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A NODAL SPARSE GRID SPECTRAL ELEMENT METHOD FOR

MULTI-DIMENSIONAL ELLIPTIC PARTIAL DIFFERENTIAL

EQUATIONS

ZHIJIAN RONG, JIE SHEN, AND HAIJUN YU∗

Abstract. We develop a sparse grid spectral element method using nodal bases on Chebyshev-
Gauss-Lobatto points for multi-dimensional elliptic equations. Since the quadratures based on
sparse grid points do not have the accuracy of a usual Gauss quadrature, we construct the mass

and stiffness matrices using a pseudo-spectral approach, which is exact for problems with constant
coefficients and uniformly structured grids. Compared with the regular spectral element method,
the proposed method has the flexibility of using a much less degree of freedom. In particular,
we can use less points on edges to form a much smaller Schur-complement system with better

conditioning. Preliminary error estimates and some numerical results are also presented.
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1. Introduction

Many scientific and engineering applications require solving high-dimensional
partial differential equations (PDEs), e.g. the electronic Schrödinger equation [15],
the Black-Scholes equation for option pricing [4], etc. Traditional methods for
solving high-dimensional PDEs usually use tensor-product discretizations which
need Nd total points if N points are used in each dimension. Such approximation
quickly become unfeasible for problems with moderate to large dimensions, due
to the so-called curse of dimensionality. However, for functions with special regu-
larity, one can use sparse grid or hyperbolic cross approximation. This approach
is first introduced by Smolyak for high-dimensional quadrature and interpolation
problems in 1963 [20], and then extended for solving PDEs by Bungartz, Griebel
et al. [6, 10, 7, 11, 2], where lower order finite element bases is used for problem
with non-periodic boundary conditions and Fourier or wavelets bases are used for
problem with periodic boundary conditions. For non-periodic spectral sparse grids,
Barthelmann et al. [3] gave an error estimate for interpolation based on Chebyshev
sparse grid, Shen and Wang [17] analyzed the approximation error of using hyper-
bolic cross Legendre approximation for solving standard elliptic PDEs. Shen and Yu
developed efficient algorithms using sparse grid based on Chebyshev-Gauss-Lobatto
(CGL) points for solving elliptic PDEs with non-periodic boundary conditions in
bounded domains [18] and unbounded domains [19].

Even though sparse grids are developed for dealing with high dimensional prob-
lems, they are most effective for problems with some special properties. For exam-
ple, Yserentant proved that the wave function of electronic Schrödinger equation
has bounded mixed derivatives, which can be well approximated by sparse grids
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[21, 22]. However, many factors can contribute to the singular behavior of solu-
tions. To deal with these and more general singularities, we construct in this paper
a sparse grid Spectral Element Method (sgSEM) for high-dimensional PDEs. By
decomposing the computational domain into sub-domains, we can effectively deal
with many types of singularities, such as those in initial conditions, forcing terms
and coefficients of the PDEs, and achieve a better convergence rate than usual
Sparse Grid Methods (SGM) and Spectral Element Methods (SEM).

The rest of this paper is organized as follows. In Section 2, we briefly review
some basic setup and results of the usual sparse grid methods. Then in Section
3, we construct the sgSEM for a model elliptic equation with variable coefficients
and describe its basic properties. In Section 4, we develop a modified sgSEM
(which we name it sgSEMm) with less nodes on edges, so as to reduce the size
and condition number of the Schur-complement for the resulting linear algebraic
system. Preliminary error estimates of sgSEM is given in Section 5 and numerical
results for several examples are presented in Section 6 to verify the convergence
and efficiency of the proposed methods. We end the paper with a few concluding
remarks.

2. A brief review of sparse grid spectral methods

In order to present our sparse grid spectral element method, we need to first
introduce the sparse grid spectral method. We start with some notations. We
use bold letters to denote a d-dimensional vector. For d-dimensional coordinates,
we use superscripts, e.g., x = (x1, . . . , xd), to denote its components, and use
subscripts, e.g., xj , to denote interpolation points. For d-dimensional vectors other
than coordinates, we use subscripts to denote its components. When d = 1, we
have x = x1.

2.1. Sparse grids and fast spectral transforms on sparse grids. Sparse
grid method provides a feasible approximation for some high-dimensional functions.
To introduce the sparse grid, we consider approximation of a high dimensional
function f(x) : Id → R, where I := [−1, 1]. Suppose we have a one-dimensional
interpolation scheme on a set of nested grids Xl : l = 0, 1, . . . , where Xl ⊂ Xl′ , if
l < l′. Denote ml = Card{Xl} and

(1) Xl = {xj : j ∈ Il }, Il := { 0, . . . ,ml − 1 }.

The interpolation of level l is defined as

(2) Ul(f) :=
∑
k∈Il

f̂ l
kϕk(x), s.t. Ul(f)(xj) = f(xj), ∀j ∈ Il,

where ϕk(x), k ∈ Il are the basis functions of interpolation space Vl = span{ϕk :

k ∈ Il} and f̂ l
k, k ∈ Il are the spectral coefficients. The above scheme is well defined

if the matrix Ψ =
(
ϕk(xj)

)
k,j∈Il

is non-singular.

If one extends the one-dimensional scheme to d-dimension by tensor product
rule, then the total number of points will be [ml]

d which grows exponentially with
d, leading to the so called curse of dimensionality. To reduce the number of points,
Smolyak [20] introduced the so-called sparse grid approximation:

(3) Ud
l (f) :=

∑
|l|16l

Ûl1 ⊗ Ûl2 ⊗ · · · ⊗ Ûld(f),
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where l = (l1, . . . , ld), |l|1 = l1 + l2 + · · ·+ ld, Ûl = Ul − Ul−1, and U−1 = 0. Define

(4) X d
l :=

∪
|l|16l

Xl1 ⊗Xl2 ⊗ · · · ⊗ Xld ,

(5) Id
l :=

∪
|l|16l

Il1 ⊗ Il2 ⊗ · · · ⊗ Ild

and V d
l = {ϕj : j = (j1, . . . , jd) ∈ Id

l }. Then we have X d
l = {xj = (x1

j1
, . . . , xd

jd
) :

j = (j1, . . . , jd) ∈ Id
l }, and the d-dimensional sparse grid interpolation Ud

l (f) is

(6) Ud
l (f)(x) =

∑
k∈Id

l

f̂ l
kϕk(x),

such that

(7) Ud
l (f)(xj) = f(xj), ∀j ∈ Id

l ,

where ϕk(x) = ϕk1(x
1) · · ·ϕkd

(xd) are d-dimensional basis functions by tensor-
product.

Directly using equation (3) or solving equation (6) and (7) to construct sparse
grid interpolation is not efficient. Hallatschek [13] built an efficient algorithm to
calculate the Fast Fourier Transform on sparse grids (sgFFT), in which I = S1, ϕk =
eikx. Shen and Yu [18] extended this algorithm to Fast Chebyshev Transform on
sparse grids (sgFCT) and Fast General Transforms on sparse grids (sgFGT). The

basic idea of those fast algorithms is to use one-dimensional hierarchical bases ϕ̃k(x),
defined by

(8) ϕ̃k(x) ∈ Vl(k) s.t. ϕ̃k(xj) = 0, ∀ j ∈ Il(k)−1,

where l(k) = min{l : k ∈ Il}. Then the sparse grid interpolation can be reformu-
lated as

(9) Ud
l (f) =

∑
k∈Id

l

f̂kϕ̃k(x),

where the coefficients {f̂k,k ∈ Id
l } are determined by the interpolation property

(7). The advantage of using hierarchical bases is that the hierarchical coefficients

f̂k in equation (9) do not depend on level number l, which means that they can
be calculated by using any tensor-product grid that contains enough information.
Furthermore, the hierarchical bases ϕ̃k(x), k ∈ Il\Il−1 are linear combinations of
{ϕj(x), j ∈ Il}. Moreover, for the Fourier and Chebyshev bases, the combinations
are also sparse. So a transform between the representation using original spectral
bases and the representation using hierarchical bases can be performed with linear
computational cost by using the sgFFT and sgFCT algorithms in the following two
steps [18]:

• The first step is the transform from function values at sparse grid points

{ f(xj), j ∈ Id
l } to hierarchical spectral coefficients { f̂k,k ∈ Id

l }, which
is accomplished by d consecutive transforms in one dimension on all the
longest one-dimensional grids in the sparse grid structure using the under-
lying one-dimensional FFT or FCT followed by a one-dimensional transform
from spectral coefficients to hierarchical coefficients.
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• The second step is the d consecutive transforms from hierarchical coeffi-

cients {f̂k,k ∈ Id
l } to spectral coefficients {f̂ l

k,k ∈ Id
l }.

The inverse transforms can be done in a similar way. These fast transforms, in-
cluding the matrix-vector product algorithm in solving PDEs, can be reformulated
as a general tensor-product operations on sparse grid structure

(10) ck =
∑
j∈Id

l

bjt
(1)
j1k1

t
(2)
j2k2

· · · t(d)jdkd
, k ∈ Id

l ,

where (t
(i)
ji,ki

)ji,ki , i = 1, . . . , d are the transform matrices for each dimension. It
turns out that as long as those transform matrices are block tridiagonal matri-
ces (the blocks should be consistent to the grid sizes m0,m1, . . . ,ml), the above
transforms, which we name as sparse grid fast general transform (sgFGT), can be
performed similarly as sgFFT and sgFCT. When those transform matrices are not
block tridiagonal, one can use sgFGT with a L+ U or L · U decomposition for the
transform matrices. We refer to [18] and [19] for more detail.

2.2. Adaptivity on sparse grids. There are in general three types of adaptivity.
One is h-adaptivity where one refines/coarsens mesh size, one is p-adaptivity where
one increases/decreases the polynomial order in each element, and another is the
so called r-adaptivity where one moves the meshes while keeping the number of
unknowns fixed. Local h-adaptivity requires the use of basis functions with compact
support, e.g. the finite element basis functions, wavelets etc. One advantage of
using bases with local support is that we can refine the grids according to the
local singularity of the solution. However, this will increase the complexity of
programming, and the order of convergence will be finite. So here we do not
consider local sparse grid adaptivity, instead we consider p-adaptivity within the
framework of domain decomposition.

Denote X̂l := (Xl1\Xl1−1)⊗· · ·⊗(Xld\Xld−1), then these fast transforms (sgFFT,
sgFCT and sgFGT) are available for all grids X d

q with property

(11) if X̂l ⊆ X d
q , then X̂l′ ⊆ X d

q , ∀ l′ 6 l,

where l′ 6 l stands for l′i 6 li, for i = 1, . . . , d. This means we do not have to use
equation (4), (3) to construct the grid and corresponding approximation. Instead,
we can adaptively refine the grid following the rule defined in equation (11) by

examining the convergence of spectral coefficients {f̂k,k ∈ Id
l }.

Another way to introduce adaptivity is to choose appropriate values of {m0,m1,
. . . ,ml } based on approximation property of the bases.

2.3. A spectral sparse grid solver for elliptic PDEs. We describe below a
sparse grid solver based on CGL points for PDEs on domain Id := [−1, 1]d. Note
that the sparse grid solver based on Fourier basis for periodic elliptic equations is
quite straightforward.

Consider a model problem

(12) −∆u(x) + κu(x) = f(x), x ∈ Id,

(13) u(x)|∂Id = 0,

where κ is a given constant. The corresponding weak form is

(14) Find u ∈ H1
0 (I

d), s.t. (∇u,∇v) + κ(u, v) = (f, v), ∀ v ∈ H1
0 (I

d).



766 Z. RONG, J. SHEN, AND H. YU

Let Xn = V d
l ∩ H1

0 (I
d). Then a sparse grid Galerkin approximation of the weak

form is [18]:

(15) Find un ∈ Xn, s.t. (∇un,∇vn) + κ(un, vn) = (Ud
l (f), vn), ∀ vn ∈ Xn.

Note that the right hand side (Ud
l (f), vn) of equation (15) is adopted for the rea-

son of fast evaluation. Since the above formulation uses the usual inner product
with uniform weight, it is natural to use Legendre polynomials as basis functions.
However Legendre-Gauss (LG) quadrature points are not nested so we can not con-
struct efficient Legendre-Gauss sparse grids. Fortunately, there are many works
on using Legendre bases with Chebyshev-Gauss-Lobatto (CGL) quadrature points.
For example, Chebyshev–Legendre solvers for PDEs are proposed in [9] and [16],
some fast transforms between Chebyshev and Legendre bases are construct in [1]
and [5]. Based on those works, efficient Chebyshev–Legendre sparse grid method
for elliptic equations (12) can be constructed using quasi-orthogonal Legendre bases
on sparse grid CGL points X d

l . Since the approximation space for function f , V d
l ,

and the approximation space for the solution u, Xn, are different, two sets of bases
are used:

• {Tk(k) := Tk1(x1) · · ·Tkd
(xd) : k ∈ Id

l } are used for the interpolation space
V d
l ;

• {φk(x) = φk1(x1) · · ·φkd
(xd) : k ∈ J d

l , φk(x) = Lk(x)−Lk−2(x)} are used
for solution space Xn = V d

l ∩H1
0 (I

d),

where Tk(x), Lk(x) are Chebyshev and Legendre polynomials of degree k, corre-
spondingly, and

(16) Jl = Il\{0, 1}, J d
l :=

∪
|l|16l

Jl1 ⊗ Jl2 ⊗ · · · ⊗ Jld .

One can define the sparse grid Yd
l and approximation space Ud

l (identical to Xn)
corresponding to J d

l using CGL points as

(17) Yd
l = {xj : j ∈ J d

l }, Ud
l = {φk : k ∈ J d

l }.

By letting un =
∑

k∈Jd
l
ûkφk(x) and vn = φj(x),∀j ∈ Jd

l in equation (15), we

obtain
(18)∑
k∈J d

l

ûk

(
d∑

i=1

mk1j1 · · ·mkdjd

skiji

mkiji

)
+ κ

∑
k∈J d

l

ûkmk1j1 · · ·mkdjd =
(
Ud
l (f), φj(x)

)
,

where mkj = (φk(x), φj(x)), skj = (φ′
k(x), φ

′
j(x)) are the components of one-

dimensional mass matrix and stiffness matrix correspondingly. Equation (18) is a
symmetric linear algebraic system of size Card(J d

l ), which can be solved efficiently
by using preconditioned conjugate gradient (PCG) method, or one can explicitly
build the system matrix and use other method like algebraic multigrid method or
multifrontal method to solve the linear system, we refer to [18] for the efficiency
comparison of different linear algebraic solvers.
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2.4. Approximation error. Let u be the solution of (14), un be the solution of
(15). In general, we have an error estimate of the form

(19)
∥∇(u− un)∥L2 . inf

vn∈Xn

∥∇(u− vn)∥L2 + sup
ϕ∈Xn;∇ϕ̸=0

(f, ϕ)− (Ud
l f, ϕ)

∥∇ϕ∥L2

. inf
vn∈Xn

∥∇(u− vn)∥L2 + ∥f − Ud
l f∥L2 .

Here and after “.” means “6” up to a positive constant independent of u, f and
n, l.

The interpolation error on standard sparse grid X d
l using CGL quadrature points

was analyzed in [3]. The interpolation error estimate is:

(20) ∥f − Ud
l (f)∥0,ω . 2−lkl2d−1∥f∥Bk

ω
. n−k(logn)(k+1)(d−1)∥f∥Bk

ω
,

where n = Card(Ud
l ) ≈ 2lld−1, ω = Πd

i=1(1 − x2
i )

−1/2 is the d-dimensional Cheby-
shev weight function, and

Bj
ω(I

d) = {u : ∂k
xu ∈ L2

ω(I
d), 0 ≤ |k|∞ ≤ j}

is the uniformly weighted Korobov type space with norm

(21) ∥u∥Bj
ω
=

 ∑
0≤|k|∞≤j

∥∂k
xu∥2ω

1/2

.

A projection error estimate was given by [17] for hyperbolic cross Jacobi approxi-
mation, which is asymptotically equivalent to sparse grid approximation

(22) inf
vn∈Xn

∥u− vn∥Kj
α,β

. 2l(j−m)|u|Km
α,β

, 0 6 j 6 m,

where

Kj
α,β(I

d) = {u : ∂k
xu ∈ L2

ωα+k,β+k(I
d), 0 ≤ |k|∞ ≤ j} with

ωα,β = Πd
i=1(1− xi)

αi(1 + xi)
βi

is the non-uniformly weighted Korobov type space with the norm

(23) ∥u∥Kj
α,β

=

 ∑
0≤|k|∞≤j

∥∂k
xu∥2ωα+k,β+k

1/2

,

and semi-norm

(24) |u|Kj
α,β

=

 ∑
|k|∞=j

∥∂k
xu∥2ωα+k,β+k

1/2

,

Combining (19), (20) and (22) with j = 1 and α = β = −1, one gets the following
error estimate:

(25) ∥∇(un − u)∥L2 . 2l(1−m)|u|Km
−1,−1(I

d) + 2−lkl2d−1∥f∥Bk
ω(Id),

where m ≥ 1 and k > d/2.
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3. A sparse grid spectral element method using nodal bases

In this section, we construct a sparse grid spectral element method for elliptic
PDEs with variable coefficients, which combines the advantage of sparse grid ap-
proximation and spectral element method. For simplicity, we shall concentrate on
the two-dimensional case. The extension to higher-dimensions can be done in a
similar fashion.

3.1. Galerkin formulation. We consider the following second-order elliptic PDE

(26) −∇(α(x)∇u(x)) + κ(x)u(x) = f(x), x ∈ Ω ⊂ R2

with homogeneous Dirichlet boundary condition

(27) u|∂Ω = 0

as an example to demonstrate how to build the sparse grid spectral element method.
We assume

(28) α(x) ≥ α0 > 0, κ(x) > 0, α(x), κ(x) ∈ C(Ω̄).

The weak form of the system (26)-(27) is

(29) Find u ∈ H1
0 (Ω), s.t. a(u, v) = (f, v), ∀ v ∈ H1

0 (Ω),

where

a(u, v) =

∫
Ω

α(x)∇u∇vdx+

∫
Ω

κ(x)uvdx.

In the last section, we used global basis functions (polynomials, trigonometric poly-
nomials and etc) to construct an approximation space XN ⊂ H1

0 (Ω). This is very
effective for smooth problems in tensor product domains. However, many interest-
ing problems are set in non-tensor product domains, with non-smooth or singular
coefficients α(x), κ(x) and forcing term f(x). In these situations, it is more effec-
tive to use a spectral element approach. In particular, when α(x), κ(x) and f(x)
have known singularities, we can partition the domain Ω into elements according
to the singularities.

Let Π = {Ω0, . . . ,ΩK−1 } be a quadrilateral partition of the domain Ω. On each
element Ωλ, we first map it to a unit square I2, then use V 2

l to approximate the
mapped functions. The corresponding approximation space on the whole domain Ω
in C(Ω̄) is denoted by V Π

N . The corresponding interpolation points and interpola-
tion operator are denoted by XΠ

N and UΠ
N , respectively. Since the solution satisfies

homogeneous Dirichlet boundary condition, the approximation space for the solu-
tion is UΠ

N = V Π
N ∩H1

0 (Ω). The sparse grid spectral element method for equation
(29) is:

(30) Find uN ∈ UΠ
N , s.t. a(uN , vN ) = (UΠ

N (f), vN ), ∀ vN ∈ UΠ
N .

Denote by ZN := {0, 1, . . . , N − 1}, if we choose {φk(x)}k∈ZN as a set of bases
of UΠ

N , then uN can be expressed as uN =
∑

k∈ZN
ûkφk(x). Plugging this into

equation (30) and further taking vN as φj(x), for j ∈ ZN , we get a linear system

(31) Sū+Mū = f̄ ,

where ū = (û0, . . . , ûN−1)
T, f̄ = (f̂0, ..., f̂N−1), f̂j = (UΠ

N (f)(x), φj(x)), and

M = (mjk)j,k∈ZN
, mjk = (κ(x)φk(x), φj(x)),

S = (sjk)j,k∈ZN , sjk = (α(x)∇φk(x),∇φj(x)).
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ξ2

ξ1

(−1, 1) (1, 1)

(1,−1)(−1,−1)

x0,1

x1,1

x1,0
x0,0

Ωst

x=x
λ(ξ1, ξ2)

Ωλ

x1

x2

Figure 1. A quadrilateral element(Left) and its corresponding
reference element(Right).

3.2. Quadrilateral element and mapping. We use global coordinates (x1, x2)
for a quadrilateral element Ωλ (see Fig. 1, Left) in physical domain, use local
coordinates (ξ1, ξ2) in its reference domain Ωst := (−1, 1)2 (see Fig. 1, Right). The
mapping between local coordinates and global coordinates is a bilinear function

(32) xi,λ(ξ1, ξ2) =
∑

r,s=0,1

xi,λ
r,sϕr(ξ

1)ϕs(ξ
2), i = 1, 2,

where

(33) ϕ0(ξ) =
1− ξ

2
, ϕ1(ξ) =

1 + ξ

2
,

and
{
(x1,λ

r,s , x
2,λ
r,s ) : r = 0, 1, s = 0, 1

}
are the coordinates of four vertices of Ωλ. For

simplicity, the parameter λ in xi,λ will be omitted when it introduces no ambiguity.
The Jacobian matrix and its determinant are given by

(34)

J =

(
∂xi

∂ξβ

)
i,β=1,2

=

(
∂x1/∂ξ1 ∂x1/∂ξ2

∂x2/∂ξ1 ∂x2/∂ξ2

)
,
∂xi

∂ξβ
=

∑
r,s=0,1

xi
r,s∂β [ϕr(ξ

1)ϕs(ξ
2)]

and

(35) |J | = ∂x1

∂ξ1
∂x2

∂ξ2
− ∂x1

∂ξ2
∂x2

∂ξ1
.

We have

(36) J−1 =

(
∂ξ1/∂x1 ∂ξ1/∂x2

∂ξ2/∂x1 ∂ξ2/∂x2

)
=

1

|J |

(
∂x2/∂ξ2 −∂x1/∂ξ2

−∂x2/∂ξ1 ∂x1/∂ξ1

)
,

i.e.

(37)
∂ξ1

∂x1
=

1

|J |
∂x2

∂ξ2
,

∂ξ2

∂x2
=

1

|J |
∂x1

∂ξ1
,

∂ξ2

∂x1
= − 1

|J |
∂x2

∂ξ1
,

∂ξ1

∂x2
= − 1

|J |
∂x1

∂ξ2
.

Note that all four components in J are linear functions and |J | is a bilinear function.
However, components in the inverse of Jacobian matrix J−1 are rational functions
except for the case the physical quadrilateral is a parallelogram where |J | is a
constant. The non-constant Jacobian determinant needs a special treatment when
forming elemental mass and stiffness matrices, which will be described in next
subsection.
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3.3. Elemental matrices using nodal bases. Let {hk(ξ)}k∈Znl
be the La-

grange bases on sparse grid X 2
l in reference element Ωst. i.e.

(38) hk(ξj) = δkj , ∀ ξj ∈ X 2
l , k, j ∈ Znl

,

where nl = Card(X 2
l ) (The l in nl is omitted when it does not introduce ambiguity).

Here a special ordering algorithm is used to map the nodes in X 2
l into a one-

dimensional vector. The bases on element Ωλ are obtained by combining local
reference bases (38) and mapping (32):

hλ
k(x) =

{
hk(ξ), x = (x1,λ(ξ1, ξ2), x2,λ(ξ1, ξ2)) ∈ Ωλ,
0, x ̸∈ Ωλ.

Then, we can form the global bases {φk(x) : k ∈ ZN} by local bases in every

elements {hλ
k(x)}

λ∈ZK

k∈Zn
. Due to the continuous condition, elemental vertex (or edge)

bases on adjacent elements for same vertex (or edge) point share the same global
basis. The integrations in equation (30) are equivalent to the sum of integrations
on every element Ωλ.

Now let us calculate the elemental mass matrix and stiffness matrix, defined as

mλ
jk :=

∫
Ωλ

κ(x)hλ
k(x)h

λ
j (x)dx

=

∫
Ωst

κ(x(ξ))|J(ξ)|hk(ξ)hj(ξ)dξ,

sλ,sjk :=

∫
Ωλ

α(x)
∂hλ

k(x)

∂xs

∂hλ
j (x)

∂xs
dx

=
∑

r,r′=1,2

∫
Ωst

∂hk(ξ)

∂ξr
∂ξr

∂xs
α(x(ξ))|J(ξ)|∂ξ

r′

∂xs

∂hj(ξ)

∂ξr′
dξ, s = 1, 2,

and sλjk = sλ,1jk + sλ,2jk .

If α(x), κ(x) and |J(x)| are all constants, then mλ
jk and sλ,sjk can be evaluated

efficiently with separable integrations. In general, these integrations are not sepa-

rable, so we need to seek an efficient method to calculate mλ
jk and sλ,sjk . In spectral

element methods using full grids, one can use Legendre–Gauss numerical quadra-

ture to calculate mλ
jk and sλ,sjk . However, when we use sparse grid on each element,

the corresponding numerical quadrature does not guarantee positive weights. Fur-
thermore, the quadrature using sparse grid is not as accurate as tensor-product
Gaussian quadrature. To avoid the errors with a numerical quadrature, we use
a pseudo-spectral approach to calculate the components of local mass and stiff
matrices. Details are given below.

Denote Lk(ξ) = Lk1(ξ
1)Lk2(ξ

2), (k1, k2) ∈ I2
l , are two-dimensional Legendre

polynomials on sparse grid spectral space, with k = k(k1, k2) being a mapping
from I2

l to Zn. According to the property of Lagrange bases, we have

Lk(ξ) =
∑
j∈Zn

Lk(ξj)hj(ξ), ∀k ∈ Zn.
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Denote byB = (Lk(ξj))j,k∈Zn , F = B−1 = (fjk)j,k∈Zn . Then hj(ξ) =
∑

j′ fj′jLj′(ξ).

If κ(x(ξ))|J(ξ)| ≡ 1, we have

(39) mst
jk =

∫
Ωst

∑
k′∈Zn

fk′kLk′(ξ)
∑

j′∈Zn

fj′jLj′(ξ)dξ =
∑

k′,j′∈Zn

fk′k(Lk′ , Lj′)fj′j .

Writing the above in matrix form, we get

Mst = FTMLF,

where ML is the mass matrix obtained when Legendre polynomials used as bases.
It is a diagonal matrix due to the orthogonality of Legendre polynomials. For non-
constant coefficients or non-constant Jacobi, we use the interpolation function on
sparse grid to approximate κ(x(ξ))|J(ξ)|hk(ξ), i.e.

(40) κ(x(ξ))|J(ξ)|hk(ξ) ≈ U2
l (κ(x(ξ))|J(ξ)|hk(ξ)) = κ(x(ξk))|J(ξk)|hk(ξ),

where U2
l is the interpolation operator on sparse grid X 2

l . Thus

mλ
jk ≈

∫
Ωst

κ(x(ξk))|J(ξk)|hk(ξ)hj(ξ)dξ

= |J(ξk)|b(x(ξk))
∑
k′,j′

fk′k(Lk′ , Lj′)fj′j .

Written in matrix form, we have

(41) Mλ ≈ FTMLF · Λ(b|J |),

where Λ(f(·)) denote the diagonal matrix formed by the values of function f(·) at
sparse grid points X 2

l .
For the stiffness matrix, we need to use the derivative matrix. Let Dr =

(drkj)j,k∈Zn , r = 1, 2 be the first order differentiation matrix w.r.t. ξr, then

∂hk(ξ)

∂ξr
=
∑
j∈Zn

drkjhj(ξ).

Here {∂hk/∂ξ
r, k ∈ Zn} need to be contained in span{hj , j ∈ Zn}. This is not a

problem for sparse grid elements including boundary points X d
l , but is not satisfied

by elements with less edge points, which will be introduced in the next section with
a special treatment.

Denote by

µs
r,r′(ξ) = α(x(ξ))|J(ξ)|∂ξ

r

∂xs

∂ξr
′

∂xs
,
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we have

sλ,sjk =

∫
Ωst

∑
r,r′=1,2

∂hk(ξ)

∂ξr
∂ξr

∂xs
α(x(ξ))|J(ξ)|∂ξ

r′

∂xs

∂hj(ξ)

∂ξr′
dξ

=
∑

r,r′=1,2

∫
Ωst

∂hk(ξ)

∂ξr
µs
r,r′(ξ)

∂hj(ξ)

∂ξr′
dξ

=
∑

r,r′=1,2

∫
Ωst

( ∑
k′∈Zn

drkk′hk′(ξ)

)
µs
r,r′(ξ)

 ∑
j′∈Zn

dr
′

jj′hj′(ξ)

 dξ

=
∑

r,r′=1,2

∑
k′,j′∈Zn

drkk′dr
′

jj′

∫
Ωst

µs
r,r′(ξ)hk′(ξ)hj′(ξ)dξ

≈
∑

r,r′=1,2

∑
k′,j′,α,β

drkk′ [µs
r,r′(ξk′)fβk′(Lβ , Lα)fαj′ ]d

r′

jj′ ,

which can be written in matrix form

(42) Sλ,s ≈
∑

r,r′=1,2

DrF
TMLFΛ(µs

r,r′)D
T
r′ .

3.4. Assembling of matrices. For a given function uN (x) ∈ UΠ
N , we have global

expansion uN (x) =
∑

k∈ZN

ûkφk(x) and local expansion uN (x)|Ωλ
=

∑
k∈Zn

uλ
kh

λ
k(x).

{hλ
k , k ∈ Zn} are ordered such that hλ

1 , h
λ
2 , h

λ
3 , h

λ
4 are the bases corresponding to

four vertices, hλ
1 , . . . , h

λ
4p are the bases corresponding to the 4p edge points with

p = ml, the other bases have nonzero values only on inner quadrature points.
Denote by ūλ the spectral expansion coefficient of uN (x) on element Ωλ, i.e. ūλ =
(uλ

0 , ..., u
λ
n−1)

T . Let u = (ūT
0 , ..., ū

T
K−1)

T be the collection of all local expansion

coefficients and ū = (û0, ..., ûN−1)
T the global expansion of uN (x). According to

the continuous condition of uN (x), expansion coefficients in two adjacent elements
corresponding to the same edge or vertex point are referred to the same global
coefficient, which means N 6 nK. We use a degree of freedom (DoF) mapping
function θ(·, ·) : Zn×ZK → ZN to map the local DoF index to global index, where
θ(k, λ) = α means uλ

k and ûα are the coefficients for the same point, thus equal to
each other. Define scattering matrix P = (pij)i,j ∈ (Z2)

Kn×N , where

pij =

{
1, if θ

(
mod(i, n),

⌊
i
n

⌋)
= j,

0, otherwise.

Then u = Pū. If we define Pλ = (pij)
j=0,...,N−1
i=nλ,...,nλ+n−1, then ūλ = Pλū. It is easy to

check that the global mass and stiffness matrices are given by

M = PTMP, S = PTSP,

where M = diag(M0, ...,MK), S = diag(S0, ..., SK) are block diagonal matrix with
block diagonals being the corresponding elemental mass and stiffness matrices. We
denote the overall system matrix M + S by A, so the equation (31) can be written
as

(43) Aū = f̄ .
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3.5. Solving the linear system. The system matrix A has a special block struc-
ture

A =

(
A11 A12

A21 A22

)
,

where A22 is a block diagonal matrix withK block diagonals matrices corresponding
to the interaction among inner DoFs in K elements, so it can be inverted efficiently.
A11 corresponds to the interaction between vertex DoFs and edge DoFs. A12 and
A21 are interactions between vertex/edge DoFs and inner DoFs. The linear system
(43) can be written as (

A11 A12

A21 A22

)(
ū1

ū2

)
=

(
f̄1
f̄2

)
,

This system can be solved in two steps using a Schur-complement approach

(44) (A11 −A12A
−1
22 A21)ū1 = f̄1 −A12A

−1
22 f̄2,

(45) ū2 = A−1
22 f̄2 −A−1

22 A21ū1.

The sparsity patterns of system matrixA and its Schur-complementA11−A12A
−1
22 A21

are given in Figure 6:(a),(b). Equation (44) is a much smaller system than (43),
which can be solved by direct methods or PCG methods. A simple and effective
choice for the preconditioner is the block diagonal preconditioner with two blocks,
one consists of all vertex DoFs, the other one consists of all edge DoFs (see [14]
and references therein).

4. Sparse grid element with less edge degrees of freedom

It is known that the condition number of the Schur-complement of a spectral
element method depends on the number of DoFs on edges, and the distribution of
the nodes on edges. In our sparse grid spectral element method, we can let the
degree of freedoms on edges be a free parameter to make the method more flexible.
In the 2-d case, for each quadrilateral element, we have four vertex degrees of
freedom. For each edge, we have m+1 degrees of freedom including two boundary
points, for the inner part of the element, we have n−4m degree of freedoms, adding
up account for n degree of freedoms in this element. Since we use polynomial
approximation, the corresponding approximation space for the reference element
Ωst is

W 2
l,m =

{
u ∈ V 2

l : u|Ei = Pm(Ei

)
, i = 1, 2, 3, 4},

where Ei, i = 1, 2, 3, 4 are four edges of the reference domain Ωst. In this section,
for simplicity, we use x = (x, y) as the 2-dimensional coordinates in the reference
domain Ωst. So E1 = {x ∈ Ωst : y = −1}, E2 = {x ∈ Ωst : y = 1}, E3 = {x ∈
Ωst : x = −1}, E4 = {x ∈ Ωst : x = 1}. From the definition, we see that V 2

l has
the following inner-outer decomposition

V 2
l = span {ui(x)ϕi(y), ϕi(x)vi(y), ui, vi ∈ Pml−1, i ∈ Z2} ⊕ U2

l ,

where E = ∪4
i=1Ei. From the above identity, we know that m 6 ml − 1, and W 2

l,m

can be written as

W 2
l,m = span {ui(x)ϕi(y), ϕi(x)vi(y), ui, vi ∈ Pm, i ∈ Z2 } ⊕ U2

l .
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When m = ml − 1, W 2
l,m = V 2

l it is a natural interpolation space on sparse

grids X 2
l . One can calculate the Lagrange interpolation polynomial by fast spectral

transform on sparse grid, and derivatives of any function in space V 2
l is still in V 2

l .
When m < ml − 1, the space W 2

l,m is not closed with respect to differentiation.

For example, u(x) = (Lk(x) − Lk+2(x))(L0(y) − L2(y)) ∈ W 2
l,m for m < k + 2 6

ml − 1, but ∂yu = (Lk(x) − Lk+2(x))L1(y), it does not belongs to Pm on E1, E2.
This complicates the implementation of differentiation on sparse grid element and
the procedure to calculate the stiffness matrix.

To overcome this difficulty, we enlarge the space W 2
l,m to V 2

l whenever we want

to take differentiation or fast transform. After all the calculation on V 2
l , we project

the function back to W 2
l,m as described below. In the inner region, two differ-

ent interpolations use same points, and their corresponding Lagrange interpolation
polynomials are identical, since they all vanish on ∂Ωst. The bases need to be
projected are those on the four edges and vertices.

4.1. Edge Lagrange bases mapping. We take the first edge as an example.
The treatment for other three edges are similar. We first introduce some notations.
Let{

x0 = −1, x1 = 1, x2 = 0, x3 = −
√
2/2, x4 =

√
2/2, x5 = . . . , . . .

}
be the one-dimensional hierarchical CGL points used in both x- and y-direction to
construct X 2

l . Let {xW
i , i = 0, . . . ,m} with xW

0 = −1, xW
1 = 1 be the quadrature

points used for four edges in forming W 2
l,m, K2

l,m := J 2
l ∪ B2

m be the basis index

set of W 2
l,m. Here

B2
m := {(i1, i2) : i1 = Zm+1, i2 = 0, 1} ∪ {(i1, i2) : i1 = 0, 1; i2 ∈ Zm+1}.

Then Z2
l,m, the interpolation points for W 2

l,m is given by

Z2
l,m = Y2

l ∪ {xW
j := (xW

j1 , x
W
j2 ) | j ∈ B2

m}.

Denote by IV = {j : j1 = 0, 1; j2 = 0, 1} the index set of four vertices, IF = J 2
l

be the index set of all inner nodes, IV
Ei

(corresp IW
Ei
) be subset of I2

l (corresp

Z2
l,m) correspond to points on Ei including two vertices. Let IV

E0
i
and IW

E0
i
be

subset of I2
l and Z2

l,m corresponding to points on Ei excluding the vertices. Denote

IW
E = ∪4

i=1IW
Ei
, IV

E = ∪4
i=1IV

Ei
. Figure 2 shows the interpolation points of V 2

3 (left)

and W 2
3,2 (right).

Let hW
k (x),k ∈ K2

l,m be the Lagrange bases corresponding to xk ∈ Z2
l,m, hV

k (x),

k ∈ I2
l be the Lagrange bases corresponding to xk ∈ X 2

l . By the definition of
Lagrange bases, we have

hV
k (xj) = δkj , k, j = IV

E1

and

hW
k (xj) = δkj , k, j = IW

E1
.

Proposition 1. The basis functions hW
k ,k ∈ IW

E0
1
are related to hV

j , j ∈ IV
E0

1
through

the following formula

(46) hW
k (x) =

∑
j∈IV

E0
1

ck1j1h
V
j (x), k ∈ IW

E0
1
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V3 V4

(2, 1)(0, 1) (1, 1)

(0, 2)

(2, 3)

(2, 4)

(3, 2) (4, 2) (1, 2)

V4

(1, 1)(2, 1)

(4, 2)

(2, 4)

(2, 2)

(2, 3)

(0, 2)

(4, 0)(3, 0)

V2V1

(0, 0)

(0, 3)

(3, 1)

(3, 2)

(2, 0)

(4, 1)(0, 1)

(0, 4) (1, 4)

(1, 2)

(1, 3)

(1, 0)

E1

E4

E2

E3

(0, 0) (1, 0)(2, 0)

(2, 2)

E3

V1
V2E1

E4

E2V3

Figure 2. The distribution of the interpolation points of X 2
3 (Left,

ml = 5) and Z2
3,2 (Right, m+ 1 = 3).

where

(47) ckj = ℓm+1
k (xj).

Here ℓm+1
k (x) is the 1-d Lagrange bases on interpolation set {xW

j , j = 0, . . . ,m}
corresponding to xW

k . If xW
k = xk, for k = 0, . . . ,m, then

C := (cij)
j=0,...,ml−1
i=0,...,m = (Im+1, C2),

where Im+1 is a (m+ 1)× (m+ 1) identity matrix. C2 = (cij)
j=m+1,...,ml−1
i=0,...,m .

Proof. For bases corresponding to DoFs on edge E1 but not a vertex, we have the
following formula

(48) hV
j (x) = ℓml

j1
(x)φ0(y)−

∑
γ∈I

F

ℓml
j1

(xγ1)φ0(yγ2)h
V
γ (x), j ∈ IV

E0
1
,

(49) hW
k (x) = ℓm+1

k1
(x)φ0(y)−

∑
γ∈IF

ℓm+1
k1

(xγ1)φ0(yγ2)h
W
γ (x), k ∈ IW

E0
1
,

where ℓml
j (x) is the Lagrange basis of edge points of X 2

l corresponding to xj . Plug-

ging the above two expressions into (46), and noticing that hV
γ = hW

γ , for all γ ∈ IF ,
the equality (46) holds if and only if

(50) ℓm+1
k1

(x) =
∑

j∈IV

E0
1

ck1j1ℓ
ml
j1

(x),

Setting x = xγ1 , for all γ ∈ IV
E0

1
, we have

(51) ℓm+1
k1

(xγ1) =
∑

j∈IV

E0
1

ck1j1δj1γ1 = ck1γ1 , for k ∈ IW
E0

1
, γ ∈ IV

E0
1
.

Thus, the identity (46) holds by the definition ckj and (47). �

There are two ways to calculate ckj . One is to use the definition of 1-d Lagrange
interpolate:

(52) ℓm+1
k (xj) =

Πm
i=0,i ̸=j(xj − xW

i )

Πm
i=0,i ̸=j(x

W
j − xW

i )
.
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The computational cost for this approach is O(m2ml). Another approach is to use
an orthogonal transform, i.e. from

Lk(x) =

m∑
j=0

Lk(xj)ℓ
m+1
j (x), k = 0, . . . ,m.

Denote B = (Lk(xj))k,j=0,...,m, F = (fkj) = B−1. Then

(53) ℓm+1
k (xj) =

m∑
n=0

fknLn(xj)

Using this approach, one need to evaluate (Lk(xj))
k=0,...,m
j=0,...,ml−1, which can be pre-

computed, then invert B and do a matrix-matrix product. The computational cost
is also O(m2ml).

4.2. Vertex Lagrange bases mapping. We take the first vertex bases as an
example. According to the ordering of the geometry, it lies on both E1 and E3.
The Lagrange bases for W is

(54) hW
(0,0)(x) = ℓm+1

0 (x)φ0(y)−
∑

j∈IW
Ẽ1

ℓm+1
0 (xj1)φ0(yj2)h

W
j (x),

where IW
Ẽ1

= IW
E0

3
∪IW

E0
4
∪IF . To related this bases to the Lagrange bases for V , we

need to use bases

(55) hV
j (x) = ℓml

j1
(x)φ0(y)−

∑
γ∈IV

Ẽ1

ℓml
j1

(xγ1)φ0(yγ2)h
V
γ (x), j ∈ IV

E1
,

and the identity

(56) ℓm+1
0 (x) =

∑
j∈I

EV
1

c0j1ℓ
ml
j1

(x).

Using equation (54), (55), (56), we get

hW
(0,0)(x)−

∑
j∈I

EV
1

c0j1h
V
j (x)

=
∑

j∈IV
E1

c0j1

( ∑
γ∈IV

Ẽ1

ℓml
j1

(xγ1)φ0(yγ2)h
V
γ (x)

)
−
∑

j∈IW
Ẽ1

ℓm+1
0 (xj1)φ0(yj2)h

W
j (x)

=
∑

γ∈IV
Ẽ1

ℓm+1
0 (xγ1

)φ0(yγ2
)hV

γ (x)−
∑

j∈IW
Ẽ1

ℓm+1
0 (xj1)φ0(yj2)h

W
j (x)

=
∑

j∈IV

E0
3

ℓm+1
0 (xj1)φ0(yj2)h

V
j (x)−

∑
j∈IW

E0
3

ℓm+1
0 (xj1)φ0(yj2)h

W
j (x)

=
∑

j∈IV

E0
3

φ0(yj2)h
V
j (x)−

∑
j∈IW

E0
3

φ0(yj2)h
W
j (x).(57)
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Then for hW
j (x), j ∈ IW

E0
3
, using Proposition 1, we have

hW
j (x) =

∑
k∈IV

E0
3

cj2k2h
V
k (x), k ∈ IW

E0
3
.

Plugging it in (57), we get

hW
(0,0)(x) =

∑
j∈IV

E1

c0j1h
V
j (x) +

∑
j∈IV

E0
3

φ0(yj2)h
V
j (x)−

∑
j∈IW

E0
3

φ0(yj2)
∑

k∈IV

E0
3

cj2k2h
V
k (x)

=
∑

j∈IV
E1

c0j1h
V
j (x) +

∑
j∈IV

E0
3

[
φ0(yj2)−

∑
k∈IW

E0
3

φ0(yk2)ck2j2

]
hV
j (x)

=hV
(0,0)(x) +

∑
j∈IV

E0
1

c0j1h
V
j (x) +

∑
j∈IV

E0
3

[
φ0(yj2)−

∑
k∈IW

E0
3

φ0(yk2
)ck2j2

]
hV
j (x).

Since

φ0(y) =
∑

k∈IW
E3

φ0(yk2)ℓ
m+1
k2

(y),

taking y = yj2 , we get φ0(yj2)−
∑

k∈IW

E0
3

φ0(yk2)ck2j2 = φ0(y0)c0j2 = c0j2 . So, we

have

hW
(0,0)(x) = hV

(0,0)(x) +
∑

j∈IV

E0
1

c0j1h
V
j (x) +

∑
j∈IV

E0
3

c0j2h
V
j (x).

Using a similar treatment to other three vertices, we can derive the following result:

Proposition 2. The four vertex Lagrange bases hW
j (x), j ∈ IV can be written as

linear combinations of Lagrange bases
{
hV
k (x), k ∈ IV

E

}
as

(58) hW
j (x) = hV

j (x) +
∑

k∈IV
Ex

j

cj1k1h
V
k (x) +

∑
k∈IV

E
y
j

cj2k2h
V
k (x), j ∈ IV ,

where Ex
j = E0

j2+1, E
y
j = E0

j1+3.

Using Propositions 1 and 2, we can now form elemental mass and stiffness ma-
trices for bases {hW

j , j ∈ W 2
l,m }.

5. Numerical results

We start with some comments on the error estimates.
Let u be the solution of (29), uN be the solution of (30). By the first Strang’s

lemma, we have an error estimate of the form
(59)

∥∇(u− uN )∥L2(Ω) . inf
vN∈UΠ

N

∥∇(u− vN )∥L2(Ω) + sup
ϕ∈UΠ

N ;∇ϕ̸=0

(f, ϕ)− (UΠ
Nf, ϕ)

∥∇ϕ∥L2(Ω)

. inf
vN∈UΠ

N

∥∇(u− vN )∥L2(Ω) + ∥f − UΠ
Nf∥L2(Ω).

Hence, we just need to estimate the error of the projection H1
0 (Ω) → UΠ

N in H1(Ω),
and the error of interpolation C(Ω) → V Π

N in L2(Ω). For one-element spectral
sparse grid method, these are given in Section 2. For multi-element spectral sparse
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grid method, we need to assume that the partition is quasi-uniform, i.e., the lengths
of four edges and four angles of each quadrilateral in the partition have a lower and
upper bound, such that the Jacobian on each element satisfies

(60) ch2 ≤ |Jλ(x)| ≤ Ch2, ∀ λ = 0, . . . ,K − 1,

where h is the maximum length of the edges, and c, C are two positive real number.
Then, by using a rather standard but very tedious procedure in the analysis of
spectral-element method [8, 12], one can derive a detailed description of the above
projection and interpolation errors in (59). We omit the detail for the sake of
brevity.

We use several examples solving equation (26) to test the accuracy and efficiency
of the proposed sparse grid spectral element methods. To present the results, we
use abbreviation sgSEM-N for the sparse grid spectral element method using nodal
bases constructed in Section 3, sgSEM-Nm for the sparse grid spectral element
method with less DoFs on edges constructed in Section 4. In sgSEM-N, we can
generate a full Chebyshev–Gauss–Lobatto grid by letting total level number l = 0
and varying m0, the corresponding results are denoted by sgSEM-N-F.

Figure 3. A four-element domain partition with different interpo-
lation points in first numerical example. Left: Chebyshev–Gauss–
Lobatto sparse grids X 2

4 ; Right: Chebyshev–Gauss–Lobatto sparse
grids with less edge DoFs Z2

4,4.

Example 1. α(x) ≡ (x1 + x2 + 2)2, κ(x) ≡ (x1 + x2 + 4)2, f(x) is chosen such
that the exact solution is

(61) u1(x) = sin

(
π
x1 + 1

2

)
sin

(
π
x2 + 1

2

)
.

The domain is [−1, 1]2, and four non-uniform elements are used (see
Figure 3).

Example 2. α(x) ≡ 1, κ(x) ≡ 1, f(x) = 1, and the exact solution is given by
(62)

u2(x) =
∑

k1,k2 odd

16

k1k2π2

4

4b+ k21π
2 + k22π

2
sin

(
k1π

x1 + 1

2

)
sin

(
k2π

x2 + 1

2

)
.

The domain is [−1, 1]2, and sixteen uniform square elements are used.
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Example 3. α(x) = 1, κ(x) = 1, f(x) is chosen such that the exact solution is

(63) u3(x1, x2) = (1− [x1]
2)(1− [x2]

2)[e−|x1|3−|x2|3 + e−|x1−0.5|5−|x2−0.5|5 ].

The domain is [−1, 1]2. Both one element and uniform four-square
elements are used.

Example 4. α(x) = 1, κ(x) = 1, f(x) is chosen such that the exact solution is

(64) u4(x1, x2) = (x2
1 − x4

1)(x
2
2 − x4

2)[e
−|x1|3−|x2|3 + e−|x1+0.5|5−|x2−0.5|5 ].

The domain is L-shaped as shown in Figure 5:(a). Three square
elements are used for it.

Table 1. The L2 errors of sparse grid spectral element methods
sgSEM-N-F, sgSEM-N, sgSEM-Nm for Example 1. The number of
edge nodes for sgSEM-Nm is m+ 1 = ml−1.

sgSEM-N-F sgSEM-N sgSEM-Nm

l m0 DoFs L2 error l m0 DoFs L2 error l m0 DoFs L2 error
0 3 9 1.23E-2 0 3 9 1.23E-2 0 3 9
0 5 49 3.23E-4 1 3 33 1.27E-3 1 3 25 1.10E-2
0 7 121 2.65E-6 2 3 97 9.43E-5 2 3 81 1.25E-4
0 9 225 1.15E-8 1 5 161 2.02E-6 1 5 145 8.95E-5
0 11 361 3.29E-11 3 3 257 2.08E-6 3 3 225 2.08E-6
0 13 529 6.76E-14 1 7 385 4.33E-10 1 7 361 5.17E-7
0 15 729 6.25E-15 4 3 641 3.21E-10 4 3 577 3.21E-10

Table 2. The convergence results of sgSEM-N-F and sgSEM-Nm
using 16 elements for Example 2 with corner singularity. The num-
ber of edge nodes for sgSEM-Nm is m+ 1 = ml−1.

sgSEM-N-F sgSEM-N sgSEM-Nm

l m0 DoFs L2 error l m0 DoFs L2 error l m0 DoFs L2 error
0 3 49 2.29E-4 0 3 49 2.29E-4
0 7 529 2.85E-6 1 3 161 1.00E-4 1 1 113 2.38E-4
0 11 1521 2.09E-7 2 3 449 2.23E-5 2 1 353 2.19E-5
0 15 3025 3.40E-8 3 3 1153 5.82E-6 3 1 961 5.71E-6
0 19 5041 8.61E-9 4 3 2817 6.58E-7 4 1 2433 6.57E-7
0 23 7569 3.00E-9 5 3 6657 2.16E-7 5 1 5889 2.16E-7
0 27 10609 1.20E-9 6 3 15361 1.59E-8 6 1 13825 1.59E-8
0 31 14161 2.15E-10 7 3 34817 6.15E-9 7 1 31745 6.15E-9

The solution in Example 1 is analytic, it is expected that the sgSEM-N-F (full
grid method) will give the best convergence rate, which is what we observe in Table
1. We also say that all methods converge exponentially fast. This validates the
accuracy of the algorithms.

Example 2 is used to test the convergence behavior for solutions with corner
singularity. Since the series (62) converges very slow, we use the numerical solution
obtained on a fine grid as reference to calculate the errors on coarse girds. In this
example, the domain [−1, 1]2 is split into 16 equal squares. The numerical results
are given in Table 2. For this example with a weak singularity at the corners,
the full grid spectral element method still gives better convergence results but the
difference now is very small. On the other hand, the sgSEM-Nm converges faster
than sgSEM-N.

In Example 3, the exact solution has different singularities on x1 = 0, x2 = 0, and
x1 = 0.5, x2 = 0.5. For this example, sparse grid spectral element methods deliver
better convergence than the full grid spectral method. The result is showed in
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Figure 4. We observe that the sgSEM-N using 4 elements give the best convergence
results, with the convergence behavior of sgSEM-Nm being very close to sgSEM-N.

Example 4 is a case with a non-tensor product domain. The exact solution has
singularities on x1 = 0, x2 = 0, and x1 = −0.5, x2 = 0.5. Numerical result is shown
in Figure 5:(b). We observe that the sgSEM-N and sgSEM-Nm methods give very
similar convergence rates, both are better than the full grid case.
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Figure 4. The L2 errors of sgSEM-N-F, sgSEM-N and
sgSEM−Nm using different number of elements for Example 3.
The number of edge nodes for sgSEM-Nm is m+ 1 = ml−1.
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Figure 5. (a) The L-shape domain and a three-element parti-
tion used in Example 4. The coordinates for vertex 1, 3, 7 are
(−1,−1), (1,−1), (−1, 1), correspondingly. (b) The L2 errors of
sgSEM-N-F, sgSEM-N and sgSEM-Nm in Example 4. The num-
ber of edge nodes for sgSEM-Nm is m+ 1 = ml−1.

For the computational cost, since we use a spectral element approach, the sys-
tem matrix and its Schur-complement have a very special sparsity patterns (See
Figure 6), even though nodal local bases lead to dense local matrices. The Schur-
complement can be efficiently solved by a PCG method. In Table 3, we present
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Figure 6. The sparsity patterns of discretized system matrix A
for equation (26) and its Schur-complement A11 − A12A

−1
22 A21 in

sgSEM-N scheme and sgSEM-Nm scheme. Here a grid with 4× 4
elements is used. Sparse grid X 2

3 are used for all elements. Note
that the boundary points are also included as DoFs.

Table 3. The iteration number of PCG for sgSEM-N-F, sgSEM-
N and sgSEM-Nm with the block diagonal preconditioner. Schur
complement is used. The column with title nS is the sizes of Schur
complement. The tolerance of stop criteria is set to 10−14.

sgSEM-N-F(l = 0) sgSEM-N(m0 = 3) sgSEM-Nm(m0 = 1)
K m0 DoFs nS niter K l DoFs nS niter K l DoFs nS niter

4

7 121 21 3

4

0 9 5 3

4

0
19 1225 69 3 2 97 29 4 2 81 13 3
31 3481 117 3 4 641 125 6 4 577 61 4
43 6889 165 3 6 3585 509 6 6 3329 253 6
55 11449 213 3 8 18433 2045 7 8 17409 1021 6

16

3 225 33 34

16

0 225 33 34

16

0
7 2209 129 28 1 705 81 28 1 481 33 33
11 6241 225 28 2 1921 177 29 2 1473 81 30
15 12321 321 28 3 4865 369 27 3 3969 177 28
19 20449 417 28 4 11777 753 29 4 9985 369 28
27 42849 609 26 5 27649 1521 28 5 24065 753 29
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iteration numbers of using block diagonal preconditioner for the Schur-complement
system (44). We observe that the numbers of iterations slowly increase as l and
K increases in the sparse grid cases, which indicates that the PCG with the block
diagonal preconditioner works reasonably well.

6. Conclusions

We developed sparse grid spectral element methods using nodal bases for multi-
dimensional elliptic PDEs. We use Chebyshev-Gauss-Lobatto sparse grid points
to interpolate data, and use Lagrange bases in sparse grid approximation space
to form linear algebraic system using a pseudo-spectral approach. The two sparse
grid methods, sgSEM-N and sgSEM-Nm distinguish from each other on how many
edge DoFs used. sgSEM-Nm uses less edge DoFs than sgSEM-N to get a better
conditioned Schur system. Preliminary numerical methods show that the itera-
tion numbers of sgSEM-N and sgSEM-Nm using CG with a simple block-diagonal
preconditioner for the corresponding Schur-complement are similar. How to build
more effective preconditioners for sgSEM-N and sgSEM-Nm will be addressed in a
future work.

Since the main cost in a spectral element method is usually associated with solv-
ing the Schur-complement system, and sgSEM-Nm uses less edge DoFs, particularly
in higher-dimensions and with larger numbers of elements, it can be expected that
sgSEM-Nm, with a better preconditioner, can potentially be much more effective
than sgSEM-N and sgSEM-N-F.

Even though we only implemented the algorithms for two dimensional case, the
proposed methods work for high-dimensional cases. We will use them to study
practical higher-dimensional equations in future works.
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