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DIMENSIONAL ROBUSTNESS AND INSTABILITY OF SHEARED,
SEMIDILUTE, NANOROD DISPERSIONS∗

XIAOFENG YANG† , ZHENLU CUI‡ , M. GREGORY FOREST§ , QI WANG¶, AND

JIE SHEN‖

Abstract. Semidilute, nanorod dispersions interact nonlocally and nonlinearly through ex-
cluded-volume and distortional elasticity potentials. When driven by steady shear with confinement
boundary conditions, remarkable rod orientational distribution behavior ensues: strong anisotropy;
steady and unsteady responses; and gradient structure on (thus far) unpredictable lengthscales.
Extreme variability and sensitivity of these features to experimental controls, coupled with nanorod
measurement limitations, continue to confound materials processing strategies. Thus, modeling and
simulation play a critical role. In this paper, we present a hierarchy of zero-dimensional (0-d), one-
dimensional (1-d), and two-dimensional (2-d) physical space simulations of steady parallel-plate shear
experiments using a mesoscopic tensor model for the rod orientational distribution [E. H. MacMillan,
A Theory of Anisotropic Fluid, Ph.D. thesis, Department of Mechanics, University of Minnesota,
Minneapolis, MN, 1987, Z. Cui and Q. Wang, J. Non-Newtonian Fluid Mech., 138 (2006), pp. 44–61]
and a spectral-Galerkin numerical algorithm [J. Shen, SIAM J. Sci. Comput., 15 (1994), pp. 1489–
1505]. We impose steady shear to focus on the orientational response of the nanorod ensemble to two
experimental controls: the Deborah number (De), or normalized imposed shear rate; and physical
plate anchoring conditions on the rod ensemble. Our results yield dimensional robustness versus
instability of sheared, semidilute, nanorod dispersions: To begin, we present 0-d and 1-d phase
diagrams that are consistent with results of the modeling community. Next, we present the first
study of numerical stability (for all attractors in the phase diagrams) to 2-d perturbations in the
flow-gradient and vorticity directions. The key findings are the following: time-periodic 1-d structure
attractors at low-to-moderate De are robust to 2-d perturbations; period-doubling transitions at
intermediate De to chaotic attractors in 0 and 1 space dimensions are unstable to coherent 2-d
morphology but remain chaotic; as De increases, chaotic dynamics becomes regularized, first to
periodic and then to steady structure attractors, along with a return to robust 1-d morphology;
finally, logrolling (vorticity-aligned) anchoring selects the most distinct attractors and De cascade
with respect to other anchoring conditions.
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1. Introduction. Decades of modeling and simulation have been devoted to an
understanding of sheared nematic polymers and liquid crystals, motivated by appli-
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cations to high-performance materials in film and mold geometries, as well as for
fundamental interest in the shear-dominated hydrodynamics of anisotropic liquids.
Excellent review articles have appeared in the past few years [46, 52, 1]. More em-
phasis has arisen recently in nematic polymer models and simulation because of their
relevance to technological applications of nanocomposites where the nanoparticles are
thin rod and platelet inclusions. The physics of these nanorod dispersions surely
includes all the basic elements built into liquid crystal polymers and even more com-
plexity such as poor dispersion of the nanoparticle phase. These composites exhibit
a diverse range of enhanced properties depending on the specific nanoparticles em-
ployed, including mechanical, barrier, dielectric, and conductive properties. However,
three persistent anomalous features in shear-dominated flows have retarded progress
in technological applications of nanorod dispersions: particle anisotropy passes up in
scale; responses are typically unsteady even in steady driving conditions; and gradient
structure develops which translates into heterogeneous materials. These features are
explored and highlighted in the modeling and simulation presented here.

If experiments could be run to observe and probe these anomalies, they would
probably not continue to plague film and mold material design and control. The
practical reality is that only partial signatures of the rod or platelet distribution
functions are measurable, both during and after experiments, and thus the connec-
tion between processing controls and material properties is reduced to empirical or
ad hoc correlations. This limitation is appreciated with a simple calculation: a typi-
cal nanoparticle for material applications is a 1nm × 100nm cylindrical rod, so there
are roughly 105 particles in a cubic micron at 1% volume fraction. One is reduced
to measurements that reflect low moments of the particle distribution through scat-
tering intensities. Computational modeling therefore serves as a key for interpreting
measurable data and for extrapolating beyond observable features toward design and
control strategies for advanced materials. That is the perspective from which we tai-
lor our modeling and simulation approach. From a computational perspective, the
above order-of-magnitude calculation makes it apparent that particle simulations are
not yet feasible even on cubic millimeter lengthscales and surely not realistic for pa-
rameter studies such as those presented here. The Doi–Hess kinetic theory for flowing
Brownian rods in the semidilute regime, however, presents a viable alternative; this
theory has been the focus of simulations either with the Smoluchowski equation for
the orientational probability distribution function or with moment closure models of
Landau–de Gennes type.

It is well understood how to coarse-grain the Doi–Hess kinetic model to recover
any Landau–de Gennes second-moment tensor model and how to coarse-grain tensor
models to recover either the Ericksen or Leslie–Ericksen models [32, 11, 2, 3, 56, 30].
Here “coarse-grain” refers to asymptotic analysis, involving a reduced class of ori-
entational distribution functions (ODFs) (e.g., uniaxial), assumptions on the flow,
strength of distortional elasticity, and/or volume fraction of nanoparticles, and clo-
sure rules for how to approximate higher moments of the ODF. For the material
applications we have in mind, large parameter simulations are required, which are
then organized into phase diagrams of response functions. That database then has to
be mapped to effective properties. This “processing to property” map has been slow
in developing. We give some indications why.

In the simplest, longwave approximation of shear-induced monodomain dynam-
ics (spatially homogeneneous or zero-dimensional (0-d), without physical boundary
conditions, with a linear shear flow), and in the generalization to 1 dimension (in the
shear-gradient direction spanning two parallel plates, with physical anchoring condi-
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tions imposed, again with linear flow), phase diagrams are a relatively recent outcome
of the modeling community [34, 38, 53, 54, 55, 12, 31, 39, 26, 47, 15, 18, 19, 67].
The slow progress in 0 and 1 dimensions has not been due to a computational bot-
tleneck; rather it has been due to the sensitivity of the orientational response to
shear-dominated flows, rooted in the three anomalous features discussed next.

First, anisotropy of individual Brownian particles transfers across scales to an-
isotropy of the particle orientational distribution. The orientational distribution of
rods or platelets lies somewhere between isotropic (random orientation achieved in
equilibrium at sufficiently low volume fractions) and strongly aligned with respect to
a single direction (a delta-like distribution, which is approximately achieved in high-
speed fiber flows or in small molecule liquid crystals in the presence of magnetic or
electric fields). While these are two extremes among all ODFs on the sphere, physical
experiments lead somewhere in between. The identification of which nematic polymer
ODFs are selected in shear has led to a variety of extensions of liquid crystal theory
(which describes a single direction, the major director, under the presumption that
the ODF is essentially a delta function) to allow for additional degrees of freedom in
the ODF. Ericksen coupled a scalar order parameter to the Leslie–Ericksen director
theory in his attempt to bridge director theory with the Landau–de Gennes models
based on polymer physics, focusing on the second-moment tensor of the ODF. In the
1970s and 1980s, Hess [27] and Doi [11] developed a Smoluchowski (or Fokker–Planck)
equation for the ODF of flowing Brownian rods using the Jeffery orbit for Stokes flow
of a rod (prolate spheroid).

The second anomalous feature of sheared rod and platelet dispersions is that the
response functions (attractors) are typically unsteady even in steady processing condi-
tions. The Jeffery orbit of a single rod in rotational flow is duplicated on the micron
scale of tens to hundreds of thousands of nanorods in a dispersion; the ensemble typ-
ically exhibits limit cycle responses to shear-dominated flow. Furthermore, nonlocal
excluded-volume interactions lead to response functions that are remarkably sensi-
tive to the volume fraction of the rods and shear rate. The tumbling, wagging, and
flow-aligning classification of liquid crystals has expanded to the well-documented
taxonomy of nematic polymer sheared monodomain response functions: tumbling,
wagging, flow-aligning, kayaking and tilted kayaking, steady out-of-plane, logrolling
(steady, vorticity aligned), and chaotic. The reader is referred to Larson and Ot-
tinger [34] for the identification of kayaking orbits and to [15] for illustrations and
comparisons among all monodomain steady and unsteady response functions.

Here we adopt the following terminology, which has gained traction in the liter-
ature. An orientational distribution is called “in-plane” when it is symmetric with
respect to the shear plane (the plane of primary flow and flow gradient). In the
Cartesian coordinates adopted here, x is the flow direction, y is the flow-gradient
direction, and z is then the vorticity axis of an imposed simple shear flow. Thus the
second-moment tensor M of an in-plane orientational distribution necessarily obeys
the constraints Mxz = Myz = 0, which is equivalent to the geometric condition that
the vorticity axis z is an eigenvector. Examples of shear-induced, in-plane monodo-
main response functions are flow-aligning, a steady state where the principal axis of
M is uniquely defined and lies in the shear plane; logrolling, a steady state where the
principal axis is aligned with the vorticity axis and thus orthogonal to the shear plane;
tumbling, a limit cycle response in which the principal axis of M rotates continuously
in the shear plane; and wagging, a limit cycle response in which the principal axis
oscillates in the shear plane with finite amplitude about a given mean angle. When-
ever the constraints Mxz = Myz = 0 are broken, so that the orthonormal frame of
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eigenvectors of M does not contain the vorticity axis, the phase is called “out-of-
plane.” Examples include out-of-plane steady states, where the principal axis aligns
somewhere between the vorticity axis and shear plane; the classical kayaking orbit,
where the principal axis (major director) rotates continuously around the vorticity
axis; the tilted kayaking orbit, where the principal axis rotates continuously around
a direction between the vorticity axis and shear plane; and chaotic orbits, for which
the major director migrates erratically around the sphere.

The above two features, anisotropy and unsteady response to steady shear con-
ditions, were studied first in the limit of spatial homogeneity, so-called monodomain
models, which solve for orientational response of the rod distribution function to en-
tropic excluded-volume potentials and an imposed linear flow. At the Smoluchowski
equation level, the Doi–Hess model is an infinite-dimensional, nonlinear diffusion equa-
tion on the sphere; the initial gains in understanding were made at the level of second-
moment closure models. Today, a rather complete understanding of the full kinetic
model predictions and the approximate nature of second-moment closures is in place.
This picture is dominated by numerical results, but analysis has played a critical role
in understanding the complexity of kinetic and second-moment tensor monodomain
phase diagrams. These predictions are expected to apply in the midgap of parallel-
plate shear cells where the flow is approximately linear and the gradients introduced
by boundary anchoring have been screened.

Rey and Tsuji were the first to comprehensively address the third persistent fea-
ture, heterogeneity of sheared nematic polymers, in a multiparameter numerical study.
In a seminal paper, Marrucci and Greco [40] introduced a distortional elasticity po-
tential to the Doi–Hess theory, extending the model from homogeneous monodomain
dynamics to include heterogeneity. There have been several models of Doi–Marrucci–
Greco type which couple to the flow equations; cf. [53, 31, 13, 56]. Rey and Tsuji
prudently studied the one-way coupling first, imposing a linear simple shear induced
by steady motion of parallel plates, from which they proceeded to numerically map
out phase diagrams of one-dimensional (1-d) heterogeneity across the plate gap. Many
other leading scientists in the field of nematic liquid crystals and liquid crystal poly-
mers have explored this fundamental question of 1-d morphology and lengthscale
selection in shear flow. The imposition of equilibrium anchoring conditions at each
plate leads to a spatial conflict between the midgap response function (which is pre-
sumably far removed from and free from restrictions imposed by the plates) and the
plate equilibrium ODF. Gradients in the ODF ensue, for which distortional elasticity
potentials are coupled to the Landau–de Gennes or Doi–Hess model. Outstanding re-
views have been written over the years on the issue of sheared heterogeneity, including
an especially insightful article by Marrucci and Greco [41] and subsequent excellent
reviews by Rey and Denn [46], Tan and Berry [52], and Asokan et al. [1]. (An article
of the authors [17] on steady lengthscale selection in the weak shear limit includes a
literature discussion which may prove useful.)

The local behavior at each spatial location can be described by one of a vari-
ety of monodomain response functions (listed and briefly described above). Thus,
heterogeneous attractors are characterized in terms of a small number of layers that
span the plate gap, with a fixed monodomain response function per layer. A typical
“in-plane heterogeneous attractor” might be “W-T,” conveying that layers near each
plate consist of local W (wagging) limit cycles, whereas in the remaining interior of
the gap, the local response is T (tumbling). Additional details are associated with
each type of heterogeneous 1-d attractor; e.g., W-T attractors spawn transient lo-
calized defects at the gap heights where the response shifts from finite oscillations
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(wagging) to monotone tumbling. We note that no experiment has thus far been
able to identify such detail (coexistence of tumbling and wagging), so that measur-
able signatures that distinguish such attractors need to be identified by modeling.
Heterogeneous phase diagrams based on orientation tensor models and imposed shear
are given by Tsuji and Rey [54, 55], whereas our group has extended those studies
to the Doi–Hess–Smoluchowski equation with resolution in the ODF through tenth
moments, including so-called in-plane orientation [20, 21] and full orientational de-
grees of freedom on the sphere [68, 21]. Our studies, analytical and numerical, predict
a strong variability in the heterogeneous response to the plate anchoring conditions,
which motivates that focus for this paper as well.

In this hierarchy of models and simulations, there are several directions one can
go in relaxing restrictions on orientational and spatial degrees of freedom, each con-
tributing to a comprehensive picture of robustness in physical and orientational space
and time. Note that the aforementioned literature begins with homogeneous monodo-
mains in shear, or 0 dimensions, followed by resolution of 1-d spatial gradients along
the flow-gradient axis between the two plates and explicit recognition of boundary
conditions on orientation. When additional complexity is allowed, an essential ques-
tion is whether reduced model behavior is persistent or whether the additional degrees
of freedom lead one to completely different anisotropy, dynamics, and/or heterogene-
ity. One important direction is to couple hydrodynamics (and the Navier–Stokes
or Stokes equations) to the orientational model, allowing one to explore nonlinear
shear profiles generated by orientational stress gradients, and then the feedback from
nonlinear shear flow to the ODF. Several major studies of flow-nematic polymer
coupling have been undertaken, starting from the Leslie–Ericksen–Frank single di-
rector model coupled to flow [4, 5, 53, 54, 55, 14], a “planar” nematic liquid model
explored by Kupferman, Kawaguchi, and Denn [31], and full orientation tensor mod-
els [53, 54, 55, 16, 13, 49, 22, 8, 28, 29]. All but the last of these studies allow 1-d
heterogeneity for fixed orientational boundary conditions.

Our group has explored variability of 1-d heterogeneous responses to plate anchor-
ing conditions, with both orientation tensor [17, 65, 8, 63, 7, 6] and kinetic [68, 20, 65]
models, which further reveals sensitivity of flow feedback and morphology to wall
anchoring conditions. The Armstrong and Zhang groups [51, 23, 58, 24] have also
simulated the kinetic equations with an exploration of the role of translational dif-
fusion, whereas Green, Brown, and Armstrong [24] have further explored different
physical models for solid wall boundary conditions. Another direction one can take
is to allow for oscillatory plate driving conditions [48, 25, 4, 36, 7, 6] which reveal
frequency-dependent storage and loss moduli of nematic polymers.

In this paper, we pursue one pathway of simple-to-complex models, where we
successively admit additional orientational degrees of freedom and space dimensions,
for variable shear-rate, linear shear flow. We use an orientation tensor model devel-
oped by Cui and Wang [9], based on the McMillan continuum mechanical theory for
liquid crystals. It is a direct generalization of Leslie–Ericksen (LE) vector theory [35]
taking into account biaxiality of the distribution and short-range elasticity through
order parameters. We also implement a spectral-Galerkin numerical algorithm [50]
that differs from other algorithms, which uses Legendre polynomial bases in the shear
gap and Fourier modes in the remaining two space dimensions.

This code allows both the determination of 1-d shear-imposed structure attrac-
tors and their robustness to additional spatial degrees of freedom, the focus of the
present paper. We perform these dimensional robustness studies for both in-plane
orientation tensors, which suppress much of the complex dynamics associated with
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kayaking orbits, and full tensors. Even though the in-plane response functions are
almost always unstable to out-of-plane orientational modes, they nonetheless are ex-
tremely valuable in identifying generic features, such as nontopological defects, in a
simple context. The robustness studies are a logical next step in the study of sheared
nematic polymers, building on previous seminal foundations: equilibrium phase dia-
grams from excluded-volume entropic interactions, which date back to Onsager [44]
and explain experimental hysteresis in isotropic and nematic phases; bulk monodo-
main phase diagrams versus imposed steady shear rate (the Deborah number when
normalized by the orientational relaxation rate), which explain steady and unsteady
experimental responses and new dynamical phenomena such as tumbling, wagging,
kayaking, and chaotic dynamics in steady shear; and 1-d confinement-induced spatial
heterogeneity, which arises when one accounts for physical orientational boundary
conditions at solid walls. The significant investments in building these foundations
provide insight for each subsequent level of description of sheared nematic polymer
complexity.

The remaining steps beyond the present paper include flow coupling and model
efficacy with respect to experiments. Leal and coworkers [28, 29] have developed and
simulated two-dimensional (2-d) algorithms for their second-moment tensor models,
focusing thus far on roll cells [33] at low De and their breakup processes, restricted
to vorticity-aligned plate anchoring boundary conditions. Since we impose simple
shear hydrodynamics for this paper, we can make contact with their work only by
comparing our 2-d orientational morphologies with vorticity-aligned anchoring, which
we comment on in the concluding remarks.

Before launching into results of our simulations, we summarize the strategy that
dictates the order of our presentation. The longwave, monodomain limit predicts
the free-space (0-d) response (independent of physical boundary conditions on the
orientational distribution) to an imposed linear shear flow. The response diagram of
interest consists of solution curves versus normalized shear rate (De), of all steady
and unsteady response functions, recalled from [15]. This corresponds to the infinite
Er limit of the full PDE model, which decouples spatial structure and the physical
boundary conditions at the plates. As we shall illustrate, the monodomain responses
for each De allow one to predict, and guide the interpretation of, morphology at-
tractors. In the interior of a plate gap, anchoring is screened, and the monodomain
response is natural unless other physics overwhelms the free-space response (e.g., a
sufficiently strong distortional elasticity potential will arrest tumbling). Next, we ad-
mit 1-d spatial heterogeneity and explicitly account for the physical plate anchoring
on orientation. We present results of a comprehensive numerical study through 1-d
attractor phase diagrams, versus De as in the monodomain diagram, and for a sample
of five different anchoring conditions. We fix the strength of the distortional elasticity
potential, parametrized by the Ericksen number Er, so that the nematic liquid does
not arrest all dynamical responses.

These 1-d phase diagrams benchmark the model and code against the previous
1-d tensor and kinetic model predictions cited earlier. Results are presented both for
restricted in-plane orientation tensors and for full orientational degrees of freedom;
we thus determine the coexistence of 1-d heterogeneous attractors, where the in-plane
attractors are typically unstable to out-of-plane perturbations. Finally, the algorithm
is implemented to explore the robustness and stability of all attractors in these 1-d
phase diagrams to 2-d noisy perturbations in the vorticity (z) direction as well as
flow-gradient (y) direction.

We are motivated by 2-d results of Leal’s group [28, 29], but also by the funda-
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mental issue of whether anchoring conditions and De variations select stable 1-d or
full 2-d responses. We call attention to sensitivities to wall orientational anchoring
conditions, reported experimentally by the Noirez lab [45, 42, 43] and exhibited in
our modeling [17, 7, 8, 65]. These studies guide our presentation of the De cascade
in 1 and 2 dimensions for a discrete set of anchoring conditions, including logrolling
as in [29], tangential and normal anchoring with respect to the plates, and a tilted
anchoring condition midway between the vorticity axis and shear plane. We believe
these studies provide insight into more complex flows, such as in mold filling, where
there is no way to uniformly control anchoring relative to flow geometry; as we will
see, anchoring conditions can have a dramatic impact. While we consider spatial
perturbations in the flow-gradient and vorticity directions here, a similar study of
2-d perturbations including the flow direction is deferred to another study, as well
as the significant challenges of phase diagrams in 3 dimensions and with full flow
coupling. The Leal group has reported full three-dimensional (3-d) simulations with
full coupling in recent conference lectures (presented by Carlos Garcia-Cervera) and
in an article recently accepted for publication in the Journal of Rheology; again they
explore logrolling boundary conditions.

We foreshadow the intriguing observation from results presented below: with an
imposed simple linear shear flow with varying shear rate, we recover the diversity of 1-d
orientational responses that have been reported with full flow coupling and nonlinear
feedback. The generality of this observation to higher space dimensions remains to
be explored, but, where valid, it would represent a significant computational cost
savings in that the Navier–Stokes solver could be decoupled for large parameter studies
and implemented only as a corrector step (using the paradigm promoted by Yannis
Kevrekidis in the past few years) in parameter regimes of interest where quantitative
details are important.

2. The model and numerical method.

A. Model formulation. To describe the local ordering of nematic (liquid crys-
tal) polymers, we employ a second-order, symmetric, traceless tensor Q, which is often
called the orientation tensor of Landau–de Gennes theory. The orientation tensor is
the traceless normalization of the second moment M of the orientational probability
distribution function, i.e., Q = M − 1

3I, so that these two rank 2 tensors share an
orthonormal frame of principal axes, called the directors in the nematic liquid liter-
ature. The Cartesian representation employed here is given relative to an imposed
simple shear flow,

(1) v = (vx, vy, vz) = γ̇(y, 0, 0),

where x is the primary flow direction, y is the flow-gradient axis between the two
parallel plates, and z is the vorticity axis. The representation of Q, since tr(Q) = 0,
is then

(2) Q =

⎛
⎝ Qxx Qxy Qxz

Qxy Qyy Qyz

Qxz Qyz −Qxx −Qyy

⎞
⎠ .

We employ a mesoscopic tensor model [9] based on a tensor-based hydrodynamic
theory for flows of nematic liquid crystal polymers [37]. This model is of Landau–de
Gennes type [10] and therefore similar to all second-moment tensor models used in
nematic polymer morphology studies [53, 54, 55, 49, 31, 15, 63, 64]:
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∂Q
∂t + v · ∇Q − Ω · Q + Q · Ω − a[D · Q + Q · D] = − 2a

3 D − 2a(Q : D)(Q + I
3 )

− νkT
α [ 32 (1 − N

3 )Q − 3
2N(Q2 − 1

3 (Q : Q)I) + 3N(Q3 − 1
3 tr(Q3))

+ L1ΔQ + L2

2 [∇∇ · Q + (∇∇ · Q)T − 2
3 tr(∇∇ · Q)I]

+ L3

2 [∇Q : ∇Q − 1
3 tr(∇Q : ∇Q)I + 2(∇ · Q) · ∇Q + 2Q : ∇∇Q]],

(3)

where Q̂ = Q̇ + Q ·Ω−Ω ·Q is the upper convected derivative, D = 1
2 (∇v + (∇v)t)

is the rate-of-strain tensor, and Ω = 1
2 (∇v − (∇v)t) is the vorticity tensor, a is a

geometric parameter, with 0 < a ≤ 1 for rods and −1 ≤ a < 0 for platelets, ν is the
nematic polymer density, k is the Boltzmann constant, T is absolute temperature, α
is a viscosity parameter, and L1, L2, L3 are the distortional elasticity constants. For
uniaxial orientational distributions, where Q = s(n(x, t)n(x, t) − I

3 ), there is a single
nonzero order parameter (s) and a unique major director (n); in the weak flow limit,
the elasticity constants can be identified with the three Frank elastic constants of
liquid crystal theory, splay (K1), twist (K2), and bend (K3):

(4) L1 = 3K2−K1+K3

6s2 , L2 = K1−K2

s2 , L3 = K3−K1

2s3 .

The precise value of s is the equilibrium value of (3) in the absence of flow (v = 0),
set by the normalized rod volume fraction N .

Thermodynamic stability requires that

(5) K1 ≥ 0, K2 ≥ 0, K3 ≥ 0.

These inequalities lead to

L1 ≥ 0, 2L1 + L2 ≥ 0,

− 3
2 (L1 + 1

2L2) ≤ L3s ≤ 3(L1 + 1
2L2).

(6)

In addition, for rodlike particles [2, 56, 57, 30],

(7) K2 < K1 < K3,

which translates into

(8) L2 ≥ 0, L3 ≥ 0,

whereas for platelets,

(9) K3 < K1 < K2,

leading to

(10) L2 ≤ 0, L3 ≤ 0.

The computational domain is a 1-d interval [−h, h] or a 2-d box of dimensions
[−h, h] × [0, 2πh]. Scaling by the half gap width h and the relaxation time scale
t0 = α

νkT , we define dimensionless variables as

(11) x̃ = x
h , t̃ = t

t0
, ṽ = h

t0
v.

The following dimensionless parameters arise in the model equations:

(12) Er = h2

L1
, De = γ̇t0, θ2 = L2

L1
, θ3 = L3

L1
.
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The dimensionless flow field becomes

(13) v = De(y, 0, 0),

where De is the Deborah number, the dimensionless shear rate, and Er is the Ericksen
number (normalized strength of the distortional elasticity potential). It is worthy
to note that the various models in the literature lead to different definitions of the
fundamental dimensionless parameters, mainly due to the starting point (irreversible
thermodynamics, continuum mechanics, or molecular kinetic theory). Of particular
note, many authors incorporate the flow into the definition of the Ericksen number,
which can easily be done by defining a new Ericksen number as the product of Er
above with De. We depart from this convention, decoupling the flow from the Ericksen
number, so that the infinite Ericksen number limit yields the monodomain model for
simple shear where the distortional elasticity potential is eliminated. Our convention
is also employed by Rey’s group, whereas the Leal, Denn, and Hess groups have
linked the Ericksen number to flow. Nonetheless, the mathematical form of the model
equations at the scale of the second-moment tensor is quite robust, so that one can
draw tight analogies between the Deborah and Ericksen numbers among the various
models.

We will drop the tilde overbar ˜ in the remainder of this paper, with all graphs in
nondimensional variables. The dimensionless form of (3) is

∂Q
∂t + v · ∇Q − Ω · Q + Q · Ω − a[D · Q + Q · D] = − 2a

3 D − 2aD : Q(Q + I
3 )

− [ 32 (1 − N
3 )Q − 3

2N(Q2 − 1
3 (Q : Q)I) + 3N(Q3 − 1

3 tr(Q3))] + 1
ErΔQ

+ θ2
2Er [∇∇ · Q + (∇∇ · Q)T − 2

3 tr(∇∇ · Q)I]

+ θ3
2Er [∇Q : ∇Q − 1

3 tr(∇Q : ∇Q)I + 2(∇ · Q) · ∇Q + 2Q : ∇∇Q],

(14)

and (6) leads to

(15) θ2 ≥ −2, − 3
2 (1 + 1

2θ2) ≤ θ3s ≤ 3(1 + 1
2θ2).

In this paper, we will focus on the case of rod-like macromolecules with equal
splay and bend constants, i.e., θ3 = 0. The dimensionless computational domain in
physical space (x, y, z) is [0, 2π]×[−1, 1]×[0, 2π], which allows physical plate anchoring
conditions on the plates (y = −1, 1) and periodic conditions otherwise.

It is useful to write Q in the following spectral form:

(16) Q = s(n1n1 − I
3 ) + β(n2n2 − I

3 ),

where s = d1−d3 and β = d2−d3, and d1, d2, and d3 are the eigenvalues of M = Q+ I
3

satisfying 0 ≤ d3 ≤ d2 ≤ d1 ≤ 1 and d1 + d2 + d3 = 1.
The order parameters s and β obey s ≥ β ≥ 0, where the equalities define special

configurations; when s > 0, n1 is uniquely defined and is called the major director;
when s ≥ 0 and β = 0, the orientation is uniaxial, whereas s > 0 and β > 0 correspond
to biaxial phases. Orientational degeneracies arise when s = 0 (the isotropic phase) or
s = β �= 0, which corresponds to order-parameter defects in which the major axis of
orientation is not unique but rather lies on a circle. This type of defect is often called
an oblate phase, since the triaxial ellipsoid defined by the positive-definite second-
moment tensor M = Q + 1

3I is an oblate spheroid, where the principal axes obey
d1 = d2 > d3. In nondefect phases, the triaxial ellipsoid defined by M is a prolate
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spheroid in the nematic equilibrium phase (where d1 > d2 = d3, or s > 0, β = 0)
and a triaxial ellipsoid otherwise (with d1 > d2 > d3 > 0, or s > 0, β > 0). In the
figures below, we will illustrate these nontopological defects by snapshots of the spatial
distribution of M tensor orientational ellipsoids. The power of these figures is that,
in addition to nontopological defects which are independent of space dimensions, the
more traditional topological defects—defined by winding number invariants around a
closed curve in 2 or 3 space dimensions of a presumed uniquely defined major director
axis—are also easily identified in 2-d morphologies.

It is traditional to illustrate, classify, and quantify orientational distributions in
terms of the spectral representation of Q (equivalently, M), with figures of scalar order
parameters (s and β) and the major director n1. We caution that a focus on n1 is
potentially misleading. A precipitous drop in s = d1−d3 or s−β = d1−d2 corresponds
to a defocusing of the orientational distribution and passage to either an oblate defect
phase (s − β = 0, s > 0) or an isotropic phase (s = 0, so that all di = 1

3 ). In the
oblate defect phase, the “major director” lies on the circle spanned by the principal
axes of the double eigenvalue d1, and, in the isotropic phase, the major director is
anywhere on the sphere. It will be shown that oblate defect phases are quite common
in sheared nematic polymer layers, yet isotropic defects are not observed. Thus, it is
necessary to monitor the order parameters when looking at “director distributions”
to fully appreciate the focusing and defocusing of the rod ensemble. Rather than look
at these eigenvalue and eigenvector features separately, we present graphics of the full
M tensor ellipsoids across the gap and in time, which combines all the information
contained in the directors and the order parameters. Nonetheless, we also follow
tradition with graphs of the major director n1, in particular the “in-plane” angle
φ, measured counterclockwise from the positive x-axis, and “out-of-plane” angle ψ,
measured from the shear (x-y) plane toward the positive z-axis:

(17) n1 = (cosψ cosφ, cosψ sinφ, sinψ).

Note in the figures to follow that ψ = 0 corresponds to in-plane orientation where
n1 lies in the shear (x-y) plane, while ψ = π

2 corresponds to vorticity alignment of n1,
also known as logrolling alignment. The graphs of ψ and φ therefore quickly identify
distinctions between various local orientational phases. For example, the kayaking
limit cycle corresponds to an oscillation of ψ about ψ = π

2 , while the in-plane angle
φ continuously rotates; the tilted kayaking limit cycle consists of an oscillation of ψ
about an axis between 0 and π/2, and the in-plane angle φ also oscillates with finite
amplitude.

B. Computational methods and boundary data. The model (14) consists
of a system of nonlinear parabolic PDEs for Q, with the following generic structure:

(18)
∂Q

∂t
− 1

Er
ΔQ = F(Q).

We use a standard backward difference scheme for time discretization and second-
order extrapolation for the nonlinear functional F (Q). The second-order semi-implicit
scheme in time is then

(19)
3Qn+1 − 4Qn + Qn−1

2δt
− 1

Er
ΔQn+1 = 2F(Qn) − F(Qn−1),

where Qn = Q(t = tn) and δt is the time step. We illustrate the method in 3-d space
(x, y, z) ∈ [−1, 1] × [0, 2π] × [0, 2π]. In the 1-d case, we seek numerical solutions that
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are homogeneous in (y, z), whereas we seek solutions that are homogeneous in z in the
2-d case. For spatial discretization, we use the fast Fourier transform in z and x and
a Legendre polynomial basis in y. In particular, let Q(x, y, z) denote any component
of Q:

(20) Q(x, y, z) = Q̃(y) +

N/2∑
n=−N/2

K−2∑
k=0

M/2∑
m=−M/2

an,k,meinxψk(y)e
imz,

where

Q̃(y) =
Q(x, 1, z) −Q(x,−1, z)

2
y +

Q(x, 1, z) + Q(x,−1, z)

2
,(21)

ψk(y) = Lk(y) − Lk+2(y).(22)

In the above, Lk is the kth-order Legendre polynomial; Q̃(y) satisfies the nonhomo-

geneous boundary condition at y = ±1. In 1-d simulations, Q(y) =
∑K−2

k=0 akψk(y) +

Q̃(y). In 2-d simulations in (y, z),

(23) Q(y, z) =

K−2∑
k=0

M/2∑
m=−M/2

ak,mψk(y)e
imz + Q̃(y).

In the graphs below we will show the dynamics of a randomly chosen 2-d amplitude
function ak,m after it has been populated with small noise, in order to explore the
stability of 1-d attractors. Further details of the numerical method can be found in [50]
and subsequent papers. In the numerical simulations we presented here, for all 1-d
simulations with y ∈ [−1, 1], we use the 128 Legendre modes. For all 2-d simulations
with (y, z) ∈ [−1, 1]×[0, 2π], we use 128 Legendre polynomials and 128 Fourier modes.

Boundary conditions on the orientational distribution. We assume that Q is in
static equilibrium at the plates, which means Q is uniaxial (s �= 0, β = 0) at y = ±1,
with s0 prescribed by the normalized volume fraction N ,

(24) s0 = 1
4

(
1 + 3

√
1 − 8

3N

)
,

while the major director n0 is arbitrary. Thus, one has the ability to prescribe any
principal axis of orientation at the plates. This leads to the parameterized boundary
conditions on Q:

(25) Q(y = ±1) = s0(n0n0 − I
3 ).

In the studies to follow, we consider the following five choices of anchoring conditions
on n0, which are in order of presentation, parallel to the plates and along the flow
direction, homeotropic or orthogonal to the plates, tilted in-plane midway between
the flow and flow-gradient axes, tilted out-of-plane, and logrolling (along the vorticity
axis, perpendicular to the shear plane):

(26) n0 =

⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝ 0

1
0

⎞
⎠ ,

⎛
⎜⎝

1√
2

1√
2

0

⎞
⎟⎠ ,

⎛
⎜⎝

1√
3

1√
3

1√
3

⎞
⎟⎠ ,

⎛
⎝ 0

0
1

⎞
⎠ .
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In the flow (x) and vorticity (z) directions, we assume that Q satisfies periodic
boundary conditions. For this paper, we will suppress variations in the flow direction.

It is worth mentioning that simulations with “in-plane orientation” will always
yield in-plane response functions when the constraints Qxz = 0 and Qyz = 0 are
obeyed at the walls and in the initial data. The in-plane invariant subspace has
been exploited in many studies in the past to simplify the dynamics, to analytically
explore effects of orientational confinement, or to identify responses which are stable
within this confined space of orientations. For in-plane attractors, we impose these
constraints; for out-of-plane attractors, we initialize Qxz and Qyz, with infinitesimal
white noise with O(10−4) amplitude, and report whether the evolution is back to
in-plane confined attractors or to full tensor structures. A simple comparison of
the in-plane attractor (Table 1) and out-of-plane attractor (Table 2) conveys that
most (but not all) in-plane attractors are unstable to out-of-plane tensor degrees of
freedom, independent of the number of space dimensions (0, 1, or 2). Similarly, we
report results of dimensional stability within in-plane symmetry constraints, where
the 2-d modal amplitudes ak,m of the Fourier–Legendre basis in y, z are populated
with weak noise on top of any snapshot of a 1-d attractor.

Throughout this paper, we fix the particle geometry parameter a = 0.8 and
the normalized volume fraction N = 6; these values are consistent with our earlier
studies of monodomain and 1-d structure attractors [15, 8, 6], which give the best
accuracy with full orientational distribution function resolution from Doi–Hess kinetic
model simulations [19]. We further fix the Ericksen number at Er = 1000, which is
sufficiently high, so that we access complex dynamic and spatial morphologies. We
have performed simulations at a variety of Er, but the results presented are the most
informative relative to the previous literature.

3. Structure attractors: 0, 1, and 2 space dimensions. We begin with
the 0-d monodomain bifurcation diagram (attractors versus De), Figure 1, followed
by phase diagrams of in-plane (Table 1) and out-of-plane (Table 2) 1-d structure
attractors versus De for five wall anchoring conditions, and then stability to 2-d per-
turbations for the full phase diagrams. Each attractor is determined by long-time
simulations so that transients have passed. This section is devoted to the details of
individual attracting states and how the hierarchy of attractors relates to one an-
other. As discussed above, these attractor diagrams successively admit additional
orientational or spatial degrees of freedom, so that each successive diagram conveys
robustness or instability of the previous reduced-order model as configuration or phys-
ical space constraints are released.

Figure 1 depicts homogeneous monodomain response functions versus De, sum-
marized from [15], which apply since the infinite Er limit of our model reduces to
the so-called Doi closure model for monodomain dynamics. These diagrams give the
“free space” attractors both for in-plane and full orientational degrees of freedom,
where the effects of physical plate anchoring are suppressed. We often illustrate a
structure attractor in terms of the monodomain response at fixed spatial locations.
As we shall illustrate, these longwave results are excellent predictors of behavior lo-
cally in the center of the shear gap, including fixed De responses and their transitions
(bifurcations). We simply note that this correlation of monodomain De cascades
with 1-d heterogeneous cascades implies that the structure cascades possess longwave
instabilities.

Table 1 presents the 1-d attractor type for in-plane orientation tensors and hetero-
geneity in 1 space dimension (y). Additionally, dimensional robustness or instability
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Fig. 1. The monodomain bifurcation diagram from [15] for normalized shear rates 0 ≤ Pe ≤ 6,
where De of this paper is proportional to Pe. ‖Q‖ denotes the 2-norm for the second-order tensor
Q. All transitions (bifurcations) occur within the normalized shear rates 0 ≤ Pe ≤ 6, beyond
which the unique attractor is an in-plane flow-aligned state. Black (dark solid) and green (dotted)
branches are stable; blue (solid) and red (dashed) branches are unstable. The bottom graph is the
out-of-plane component Qyz, whose nonzero values distinguish out-of-plane solutions. Between the
two pitchfork bifurcations BP that mark in-plane to out-of-plane transitions at Pe ≈ 2.4 and 3.7,
we give both the maximum and minimum values of Qyz. The bifurcation labels are PD for period-
doubling, HB for Hopf, BP for pitchfork, and LP for a saddle-node bifurcation of out-of-plane
periodic states. A cascade of PD bifurcations leading into and out of a window of chaotic attractors
for 2.92 < Pe < 3.25 is resolved. Reprinted with kind permission from Springer Science + Business
Media: Rheologica Acta, Monodomain response of finite-aspect-ratio macromolecules in shear and
related linear flows, Volume 42, 2003, pages 20–46, M. Gregory Forest and Qi Wang, Figure 8.

Table 1

1-d phase diagram and dimensional stability for confined in-plane orientation tensors with the
symmetry constraints Qxz = Qyz = 0 imposed versus Deborah number De and plate anchoring
boundary condition on the major director n0. Each entry contains the 1-d heterogeneous attractor
type and either “−1” if the solution is stable to 2-d perturbations or “−2” if the solution is unstable
to 2-d perturbations with convergence to full 2-d structure.

n0 \ De 2 3.5 3.75 4 4.5 4.75 5 5.5 6

(1, 0, 0) W-T − 1 W − 2 W − 2 W − 2 FA − 2 FA − 2 FA − 2 FA − 1 FA − 1

(0, 1, 0) W-T − 1 W − 2 W − 2 W − 2 FA − 2 FA − 2 FA − 2 FA − 1 FA − 1

(0, 0, 1) LR − 1 LR − 2 LR − 2 LR − 2 LR − 2 LR − 2 LR − 2 LR − 2 LR-FA − 1

is conveyed: the 1-d attractor is stable to noisy 2-d perturbations if −1 appears after
the attractor type, or unstable if −2 appears, indicating growth of the perturbations
and saturation to a full 2-d spatial morphology. For this paper, we consider periodic
boundary conditions in the vorticity direction z, as in [28, 29].
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Table 2

1-d phase diagram and dimensional stability for full orientational degrees of freedom versus
Deborah number De and plate anchoring boundary condition on the major director n0. Each table
entry conveys the 1-d heterogeneous attractor type, followed by “−1” if that solution is stable to
2-d perturbations and by “−2” if the solution is unstable to 2-d perturbations, leading to full 2-d
morphology.

n0 \ De 2 3.5 3.75 4 4.5
(1, 0, 0) K2K1 − 1 K2 − 2 K2K1 − 2 CH − 2 CH − 2
(0, 1, 0) K2K1 − 1 K2 − 1 K2K1 − 2 CH − 2 CH − 2
(1, 1, 1) K2K1 − 1 K2K1 − 1 K2K1 − 1 CH − 2 CH − 2
(0, 0, 1) K1 − 1 K1 − 1 K1 − 1 K1 − 1 K1 − 2

n0 \ De 4.75 5 5.5 5.625 6
(1, 0, 0) CH − 2 CH − 2 K2 − 1 FA − 1 FA − 1
(0, 1, 0) CH − 2 K2 − 2 K2 − 1 FA − 1 FA − 1
(1, 1, 1) CH − 2 K2 − 1 K2 − 1 OS − 1 OS-FA − 1
(0, 0, 1) CH − 2 CH − 2 CH − 2 K2 − 1 OS-FA − 1

Table 2 presents the same information as Table 1, except with full orientational
degrees of freedom. These diagrams give attractors versus two experimental controls:
the Deborah number De, which parametrizes the bulk imposed shear rate relative
to the nematic polymer relaxation time and is controlled by plate speed and plate
separation distance; and the wall anchoring boundary condition that selects the pri-
mary orientation axis n0 at each plate, which is typically controlled by mechanical or
chemical treatment.

3.1. Table 1: In-plane 1-d heterogeneous attractors and their stability
to 2-d perturbations. When plate anchoring boundary conditions lie in the shear
plane (of the primary flow (x) and flow-gradient (y) directions), there is a strong bias
toward orientational distributions where the out-of-plane components are negligible:
Qxz = Qyz = 0. Often these in-plane response functions are unstable to out-of-plane
perturbations, yet they are valuable nonetheless in explaining fundamental behavior.
Thus, it is prudent to explore in-plane orientational responses and then their stability
to out-of-plane degrees of freedom. This subject has attracted significant attention in
the literature, especially since the model equations are far more tractable and even
explicitly solvable in many situations. Sometimes the instabilities to out-of-plane
modes are extremely weak and may take hundreds if not thousands of relaxation
times to emerge [62]. The monodomain diagram, Figure 1 from [15], yields that
in the nematic concentration range of this paper, the low De in-plane response is
“tumbling” (continuous rotation of the major axis of orientation), which gives way
to “wagging” (finite oscillations) and finally steady flow alignment as De increases.
These longwave responses will emerge as accurate predictors of midgap behavior in
heterogeneous simulations.

The outlier in this picture surrounds the logrolling steady state with in-plane con-
straints. There is no freedom for the major director (peak orientation axis) to pass
from vorticity alignment to any other direction: the Qxz = Qyz = 0 constraints allow
either vorticity alignment or any direction orthogonal (i.e., in the shear plane). The
only pathway is therefore through an order-parameter degeneracy, or defect phase.
From Table 1, when logrolling boundary conditions are imposed together with in-
plane symmetry for sufficiently small De, the response is steady with logrolling orien-
tation throughout the shear gap; note this is in stark contrast with any other low De
response. The other available monodomain in-plane responses, namely tumbling or
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wagging, are simply in conflict with the symmetry and boundary constraints. A com-
posite heterogeneous response that is vorticity-aligned at the plates and tumbling in
the interior would require a discontinuity at the boundary. As De increases, however,
the stable monodomain response switches to in-plane flow alignment, which is com-
patible with the logrolling boundary condition only through a defect phase somewhere
in the gap! Namely, the order parameters must allow either for a 2-d eigenspace of
the largest eigenvalue, d1 = d2 �= d3, or for an isotropic phase where all di = 1

3 . The
former case turns out to be preferred, leading to a steady structure with an oblate
defect phase. This is effectively visualized in terms of the second-moment (M) tensor
ellipsoid, as described earlier. Confined in-plane attractors are therefore especially
useful for gaining insight into shear-induced nontopological defects, due to order pa-
rameter degeneracies. These defects are not limited to in-plane symmetry, but they
are easily prescribed and explained with in-plane confined symmetry. Nontopological
defects are totally absent in liquid crystal director theories, which possess only di-
rector or topological defects, which are furthermore possible only in 2 dimensions or
greater. This is one of the most striking differences between director and tensor or
kinetic models: nontopological defects can arise even in monodomains (0 dimensions)
or in 1 dimension.

Now, with coupled physical boundary conditions at the plates and distortional
elasticity, we simulate three different anchoring conditions (tangential, normal, and
vorticity-alignment (logrolling)), each respecting the in-plane symmetries Qxz = Qyz

= 0. Five different structure attractors arise, which we label according to the nomen-
clature first introduced by Tsuji and Rey [53, 54]: flow-aligning (FA), logrolling (LR),
logrolling–flow aligning (LR-FA), wagging–tumbling (W-T), and wagging (W).
These attractor phase diagrams are consistent with and synthesize earlier 1-d re-
sults [53, 54, 55, 68, 20, 64]. We now explain specific features of each type of attractor
in Table 1. We give graphical illustrations of the most interesting attractors, starting
with steady in-plane 1-d structures.

I. Steady, in-plane, 1-d attractors.

FA steady states: For sufficiently high De (where the monodomain response
is flow-aligning) with in-plane anchoring, steady state structure forms. The major
director is aligned in the shear plane throughout the gap, with a boundary layer near
each plate that interpolates from the anchoring condition to the preferred midgap
alignment angle. In the boundary layers, the order parameters exhibit distortions
proportional to the director gradient. These results are consistent with studies of
Rey’s group and the authors, and they are omitted.

LR steady states: With plate anchoring along the vorticity (z) axis, the in-plane
attractors at low and intermediate De are steady and “logrolling,” meaning the major
director is oriented with the vorticity axis in the entire shear gap. There is a boundary
layer near each plate with order parameter distortions to interpolate from the uniaxial
plate condition (d1 > d2 = d3) to a fully biaxial distribution (di distinct) that is nearly
constant between the boundary layers. These steady structures represent anchoring-
dominated elastic distortions, where the flow is not strong enough to impose the
monodomain preference for tumbling at the midgap.

LR-FA steady states: When De is sufficiently high, i.e., the flow is strong enough,
the midgap response adheres to the monodomain, steady flow-alignment state, Fig-
ure 1. To accommodate the logrolling anchoring condition, the structure consists of
an interior FA gap layer sandwiched between LR layers adjacent to each plate. In-
plane symmetry constraints impose a nontopological, order-parameter defect phase
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Fig. 2. Nontopological defects in a stationary structure. The order parameters di, i = 1, 2, 3,
and orientation tensor ellipsoids across the gap for the in-plane FA-LR composite steady state with
De = 6 and logrolling anchoring conditions.

at the transition site between in-plane and vorticity alignment. These features are
illustrated in Figure 2. Note the order parameters d1 and d2 collide at the site of
transition from vorticity to in-plane alignment, always remaining above d3, creating
an oblate defect phase (geometrically observed as an oblate second-moment ellipsoid).
Prolate spheroids (nondefect phases) arise everywhere else (d1 strictly greater than
d2); the local phases are biaxial (di unequal), except at the plates where we impose
the uniaxial equilibrium. Figure 2 shows that the principal axis of Q is aligned with
the vorticity axis from the plates to the defect and then with an in-plane alignment
angle across an interior layer, with φ ∼ 6◦ and ψ = 0 at the middle of the gap.

These oblate phase, nontopological defects are shown below to be generic when-
ever “composite attractors” arise: distinct response functions coexist in the shear gap
whenever the physical plate anchoring condition conflicts with a flow-selected inter-
nal response function, and the distortional elasticity potential prescribes the spatial
interpolation. This “conflict” can be controlled by a combination of anchoring con-
dition and De, including steady and unsteady structures, in-plane and out-of-plane,
1-d and 2-d tensors, and indeed this is the intuitive basis on which we organize the
phase diagrams of Tables 1 and 2.

II. Unsteady 1-d in-plane attractors. Just as monodomain attractors un-
dergo a De transition between steady and unsteady responses (see Figure 1), so do
heterogeneous attractors subject to physical anchoring conditions. The first compre-
hensive documentation of unsteady structure transitions was given by Tsuji and Rey
[53, 54, 55], which the authors augmented in subsequent tensor and kinetic studies.
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Here we briefly describe the in-plane unsteady attractors, focusing mainly on features
that will help illuminate out-of-plane phenomena.

We first note that logrolling plate anchoring conditions and in-plane symmetry
impose rigid constraints on unsteady transitions, just as we have seen with steady
composite states. That is to say, LR states can go unsteady with a continuous
director transition only by way of a kayaking orbit, which is disallowed by in-plane
symmetry. As Table 1 conveys, in-plane structure attractors with logrolling boundary
conditions are always steady! This is a remarkable consequence of anchoring coupled
with enforced orientational symmetry. However, these LR in-plane confined states
will necessarily be extremely sensitive to noise in out-of-plane degrees of freedom;
this holds true in all space dimensions and no matter what model one uses! (Note
the roll cell steady structures observed by Larson and Mead and modeled by Leal,
Klein, et al. are with logrolling plate conditions; we find in unpublished simulations
that a small perturbation of the plate anchoring condition leads to breakup of the roll
cells.)

T-W: From Figure 1, low-to-moderate De and in-plane symmetry selects un-
steady monodomain responses, tumbling T at low De giving way to wagging W
above a critical De. At sufficiently low De together with any in-plane anchoring con-
dition, the midgap tumbles, while the response closer to the plates has to transition to
finite oscillations (wagging), which continuously attenuate in amplitude to conform to
steady alignment at the plates. Once again, the existence of a composite state leads
to nontopological defects at the site of the T-W transition; here the defect phases are
transient, local in time as well as space, forming during the relatively rapid part of
the tumbling cycle. This periodic structure attractor has been illustrated in previous
studies [54, 20], and thus it is omitted.

W: As De increases from 2 to 3.5, the interior tumbling layer completely vanishes
because the monodomain response dominating the interior undergoes the classical T
to W transition. Thus, the entire layer is unsteady with finite oscillations at every
interior gap height. These attractors have also been discussed in detail by Rey’s group
and the authors, and they are omitted. Absent of any “composite” monodomain
responses, these unsteady states do not have defects. This comment addresses a basic
rule of thumb: nontopological defects arise in 0-, 1-, and 2-d simulations, locally in
space and/or time, when there is a transition from one local monodomain response
to another, both in steady and unsteady attractors.

We now discuss the stability of these in-plane 1-d attractors to 2-d perturbations,
while maintaining in-plane symmetry constraints.

3.2. Stability of in-plane 1-d attractors to in-plane 2-d perturbations.
In Table 1, each entry has a −1 for stability and −2 for instability to 2-d perturbations.
Thus, at De and anchoring conditions that indicate instability, there is coexistence
of 1-d and 2-d heterogeneous attractors. The overall stability picture is relatively
straightforward for all three anchoring conditions:

• for sufficiently low and high De, the 1-d attractors are robust to 2-d pertur-
bations, whereas

• at intermediate De, full 2-d morphology develops from noisy perturbations of
the unstable 1-d attractors.

Higher resolution details depend on anchoring conditions. For anchoring in the
shear plane, the monodomain De cascade is a faithful predictor of the De structure
cascades: the 1-d structure transitions are longwave in y, and the 1-d to 2-d tran-
sitions are also associated with longwave y, z-dependent structure. This explains, in
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retrospect, why the early focus on orientational monodomain dynamics was so suc-
cessful.

The logrolling anchoring condition together with in-plane symmetry has a far
more dramatic effect. Vorticity alignment suppresses all unsteady limit cycles, inde-
pendent of whether the attractor is 1-d or 2-d. This is intuitively clear: the major
director cannot smoothly transition from the z-axis at the plates to the kayaking limit
cycle (whose director violates in-plane symmetry), so it remains pinned along the vor-
ticity axis. As one can glean from a comparison of Tables 1 and 2, these responses are
highly sensitive and go away if symmetry is broken (either of the anchoring condition
or the interior constraints).

Since 2-d attractors require significant detail to explain and visualize and the
most physically relevant structures are with full tensor degrees of freedom, we defer
2-d descriptions to full tensor simulations.

3.3. Table 2: Full tensor, 1-d heterogeneous attractors and their stabil-
ity to 2-d perturbations. The next simulation results, collected in Table 2, convey
the stability of Table 1 solutions with respect to out-of-plane orientational degrees
of freedom, thereby extending information in the monodomain diagram, Figure 1, to
1 and 2 space dimensions. We conclude that instability to out-of-plane orientation is
a longwave instability; the historical studies of monodomain dynamical systems are
therefore faithful indicators of De transitions with physical boundary conditions. The
caveat to this general statement is that the anchoring condition and strength of the
distortional elasticity potential can overwhelm flow selection criteria in the middle of
the gap; an example of this was given above for logrolling anchoring with in-plane
symmetry.

The diverse 1-d, full tensor, structure attractors (Table 2 entries) have been a
principal focus of the past several years of modeling and simulation. Almost all
reports have shown that fixed De attractors and De-dependent transitions occur with
a finite lengthscale of gradient structure in the gap (y direction), independent of
attractor type (steady and unsteady, regular or chaotic). Table 2 gives a benchmark
on the literature for the continuum model and then conveys results of the new study
of stability to two space-dimensional perturbations.

We begin with descriptions of representative 1-d full tensor attractors in Table 2.
These structure attractors have been described in several ways (cf. [53, 54, 55, 31,
13, 14, 49, 68, 20, 63, 64, 21]); we adopt these descriptions and present new graphical
illustrations that distinguish among 1-d structure attractors and describe key features
of 2-d morphologies.

In Table 2, 1-d full-tensor attractors are classified according to their monodomain
responses at each spatial site; as with in-plane attractors, the structure responses are
either uniform across the gap or form three layers, one in the interior and another
response near each plate. In addition to the in-plane monodomain responses discussed
above, additional limit cycles associated with full orientational degrees of freedom are
labeled as follows: K1 denotes the classical Larson–Ottinger kayaking attractor for
which the major director rotates about the vorticity axis; K2 denotes a tilted kayaking
attractor, which comes in pairs due to reflection symmetry about the shear plane, for
which the major director rotates about an axis tilted between the vorticity axis and
shearing plane; and CH denotes a chaotic attractor which typically jumps erratically
between both types of kayaking limit cycles. The out-of-plane steady response is
labeled OS, where the primary director is tilted between the shear plane and vorticity
axis.
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As with Table 1, the most dramatic differences due to anchoring in Table 2 arise
with the logrolling condition, which promotes symmetric K1 kayaking orbits instead
of tilted K2 orbits that are promoted by any other anchoring condition.

I. Steady full tensor, 1-d attractors and stability to 2-d perturbations.
At sufficiently low De, distortional elasticity overwhelms the flow, and steady struc-
tures dominate. We omit these attractors since they are quite similar to the steady
structures explored in the asymptotic low De regime by the authors [17, 20, 63, 8].
Likewise, at high De, the flow imposes a steady alignment response in the interior,
and steady structures prevail. The details of structure vary with the anchoring con-
dition (in-plane, logrolling, or tilted) and De, which have already been documented
in results of Rey’s group and the authors. We also omit these steady 1-d structure
figures to save space. They have similar features to in-plane steady states: the de-
gree of gradient structure depends at high De on the relative mismatch between the
monodomain flow-alignment preference and the anchoring condition; at very low De
(not shown in Table 2) and the Er = 1000 imposed here, distortional elasticity over-
whelms the preference of the nematic liquid to kayak and arrests the dynamics. If
the anchoring condition conflicts with the midgap steady alignment, a nontopological
defect phase allows the orientation tensor to interpolate between them (cf. the LR-FA
steady structure shown earlier).

The steady FA 1-d structures at high De are all stable to 2-d perturbations. The
simulations are not very enlightening, in that the Legendre–Fourier modal amplitudes
are given an initial noisy amplitude distribution superimposed on the steady 1-d
attractor, and then the 2-d modal amplitudes all decay exponentially to zero. Rather
than show this linearized stability behavior, we defer the illustration to the more
interesting unsteady attractors which also share linearized 2-d stability.

II. Unsteady out-of-plane 1-d attractors and their (in)stability to 2-d
perturbations. Recall from Figure 1 that full-tensor monodomain limit cycles are
out-of-plane (i.e., kayaking) at low De; tumbling in-plane orbits are unstable to out-of-
plane degrees of freedom. Then a remarkable De sequence unfolds, with coexistence
of symmetric and tilted kayaking orbits, period-doubling sequences to chaos from
the tilted kayaking orbits, and then a regularizing sequence back to periodic tilted
kayaking and finally to steady flow alignment. The 1-d structure responses inherit
these dynamical features especially at early times after the plates are set into motion,
but plate anchoring imposes conflicts with the interior response functions, leading to
space-time attractors that we illustrate next. This overview of the full tensor, 1-d
attractor phase diagram versus De for various anchoring conditions has not appeared
in the literature, so it is worth some attention at this junction.

K2-K1 unsteady 1-d states: This composite attractor arises for all anchoring
conditions except logrolling at low De. The interior response is consistent with mono-
domains in weak shear, namely the classical K1 kayaking orbit. However, the plate
boundary condition, unless it is logrolling, is inconsistent with kayaking based on
symmetry. The compromise response is the K2 tilted kayaking orbit in layers near
the plates, with K1 limit cycles in the interior of the gap. This composite phase is
the out-of-plane analogue of the tumbling-wagging composite attractor; indeed, the
projections onto the shear plane of kayaking and tilted kayaking are tumbling and
wagging, respectively. Again, the transition between finite and continuous rotations
in the shear gap spawns nontopological, oblate phase defects that are local in space
and periodic in time. Figure 3 conveys salient features: the order parameters di(y, t)
indicate strong defocusing events near the plates where d1 and d2 periodically collide,
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(a) (b) (c)

(d) (e)

Fig. 3. Features of the unsteady composite K2-K1 attractor at De = 2 with tangential anchor-
ing. (a) The principal eigenvalue d1 of the second-moment tensor; (b) the second eigenvalue d2 of
M; (c) the smallest eigenvalue d3 of M; (d) the in-plane angle φ of the major director; (e) the
absolute value |ψ| of the angle between the major director and the shear plane.

yet remain bounded above d3, leading to periodic formation of a local oblate defect
phase near each plate; the major director’s in-plane angle φ and out-of-plane angle ψ
indicate kayaking layers near the plates and a tilted kayaking layer in the interior, but
it is difficult to glean this property without careful inspection. Alternatively, Figure 4,
top row, shows the major director dynamics sitting at two specific heights in the shear
gap, clearly conveying the midgap (y = 0) kayaking orbit versus the tilted kayaking
orbit near the top plate. To see the defect event more clearly, the bottom graphic of
Figure 4 shows a time series of the orientation tensor ellipsoids across the gap, where
the time sequence is chosen to capture the oblate defect phase onset, formation, and
dissolution.

3.4. 1-d K2-K1 attractors at low De; stability to 2-d perturbations.
We now illustrate the results of Table 2 regarding the stability of low De, unsteady,
kayaking structure attractors to 2-d perturbations. We begin with a snapshot of the
De = 2 attractor above for tangential anchoring; that data is then used to populate
initial conditions for a full 2-d simulation, with superimposed noise on the Legendre–
Fourier amplitudes ak,m. Figure 5 shows the results: the exponential convergence
to zero of the randomly chosen 2-d amplitude function, a7,6(t), where all other 2-d
amplitudes (not shown) are behaving the same; and one snapshot of the corresponding
2-d array of orientation tensor ellipsoids after the 2-d transients have died out, clearly
showing zero gradients in z. There is no generation of higher space-dimensional modes
throughout the dynamics of the 1-d unsteady attractors, including during the local
defect generation events. These stability results are typical of all attractors labeled
in Tables 1 and 2 as stable to 2-d perturbations.

3.5. 1-d K2-K1 attractors at moderate De; instability to weak 2-d mor-
phology and chaotic dynamics. Next, we simply increase the De from 2 to 3.75,
retaining tangential anchoring. The 1-d K2-K1 attractor persists in the confined 1-d
simulations. We then repeat the stability simulation carried out at De = 2. As shown
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Fig. 4. Features of the 1-d unsteady composite K2-K1 attractor at De = 2 with tangential
anchoring. Top row: the major director kayaking orbit at the midgap, y = 0; the tilted kayaking
orbit at y = 0.95 near the top plate. Bottom row: the second-moment tensor ellipsoids across the
gap in a time sequence that captures the oblate defect phase formation and breakup near the plates.

in Figure 6, the 2-d amplitude functions (we choose a9,6(t) for this simulation) do
not converge back to zero, and instead the amplitudes saturate to nonzero dynamics
to form a transient 2-d morphology. The Legendre–Fourier modal amplitudes remain
relatively small (compared to other 2-d morphologies shown below), yet they take on
the same signatures of chaotic 0- and 1-d attractors. Thus, we find the De transition
to chaotic dynamics occurs at reduced De in 2 space dimensions! This is consistent
with our recent comparison of 0-d monodomain and 1-d heterogeneous chaotic attrac-
tors, where the measures of chaos such as positive Lyapunov exponents are enhanced
by spatial degrees of freedom [21]. Figure 7 shows two representative snapshots of
the weak 2-d morphology: the order-parameter diagnostic s− β = d1 − d2 drops only
by 10% from the equilibrium value at the plates, so that the orientation is a nearly
uniaxial, prolate phase across y-z and there are no defect structures in these snap-
shots; the out-of-plane angle ψ of the major director suggests a tilted kayaking phase
across y-z, with axis of symmetry close to the shear plane. This is confirmed only by
producing local monodomain orbits per spatial site, which we omit due to space lim-
itations since we will give such an illustration below for another 2-d spatio-temporal
attractor. Thus, in addition to development of 2-d morphology, the local monodo-
main response functions have changed dramatically, replacing kayaking around the
vorticity axis by erratic dynamics and jumping between tilted kayaking and kayaking
orbits.

CH unsteady 1-d states: We now raise De to 4.5 and switch to normal anchoring
to illustrate a different boundary condition in the phase diagram, Table 2. From
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Fig. 5. Stability of the 1-d K2-K1 attractor at De = 2 with tangential anchoring. (a) The
dynamics of a randomly chosen 2-d Fourier–Legendre amplitude function, a7,6(t), from noisy initial
data superimposed on a snapshot of the 1-d attractor. (b) A snapshot of the orientation tensor
ellipsoids after transients have passed from the 2-d perturbation, showing a return to stable 1-d
morphology.

Table 2, the 1-d attractor is temporally chaotic, depicted in Figure 8. We choose in
(a)–(c) to show the primary order parameters, di, of the second-moment tensor; one
can see intermittent oblate defect phases (d1 and d2 collide, bounded above d3) that
are local in space and time. The surface plots (d)–(e) of the major director angles
show the chaotic signature across the shear gap where the major director ranges all
over the sphere. To see the local monodomain signature of chaos, in (f) we show the
orbit of the major director at the midgap location, y = 0, indicating the classical
chaotic orbit of a random jump between kayaking and tilted kayaking orbits. To
see the spatial morphology at any given time, in (g) we show the 1-d distribution of
orientation tensor ellipsoids in a time sequence chosen to capture the defect phase.
These 1-d chaotic attractor features are consistent with results in [21], where flow is
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Fig. 6. Instability of the 1-d K2-K1 attractor at De = 3.75 with tangential anchoring. The
dynamics of one randomly chosen Fourier–Legendre amplitude function, a9,6(t), from noisy initial
data superimposed on a snapshot of the 1-d attractor.

Fig. 7. A snapshot of the transient 2-d morphology at De = 3.75 with tangential anchoring
at t = 200, corresponding to Figure 6. The top two panels give the order parameter s = d1 − d3,
s− β = d1 − d2, while the bottom row gives the major director angles φ, |ψ| in the y-z domain. The
superimposed line segments represent the projections of the major director onto the y-z plane, which
reduce to points along y = −1, 1 due to tangential anchoring.

coupled, indicating that at least in 1 dimension, secondary flow is perturbative on
the basic orientational response functions. The temporal statistics at a given gap
height are chaotic, while a Fourier decomposition in space at any fixed time shows a
long-to-intermediate wavelength structure.
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(a) (b) (c)

(d) (e)

(f)

(g)

Fig. 8. The 1-d chaotic attractor for De = 4.5 and normal anchoring. (a)–(c) The ordered
eigenvalues 0 ≤ d1 ≤ d2 ≤ d3 ≤ 1 of the second-moment tensor. (d) In-plane (φ) and (e) out-of-
plane ( |ψ|) angles of the major director. (f) The major director orbit at y = 0. (g) Time sequence
of the orientation ellipsoids across the gap.
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Fig. 9. Dimensional instability of the 1-d chaotic attractor at De = 4.5 with normal anchoring.
The dynamics of the randomly chosen Fourier–Legendre amplitude function a15,6(t) after noisy
initial data is superimposed on a snapshot of the 1-d attractor.

3.6. 1-d chaotic attractors at intermediate De; instability to strong 2-d
morphology and persistent chaotic dynamics. We use this entry of Table 2 to
highlight a generic observation regarding 2-d perturbations. When the 1-d attractor
is temporally chaotic, we always find the following:

• Instability to 2-d perturbations: Figure 9 shows the growth and persistence of
the 2-d modal amplitude a15,6 with higher amplitudes in all modal amplitudes
(not shown) than the previous 2-d structure at De = 3.75.

• Convergence to a strong 2-d morphology at each snapshot: Figure 10 shows
strong 2-d gradients and structure in the order parameters and director an-
gles, where we have superimposed the y-z projection of the major director
in each panel to see correlations between order parameter and director gra-
dient features. The diagnostic s − β = d1 − d2 shows a higher density of
2-d oblate defect phases, which are further visualized in the 2-d array of
orientation tensor ellipsoids around the site (y, z) = (−0.6, 4.5). Thus, the
1-d nontopological defect phases persist in 2 dimensions and expand into 2-d
domains.

• Persistence of chaotic dynamics, which can be seen from the dynamics of
the modal amplitudes: The release of chaotic responses into higher space
dimensions does not arrest the irregular dynamics.

3.7. 1-d chaotic attractors with tilted anchoring; instability to 2-d
chaotic attractors. Next, we retain De = 4.5 but change the anchoring condi-
tions to tilted (between the shear plane and vorticity axes): n0 = 1√

3
(1, 1, 1). The

amplitude functions ak,m(t) again grow and saturate to finite values, omitted here
since they are similar to earlier figures. Figure 11 shows the 2-d morphology snapshot
for comparison with the normal anchoring results of Figure 10. This example illus-
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(a) (b)

(c) (d)

(e)

Fig. 10. A snapshot of the 2-d morphology that evolves from the unstable chaotic 1-d attractor
at De = 4.5 with normal anchoring, corresponding to the full collection of 2-d amplitude functions
sampled in Figure 9. (a), (b) The order parameters s, s−β; (c), (d) the major director angles φ, |ψ|;
(e) the orientation tensor ellipsoids around the site (y, z) = (−0.6, 4.5) which illustrate 2-d gradients
and local 2-d oblate defect domains. The superimposed line segments are the y-z projections of the
major director, which are normal to the plates.
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Fig. 11. Two snapshots of the 2-d morphology that evolves from the unstable chaotic 1-d
attractor at De = 4.5 with tilted anchoring. The orientation tensor ellipsoids are blown up at
different sites in each snapshot to better resolve the morphology, (y, z) = (−0.8, 3.2) and (0., 4),
illustrating strong 2-d gradients and a high density of local 2-d oblate defect domains.

trates the role of anchoring when the dynamics is chaotic: the major gradient and
dynamical features are preserved, but the locations of nontopological defect domains
are shifted.

K1 unsteady 1-d states: When the anchoring conditions are logrolling, there is
a dramatic difference in the heterogeneous response functions versus De, as seen in
Table 2. For example, Table 2 indicates for De = 4.5 that there are chaotic 1-d
response functions for all other anchoring conditions, whereas logrolling induces a pe-
riodic, kayaking attractor across the shear gap. Figure 12 shows the 1-d K1 attractor
features. Note that since the local monodomain response is uniformly kayaking across
the shear gap, there are no defect phases: d1 > d2 uniformly in y, t. The response is
periodic, and the orbit of the major director at y = 0 illustrates classical kayaking.
The ellipsoid time series across the gap does not reflect any defect phases.

3.8. 1-d K1 attractor with logrolling anchoring; instability to 2-d mor-
phology with chaotic dynamics. The kayaking 1-d attractor at De = 4.5 for
logrolling boundary conditions is quite sensitive to 2-d perturbations. We omit the
2-d amplitude function growth since it is similar to other unstable time series. A
strong 2-d morphology develops, with local oblate defect domains shown in Figure 13.
The dynamics is no longer periodic, so that the instability to 2-d degrees of free-
dom coincides with a periodic to chaotic dynamical transition. Note that, at slightly
higher De, Table 2 shows that the 1-d confined simulations are chaotic. Taken to-
gether, the 2-d attractors with irregular dynamics clearly show a significant disparity
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(a) (b) (c)

(d) (e)

(f)

(g)

Fig. 12. The 1-d kayaking (K1) attractor for De = 4.5 and vorticity anchoring. (a)–(c) The
ordered eigenvalues 0 ≤ d1 ≤ d2 ≤ d3 ≤ 1 of the second-moment tensor. (d) In-plane (φ) and
(e) out-of-plane ( |ψ|) angles of the major director. (f) The major director orbit at y = 0. (g) Time
sequence of the orientation ellipsoids across the gap.
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Fig. 13. A snapshot of the 2-d morphology that evolves from the unstable 1-d K1 attractor at
De = 4.5 with logrolling anchoring. The orientation tensor ellipsoids are resolved around two sites,
(y, z) = (0.9, 2.6) and (−0.9, 1.4), which illustrate strong 2-d gradients and local 2-d oblate defect
domains.

with confined 1-d simulations in terms of the De transitions and in fully 2-d gradient
morphology.

4. Conclusion. A comprehensive numerical study of orientational morphology
induced by pure shear flow has been presented, focusing on the Deborah number
cascade in a hierarchy of 0, 1, and 2 space dimensions, for a range of plate anchor-
ing conditions and for a fixed strength of the distortional elasticity potential. The
spectral-Galerkin algorithm has produced benchmarks on the model with respect to
previous results for 1-d morphology, achieved with initial data that populates only
the Legendre basis along the flow-gradient direction. We recover the diversity of pre-
viously reported steady and unsteady 1-d morphology attractors, including in-plane
and full orientation tensor degrees of freedom, tensor and kinetic models, and flow-
imposed and flow-coupled systems, for various plate orientational anchoring conditions
[53, 54, 63, 64, 49, 31, 68, 20, 21]. When compiled into Deborah number cascades
at a fixed Ericksen number for various wall anchoring conditions, 1-d attractor phase
diagrams qualitatively match and extend these previous model predictions to larger
parameter ranges.

The main new results presented are the numerical stability of 1-d sheared mor-
phology to 2-d perturbations in the flow-gradient and vorticity directions and a de-
scription of the 2-d morphologies that arise from unstable attractors. We find that
widely observed time-periodic, 1-d structure attractors at low-to-moderate De are
stable to 2-d perturbations, except when the De is near the periodic-to-chaotic tran-
sition which is lowered with 2-d morphology. These results include diverse structure



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIMENSIONAL ROBUSTNESS OF SHEARED NANORODS 651

attractors that arise for the various anchoring conditions, primarily involving kayak-
ing in interior layers and tilted kayaking in layers extending to the plates, or in the
special case of vorticity-anchoring, where the response is kayaking everywhere in the
shear gap. As De is raised to values where monodomains and 1-d attractors undergo
period-doubling transitions to chaos, instability to 2-d morphology develops; we re-
peat that the De transition to chaos is lowered in the presence of 2-d morphology.
As De increases, again consistent with the 0-d and 1-d phase diagram predictions,
chaotic responses regularize to periodic and then steady structure attractors, and the
structures stabilize and return to robust 1-d morphology.

We find that logrolling (vorticity-aligned) anchoring selects the most distinct at-
tractors and De cascade with respect to other anchoring conditions. In particular,
kayaking attractors dominate at low to moderate De, and the transition to chaotic,
2-d attractors is delayed relative to other anchoring conditions. With in-plane symme-
try, logrolling anchoring has the most dramatic consequence, arresting all dynamics
in the attracting states. Such predictions are therefore not to be trusted for physical
applications.

We further have illuminated the generic feature of nontopological defects, having
to do with order-parameter degeneracy instead of director winding number topology.
These order-parameter defects arise whenever there are composite attractors consist-
ing of distinct types of monodomain response in complementary layers in the shear
gap, such as kayaking in an interior layer and tilted kayaking in layers extending from
the plates, or even in steady structures which are logrolling at the walls and flow-
aligning in the interior of the shear gap. These defects correspond to a degeneracy
in which the leading two eigenvalues of the orientation tensor collide, meaning a loss
of uniqueness of the principal axis of orientation. We have illustrated the genericity
of these defects in steady and unsteady, in-plane and full tensor, and 1-d and 2-d
structure attractors.

It is appropriate that we mention the relationship between our results and those
of the Leal group [29] on flow-coupled 2-d simulations with a tensor orientation model
and Marrucci–Greco distortional elasticity potential. Leal’s group has focused ex-
clusively on logrolling boundary conditions; in the low De regime with a moderate
Er similar to our study here, they reveal a detailed description of the flow feedback
phenomenon of steady roll cells accompanied by a full 2-d morphology. Our study sup-
presses hydrodynamic modes in the secondary velocity fields (vy, vz)(y, z) that yield
roll cells; when restricted to vorticity alignment at both plates as in [29] and low De,
our model predicts stable 1-d steady orientational morphologies. This is represented
for confined in-plane tensor degrees of freedom in Table 1, row 3; one sees that the
transition to 2-d morphology arises at a moderate Deborah number between De = 2
and 3.5. For out-of-plane simulations, Table 2, row (1, 1, 1), shows that De = 2 yields
a stable 1-d unsteady kayaking attractor. Not shown in Table 2, row (0, 0, 1), is the
low De limit, which reveals steady LR 1-d structures that are stable to 1-d pertur-
bations. The natural conclusion from the flow-imposed and flow-coupled comparison
is that flow-coupling preserves steady structure, but the weak nonlinear flow feed-
back leading to steady roll cells generates a correspondingly weak 2-d orientational
morphology. Furthermore, we surmise that the nonlinear flow-induced orientational
morphology is responsible for the topological defects identified in [29], since none of
our pure shear-imposed 2-d morphologies has director defects! This and related issues
are the focus of present studies in our group for flow-coupled 2-d simulations, both
for tensor and kinetic models.

Finally, we mention closely related materials science applications toward which
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this study contributes. Numerical databases for sheared orientational distributions
of nanorod dispersions have been mapped to effective film properties in a series of
papers [60, 66, 59, 61, 64]. With these tools, the results of the present paper are also
applicable to determine heterogeneous property tensors, given known material prop-
erties of the particle phase and solvent. These applications are especially interesting
for 2-d sheared property tensors, which have not previously been explored.
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