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A FOURTH-ORDER TIME-SPLITTING LAGUERRE–HERMITE
PSEUDOSPECTRAL METHOD FOR BOSE–EINSTEIN

CONDENSATES∗

WEIZHU BAO† AND JIE SHEN‡

Abstract. A fourth-order time-splitting Laguerre–Hermite pseudospectral method is introduced
for Bose–Einstein condensates (BECs) in three dimensions with cylindrical symmetry. The method
is explicit, time reversible, and time transverse invariant. It conserves the position density and
is spectral accurate in space and fourth-order accurate in time. Moreover, the new method has
two other important advantages: (i) it reduces a three-dimensional (3-D) problem with cylindrical
symmetry to an effective two-dimensional (2-D) problem; (ii) it solves the problem in the whole space
instead of in a truncated artificial computational domain. The method is applied to vector Gross–
Pitaevskii equations (VGPEs) for multicomponent BECs. Extensive numerical tests are presented for
the one-dimensional (1-D) GPE, the 2-D GPE with radial symmetry, the 3-D GPE with cylindrical
symmetry, as well as 3-D VGPEs for two-component BECs, to show the efficiency and accuracy of
the new numerical method.
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1. Introduction. Since its realization in dilute bosonic atomic gases [2, 12],
Bose–Einstein condensation of alkali atoms and hydrogen has been produced and
studied extensively in the laboratory [26], and it has spurred great excitement in the
atomic physics community and renewed the interest in studying the collective dy-
namics of macroscopic ensembles of atoms occupying the same one-particle quantum
state [17, 23]. Theoretical predictions of the properties of a Bose–Einstein condensate
(BEC) such as the density profile [11], collective excitations [20], and the formation
of vortices [33] can now be compared with experimental data [2]. Needless to say,
this dramatic progress on the experimental front has stimulated a wave of activity on
both the theoretical and the numerical front.

The properties of a BEC at temperatures T much smaller than the critical con-
densation temperature Tc [28] are usually well modeled by a nonlinear Schrödinger
equation (NLSE), also called a Gross–Pitaevskii equation (GPE) [28, 32], for the
macroscopic wave function which incorporates the trap potential as well as the inter-
actions among the atoms. The effect of the interactions is described by a mean field
which leads to a nonlinear term in the GPE. The cases of repulsive and attractive
interactions—which can both be realized in the experiment—correspond to defocusing
and focusing nonlinearities in the GPE, respectively. The results obtained by solving
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the GPE showed excellent agreement with most of the experiments. (For a review see
[3, 16].) In fact, up to now there have been very few experiments in ultracold dilute
bosonic gases which could not be described properly by using theoretical methods
based on the GPE [22, 27]. Thus developing efficient numerical methods for solving
the GPE is very important in numerical simulation of BEC.

Recently, a series of numerical studies have been devoted to the numerical solution
of the time-independent GPE for finding the ground states and of the time-dependent
GPE for determining the dynamics of BECs. To compute ground states of BECs,
Bao and Du [5] presented a continuous normalized gradient flow with diminishing
energy and discretized it by a backward Euler finite difference method; Bao and Tang
[8] proposed a method which can be used to compute the ground and excited states
via directly minimizing the energy functional; Edwards and Burnett [19] introduced
a Runge–Kutta-type method; other methods include an explicit imaginary-time al-
gorithm in [1, 15], a direct inversion in the iterated subspace in [35], and a simple
analytical-type method in [18]. To determine the dynamics of BECs, Bao, Jaksch,
and Markowich [9], Bao [4], and Bao and Jaksch [10] presented a time-splitting spec-
tral (TSSP) method, Ruprecht et al. [34] used the Crank–Nicolson finite difference
(CNFD) method, and Cerimele et al. [13] and Cerimele, Pistella, and Succi [14] pro-
posed a particle-inspired scheme.

In most experiments of BECs, the magnetic trap is with cylindrical symmetry.
Thus, the three-dimensional (3-D) GPE in a Cartesian coordinate can be reduced to
an effective two-dimensional (2-D) problem in a cylindrical coordinate. In this case,
both the TSSP [9, 10, 4] and CNFD [34] methods have serious drawbacks: (i) One
needs to replace the original whole space by a truncated computational domain with
an artificial (usually homogeneous Dirichlet boundary conditions are used) boundary
condition. How to choose an appropriate bounded computational domain is a difficult
task in practice: if it is too large, the computational resource is wasted; if it is too
small, the boundary effect will lead to wrong numerical solutions. (ii) The TSSP
method is explicit and of spectral accuracy in space, but one needs to solve the
original 3-D problem due to the periodic/homogeneous Dirichlet boundary conditions
required by the Fourier/sine spectral method. Thus, the memory requirement is a
big burden in this case. The CNFD method discretizes the 2-D effective problem
directly, but it is implicit and only second-order accurate in space. The aim of this
paper is to develop a numerical method which enjoys advantages of both the TSSP
and the CNFD method. That is to say, the method is explicit and of spectral order
accuracy in space, and it discretizes the effective 2-D problem directly. We shall
present such an efficient and accurate numerical method for discretizing the 3-D GPE
with cylindrical symmetry by applying a time-splitting technique and constructing
appropriately scaled Laguerre–Hermite basis functions.

The paper is organized as follows. In section 2, we present the GPE and its
dimension reduction. In section 3, we present time-splitting Hermite, Laguerre, and
Laguerre–Hermite spectral methods for the one-dimensional (1-D) GPE, the 2-D GPE
with radial symmetry, and the 3-D GPE with cylindrical symmetry, respectively.
Extension of the time-splitting Laguerre–Hermite spectral method for vector Gross–
Pitaevskii equations (VGPEs) for multicomponent BECs is presented in section 4. In
section 5, numerical results for the 1-D GPE, the 2-D GPE with radial symmetry,
the 3-D GPE with cylindrical symmetry, as well as 3-D VGPEs for multicomponent
BECs, are reported to demonstrate the efficiency and accuracy of our new numerical
methods. Some concluding remarks are given in section 6.
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2. The GPE. At temperatures T much smaller than the critical temperature
Tc [28], a BEC is well described by the macroscopic wave function ψ = ψ(x, t) whose
evolution is governed by a self-consistent, mean field NLSE known as the GPE [24, 32]

i�
∂ψ(x, t)

∂t
= − �2

2m
∇2ψ(x, t) + V (x)ψ(x, t) + NU0|ψ(x, t)|2ψ(x, t),(2.1)

where m is the atomic mass, � is the Planck constant, N is the number of atoms in
the condensate, and V (x) is an external trapping potential. When a harmonic trap
potential is considered, V (x) = m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, with ωx, ωy, and ωz being

the trap frequencies in the x-, y-, and z-directions, respectively. In most current BEC
experiments, the traps are cylindrically symmetric, i.e., ωx = ωy. U0 = 4π�2as/m
describes the interaction between atoms in the condensate with the s-wave scattering
length as (positive for repulsive interaction and negative for attractive interaction).
It is convenient to normalize the wave function by requiring∫

R3

|ψ(x, t)|2 dx = 1.(2.2)

In order to scale (2.1) under the normalization (2.2), we introduce

t̃ = ωmt, x̃ =
x

a0
, ψ̃(x̃, t̃) = a

3/2
0 ψ(x, t), with a0 =

√
�/mωm,(2.3)

where ωm = min{ωx, ωy, ωz}, and a0 is the length of the harmonic oscillator ground
state. In fact, we choose 1/ωm and a0 as the dimensionless time and length units,

respectively. Plugging (2.3) into (2.1), multiplying by 1/mω2
ma

1/2
0 , and then removing

all ˜, we get the following dimensionless GPE under the normalization (2.2) in three
dimensions:

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ(x, t) + V (x)ψ(x, t) + β |ψ(x, t)|2ψ(x, t),(2.4)

where β = U0N
a3
0�ωm

= 4πasN
a0

and

V (x) =
1

2

(
γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)
, with γα =

ωα

ωm
(α = x, y, z).

There are two extreme regimes of the interaction parameter β: (1) β = o(1), where
(2.4) describes a weakly interacting condensation; (2) β � 1, where it corresponds to
a strongly interacting condensation or to the semiclassical regime.

There are two typical extreme regimes between the trap frequencies: (1) γx = 1,
γy ≈ 1, and γz � 1, where it is a disk-shaped condensation; (2) γx � 1, γy � 1, and
γz = 1, where it is a cigar-shaped condensation. In these two cases, the 3-D GPE
(2.4) can be approximately reduced to a 2-D and 1-D equation, respectively [29, 9, 8],
as explained below.

When ωx ≈ ωy, ωz � ωx (⇐⇒ γx = 1, γy ≈ 1, γz � 1), i.e., a disk-shaped
condensation, following the procedure used in [8, 9, 29], the 3-D GPE can be reduced
to a 2-D GPE [8, 9, 29]. Similarly, when ωx � ωz, ωy � ωz (⇐⇒ γx � 1, γy � 1,
γz = 1), i.e., a cigar-shaped condensation, the 3-D GPE can be reduced to a 1-D GPE
[8, 9, 29]. These suggest that we consider a GPE in d-dimension (d = 1, 2, 3):

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ + Vd(x)ψ + βd |ψ|2ψ, x ∈ Rd,

ψ(x, 0) = ψ0(x), x ∈ Rd,

(2.5)
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with

βd = β

⎧⎨⎩
√
γxγy/2π,√
γz/2π,

1,
Vd(x) =

⎧⎨⎩
γ2
zz

2/2, d = 1,(
γ2
xx

2 + γ2
yy

2
)
/2, d = 2,(

γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)
/2, d = 3,

where γx > 0, γy > 0, and γz > 0 are constants. The normalization condition for
(2.5) is

N(ψ) = ‖ψ(·, t)‖2 =

∫
Rd

|ψ(x, t)|2 dx ≡
∫

Rd

|ψ0(x)|2 dx = 1.(2.6)

3. Fourth-order time-splitting Laguerre–Hermite pseudospectral meth-
od. In this section we present a fourth-order time-splitting Laguerre–Hermite pseu-
dospectral method for the problem (2.5) in three dimensions with cylindrical sym-
metry. As preparatory steps we begin by introducing the fourth-order time-splitting
method and applying it with the Hermite pseudospectral method for the 1-D GPE
and with the Laguerre pseudospectral method for the 2-D GPE with radial symmetry,
respectively.

Consider a general evolution equation

iut = f(u) = Au + Bu,(3.1)

where f(u) is a nonlinear operator and the splitting f(u) = Au + Bu can be quite
arbitrary; in particular, A and B do not need to commute. For a given time step
Δt > 0, let tn = n Δt, n = 0, 1, 2, . . . , and un be the approximation of u(tn). A
fourth-order symplectic time integrator (cf. [41, 30]) for (3.1) is as follows:

u(1) = e−i2w1AΔt un, u(2) = e−i2w2BΔt u(1), u(3) = e−i2w3AΔt u(2),

u(4) = e−i2w4BΔt u(3), u(5) = e−i2w3AΔt u(4), u(6) = e−i2w2BΔt u(5),

un+1 = e−i2w1AΔt u(6),

(3.2)

where

w1 = 0.33780 17979 89914 40851, w2 = 0.67560 35959 79828 81702,

w3 = −0.08780 17979 89914 40851, w4 = −0.85120 71979 59657 63405.
(3.3)

We now rewrite the GPE (2.5) in the form of (3.1) with

Aψ = βd |ψ(x, t)|2ψ(x, t), Bψ = −1

2
∇2ψ(x, t) + Vd(x)ψ(x, t).(3.4)

Thus, the key for an efficient implementation of (3.2) is to solve efficiently the following
two subproblems:

i
∂ψ(x, t)

∂t
= Aψ(x, t) = βd |ψ(x, t)|2ψ(x, t), x ∈ Rd,(3.5)

and

i
∂ψ(x, t)

∂t
= Bψ(x, t) = −1

2
∇2ψ(x, t) + Vd(x)ψ(x), x ∈ Rd,

lim
|x|→+∞

ψ(x, t) = 0.
(3.6)

The decaying condition in (3.6) is necessary for satisfying the normalization (2.6).
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Multiplying (3.5) by ψ(x, t), we find that the ODE (3.5) leaves |ψ(x, t)| invariant
in t [6, 7]. Hence, for t ≥ ts (ts is any given time), (3.5) becomes

i
∂ψ(x, t)

∂t
= βd |ψ(x, ts)|2ψ(x, t), t ≥ ts, x ∈ Rd,(3.7)

which can be integrated exactly, i.e.,

ψ(x, t) = e−iβd|ψ(x,ts)|2(t−ts)ψ(x, ts), t ≥ ts, x ∈ Rd.(3.8)

Thus, it remains to find an efficient and accurate scheme for (3.6). We shall construct
below suitable spectral basis functions which are eigenfunctions of B so that e−iBΔtψ
can be exactly evaluated (which is necessary for the final scheme to be time reversible
and time transverse invariant). Hence, the only time discretization error of the cor-
responding time-splitting method (3.2) is the splitting error, which is fourth order in
Δt. Furthermore, the scheme is explicit, time reversible, and time transverse invari-
ant, and as we shall show below, it also conserves the normalization in the discretized
level.

3.1. Hermite pseudospectral method for the 1-D GPE. In the 1-D case,
(3.6) collapses to

i
∂ψ(z, t)

∂t
= Bψ(z, t) = −1

2

∂2ψ(z, t)

∂z2
+

γ2
zz

2

2
ψ(z, t), z ∈ R,

lim
|z|→+∞

ψ(z, t) = 0, t ≥ 0,
(3.9)

with the normalization (2.6)

‖ψ(·, t)‖2 =

∫ ∞

−∞
|ψ(z, t)|2dz ≡

∫ ∞

−∞
|ψ0(z)|2dz = 1.(3.10)

Since the above equation is posed on the whole line, it is natural to consider Hermite
functions which have been successfully applied to other equations (cf. [21, 25, 40]).
Although the standard Hermite functions could be used as basis functions here, they
are not the most appropriate. Below, we construct properly scaled Hermite functions
which are eigenfunctions of B.

Let Hl(z) (l = 0, 1, . . . , N) be the standard Hermite polynomials satisfying

H ′′
l (z) − 2zH ′

l(z) + 2lHl(z) = 0, z ∈ R, l ≥ 0,(3.11) ∫ ∞

−∞
Hl(z)Hn(z)e−z2

dz =
√
π 2l l! δln, l, n ≥ 0,(3.12)

where δln is the Kronecker delta. We define the scaled Hermite function

hl(z) = e−γzz
2/2 Hl (

√
γzz) /

√
2l l!(π/γz)

1/4, z ∈ R.(3.13)

Plugging (3.13) into (3.11) and (3.12), we find that

− 1

2
h′′
l (z) +

γ2
zz

2

2
hl(z) = μz

l hl(z), z ∈ R, μz
l =

2l + 1

2
γz, l ≥ 0,(3.14) ∫ ∞

−∞
hl(z)hn(z) dz =

∫ ∞

−∞

1√
π2ll!2nn!

Hl(z)Hn(z)e−z2

dz = δln, l, n ≥ 0.(3.15)

Hence, {hl} are eigenfunctions of B defined in (3.9).
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For a fixed N , let XN = span{hl : l = 0, 1, . . . , N}. The Hermite spectral method
for (3.9) is to find ψN (z, t) ∈ XN , i.e.,

ψN (z, t) =

N∑
l=0

ψ̂l(t) hl(z), z ∈ R,(3.16)

such that

i
∂ψN (z, t)

∂t
= BψN (z, t) = −1

2

∂2ψN (z, t)

∂z2
+

γ2
zz

2

2
ψN (z, t), z ∈ R.(3.17)

Note that lim|z|→+∞ hl(z) = 0 (cf. [39]), so the decaying condition lim|z|→+∞ ψN (z, t)
= 0 is automatically satisfied.

Plugging (3.16) into (3.17), thanks to (3.14) and (3.15), we find

i
dψ̂l(t)

dt
= μz

l ψ̂l(t) =
2l + 1

2
γz ψ̂l(t), l = 0, 1, . . . , N.(3.18)

Hence, the solution for (3.17) is given by

ψN (z, t) = e−iB(t−ts)ψN (z, ts) =

N∑
l=0

e−iμz
l (t−ts) ψ̂l(ts)hl(z), t ≥ ts.(3.19)

Let {ẑk}Nk=0 be the Hermite–Gauss points (cf. [39, 21]); i.e., {ẑk}Nk=0 are the N+1
roots of the polynomial HN+1(z). Let ψn

k be the approximation of ψ(zk, tn) and ψn

be the solution vector with components ψn
k . Then, the fourth-order time-splitting

Hermite pseudospectral (TSHP4) method for the 1-D GPE (2.5) is given by

ψ
(1)
k = e−i2w1 Δt β1|ψn

k |2 ψn
k , ψ

(2)
k = Fh(w2, ψ

(1))k,

ψ
(3)
k = e−i2w3 Δt β1|ψ(2)

k |2 ψ
(2)
k , ψ

(4)
k = Fh(w4, ψ

(3))k,

ψ
(5)
k = e−i2w3 Δt β1|ψ(4)

k |2 ψ
(4)
k , ψ

(6)
k = Fh(w2, ψ

(5))k,

ψn+1
k = e−i2w1 Δt β1|ψ(6)

k |2 ψ
(6)
k , k = 0, 1, . . . , N,

(3.20)

where wi, i = 1, 2, 3, 4, are given in (3.3), and Fh(w,U)k (0 ≤ k ≤ N) can be
computed from any given w ∈ R and U = (U0, . . . , UN )T :

Fh(w,U)k =

N∑
l=0

e−i2w μz
l Δt Ûl hl(zk), Ûl =

N∑
k=0

ωz
k U(zk) hl(zk).(3.21)

In the above, zk and ωz
k are the scaled Hermite–Gauss points and weights, respectively,

which are defined by

ωz
k =

ω̂z
k eẑ

2
k

√
γz

, zk =
ẑk√
γz

, 0 ≤ k ≤ N,(3.22)

where {ω̂z
k}Nk=0 are the weights associated with the Hermite–Gauss quadrature (cf.

[21]) satisfying

N∑
k=0

ω̂z
k

Hl(ẑk)

π1/4
√

2l l!

Hn(ẑk)

π1/4
√

2n n!
= δln, l, n = 0, 1, . . . , N,(3.23)
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and we derive from (3.13) that

N∑
k=0

ωz
k hl(zk) hm(zk) =

N∑
k=0

ω̂z
k e

ẑ2
k/
√
γz hl (ẑk/

√
γz) hm (ẑk/

√
γz)

=

N∑
k=0

ω̂z
k

Hl(ẑk)

π1/4
√

2l l!

Hn(ẑk)

π1/4
√

2n n!
= δln, 0 ≤ l, n ≤ N.(3.24)

Note that the computation of {ωz
k} from (3.22) is not a stable process for very large

N . However, one can compute {ωz
k} in a stable way as suggested in the appendix of

[37].
Thus, the memory requirement of this scheme is O(N), and the computational

cost per time step is a small multiple of N2. As for the stability of the TSHP4 method,
we have the following.

Lemma 3.1. The TSHP4 method (3.20) is normalization conservation, i.e.,

‖ψn‖2
l2 =

N∑
k=0

ωz
k|ψn

k |2 =

M∑
k=0

ωz
k|ψ0(zk)|2 = ‖ψ0‖2

l2 , n = 0, 1, . . . .(3.25)

Proof. From (3.20), noting (3.21) and (3.24), we obtain

‖ψn+1‖2
l2 =

N∑
k=0

ωz
k|ψn

k |2 =

N∑
k=0

ωz
k

∣∣∣e−i2w1 Δt β1|ψ(6)
k |2 ψ

(6)
k

∣∣∣2

=

N∑
k=0

ωz
k|ψ

(6)
k |2 =

N∑
k=0

ωz
k

∣∣∣∣∣
N∑
l=0

e−i2w2 μz
l Δt (̂ψ(5))l hl(zk)

∣∣∣∣∣
2

=

N∑
l=0

N∑
m=0

e−i2w2 μz
l Δt (̂ψ(5))le

i2w2 μz
m Δt ((̂ψ(5))m)∗

[
N∑

k=0

ωz
khl(zk)hm(zk)

]

=
N∑
l=0

N∑
m=0

e−i2w2 μz
l Δt (̂ψ(5))le

i2w2 μz
m Δt ((̂ψ(5))m)∗ δlm

=

N∑
l=0

|(̂ψ(5))l|2 =

N∑
l=0

∣∣∣∣∣
N∑

k=0

ωz
k ψ(5)(zk) hl(zk)

∣∣∣∣∣
2

=

N∑
k=0

N∑
m=0

ωz
kψ

(5)(zk)ψ
(5)(zm)∗

[
N∑
l=0

ωz
mhl(zk)hl(zm)

]

=

N∑
k=0

N∑
m=0

ωz
kψ

(5)(zk)ψ
(5)(zm)∗ δkm

=

N∑
k=0

ωz
k|ψ(5)(zk)|2 = ‖ψ(5)‖2

l2 .(3.26)

Similarly, we have

‖ψn+1‖2
l2 = ‖ψ(5)‖2

l2 = ‖ψ(3)‖2
l2 = ‖ψ(1)‖2

l2 = ‖ψn‖2
l2 , n ≥ 0.(3.27)

Thus the equality (3.25) can be obtained from (3.27) by induction.
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Remark 3.2. Extension of the TSHP4 method (3.20) to the 2-D GPE without
radial symmetry and the 3-D GPE without cylindrical symmetry is straightforward
by using the tensor product of scaled Hermite functions.

3.2. Laguerre pseudospectral method for the 2-D GPE with radial sym-
metry. In the 2-D case with radial symmetry, i.e., d = 2 and γx = γy in (2.5), and

ψ0(x, y) = ψ0(r) in (2.5) with r =
√
x2 + y2, we can write the solution of (2.5) as

ψ(x, y, t) = ψ(r, t). Therefore, (3.6) collapses to

i
∂ψ(r, t)

∂t
= Bψ(r, t) = − 1

2r

∂

∂r

(
r
∂ψ(r, t)

∂r

)
+

γ2
rr

2

2
ψ(r, t), 0 < r < ∞,

lim
r→∞

ψ(r, t) = 0, t ≥ 0,
(3.28)

where γr = γx = γy. The normalization (2.6) collapses to

‖ψ(·, t)‖2 = 2π

∫ ∞

0

|ψ(r, t)|2r dr ≡ 2π

∫ ∞

0

|ψ0(r)|2r dr = 1.(3.29)

Note that it can be shown, similarly as for the Poisson equation in a 2-D disk (cf.
[36]), that the problem (3.28) admits a unique solution without any condition at the
pole r = 0.

Since (3.28) is posed on a semi-infinite interval, it is natural to consider Laguerre
functions which have been successfully used for other problems in semi-infinite inter-
vals (cf. [21, 37]). Again, the standard Laguerre functions, although usable, are not
the most appropriate for this problem. Below, we construct properly scaled Laguerre
functions which are eigenfunctions of B.

Let L̂m(r) (m = 0, 1, . . . ,M) be the Laguerre polynomials of degree m satisfying

rL̂′′
m(r) + (1 − r)L̂′

m(r) + mL̂m(r) = 0, m = 0, 1, . . . ,(3.30) ∫ ∞

0

e−r L̂m(r) L̂n(r) dr = δmn, m, n = 0, 1, . . . .(3.31)

We define the scaled Laguerre functions Lm by

Lm(r) =

√
γr
π

e−γrr
2/2 L̂m(γrr

2), 0 ≤ r < ∞.(3.32)

Note that lim|r|→+∞ Lm(r) = 0 (cf. [39]); hence, lim|r|→+∞ ψM (r, t) = 0 is automati-
cally satisfied.

Plugging (3.32) into (3.30) and (3.31), a simple computation shows

− 1

2r

∂

∂r

(
r
∂Lm(r)

∂r

)
+

1

2
γ2
rr

2Lm(r) = μr
mLm(r), μr

m = γr(2m + 1), m ≥ 0,(3.33)

2π

∫ ∞

0

Lm(r)Ln(r)r dr =

∫ ∞

0

e−rL̂m(r)L̂n(r) dr = δmn, m, n ≥ 0.(3.34)

Hence, {Lm} are eigenfunctions of B defined in (3.28).
For a fixed M , let YM = span{Lm : m = 0, 1, . . . ,M}. The Laguerre spectral

method for (3.9) is to find ψM (r, t) ∈ YM , i.e.,

ψM (r, t) =

M∑
m=0

ψ̂m(t) Lm(r), 0 ≤ r < ∞,(3.35)
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such that

i
∂ψM (r, t)

∂t
= BψM (r, t) = − 1

2r

∂

∂r

(
r
∂ψM (r, t)

∂r

)
+

γ2
rr

2

2
ψM (r, t), 0 < r < ∞.

(3.36)

Plugging (3.35) into (3.36), thanks to (3.33) and (3.34), we find

i
dψ̂m(t)

dt
= μr

mψ̂m(t) = γz(2m + 1)ψ̂m(t), m = 0, 1, . . . ,M.(3.37)

Hence, the solution for (3.36) is given by

ψM (r, t) = e−iB(t−ts)ψM (r, ts) =

M∑
m=0

e−iμr
m(t−ts) ψ̂m(ts)Lm(r), t ≥ ts.(3.38)

Let {r̂j}Mj=0 be the Laguerre–Gauss–Radau points (cf. [21]); i.e., they are the

M + 1 roots of the polynomial rL̂′
M+1(r). Let ψn

j be the approximation of ψ(rj , tn)
and ψn be the solution vector with components ψn

j . Then, the fourth-order time-
splitting Laguerre pseudospectral (TSLP4) method for the 2-D GPE (2.5) with radial
symmetry is similar to (3.20), except that one needs to replace β1 by β2, N by M ,
index k by j, and the operator Fh by FL, which is defined as

FL(w,U)j =

M∑
l=0

e−i2w μr
l Δt Ûl Ll(rj), Ûl =

M∑
j=0

ωr
j U(rj) Ll(rj).(3.39)

In the above, rj and ωr
j are the scaled Laguerre–Gauss–Radau points and weights,

respectively, which are defined by

ωr
j =

π

γr
ω̂r
j er̂j , rj =

√
r̂j
γr

, j = 0, 1, . . . ,M,(3.40)

where {ω̂r
j}Mj=0 are the weights associated with the Laguerre–Gauss quadrature [21]

satisfying

M∑
j=0

ω̂r
j L̂m(r̂j)L̂n(r̂j) = δnm, n,m = 0, 1, . . . ,M,

and we derive from (3.32) that

M∑
j=0

ωr
jLm(rj)Ln(rj) =

M∑
j=0

ω̂r
j e

r̂jπ/γr Lm

(√
r̂j/γr

)
Ln

(√
r̂j/γr

)

=
M∑
j=0

ω̂r
j L̂m(r̂j)L̂n(r̂j) = δnm, n,m = 0, 1, . . . ,M.(3.41)

As in the Hermite case, the computation of {ωr
j} from (3.40) is not a stable process

for very large N . However, one can compute {ωr
j} in a stable way as suggested in the

appendix of [37].
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The memory requirement of this scheme is O(M), and the computational cost
per time step is a small multiple of M2. As for the stability of the TSLP4 method,
we have the following.

Lemma 3.3. The TSLP4 method is normalization conservation, i.e.,

‖ψn‖2
l2 =

M∑
j=0

ωr
j |ψn

j |2 =

M∑
j=0

ωr
j |ψ0(rj)|2 = ‖ψ0‖2

l2 , n ≥ 0.

Proof. Using (3.41), the proof is essentially the same as in Lemma 3.1 for the
TSHP4 method.

3.3. Laguerre–Hermite pseudospectral method for the 3-D GPE with
cylindrical symmetry. In the 3-D case with cylindrical symmetry, i.e., d = 3 and
γx = γy in (2.5), and ψ0(x, y, z) = ψ0(r, z) in (2.5), the solution of (2.5) with d = 3
satisfies ψ(x, y, z, t) = ψ(r, z, t). Therefore, (3.6) becomes

i
∂ψ(r, z, t)

∂t
= Bψ(r, z, t) = −1

2

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂z2

]
+

1

2

(
γ2
rr

2 + γ2
zz

2
)
ψ,

0 < r < ∞, −∞ < z < ∞,

lim
r→∞

ψ(r, z, t) = 0, lim
|z|→∞

ψ(r, z, t) = 0, t ≥ 0,

(3.42)

where γr = γx = γy. The normalization (2.6) becomes

‖ψ(·, t)‖2 = 2π

∫ ∞

0

∫ ∞

−∞
|ψ(r, z, t)|2r drdz ≡ ‖ψ0‖2 = 1.(3.43)

We are now in position to present our Laguerre–Hermite pseudospectral method for
(3.42).

Using the same notation as in previous subsections, we derive from (3.14) and
(3.33) that

− 1

2

[
1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2

]
(Lm(r) hl(z)) +

1

2

(
γ2
rr

2 + γ2
zz

2
)
(Lm(r) hl(z))

=

[
− 1

2r

d

dr

(
r
dLm(r)

dr

)
+

1

2
γ2
rr

2Lm(r)

]
hl(z) +

[
−1

2

d2hl(z)

dz2
+

1

2
γ2
zz

2hl(z)

]
Lm(r)

= μr
mLm(r)hl(z) + μz

l hl(z)Lm(r) = (μr
m + μz

l )Lm(r)hl(z).

(3.44)

Hence, {Lm(r)hl(z)} are eigenfunctions of B defined in (3.42).
For a fixed pair (M,N), let XMN = span{Lm(r)hl(z) : m = 0, 1, . . . ,M, l =

0, 1, . . . , N}. The Laguerre–Hermite spectral method for (3.42) is to find ψMN (r, z, t)
∈ XMN , i.e.,

ψMN (r, z, t) =

M∑
m=0

N∑
l=0

ψ̃ml(t) Lm(r) hl(z),(3.45)

such that

i
∂ψMN (r, z, t)

∂t
= BψMN (r, z, t)

= −1

2

[
1

r

∂

∂r

(
r
∂ψMN

∂r

)
+

∂2ψMN

∂z2

]
+

1

2

(
γ2
rr

2 + γ2
zz

2
)
ψMN .(3.46)



2020 WEIZHU BAO AND JIE SHEN

Plugging (3.45) into (3.46), thanks to (3.44), we find that

i
dψ̃ml(t)

dt
= (μr

m + μz
l ) ψ̃ml(t), m = 0, 1, . . . ,M, l = 0, 1, . . . , N.(3.47)

Hence, the solution for (3.46) is given by

ψMN (r, z, t) = e−iB(t−ts)ψMN (r, z, ts)

=
M∑

m=0

N∑
l=0

e−i(μr
m+μz

l )(t−ts)ψ̃ml(ts)Lm(r) hl(z), t ≥ ts.(3.48)

Let ψn
jk be the approximation of ψ(rj , zk, tn) and ψn be the solution vector with

components ψn
jk. The fourth-order time-splitting Laguerre–Hermite pseudospectral

(TSLHP4) method for the 3-D GPE (2.5) with cylindrical symmetry is similar to
(3.20), except that we replace β1 by β3, index k (0 ≤ k ≤ N) by jk (0 ≤ j ≤ M ,
0 ≤ k ≤ N), and the operator Fh by FLh, which is defined as

FLh(w,U)jk =

M∑
m=0

N∑
l=0

e−i2wΔt(μr
m+μz

l ) Ûml Lm(rj)hl(zk),

Ûml =

M∑
j=0

N∑
k=0

ωr
j ωz

k U(rj , zk) Lm(rj)hl(zk).

(3.49)

The memory requirement of this scheme is O(MN), and the computational cost per
time step is O(max(M2N,N2M)). As for the stability of the TSLHP4 method, we
have the following.

Lemma 3.4. The TSLHP4 method is normalization conservation, i.e.,

‖ψn‖2
l2 =

M∑
j=0

N∑
k=0

ωr
jω

z
k|ψn

jk|2 =

M∑
j=0

N∑
k=0

ωr
jω

z
k|ψ0(rj , zk)|2 = ‖ψ0‖2

l2 , n ≥ 0.

Proof. Using (3.24) and (3.41), the proof is essentially the same as in Lemma 3.1
for the TSHP4 method.

4. Extension to multicomponent BECs. The TSLHP4 method, introduced
above for the 3-D GPE with cylindrical symmetry, can be extended to VGPEs for
multicomponent BECs [4]. For simplicity, we present only the detailed method for
the dynamics of two-component BECs. Consider the dimensionless VGPEs with an
external driven field (cf. [4])

i
∂ψ(r, z, t)

∂t
= −1

2

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂z2

]
+

1

2

(
γ2
rr

2 + γ2
z (z − z0

1)2
)
ψ

+
(
β11|ψ|2 + β12|φ|2

)
ψ +

√
N0

2 /N
0
1 f(t)φ,

i
∂φ(r, z, t)

∂t
= −1

2

[
1

r

∂

∂r

(
r
∂φ

∂r

)
+

∂2φ

∂z2

]
+

1

2

(
γ2
rr

2 + γ2
z (z − z0

2)2
)
φ

+
(
β21|ψ|2 + β22|φ|2

)
φ +

√
N0

1 /N
0
2 f(t)ψ, 0 < r < ∞, z ∈ R,

lim
r→∞

ψ(r, z, t) = lim
r→∞

φ(r, z, t) = 0, lim
|z|→∞

ψ(r, z, t) = lim
|z|→∞

φ(r, z, t) = 0,

ψ(r, z, 0) = ψ0(r, z), φ(r, z, 0) = φ0(r, z),

(4.1)
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where z0
j and N0

j (j = 1, 2) are the center of trapping potential along the z-axis and
the number of atoms of the jth component, respectively; γr = ωr/ωm, γz = ωz/ωm,
with ωr, ωz, and ωm being the radial, axial, and reference frequencies, respectively;
βjl = 4πajlN

0
l /a0 (j, l = 1, 2), with the s-wave scattering length ajl = alj between

the jth and lth component and a0 =
√

�/mωm; and f(t) = Ω cos(ωdt/ωm)/ωm, with
Ω and ωd being the amplitude and frequency of the external driven field. The wave
functions are normalized as

‖ψ0‖2 = 2π

∫ ∞

0

∫ ∞

−∞
|ψ0(r, z)|2r drdz = 1, ‖φ0‖2 = 1.(4.2)

It is easy to show (cf. [4]) that the total number of atoms is conserved:

N0
1 ‖ψ(·, t)‖2 + N0

2 ‖φ(·, t)‖2 = 2π

∫ ∞

0

∫ ∞

−∞

(
|ψ(r, z, t)|2 + |φ(r, z, t)|2

)
r drdz

≡ N0
1 ‖ψ0‖2 + N0

2 ‖φ0‖2 = N0
1 + N0

2 .(4.3)

Unlike the TSLHP4 method for the 3-D GPE (2.5) with cylindrical symmetry, here
we have to split the VGPEs (4.1) into three subsystems. For example, for a first-order
splitting scheme, we first solve

i
∂ψ(r, z, t)

∂t
= −1

2

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂z2

]
+

1

2

(
γ2
rr

2 + γ2
zz

2
)
ψ,

i
∂φ(r, z, t)

∂t
= −1

2

[
1

r

∂

∂r

(
r
∂φ

∂r

)
+

∂2φ

∂z2

]
+

1

2

(
γ2
rr

2 + γ2
zz

2
)
φ

(4.4)

for the time step of length Δt, followed by solving

i
∂ψ(r, z, t)

∂t
=

1

2
γ2
zz

0
1(z0

1 − 2z)ψ +
(
β11|ψ|2 + β12|φ|2

)
ψ,

i
∂φ(r, z, t)

∂t
=

1

2
γ2
zz

0
2(z0

2 − 2z)φ +
(
β21|ψ|2 + β22|φ|2

)
φ

(4.5)

for the same time step, and then by solving

i
∂ψ(r, z, t)

∂t
=

√
N0

2 /N
0
1 f(t) φ,

i
∂φ(r, z, t)

∂t
=

√
N0

1 /N
0
2 f(t) ψ

(4.6)

for the same time step.
The nonlinear ODE system (4.5) leaves |ψ(r, z, t)| and |φ(r, z, t)| invariant in t, and

thus can be integrated exactly [4]. The linear ODE system (4.6) can also be integrated
exactly by applying a matrix diagonalization technique (cf. [4]). As shown above,
(4.4) can be discretized in space by the Laguerre–Hermite pseudospectral method
and integrated in time exactly.

Let ψn
jk and φn

jk be the approximations of ψ(rj , zk, tn) and φ(rj , zk, tn), respec-
tively, and ψn and φn be the solution vectors with components ψn

jk and φn
jk, respec-

tively. Although it is not clear how to construct a fourth-order time-splitting scheme
with three subsystems, a second-order scheme can be easily constructed using the
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Strang splitting (cf. [38]). More precisely, from time t = tn to t = tn+1, we proceed
as follows:

ψ
(1)
jk = FLh(1/4, ψ(1))jk, φ

(1)
jk = FLh(1/4, φ(1))jk,

ψ
(2)
jk = e−i[γ2

zz
0
1(z0

1−2zk)/2+(β11|ψ(1)
jk |2+β12|φ(1)

jk |2)]Δt/2ψ
(1)
jk ,

φ
(2)
jk = e−i[γ2

zz
0
2(z0

2−2zk)/2+(β21|ψ(1)
jk |2+β22|φ(1)

jk |2)]Δt/2φ
(1)
jk ,

ψ
(3)
jk = cos(g(tn+1, tn))ψ

(2)
jk − i sin(g(tn+1, tn))

√
N0

2 /N
0
1φ

(2)
jk ,

φ
(3)
jk = −i sin(g(tn+1, tn))

√
N0

1 /N
0
2ψ

(2)
jk + cos(g(tn+1, tn))φ

(2)
jk ,

ψ
(4)
jk = e−i[γ2

zz
0
1(z0

1−2)/2+(β11|ψ(3)
jk |2+β12|φ(3)

jk |2)]Δt/2ψ
(3)
jk ,

φ
(4)
jk = e−i[γ2

zz
0
2(z0

2−2)/2+(β21|ψ(3)
jk |2+β22|φ(3)

jk |2)]Δt/2φ
(3)
jk , 0 ≤ j ≤ M, 0 ≤ k ≤ N,

ψn+1
jk = FLh(1/4, ψ(4))jk, φn+1

jk = FLh(1/4, φ(4))jk,

(4.7)

where

g(t, tn) =

∫ t

tn

f(s) ds = Ωωd [sin(ωdt/ωm) − sin(ωdtn/ωm)] .

Note that the only time discretization error of this scheme is the splitting error, which
is of second order in Δt. The scheme is explicit, spectral accurate in space, and second-
order accurate in time. The memory requirement of this method is O(MN), and the
computational cost per time step is O(max(M2N,MN2)). As for the stability, we
can prove as in [4] the following lemma, which shows that the total number of atoms
is conserved in the discretized level.

Lemma 4.1. The time-splitting Laguerre–Hermite pseudospectral method (4.7)
for multicomponent BECs is normalization conservation, i.e.,

N0
1 ‖ψn‖2

l2 + N0
2 ‖φn‖2

l2 = N0
1 ‖ψ0‖2

l2 + N0
2 ‖φ0‖2

l2 , n ≥ 0.

5. Numerical results. We now present some numerical results by using the
numerical methods introduced in section 3. To quantify the numerical results, we
define the condensate width along the r- and z-axes as

σ2
α =

∫
Rd

α2|ψ(x, t)| dx, α = x, y, z, σ2
r = σ2

x + σ2
y.

Example 5.1. The 1-D GPE: We choose d = 1, γz = 2, and β1 = 50 in (2.5).
The initial data ψ0(z) is chosen as the ground state of the 1-D GPE (2.5) with d = 1,
γz = 1, and β1 = 50 [5, 8]. This corresponds to an experimental setup where initially
the condensate is assumed to be in its ground state, and the trap frequency is double
at t = 0. We solve this problem by using (3.20) with N = 31 and time step k = 0.001.
Figure 5.1 plots the condensate width and central density |ψ(0, t)|2 as functions of
time. Our numerical experiments also show that the scheme (3.20) with N = 31 gives
similar numerical results as the TSSP method [9, 10] for this example with 129 grid
points over the interval [−12, 12] and time step k = 0.001.

In order to test the fourth-order accuracy in time of the TSHP4 method (3.20),
we compute a numerical solution with a very fine mesh, e.g., N = 81, and a very small
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Fig. 5.1. Evolution of central density and condensate width in Example 5.1. “—”: “exact
solutions” obtained by the TSSP method [9] with 513 grid points over an interval [−12, 12]; “+ + +”:
Numerical results by the TSHP4 method (3.20) with 31 grid points on the whole z-axis. (a) Central
density |ψ(0, t)|2; (b) condensate width σz.

Table 5.1

Time discretization error analysis for the TSHP4 method (3.20) at t = 2.0 with N = 81.

Δt 1/40 1/80 1/160 1/320

max |ψ(t) − ψΔt(t)| 0.1619 4.715E-6 3.180E-7 2.036E-8
‖ψ(t) − ψΔt(t)‖l2 0.2289 7.379E-6 4.925E-7 3.215E-8

time step, e.g., Δt = 0.0001, as the “exact” solution ψ. Let ψΔt denote the numerical
solution under N = 81 and time step Δt. Due to N being large enough, the truncation
error from space discretization is negligible compared to that from time discretization.
Table 5.1 shows the errors max |ψ(t) − ψΔt(t)| and ‖ψ(t) − ψΔt(t)‖l2 at t = 2.0 for
different time step Δt. The results in Table 5.1 demonstrate the fourth-order accuracy
in time of the TSHP4 method (3.20).

Example 5.2. The 2-D GPE with radial symmetry: We choose d = 2, γr = γx =
γy = 2, and β2 = 50 in (2.5). The initial data ψ0(r) is chosen as the ground state
of the 2-D GPE (2.5) with d = 2, γr = γx = γy = 1, and β2 = 50 [5, 8]. Again this
corresponds to an experimental setup where initially the condensate is assumed to be
in its ground state, and the trap frequency is doubled at t = 0. We solve this problem
by using the TSLP4 method with M = 30 and time step k = 0.001. Figure 5.2
plots the condensate width and central density |ψ(0, t)|2 as functions of time. Our
numerical experiments also show that the scheme TSLP4 method with M = 30 gives
similar numerical results as the TSSP method [9, 10] for this example with 1292 grid
points over the box [−8, 8]2 and time step k = 0.001.

Example 5.3. The 3-D GPE with cylindrical symmetry: We choose d = 3,
γr = γx = γy = 4, γz = 1, and β3 = 100 in (2.5). The initial data ψ0(r, z) is chosen
as the ground state of the 3-D GPE (2.5) with d = 3, γr = γx = γy = 1, γz = 4,
and β3 = 100 [5, 8]. This corresponds to an experimental setup where initially the
condensate is assumed to be in its ground state, and at t = 0 we increase the radial
frequency four times and decrease the axial frequency to its quarter. We solve this
problem by using the TSLP4 method with M = 60 and N = 61 and time step
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Fig. 5.2. Evolution of central density and condensate width in Example 5.2. “—”: “exact
solutions” obtained by the TSSP method [9] with 5132 grid points over a box [−8, 8]2; “+ + +”:
Numerical results by the TSLP4 method with 30 grid points on the semi-infinite interval [0,∞). (a)
Central density |ψ(0, t)|2; (b) condensate width σr.
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Fig. 5.3. Evolution of central density and condensate width in Example 5.3 by the TSLHP4
method.

k = 0.001. Figure 5.3 plots the condensate widths and central density |ψ(0, 0, t)|2 as
functions of time.

The numerical results for these three examples clearly indicated that our new
methods are very efficient and accurate.

Example 5.4. The 3-D vector GPEs with cylindrical symmetry for two-component
BECs: We take, in (4.1), m = 1.44 × 10−25 [kg], a12 = a21 = 55.3Å = 5.53 [nm],
a11 = 1.03a12 = 5.6959 [nm], a22 = 0.97a12 = 5.3641 [nm], ωz = 47 × 2π [1/s],
ωm = ωr = ωz/

√
8, N0

1 = N0
2 = 500, 000, Ω = 65 × 2π [1/s], and ωd = 6.5 × 2π [1/s].

A simple computation shows a0 = 0.2643 × 10−5 [m], β11 = 0.02708165N0
1 , β12 =

0.02629286N0
2 , β21 = 0.02629286N0

1 , and β22 = 0.02550407N0
2 . The initial data

ψ0(r, z) and φ0(r, z) are chosen as the ground state of the 3-D VGPEs (4.1), and we
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Fig. 5.4. Time evolution of the density functions for the two-component BECs in Example 5.4.
(a) z0

1 = z0
2 = 0; (b) z0

1 = −z0
2 = 0.15; (c) z0

1 = −z0
2 = 0.4.

set f(t) ≡ 0 [4]. We solve this problem by using (4.7) with M = 100 and N = 201 and
time step k = 0.00025. Figure 5.4 displays the time evolution of the density functions
for the two components with different trapping centers. The results are similar to
those obtained in [4] by a TSSP method with a much refined grid.

From Figure 5.4, we can see that the general form of time evolution on the number
of particles in the two components is similar for different distances between the two
trapping potential centers. When z0

1 = z0
2 = 0, the number of particles in the second

component, i.e., N0
2 ‖φ‖2, decreases, reaching its bottom, oscillates, and then attains

its maximum at around t = 5.2. The number of particles in the second component
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at its maximum is approximately 55% bigger than its initial value at time t = 0
(cf. Figure 5.4(a)). The pattern for N0

1 ‖ψ‖2 is exactly the opposite of that for N0
2 ‖φ‖2

(cf. Figure 5.4(a)). This antisymmetry is due to the fact that the total number of
particles in the two components are conserved. When z0

1 − z0
2 > 0 becomes larger, i.e.,

initially the density functions for the two components are separated further, the earlier
the number of particles attains its absolute peak (cf. Figure 5.4(b–c)) and the smaller
the maximum of the peak. In fact, when z0

1 − z0
2 = 0.3 (resp., 0.8), at around t = 3.4

(resp., 2.05), the number of particles in the first component attains its maximum
which is approximately 52% (resp., 38.5%) bigger than its initial value at time t = 0.

6. Concluding remarks. We developed a new efficient fourth-order time-
splitting Laguerre–Hermite pseudospectral method for the 3-D GPE with cylindrical
symmetry for BECs. The new method takes advantage of the cylindrical symmetry
so that only an effective 2-D problem is solved numerically. The new method is based
on appropriately scaled Laguerre–Hermite functions and a fourth-order symplectic
integrator. Hence, it is spectrally accurate in space, fourth-order accurate in time,
explicit, time reversible, and time transverse invariant.

When compared with the time-splitting sine-spectral method in [9, 10, 4] and
the CNFD method in [34, 31], the new method enjoys two important advantages: (i)
there is no need to truncate the original whole space into a bounded computational
domain for which an artificial boundary condition (which often erodes the accuracy)
is needed; (ii) it solves an effective 2-D problem instead of the original 3-D equations.
Thus, the new method is very accurate and efficient, particularly in terms of memory
requirement. Therefore, it is extremely suitable for the 3-D GPE with cylindrical
symmetry, which is the most frequent setup in BEC experiments. We plan to apply
this powerful numerical method to study physically more complex systems such as
multicomponent BECs, vortex states, and dynamics in BECs.
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