+ 1
2 , ξ̃n+ 1

2 + η̃n+ 1
2 ,ηn+1 − ηn)

+ b̃(ξ̃n+ 1
2 + η̃n+ 1

2 , ũ(tn+ 1
2
),ηn+1 − ηn)

≤ C
(
‖ũn+ 1

2 ‖22‖ξ̃n+ 1
2 ‖1 + ‖ξ̃n+ 1

2 + η̃n+ 1
2 ‖1‖ũ(tn+ 1

2
)‖2
)
‖ηn+1 − ηn‖

≤ 1

2k
‖ηn+1 − ηn‖2 + Ck(‖ξ̃n+ 1

2 ‖21 + ‖η̃n+ 1
2 ‖21).

Taking the sum of (3.19) for n = 1 to m, thanks to Lemmas 3.2–3.3, we obtain
(3.18). �

4. Analysis for the scheme (1.3)–(1.4)

We can also prove a similar result for the scheme (1.3)–(1.4).

Theorem 4.1. We assume (2.13) and (2.15). Given t0 ∈ (0, T1) and (u0, p0)
satisfying (2.12), there exists a positive constant C depending on the data and t0
such that

(4.1)
k

m∑
n=1

‖u(tn)− ũn‖2 + k2‖∇(u(tm)− ũm)‖2

+ k2‖p(tm)− pm‖ ≤ Ck4 , ∀ 1 ≤ m ≤ [(T1 − t0)/k],
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(4.2) k
m∑
n=1

‖u(tn)− un‖2 + k2‖∇(u(tm)− um)‖2 ≤ Ck4 , ∀ 1 ≤ m ≤ [
T1 − t0
k

],

where (u(t), p(t)) and (ũn,un, pn) are respectively the solutions of (1.1)–(1.2) and
of (1.3)–(1.4).

Sketch of the proof. The proof of (4.1) is basically the same as that of Theorem 3.1.
The result in (4.2) is a direct consequence of (4.1) and the inequality (cf. [22])

(4.3) ‖Pv‖i ≤ C(Ω)‖v‖i , ∀ v ∈H1(Ω), i = 0, 1,

where P is the projection in L2(Ω) onto H defined in (1.5).

We will only prove a stability result and leave the other details to the interested
reader. Consider the equivalent formulation (1.6)–(1.7). Taking the inner product
of (1.6) with k(ũn+1 +P ũn) and of (1.7) with k

2 (3pn− pn−1), since ∇P ũn = 0, we
obtain

(4.4)

(ũn+1 − ũn, ũn+1 + P ũn) +
νk

2
‖∇(ũn+1 + P ũn)‖2

+
k2

4
(∇(pn+1 − pn),∇(3pn − pn−1))

= k〈ũn+1 + P ũn,f(tn+ 1
2
)〉

≤ νk

4
‖∇(ũn+1 + P ũn)‖2 + Ck‖f(tn+ 1

2
)‖2−1.

We derive from (1.4) and (1.7) that

P ũn − ũn = −1

2
k∇(pn − pn−1),

(ũn+1 − ũn,∇γ)− 1

2
k(∇(pn+1 − 2pn + pn−1),∇γ) = 0 , ∀ γ ∈ H1(Ω)/R.

Therefore,

(ũn+1 − ũn,ũn+1 + P ũn) = ‖ũn+1‖2 − ‖ũn‖2 + (ũn+1 − ũn, P ũn − ũn)

=‖ũn+1‖2 − ‖ũn‖2 − 1

2
k(ũn+1 − ũn,∇(pn − pn−1))

=‖ũn+1‖2 − ‖ũn‖2 − 1

4
k2(∇(pn+1 − 2pn + pn−1),∇(pn − pn−1))

=‖ũn+1‖2 − ‖ũn‖2 − k2

8
(‖∇(pn+1 − pn)‖2 − ‖∇(pn − pn−1)‖2)

+
k2

8
‖∇(pn+1 − 2pn + pn−1)‖2.
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On the other hand,

k2

4
(∇(pn+1 − pn),∇(3pn − pn−1))

=
k2

4
(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇(pn+1 − pn)‖2)

+
k2

4
(∇(pn+1 − pn),∇(pn − pn−1))

= −k
2

8
‖∇(pn+1 − 2pn + pn−1)‖2

+
k2

4
(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇(pn+1 − pn)‖2)

+
k2

8
(‖∇(pn+1 − pn)‖2 + ‖∇(pn − pn−1)‖2).

We derive from (1.7) that

k2

4
‖∇(pm+1 − pm)‖2 ≤ ‖ũm+1‖2.

Summing up (4.4) for n = 1,m, and collecting the above inequalities , we arrive at

νk

4

m∑
n=1

‖∇(ũn+1 +P ũn)‖2 +
k2

8
‖∇pm+1‖2 ≤ ‖u1‖2 +

k2

8
‖∇p1‖2 + ‖f‖2C([0,T ];H−1).

Hence, the scheme is stable. �

5. Numerical results

We now present some numerical results by using the schemes (1.3)–(1.4) and
(1.10)–(1.11). Since the dominating error in these schemes is introduced by the
approximation of the linear operator, we shall only perform numerical tests on the
Navier-Stokes equations linearized at u = 0.

Let Ω = (−1, 1)2, ν = 1 and the exact solution (u, p) of the linearized (at u = 0)
Navier-Stokes equations to be

u(x, y, t) = π log(1 + t)(sin 2πy sin2 πx,− sin 2πx sin2 πy),

p(x, y, t) = log(1 + t) cosπx sin πy.

Then the function f is given by f = ut −∆u+∇p. All computations are started
from the initial time t0 = 0.

For the space discretization, we use the Legendre-Galerkin method (cf. [19]) with
33 modes in each direction for the velocity and the pressure. Thanks to the high
accuracy of the spectral method, the error introduced by the space discretization
is negligible compared to the error introduced by the time discretization for this
specific example. Denote

erru(t, k) =
maxi,j=0,... ,32 |u(xi, yj, t)− u

t
k (xi, yj)|

maxi,j=0,... ,32 |u(xi, yj , t)|
,
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errp(t, k) =

√∑32
i,j=0 |p(xi, yj, t)− p

t
k (xi, yj)|2

33 maxi,j=0,... ,32 |p(xi, yj , t)|
,

where (xi, yj) = (cos iπ32 , cos jπ32 ) (i, j = 0, . . . , 32) are the Gauss-Lobatto collocation
points. In order to determine the numerical convergence rate, we set

ru(t, k) =
erru(t, k)

erru(t, k/2)
, rp(t, k) =

errp(t, k)

errp(t, k/2)
.

We use the l2-norm to measure the error of the pressure approximations because
the pressure approximations exhibit large error near the boundary, so that the
l∞-norm of the error does not properly represent the errors in the interior of the
domain. On the other hand, the l2-norm and l∞-norm of the error for the velocity
approximations appear to behave similarly, at least for this specific example. Hence,
the l∞-norm is used to measure the error of the velocity approximations.

Table I. Error behavior of the scheme (1.10)–(1.11) with β = 1
4

k erru(1, k), ru(1, k) errp(1, k), rp(1, k) erru(5, k), ru(5, k) errp(5, k), rp(5, k)

0.1 2.43E-3, 4.13 7.39E-2, 2.25 3.52E-4, 4.04 2.43E-2, 2.41

(2.06E-3), (4.32) (2.95E-4), (4.09)

0.05 5.89E-4, 4.03 3.29E-2, 2.33 8.71E-5, 4.44 1.01E-2, 2.36

(4.76E-4), (3.90) (7.21E-5), (4.01)

0.025 1.46E-4, 4.02 1.41E-2, 2.33 1.96E-5, 3.78 4.28E-3, 1.88

(1.22E-4), (4.01) (1.80E-5), (4.35)

0.0125 3.63E-5 6.06E-3 5.19E-6 2.28E-3

(3.04E-5) (4.14E-6)

(∗) the results in parentheses are for the error u(t)− Pu
t
k .

Table II. Error behavior of the scheme (1.3)–(1.4)

k erru(1, k), ru(1, k) errp(1, k), rp(1, k) erru(5, k), ru(5, k) errp(5, k), rp(5, k)

0.1 2.06E-3, 4.32 7.64E-2, 2.31 2.95E-4, 4.09 2.45E-2, 2.43

0.05 4.76E-4, 3.90 3.31E-2, 2.40 7.21E-5, 4.01 1.01E-2, 2.37

0.025 1.22E-4, 4.01 1.38E-2, 2.39 1.80E-5, 4.35 4.27E-3, 1.88

0.0125 3.04E-5 5.78E-3 4.14E-6 2.27E-3

In Tables I and II, we list the errors of the velocity approximations and of the
pressure approximations at t = 1 and t = 5 by using the schemes (1.10)–(1.11)
and (1.3)–(1.4) respectively. For the scheme (1.10)–(1.11), we have also computed

the error between u(t) and Pu
t
k . The latter is the projection of u

t
k onto the

divergence-free space H . We note that this projection is only performed at the last
time step, not at every time step as in (1.3)–(1.4).

The results in Tables I and II clearly indicate that the two schemes are second-
order accurate for the velocity and at least first-order accurate (in the l2-norm) for
the pressure. In Figure 1, we plot the pressure error for the two schemes at t = 1
with three different time steps. It is clear that both pressure approximations exhibit
a numerical boundary layer whose width decreases as the time step decreases. It is
also clear that the numerical boundary layers are consequences of the incompatible
homogeneous Neumann boundary condition for the pressure approximation, since
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Figure 1. Plots of pressure errors at t = 1

the numerical boundary layers only appear at the two boundaries {(x, y) : x ∈
(−1, 1), y = ±1} where the exact pressure is such that ∂p

∂~n 6= 0 ( ∂p∂~n = 0 at the other
two boundaries). On the other hand, there is no numerical boundary layer for the
velocity approximations (see Figure 2).

In order to determine the accuracy of the pressure approximations away from
the numerical boundary layer, we set

err1
p(t, k) =

√∑29
i,j=3 |p(xi, yj , t)− p

t
k (xi, yj)|2

27 maxi,j=3,... ,29 |p(xi, yj , t)|
, r1

p(t, k) =
err1

p(t, k)

err1
p(t, k/2)

,

which represents the error in the l2-norm of the pressure approximations away from
the numerical boundary layer. The corresponding results are tabulated in Table
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Figure 2. Plots of (first-component) velocity errors at t = 1

III. We notice that away from the boundary layer, the scheme (1.3)–(1.4) seems to
be second-order accurate for the pressure, while the scheme (1.10)–(1.11) remains
first-order accurate because the truncation error for the pressure is only first-order
accurate.

Table III. Error behavior of the pressure approximations in the interior of Ω

Scheme (1.10)–(1.11) Scheme (1.3)–(1.4)

k err1
p(1, k), r1

p(1, k) err1
p(1, k), r1

p(1, k)

0.1 2.54E-2 , 3.87 3.36E-2 , 4.30

0.05 6.57E-3 , 2.00 7.81E-3 , 4.49

0.025 3.28E-3 , 1.72 1.74E-3 , 3.88

0.0125 1.91E-3 4.48E-4

The convergence rate of the scheme (1.10)–(1.11) is insensitive to the choice of β,
as long as β ≥ 1

4 , although larger β introduce larger truncation errors and give less

accurate results. Therefore, it is recommended to choose β = 1
4 for (1.10)–(1.11).

Finally, we note that the results by (1.10)–(1.11) and (1.3)–(1.4) are of compa-

rable accuracy. In fact, u
t
k in (1.10)–(1.11) is slightly less accurate than u

t
k in

(1.3)–(1.4). But it is interesting to note (cf. Tables II and III) that for this exam-

ple, the error between u(t) and Pu
t
k in (1.10)–(1.11) is numerically identical to the

error between u(t) and u
t
k in (1.3)–(1.4).

Appendix

Lemma A1. Let Rn, En
r and Enp be defined respectively in (2.21) and (2.29). We

assume (2.13) and (2.15). Then there exist c1, c2, c3 > 0 such that

(A.1) k
M−1∑
n=1

‖Rn
1 ‖2−1 ≤ c1k4

∫ T1

t0

(
‖uttt(s)‖2−1 + ‖utt(s)‖21 + ‖ptt(s)‖2

)
ds,

(A.2)
‖Rn‖ ≤ c2k( max

t∈[t0,T1]
‖utt(t)‖+ max

t∈[t0,T1]
‖ut(t)‖2 + max

t∈[t0,T1]
‖pt(t)‖1),

∀0 ≤ n ≤M − 1,

(A.3) k
M−1∑
n=2

‖Enp ‖21 ≤ c3k4

∫ T1

t0

‖ptt(s)‖21ds.
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Proof. A result similar to (A.1) was proved in Lemma 1 of [17]. It is clear that the
argument in [17] can be directly used to prove (A.1). One can also easily derive
(A.2) by using similar arguments.

By using Taylor’s Theorem with remainder in integral form, we have

p(tn+1) = p(tn) + kpt(tn) +

∫ tn+1

tn

ptt(s)(tn+1 − s)ds,

p(tn−2) = p(tn−1)− kpt(tn−1) +

∫ tn−1

tn−2

ptt(s)(s− tn−2)ds.

We derive from the above that

Enp =(p(tn+1)− p(tn))− (p(tn−1)− p(tn−2))

=k

∫ tn

tn−1

ptt(s)ds+

∫ tn+1

tn

ptt(s)(tn+1 − s)ds+

∫ tn−1

tn−2

ptt(s)(s − tn−2)ds.

By using the Schwarz inequality, we derive from the above that

‖∇Enp ‖2 ≤ k3

∫ tn

tn−1

‖∇ptt(s)‖2ds+
1

3
k3(

∫ tn−1

tn−2

+

∫ tn+1

tn

)‖∇ptt(s)‖2ds.

We conclude that

k
M−1∑
n=2

‖∇Enp ‖2 ≤
5

3
k4

∫ T1

t0

‖∇ptt(s)‖2ds. �

Lemma A2. We assume (2.13), (2.15), (2.12) and β > 1
4 . Then for any fixed

integer m, there exists a positive constant c4 depending on the data and m such
that

‖u(ti)− ui‖2 + k2‖∇(p(ti)− pi)‖2 ≤ c4k4, i = 1, . . . ,m,

where (ui, pi) is the solution of (1.10)–(1.11).

Proof. Let δ = β − 1
4 > 0. Taking the inner product of (2.17) at n = 0 with

k(e1 + e0) and of (2.18) at n = 0 with kq0, and summing up the two relations, we
get

‖e1‖2−‖e0‖2 +
νk

2
‖∇(e1 + e0)‖2 +

βk2

2
{‖∇q1‖2 − ‖∇q0‖2 − ‖∇(q1 − q0)‖2}

= k(∇e0, q0) + βk2(∇(p(t1)− p(t0)),∇q0) + k(R0 +Q0, e1 + e0)

(using (2.20) and (2.3))

≤ C‖e0‖2 + Ck2(‖∇q0‖2 + ‖∇(p(t1)− p(t0))‖2)

+ k(R0, e1 + e0)− kb̃(ẽ 1
2 , ũ(t 1

2
), e1 + e0)

≤ δ

4(δ + 1)
‖e1‖2 + C‖e0‖2

+ Ck2(‖∇q0‖2 + ‖∇(p(t1)− p(t0))‖2 + ‖R0‖2 + ‖∇(e1 + e0)‖2).
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On the other hand, the relation (2.25) at m = 0 reads

βk2

2
‖∇(q1 − q0)‖2 ≤

1 + δ
2

1 + δ
‖e1‖2 + Ck4 +

(1− δ
2 )βk2

2
(‖∇q1‖2 + ‖∇q0‖2).

We then derive from the last two inequalities, (2.12) and Lemma A1 that for k
sufficiently small

δ

4(1 + δ)
‖e1‖2 +

νk

2
‖∇(e1 + e0)‖2 +

δβk2

4
‖∇q1‖2 ≤ Ck4.

We can conclude by repeating the above process m− 1 times. �
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