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Abstract. An efficient and accurate spectral projection scheme for numerical
simulations of incompressible flows in cylindrical geometries is presented and
implemented for studying a number of canonical rotating flows.

1. Introduction

We present in this paper an efficient and accurate numerical scheme for numerical

simulations of incompressible flows in cylindrical geometries: the time variable is

discretized by using a second-order semi-implicit projection method with which only

a sequence of Helmholtz/Poisson equations needs to be solved at each time step; the

space variables are discretized by using a new spectral-Galerkin method with which

Helmholtz/Poisson equations can be solved very efficiently and accurately using

a significantly less number of grid points than that required by finite difference

or finite element methods. The scheme is implemented to simulate a number of

canonical rotating flows which will help us to isolate generic mechanisms which lead

to transitions to turbulence in rotating flows and to design corresponding dynamic

control mechanisms to either delay transition or limit the intensity of the resultant

instabilities. The very efficient spectral-Galerkin method takes advantage of the

particular geometry (i.e. a enclosed cylinder or two concentric cylinders), so that

the available computational resources can be focused to push the system to large

driving forces and to three-dimensions.

Turbulence dominated by strong rotation is still poorly understood, yet rotation

plays a large role in many flows that affect our everyday lives, whether it is the

threat of a hurricane or tornado bearing down upon us, or the flow in a turbine

engine powering the aircraft we’re flying in, or the the flow between the hard-disks

in the computer on our desk. An understanding of transition to turbulence in

rotating systems requires a fundamental knowledge of the vortical waves present on

the axis, in the endwall and sidewall boundary layers, and in free shear layers in

the interior inclined at arbitrary angles to the rotation axis, and the interactions
1
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and couplings between them. The considerations in this study will provide a basic

understanding of how in rotating flows, the secondary induced motions interact

with the primary rotating flow to produce flows which are non-intuitive from a non-

rotating flow point-of-view, but are clearly involved in the transitions leading to

turbulence. Three-dimensional flows which are often considered to be inhibited by

rotation (e.g. due to Taylor–Proudman theorem) are produced by the interaction

between the primary and secondary flow and the details of the geometry bounding

and driving the flows and play a crucial role in the transition process.

Traditionally, rotation dominated flows have been treated theoretically by reduc-

ing the Navier–Stokes equations or by considering flow idealizations where the PDEs

reduce to ODEs through similarity considerations, or by reducing the order of the

PDEs by boundary layer or quasi-geostrophic approximations, as well as imposing

certain symmetries. In many practical situations, the physically realized flow un-

dergoes transitions whereby the resulting flow no longer obeys the simplifications

made to the PDEs. To explore transition in these flows, one must consider the

PDEs, and due to their nonlinearity, one is often faced with the only available tools

being numerical computation together with laboratory experiments as the means

to investigate the flows in a controlled systematic fashion, together with guidance

from asymptotics.

A complicating property of rotating flows is that distant boundaries may be

surprisingly important (when compared to situations in non-rotating flows). One

cannot automatically suppose that, so long as the size of the system is large com-

pared to the length scale of the shearing region, one is dealing with an effectively

infinite expanse of fluid. In some circumstances, such an assumption has proven

very useful, e.g. the von Kármán solution [25] for the flow due to a rotating disk of

infinite radius is relevant in many practical situation (i.e. finite enclosed disk flows).

However, when the rotation is sufficiently strong, the self-similar flow loses stability

and the details of the finiteness of the disk and its housing become important to

the transition process.

The philosophy behind the present investigation of instabilities and transitions in

rotation dominated flows is to undertake computations of canonical flows for which

laboratory experiments have control over external forcings and the boundary and

initial conditions are well defined, and then together with theoretical knowledge of

the base flow from analytical, similarity, or asymptotic considerations, establish a

physical conceptual framework where hypothesis based on the computational and

theoretical results are tested against corresponding experiments.

The rest of the paper is organized as follows. In the next section, we present the

governing equations in axisymmetric, velocity-pressure formulation and introduce a
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second-order semi-implicit projection method for the time variable. Then in Section

3 we describe the spectral-Galerkin method for solving Helmholtz/Poisson equations

in cylindrical geometries. Numerical results and discussions for two rotating flows

are presented in Section 4. Finally, we end the paper with some concluding remarks.

2. Navier-Stokes equations and a projection scheme

We consider the motion of an incompressible fluid confined in a cylinder or be-

tween two concentric cylinders. The equations governing the flow are the Navier-

Stokes equations, together with initial and boundary conditions. For such cylindri-

cal geometries, it is convenient to use a cylindrical coordinate system (r, θ, z). We

shall first consider the axisymmetric case, and indicate later how our schemes can

be easily generalized to the non-axisymmetric case. Due to the azimuthal symme-

try, the flow depends spatially on only two cylindrical coordinates (r, z), and the

equations governing the axisymmetric flows in the velocity-pressure formulation are

ut −
1

Re
(∇̃2u−

1

r2
u) + Pr + uur + wuz −

1

r
v2 = 0,(2.1)

vt −
1

Re
(∇̃2v −

1

r2
v) + uvr + wvz +

1

r
uv = 0,(2.2)

wt −
1

Re
∇̃2w + Pz + uwr + wwz = 0,(2.3)

1

r
(ru)r + wz = 0,(2.4)

where

∇̃2 = ∂2
r +

1

r
∂r + ∂2

z(2.5)

is the Laplace operator in axisymmetric cylindrical coordinates. The axisymmetric

Navier–Stokes equations (NSE) (2.1–2.4) have been non-dimensionalized with the

length scale R, the radius of the cylinder or the difference of the radius of the two

cylinders, and the time scale 1/Ω, where Ω rad s−1 is a characteristic rotation rate

of the system. The Reynolds number is Re = ΩR2/ν, where ν is the kinematic

viscosity. The flow is governed by another non-dimensional parameter, the aspect

ratio of the cylinder Λ = H/R, where H is the height of the cylinder. Therefore, the

domain for the space variables (r, z) is the rectangle (ri, ro)× (0,Λ). The equations

are to be completed with admissible initial and boundary conditions.

Although a finite difference or finite element approximation can be used for the

space variables, it appears that a spectral approximation (e.g. [7], [3]) is more

appealing in this case because of its ability to resolve thin boundary layers of viscous

flows with relatively few collocation points, and because of the simplicity of the



4 J. M. LOPEZ1,2 AND JIE SHEN1

computational domain. Hence, we shall use a spectral approximation for the space

variables.

In order to solve the time dependent problem (2.1–2.4) efficiently, it is a gen-

eral practice, especially for spectral approximations, to treat the nonlinear terms

explicitly. With this in mind, we still face the difficulty associated with the incom-

pressibility constraint (2.4) which couples the two velocity components u, w and

the pressure p. This difficulty can be overcome by using the so-called influence ma-

trix method [23]. However, this approach may become prohibitively expensive for

long time and three-dimensional computations. A more efficient way to deal with

this coupling is to use a projection (fractional step) method which was originally

proposed by Chorin [4] and Temam [22]. In the next section, we will introduce a

second-order semi-implicit projection scheme for the axisymmetric NSE. In addi-

tion to its remarkable efficiency and accuracy, the scheme has the distinct advantage

that it can be easily extended to non-axisymmetric three-dimensional cases. Note

that the apparent coordinate singularity (at r = 0) is not of an essential nature

and can be handled naturally by using an appropriate variational formulation [19].

In short, we shall develop a spectral-projection scheme which consists of a time

discretization by a second-order projection scheme and a space discretization by a

spectral-Galerkin method.

To simplify the presentation, we introduce the following notations

∆̃ =





∇̃2 − 1/r2, 0, 0

0, ∇̃2 − 1/r2, 0

0, 0, ∇̃2



 , ∇̃ =





∂r

0
∂z



 ,(2.6)

D = {(r, z) : r ∈ (ri, ro) and z ∈ (0,Λ)},(2.7)

and rewrite the equations (2.1–2.4) in vector form

ut −
1

Re
∆̃u + ∇̃p+ N(u) = 0,

∇̃ · u :=
1

r
(ru)r + wz = 0,

(2.8)

where u = (u, v, w)T and N(u) is the vector containing the nonlinear terms in

(2.1–2.3).

To overcome the difficulties associated with the nonlinearity and the coupling

of velocity components and the pressure, we propose to use a projection scheme.

Assuming the velocity u is subjected to the boundary condition

B(t)u|∂D = 0,
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(where B(t) is a given operator), the semi-implicit second-order projection scheme

for the system of equations (2.8) can be rewritten as follows

1

2δt
(3ũk+1 − 4uk + uk−1)−

1

Re
∆̃ũk+1 = −∇̃pk − (2N(uk)−N(uk−1)),

B(tk+1)ũk+1|∂D = 0,
(2.9)

1

2δt
(uk+1 − ũk+1) + ∇̃(pk+1 − pk) = 0,

∇̃ · uk+1 = 0,

(uk+1 − ũk+1) · n|∂D = 0,

(2.10)

where δt is the time step, n is the outward normal at the boundary, and ũk+1 =

(ũk+1, ṽk+1, w̃k+1)T and uk+1 = (uk+1, vk+1, wk+1)T are respectively the intermedi-

ate and final approximations of u at time tk+1 = (k + 1)δt.

The scheme is in the same class as the second-order pressure-correction projection

scheme of [24] (see also [1]). The linear parabolic operator here is approximated by

a second-order backward scheme which appears to be more stable than the Crank-

Nicholson scheme, while the nonlinear terms are approximated by a second-order

extrapolation to avoid solving a nonlinear system at each time step. It is easy to see

that ũk+1 can be determined from (2.9) by solving three Helmholtz-type equations.

Instead of solving for (uk+1, pk+1) from the coupled first-order differential equations

(2.10), we apply the operator “∇̃·” (see the definition in (2.8)) to the first equation

in (2.10) to obtain an equivalent system

− ∇̃2(pk+1 − pk) = −
1

2δt
∇̃ · ũk+1,

∂

∂n
(pk+1 − pk)|∂D = 0,

(2.11)

and

uk+1 = ũk+1 − 2δt∇̃(pk+1 − pk).(2.12)

Thus, (uk+1, pk+1) can be obtained by solving an additional Poisson equation (2.11).

Note that the equivalence between (2.11–2.12) and (2.10) will be no longer valid

once the space variables are discretized. However, numerous numerical experiments

and the theoretical justification in [20] indicate that this approach does not affect

the second-order accuracy in time for the velocity.

The main advantage of the projection methods is that at each time step one

only needs to solve a sequence of Helmholtz/Poisson equations for which fast solu-

tion techniques, in particular the spectral-Galerkin method presented below, can be

used. Furthermore, since the projection method is based on the velocity-pressure

formulation, it is quite obvious that it can be extended with relative ease to three-

dimensional cases. The implementation of the projection method for three-dimensional
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non-axisymmetric flows in cylindrical geometries is current underway and will be

reported elsewhere.

3. Weighted spectral-Galerkin method

We first transform the domain D to the unit square D∗ = (−1, 1) × (−1, 1) by

using the transformations

r =
ro − ri

2
(y +

ro + ri
ro − ri

), z =
Λ

2
(x+ 1).(3.1)

Setting

R = ro − ri, c =
ro + ri
ro − ri

, α =
3R2Re

8δt
, β =

R2

Λ2
.(3.2)

Then, at each time step, the systems (2.9) and (2.11) lead to the following four

Poisson-type equations:

αu− βuxx −
1

y + c
((y + c)uy)y +

1

(y + c)2
u = f in D∗,

B1u|∂D∗ = 0.
(3.3)

αv − βvxx −
1

y + c
((y + c)vy)y +

1

(y + c)2
v = g in D∗,

B2v|∂D∗ = 0.
(3.4)

αw − βwxx −
1

y + c
((y + c)wy)y = h, in D∗,

B3w|∂D∗ = 0.
(3.5)

− βpxx −
1

y + c
((y + c)py)y = q in D∗,

∂p

∂n
|∂D∗ = 0.

(3.6)

In the above, B1, B2 and B3 are operators describing the boundary conditions for

u, v and w respectively, and f, g, h, q are functions depending on the solutions at

the two previous time steps.

In [19], an efficient and accurate spectral-Galerkin method was proposed for solv-

ing elliptic equations in polar and cylindrical geometries. It was found that the

spectral-Galerkin method in [19] is as good, if not more efficient and accurate, as

other spectral methods (see, for instance, [6] and [13]) which take into accounts the

parity factor (about r = 0) satisfied by the solutions. It should also be noted that

the clustering of the collocation points near r = 0 in this case will not introduce

unreasonable time step restriction as long as the principle linear operator is treated

implicitly (cf. [14]).

The spectral-Galerkin method is based on a variational formulation which natu-

rally incorporates the pole conditions and takes care of the coordinate singularity at
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r = 0. For axisymmetric problems, there are no pole conditions but the coordinate

singularity at r = 0 is still present. The spectral-Galerkin method of [19] can be

directly applied to (3.3–3.6). We shall discuss the method for solving (3.3) in some

detail. The three other equations can be treated similarly.

Let PK be the space of all polynomials of degree less than or equal to K. As-

suming that B1u|∂D∗ = 0 is expressed in the following general form:

a−u(−1, y) + b−ux(−1, y) = s−, a+u(1, y) + b+ux(1, y) = s+, y ∈ (−1, 1),

c−u(x,−1) + d−uy(x,−1) = t−, c+u(x, 1) + d+uy(x, 1) = t+, x ∈ (−1, 1),
(3.7)

where a±1, b±1, c±1, d±1, s±1, t±1 are given constants. Since the non-homogeneous

case can be easily handled by constructing a simple particular solution satisfying

the non-homogeneous boundary conditions (see [17]), we only need to consider the

homogeneous case, i.e. s±1 = t±1 = 0.

Let us denote

XN = {w ∈ PN : a−w(−1) + b−wx(−1) = 0, a+w(1) + b+wx(1) = 0},

YM = {w ∈ PM : c−w(−1) + d−wy(−1) = 0, c+w(1) + d+wy(1) = 0},

ZNM = XN × YM .

(3.8)

Then, we look for u
NM

∈ ZNM such that ∀ v ∈ ZNM ,

α
(

(y + c)su
NM

, v
)

ω̃
− β

(

(y + c)s∂2
xuNM

, v
)

ω̃
−

(

(y + c)s−1
(

(y + c)∂yuNM

)

y
, v

)

ω̃

+
(

(y + c)s−2u
NM

, v
)

ω̃
=
(

(y + c)sINMf, v
)

ω̃

(3.9)

where (u, v)ω̃ =
∫

D∗
u v ω(x)ω(y) dxdy with ω(z) to be respectively 1 or (1− z2)−

1
2

depending on whether Legendre or Chebyshev polynomials are used, INM is a poly-

nomial interpolation operator, based on the Legendre or Chebyshev Gauss-Lobatto

points, from C(D∗) to PN × RM , and s is chosen such that (3.9) leads to a sparse

or simple linear system, namely, we set s = 1 if ri = 0 and s = 2 if ri > 0.

The above formulation is obtained by multiplying (3.3) by v(y + c)sω(x)ω(y)

and then integrating over D∗. Hence, it can be interpreted as a weighted spectral-

Galerkin method for (3.3).

The efficiency of the method depends on the choice of basis function for XNM .

The general strategy for choosing basis functions was discussed in [18] and [19]. It

is shown in [18] that there exist {ak, bk, ck, dk} such that

φk(x) := pk(x) + akpk+1(x) + bkpk+2(x) ∈ XN for k = 0, 1, . . . , N − 2,

ρk(y) := pk(y) + ckpk+1(y) + dkpk+2(y) ∈ YM for k = 0, 1, . . . ,M − 2,
(3.10)



8 J. M. LOPEZ1,2 AND JIE SHEN1

where pk(·) is either the k-th degree Legendre or Chebyshev polynomials, Hence,

by dimension argument, we have

XN = span{φk(x) : k = 0, 1, . . . , N − 2},

YM = span{ρk(y) : k = 0, 1, . . . ,M − 2}.
(3.11)

Then, setting

aij =

∫ 1

−1

φj(x)φi(x)ω(x) dx,

bij = −

∫ 1

−1

φ′′j (x)φi(x)ω(x) dx,

cij =

∫ 1

−1

(y + c)s ρj(y) ρi(y)ω(y) dy,

dij = −

∫ 1

−1

(y + c)s−1((y + c) ρ′j(y))
′ ρi(y)ω(y) dy,

eij =

∫ 1

−1

(y + 1)s−2 ρj(y) ρi(y)ω(y) dy,

fij =

∫

D

(y + c)sf φi(x)ρj(y)ω(x)ω(y) dxdy,

(3.12)

and letting A, B, C, D, E, F and U be the corresponding matrices with entries

given above, we find that (3.9) is equivalent to the following matrix system:

αAUC + βBUC +AUDT +AUE = F.(3.13)

Note that in all cases A, C, and E are symmetric, and it is easy to see that they are

sparsely banded due to the orthogonality of the Legendre or Chebyshev polynomials.

However, the structure of the matrices B and D will depend on a number of factors:

1. For Legendre (i.e. ω(z) ≡ 1) case and ri = 0 (i.e. s = 1): B and D are

symmetric and banded;

2. For Legendre (i.e. ω(z) ≡ 1) case and ri 6= 0 (i.e. s = 2): B is symmetric and

banded while D is non-symmetric but banded;

3. For the Chebyshev (i.e. ω(z) = (1− z2)−
1
2 ) case: B and D are non-symmetric

but possess special structures such that the equation (c1B + c2D)x = f can

be efficiently solved (see [19] for more details).

Hence, (3.13) can be efficiently solved by using the matrix diagonalization method

(e.g. [11], [19]) at a cost of 4NM min(N,M) + O(NM) operations. Note however

that in the Legendre case this operation count can be reduced to O(NM log(N+M))

(see [18] for further details).

Notice that the above spectral-Galerkin method can be easily extended to non-

axisymmetric three-dimensional cases (see [19] for further details).
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4. Numerical results and discussions

In this section, we apply the above scheme to two typical rotating flows which

are of current research interest. The Legendre formulation (ω(z) ≡ 1 in (3.9)) is

used for all simulations.

We begin with a flow that tests the spatial and temporal fidelity of the code

without the complications associated with discontinuous boundary conditions. The

flow is the impulsive spin-down of fluid in a rotating circular cylinder. In this

case, ri = 0 so s = 1 is used in (3.9). Then we consider a flow where there are

discontinuities in the fixed and time-dependent boundary conditions. This flow is

a parametrically excited Taylor–Couette flow, where the inner cylinder not only

rotates at a constant rate, but also undergoes a harmonic oscillation in the axial

direction. In this case, ri 6= 0 so s = 2 is used in (3.9).

4.1. Case 1. Endwall boundary layer flow. We consider the impulsive spin-

down of a fluid in solid body rotation within a circular cylinder, which is governed

by the axisymmetric Navier-Stokes equations (2.1–2.4) with homogeneous Dirichlet

boundary conditions for all components of the velocity and the initial condition

v|t=0 = r. This flow leads to the rapid development of thin boundary layers whose

nature and stability are strongly influenced by the rotation. Similarity solutions

for these types of flows in idealized configurations have been known for a long time

(see [2]), and their stability has been studied experimentally (see [15]). It is only

very recently that further insight into the dynamics of these flows has been available

from computations (e.g. [8], [10]). Continued interest in these flows is reflected in a

number of recent studies (e.g. [16]). These flows test not only the code’s ability to

resolve the boundary layer flows, but also the bulk flow as the secondary motions

produced following the impulsive spindown are not confined solely to the boundary

layer region. As well, they test the temporal accuracy of the code; the group and

phase speeds of the various instability waves need to be captured accurately. A

fuller account of the flow physics involved is given in [10]; here we compare the new

spectral-projection code with the finite difference code used in [10] for this class of

flows.

Figure 1a shows details of the boundary layer flow (contours of η, the azimuthal

component of vorticity) near the top endwall; the left-hand-sides of the plots are

the axis and the right-hand sides are the sidewall. The figure shows snap-shots

at 2, 4, and 6 radians of time (time is scaled by 1/Ω, Ω is the rotation rate in

radians per second of the system for t < 0), for Re = ΩR2/µ = 9632 and aspect

ration Λ = 2. These parameters correspond to an experiment of Savaş [15], which

was simulated using finite differences by [10]. Comparing this figure with figure 3
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of [10] (reproduced here as figure 1b) shows very close agreement between the two

totally different methods (and with the experiment, as discussed in [10]). The finite

difference code used a stretched grid with 301 nodes in the radial and axial directions

(note that Z2-symmetry was imposed, so that only a half-cylinder computation was

performed). The spectral code used 121 Legendre polynomials in the radial direction

and 181 in the axial direction, without imposing Z2-symmetry. Thus, the spectral

code requires significantly fewer degrees of freedom to capture the dynamics of the

flow. Furthermore, unlike the stream function-vorticity formulation used in [10],

the projection method applied to the velocity-pressure formulation can be extended

to treat the three-dimensional cases which are necessary for investigating larger Re

flows for which experiments (e.g. [15]) show that the boundary layer waves become

spirals, breaking symmetry as the flow transitions to turbulence.

4.2. Case 2. Parametrically forced Taylor–Couette flow. The second test

case consists of a Taylor–Couette flow with real endwall effects and harmonic oscilla-

tions of the inner cylinder in the axial direction. There have been numerous studies

of the Taylor–Couette flow, including several nonlinear numerical studies. Most do

not include real endwall effects, instead they impose periodic boundary conditions

and certain symmetries which allow the use of Fourier modes in the axial direction

and a significant reduction of the number of modes used (e.g. [5]). Studies that

have included real endwall effects (e.g. [21]) have been presented for small aspect

ratio systems in order to reduce the degrees of freedom needed in the finite element

computations; their techniques become prohibitively expensive for large aspect ratio

systems.

The system is governed by a large number of dynamic and geometric parameters.

These depend on the radius of the inner and outer cylinders ri and ro, the length

of the cylinders H, the angular velocity of the inner cylinder Ω (the out cylinder

is stationary in the present study), the amplitude and frequency of the harmonic

axial motion of the inner cylinder given by U sin ω̃t, and the kinematic viscosity of

the fluid µ. These are combined to give the governing parameters

Λ = H/(ro − ri), the aspect ratio,

e = ri/ro, the radius ratio,

Rei = (ro − ri)riΩ/µ, the Couette− flow Reynolds number,

Rea = (ro − ri)U/µ, the axial Reynolds number,

ω = (ro − ri)
2ω̃/µ, the non− dimensional forcing frequency.
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The flow starts from rest with the boundary conditions:

u(ri) = 0, v(ri) = Rei, w(ri) = Rea sinωt at r = ri;

u(ro) = 0, v(ro) = Reo, w(ro) = 0 at r = ro;

u = w = 0, v(r) =
Reo
ro

r at z = 0, Λ.

(4.1)

This flow has discontinuous boundary conditions for v and w, the azimuthal and

axial components of velocity, at the corners where the inner cylinder meets the

stationary endwalls. Since spectral methods are very sensitive to the smoothness of

the solutions, it is crucial to design a sensible treatment for the singular boundary

conditions. We emphasize that the singular boundary conditions are usually a

mathematical idealization of the physical situation. The singularity can never be

realized in experiments nor in numerical computations. Therefore, it is appropriate

to use a regularized boundary boundary layer function to approximate the actual

physical situation. For example, the singular boundary condition

v(z) = 1 for z ∈ [−1, 1), v(z) = 0 for z = 1

can be approximated by

vε(z) = 1− exp(−
1− z

ε
)

to within any prescribed accuracy by choosing an appropriate ε. Such an approach

has been proven successful in [9], where the vortex breakdown flow has been com-

puted to capture the details of the axisymmetric waves/recirculation zones on the

axis with high fidelity. Here we apply the same Regularization technique.

Experiments in a very large aspect ratio system are detailed in [26], and [12] give a

detailed linear stability analysis of the system. These studies have shown that para-

metric excitation through the harmonic axial motion of the inner cylinder, the onset

of centrifugal instabilities (Taylor cells) can be controlled. The stabilization is due

to waves of azimuthal vorticity (shear waves) propagating radially outwards from

the boundary layer on the inner cylinder, and when endwall effects are included,

there are also waves propagating inwards from the outer cylinder. These waves act

to nullify the azimuthal vorticity associated with the centrifugal instability of the

circular Couette flow. There are still several open questions regarding this dramatic

stabilization of the flow well beyond its critical state. Nonlinear aspects beyond crit-

icality, the effects of finite aspect ratios and no-slip endwalls (which break the often

imposed axial periodicity and translation and reflection symmetries), and nonlin-

ear modal interactions between distinct modes with different axial and azimuthal

wave numbers, are some of the issues that have not been addressed. Some aspects

of these can be addressed with the present axisymmetric code that includes real

endwall effects, but most require the full three-dimensional code. These questions
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are currently under investigation and will be reported elsewhere. Here, we give the

first nonlinear results for the parametrically excited Taylor–Couette flow, with the

restriction to axisymmetric flow.

Figure 2 shows contours of the stream-function ψ, azimuthal vorticity η, and

angular momentum Γ = rv of the steady Taylor flow in the absence of harmonic

axial motion for Λ = 10, e = 0.905, Rei = 200, and Rea = 0. The system is fully

resolved with n = 64, m = 32, and δt = 0.001; note that the large aspect ratio does

not require a comparatively large number of modes. The objective is to select the

amplitude and frequency of the parametric excitation in order to obtain a solution

that is z-independent over a large portion of the flow domain. The sequences in

figure 3 show snap-shots of ψ, η, and Γ over approximately one period (2π/ω) of

the nonlinear solution when the system shown in figure 2 is subjected to various

combinations of Rea and ω. Over the range of parameters considered, the resultant

flow is synchronous with the forcing frequency.

The linear Floquet analysis in [12] shows that for Rea ≈ 70 and ω ≈ 30, the

critical value of Rei for the onset of centrifugal instability is approximately 200, i.e.

for Rei = 200 and Rea less than about 70 and/or ω greater than about 30, the flow

will have axial variations associated with the centrifugal instability (Taylor vortex-

like flow). It also shows that the wavelength of these variations is roughly 20% larger

than at onset when Rea = 0. The results shown in figure 3 are all consistent with

these linear theory results. For the case with Rea = 50, ω = 20, a wave of azimuthal

vorticity is seen to propagate from the inner to outer cylinder; also for this case,

the Taylor vortex cells only exist during a part of the period, also as suggested by

the linear analysis. Even when the centrifugal instability has been quenched over

most of the flow domain, there remain cells located near the endwalls. The linear

analysis does not capture these effects and they warrant further investigation.

5. Concluding remarks

We present in this paper an efficient and accurate spectral projection scheme for

the numerical simulations of incompressible flows in cylindrical geometries. The

scheme is second-order accurate in time and spectrally accurate (i.e. convergence

rate increases as the smoothness of the solution increases) in space. Furthermore,

the time step size of this semi-implicit scheme is only limited by the physical param-

eters but not restricted by the spatial resolution, i.e. the scheme is unconditionally

stable in the sense of numerical analysis.

Preliminary numerical results reported here for two canonical rotating axisym-

metric flows demonstrate that the scheme is well suited for the studying of flows with

complex temporal and spatial structures, even with singular and time-dependent
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boundary conditions. In the Taylor–Couette problem with axial motion of the in-

ner cylinder, we have reproduced numerically the precise control of the centrifugal

instability in a highly nonlinear system that has been previously demonstrated ex-

perimentally. With the level of accuracy and efficiency in the code for dealing with

systems of spatio-temporal complexity, we are now in the position to numerically

design and test nonlinear control mechanisms and to study the intricate nonlin-

ear dynamics involved. On the other hand, the spatio-temporal complexity in less

restricted regimes of parameter space will eventually generate three-dimensional

flows. This crucial step for the study of the transition to turbulence and its control

is currently being pursued by extending the present spectral-projection scheme from

axisymmetric to three dimensions.
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[15] Ö. Savaş. Stability of Bödewadt flow. J. Fluid Mech., 183:77–94, 1987.
[16] L. Schouveiler, P. Le Gal, M. P. Chauve, and Y. Takeda. Experimental study of the stability of

the flow between a rotating disk and a stationary disk. In S. Gavrilakis et al., editor, Advances

in Turbulence VI, pages 385–388. Kluwer Academic Publishers, 1996.
[17] Jie Shen. Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order

equations by using Legendre polynomials. SIAM J. Sci. Comput., 15:1489–1505, 1994.



14 J. M. LOPEZ1,2 AND JIE SHEN1

[18] Jie Shen. Efficient Chebyshev-Legendre Galerkin methods for elliptic problems. In A. V. Ilin
and R. Scott, editors, Proceedings of ICOSAHOM’95, pages 233–240. Houston J. Math., 1996.

[19] Jie Shen. Efficient spectral-Galerkin methods III. polar and cylindrical geometries. SIAM J.

Sci. Comput. v. 18, no. 6, 1997. Penn State Math Dept Report AM-162, 1996. To appear.
[20] Jie Shen. On error estimates of projection methods for the Navier-Stokes equations: second-

order schemes. Math. Comp, 65, July 1996.
[21] S. J. Tavener, T. Mullin, and K. A. Cliffe. Novel bifurcation phenomena in a rotating annulus.

J. Fluid Mech., 229:483–497, 1991.
[22] R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par la méthode
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