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Abstract. Solutions for many problems of interest exhibit singular behaviors at domain corners
or points where the boundary condition changes type. For these types of problems, direct spectral
methods with the usual polynomial basis functions do not lead to a satisfactory convergence rate. We
develop in this paper a Müntz–Galerkin method which is based on specially tuned Müntz polynomials
to deal with the singular behaviors of the underlying problems. By exploring the relations between
Jacobi polynomials and Müntz polynomials, we develop efficient implementation procedures for the
Müntz–Galerkin method, and provide optimal error estimates. As an example of applications, we
consider the Poisson equation with mixed Dirichlet–Neumann boundary conditions, whose solution
behaves like O(r1/2) near the singular point, and demonstrate that the Müntz–Galerkin method
greatly improves the rates of convergence of the usual spectral method.
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1. Introduction. Spectral methods have been extensively used in numerical so-
lutions of differential equations, function approximations, and other variational prob-
lems [7, 4, 9, 21, 22]. For usual spectral methods based on polynomials, their conver-
gence rate is only limited by the smoothness of the problem, so they are particularly
effective for problems with smooth solutions. However, many problems of interest
exhibit singular behaviors at domain corners or points where the boundary condition
changes type, so direct application of spectral methods to these types of problems
does not yield a satisfactory convergence rate.

Within the finite element framework, methods to deal with singular solutions can
be classified into two categories: (i) one is based on local adaptivity [17] and (ii) the
other is the so called extended or generalized finite element method [2, 6] in which one
adds, to the usual local polynomial basis, special shape functions that capture local
singular properties, such as jumps, kinks, and singularities, etc.

For many singular problems, it is often possible to determine their singular ex-
pansion near a singular point in the form

∑∞
k=0 ckx

λk , where {λk}∞k=0 is an increasing
sequence, and also called a Müntz sequence [1]. We develop in this paper a Müntz–
Galerkin method in which Müntz polynomials [1], instead of the usual polynomials, are
employed to form the approximation space. However, the Müntz polynomials them-
selves are not suitable as basis functions due to their poor conditioning. We shall
explore relations between Jacobi polynomials and Müntz polynomials to develop ef-
ficient implementation procedures for the Müntz–Galerkin method as well as derive
optimal error estimates. As examples of applications, we shall use the Müntz–Galerkin
method to solve the Poisson equation with mixed Dirichlet–Neumann boundary con-
ditions, whose solution behaves like O(r1/2) near the singular points, and demonstrate
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A2358 JIE SHEN AND YINGWEI WANG

that the rates of convergence are greatly improved compared to the classical spectral
methods.

The rest of the paper is organized as follows. In section 2, we motivate our work
by analyzing the singular behaviors of the Poisson equation with mixed Dirichlet–
Neumann boundary conditions. We introduce the Müntz polynomials and Müntz–
Jacobi functions, and give the error estimates for Müntz–Jacobi approximations in
section 3. In section 4, we propose a Müntz–Galerkin method for a model problem,
and develop an efficient implementation procedure as well as optimal approximation
results. Several examples are presented in section 5 to illustrate the performance of
the proposed algorithms. Some concluding remarks are given in section 6.

2. Singularities of the mixed Dirichlet–Neumann BVPs. In this section,
we recall some well-known results on the solution of the two-dimensional Laplace
equation

(2.1) ∆u = 0, (x, y) ∈ Ω,

with mixed Dirichlet–Neumann boundary conditions. For more details, we refer the
readers to [8, 13, 15] and the references therein.

Let (r, θ) be the polar coordinates with (x, y) = (r cos(θ), r cos(θ)). The Laplacian
operator in polar coordinates takes the form ∆ = ∂rr + 1

r∂r + 1
r2 ∂θθ. Using the

separation of variables with respect to the polar coordinates (r, θ), one can prove the
following result.

Lemma 2.1. The general solution of the Laplace equation (2.1) in polar coordi-
nates is

(2.2) u(r, θ) = (crα + dr−α)(a cos(αθ) + b sin(αθ)),

where α > 0, a, b, c, d are real constants.

Let Ω be the half-circle domain shown in Figure 1. Since the origin is on ∂Ω, the
parameter d in (2.2) should be 0, i.e., the general solution in this case is

(2.3) u(r, θ) = rα(a cos(αθ) + b sin(αθ)), α > 0.

At the bottom of Ω, the outward normal vector is n = (0,−1)t, and the normal
flux is

(2.4) q(r, θ) :=
∂u

∂n
=
∂u

∂θ
= αrα(−a sin(αθ) + b cos(αθ)).

We consider two kinds of mixed boundary conditions on the bottom of Ω, shown
in Figure 1. One is

(2.5)
∂u

∂n
|{x<0}∩{y=0}= 0, u |{x>0}∩{y=0}= 0,

which is referred as “N-D”boundary conditions (Neumann boundary condition on the
left half-line of the x axis, and Dirichlet boundary condition on the right half-line of
the x axis). The other is

(2.6) u |{x<0}∩{y=0}= 0,
∂u

∂n
|{x>0}∩{y=0}= 0,

which is referred as “D-N”boundary conditions (Dirichlet boundary condition on the
left half-line of the x axis, and Neumann condition on the right half-line of the x axis).
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Fig. 1. Mixed boundary conditions: top is N-D and bottom is D-N.

Theorem 2.2 (Asymptotic expansion in the vicinity of one singular point). The
singular parts of the general solutions of Laplacian equation (2.1) with N-D and D-N
boundary conditions are, respectively,

uND(r, θ) =

∞∑
k=0

bkr
k+1/2 sin(k + 1/2)θ,(2.7)

uDN (r, θ) =

∞∑
k=0

akr
k+1/2 cos(k + 1/2)θ.(2.8)

Let u(r, θ) = v(r)w(θ) be the solution to the problem −∆u = f with either N-D
or D-N boundary conditions. According to the expansions in (2.7) and (2.8), v(r)
should have two parts, the singular part vS from the general solution of homogeneous
equation (2.1), and the regular part vR from the particular solution associated with
the right-hand side f , i.e.,

v(r) = vR(r) + vS(r).

The regular part vR(r) can be well approximated by the set of classical polynomials
{1, r, r2, . . .}, but the polynomial expansion of the singular part vS(r) will converge
very slowly. From the expansions in (2.7) and (2.8), it is apparent that we should

seek approximate solutions (in the r-direction) in the space spanned by {r 1
2k} which

includes both the singular basis and the regular basis.
More generally, if the singular part expansion takes the form uS(r) =∑∞

k=0 bkr
k+p/q, p < q are two integers, or, as found in solving some fractional PDEs,

uS(r) =
∑∞
k,j=0 bkjr

(p/q)k+j , we can use an expansion of the form u(r) =
∑∞
k=0 akr

k/q,

which can also cover both the singular part and regular part. The sequence {rk/q}
is just a special sequence of Müntz polynomials that we shall consider in the next
section.

3. Müntz polynomials and Müntz–Jacobi functions. Assume that the so-
lutions to some singular problems have the following expansion

(3.1)

∞∑
k=0

ckx
λk with λ0 < λ1 < λ2 < · · · .
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A2360 JIE SHEN AND YINGWEI WANG

It is then natural for us to look for their approximations in the space MN = span{xλk :
0 ≤ k ≤ N}. However, it is obvious that the functions {xλk}∞k=0 themselves are not
suitable as basis functions. The goal of this section is to construct a sequence of
Müntz–Jacobi functions such that (i) they are mutually orthogonal and (ii) they are
easy to evaluate. Besides, the error estimates for Müntz–Jacobi approximations are
carried out at the end of this section.

3.1. Müntz polynomials. We define a Müntz sequence as an increasing se-
quence of distinct real numbers

Λ := {λk}∞k=0, λ0 < λ1 < λ2 · · · ,

and we call a system of the form (xλ0 , xλ1 , . . .) a Müntz system with the corresponding
Müntz space associated with Λ:

M(Λ) :=

∞⋃
n=0

Mn(Λ) = span{xλn : n = 0, 1, . . .}, x ∈ [0, 1],

where Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn} for each n = 0, 1, . . ..
The celebrated Müntz theorem shows the relation between the density of the

Müntz polynomials
∑n
k=0 ckx

λk in C([0, 1]) and their growth of the exponents Λ =
{λk}∞k=0.

Theorem 3.1 (see [1]). If λk0 = 0 for some k0 ≥ 0, the Müntz space associated
with the Müntz sequence Λ is a dense subset of C([0, 1]) if and only if

∞∑
k=k0

1

λk
=∞.

We define the nth Müntz–Legendre polynomial associated with Λ by (cf. [23])

(3.2) Ln(x; Λ) :=
1

2πi

∫
Γ

n−1∏
k=0

t+ λk + 1

t− λk
xt

t− λn
dt,

where Γ is a simple contour surrounding all zeros of the denominator in the integrand.
If the Müntz sequence Λ satisfies the condition

(3.3) λn > −
1

2
, n = 0, 1, . . . ,

a straightforward application of the residue theorem shows that the Müntz–Legendre
polynomial Ln(x; Λ) ∈Mn(Λ). More precisely, for each n = 0, 1, 2, . . ., we have

(3.4) Ln(x; Λ) =

n∑
k=0

ck,nx
λk , ck,n =

∏n−1
j=0 (λk + λj + 1)∏n−1
j=0,j 6=k(λk − λj)

.

It is shown (cf. Theorem 2.4 in [3]) that the Müntz–Legendre polynomials are
orthogonal in L2[0, 1] with respect to the Legendre weight ω = 1, i.e.,

(3.5)

∫ 1

0

Ln(x; Λ)Lm(x; Λ)dx =
δnm

2λn + 1
.
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MÜNTZ–GALERKIN METHODS A2361

We can also define Müntz–Jacobi polynomials. Consider first the Jacobi index
(0, β). Let ωβ(x) = xβ with β > −1, then the nth Müntz–Jacobi polynomial with
index (0, β) associated with Λ is defined by

(3.6) Lβn(x; Λ) :=
x−β/2

2πi

∫
Γ

n−1∏
k=0

t+ λk + β/2 + 1

t− λk − β/2
xt

t− λn − β/2
dt,

where the contour Γ encloses all zeros of the denominator of the integrand. We can
show that Lβn(x; Λ) ∈Mn(Λ), and the following orthogonality relation holds:

(3.7)

∫ 1

0

Lβn(x; Λ)Lβm(x; Λ)xβdx =
δnm

2λn + β + 1
.

Similarly, we can define Müntz–Jacobi polynomials αLn(x; Λ) with index (α, 0).
While Müntz–Legendre polynomials are mutually orthogonal, but their direct

evaluation is numerically poorly conditioned, since the coefficients ck,n defined in
(3.4) quickly become unmanageably large, although the summation of them is always
equal to 1. For example, for Λ = {n/2}, the tenth Müntz–Legendre polynomial is

L10 (t; Λ) = 11− 660t1/2 + 12870t− 120120t3/2 + 630630t2 − 2018016t5/2

+ 4084080t3 − 5250960t5/2 + 4157010t4 − 1847560t7/2 + 352716t5.

The troubles associated with poor conditioning have been addressed in [5, 16].

3.2. Müntz–Jacobi functions. In this paper, we consider special Müntz se-
quences in the following form:

(3.8) Λ(α) = {λk = αk}∞k=0,

where α > 0 is a constant, and construct stable algorithms to deal with the Müntz–
Legendre polynomials {Lk(x; Λ(ρ))}∞k=0. Solutions of many interesting problems (see
some examples in the subsequent sections), have singularities which can be charac-
terized by such Müntz sequences. Other type of Müntz sequences require different
treatments that we will address in a subsequent work.

For obvious reasons, we shall work on the interval I = (−1, 1). Then, we can
define the left and right Müntz spaces as follows:

ML
n (α) := span{1, (1 + x)α, . . . , (1 + x)αn}, ML(α) = ∪∞n=0M

L
n (α),

MR
n (α) := span{1, (1− x)α, . . . , (1− x)αn}, MR(α) = ∪∞n=0M

R
n (α).

(3.9)

We consider first the case with singularity at the left endpoint, and define the
following one-to-one mapping I → I:

x = x(y) := 21−1/α(1 + y)1/α − 1,(3.10)

y = y(x) := 21−α(1 + x)α − 1.(3.11)

We define the Müntz–Jacobi function with index (0, 1/α− 1) by

(3.12) Ĵ
0,1/α−1
k (x) := J

0,1/α−1
k (y(x)) ∀k = 0, 1, . . . ,

where J
0,1/α−1
k (·) is the Jacobi polynomial with index (0, 1/α−1) and y(x) is defined

in (3.11).
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A2362 JIE SHEN AND YINGWEI WANG

Similarly, for the case with singularity at the right endpoint, we use the following
mappings:

x̄ = x̄(ȳ) := 1− 21−1/α(1− ȳ)1/α,(3.13)

ȳ = ȳ(x̄) := 1− 21−α(1− x̄)α,(3.14)

to define the Müntz–Jacobi function with index (1/α− 1, 0) by

(3.15) Ĵ
1/α−1,0
k (x̄) := J

1/α−1,0
k (ȳ(x̄)) ∀k = 0, 1, . . . .

Hereafter, the pair of functions u(x) and U(y) are related by

(3.16) u(x) ≡ U(y(x)).

Theorem 3.2. Let α ∈ (0, 1). The Müntz–Jacobi functions {Ĵ0,1/α−1
n (x)} are

mutually orthogonal and form a complete orthogonal system in L2(I). Furthermore,

(3.17) ML
N (α) = span

{
Ĵ0,1/α−1
n : 0 ≤ n ≤ N

}
.

The Müntz–Jacobi functions {Ĵ1/α−1,0
n (x)} are mutually orthogonal and form a com-

plete orthogonal system in L2(I). Furthermore,

(3.18) MR
N (α) = span

{
Ĵ1/α−1,0
n : 0 ≤ n ≤ N

}
.

Proof. We shall only prove the left case as the proof for the right case is similar.
From (A.1), we know that

(3.19)

∫ 1

−1

J0,1/α−1
m (y)J0,1/α−1

n (y)(1 + y)1/α−1dy =
21/α

2n+ 1/α
δmn.

From the definition of {Ĵ0,1/α−1
k (x)}k=0 in (3.12), and

dx

dy
=

21−1/α

α
(1 + y)1/α−1,

dy

dx
= α21−α(1 + x)α−1,(3.20)

we derive∫ 1

−1

Ĵ0,1/α−1
n (x) Ĵ0,1/α−1

m (x)dx =
21−1/α

α

∫ 1

−1

J0,1/α−1
n (y) J0,1/α−1

m (y) (1 + y)1/α−1dy,

=
2

2nα+ 1
δmn,(3.21)

which implies the orthogonality of {Ĵ0,1/α−1
k (x)}k=0 in L2(I).

For any u(·) ∈ L2(I), we have U(·) ∈ L2
ωα(I). Thus, by the completeness of

Jacobi polynomials {J0,1/α−1
k (y)}k=0, we have the following unique expansion

(3.22) u(x) = U(y) =

∞∑
k=0

ukJ
0,1/α−1
k (y) =

∞∑
k=0

ukĴ
0,1/α−1
k (x),

where uk =
〈U,J0,1/α−1

k 〉ωα
‖J0,1/α−1
k ‖2

L2
ωα

, ωα = ω0,1/α−1(y) = (1 + y)1/α−1.

Finally, (3.17) is a direct consequence of the facts that Ĵ
0,1/α−1
n (x) ∈ML

N (α) for
0 ≤ n ≤ N and they are mutually orthogonal.
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In addition, since we will frequently use the relation (3.20) in the error estimates,
we rewrite it as

(3.23)
dx

dy
= cαωα,

dy

dx
=

1

cαωα
, where cα =

21−1/α

α
.

3.3. Approximation results for Müntz–Jacobi functions. In this section,
we develop the estimates for the weighted L2 and H1 projection errors of the Müntz–
Jacobi function approximation.

First of all, recall the usual Jacobi weight ωα,β(x) := (1−x)α(1+x)β , α, β > −1.
We introduce a new weight function based on the relation between x and y defined
in (3.11):

(3.24) ω̃a,b(x) := (1− y(x))a(1 + y(x))b ∀a, b ∈ R.

Thanks to (3.23), it is easy to know that

‖u‖2L2 =

∫ 1

−1

|u(x)|2dx = cα

∫ 1

−1

|U(y)|2ωαdy = cα‖U‖2ω0,1/α−1 ,(3.25)

‖∂xu‖2ω̃1,2/α−1 =

∫ 1

−1

|∂xu(x)|2(1− y(x))(1 + y(x))2/α−1dx

=
1

cα

∫ 1

−1

|∂yU(y)|2(1− y)(1 + y)1/αdy =
1

cα
‖∂yU‖2ω1,1/α ,(3.26)

‖∂xu‖2ω0,2−2α =

∫ 1

−1

|∂xu(x)|2(1 + x)2−2αdx

= α2(1−1/α)(1−2α)

∫ 1

−1

|∂yU(y)|2(1 + y)1/α−1dy

= c̃α‖∂yU‖2ω0,1/α−1 ,(3.27)

where c̃α = α2(1−1/α)(1−2α).
Next, we introduce the following differential operators according to the relation

between the function pair (u, U) shown in (3.16):

Dxu :=
dU

dy
=

dx

dy
∂xu,(3.28)

D2
xu :=

d2U

dy2
=

dx

dy
∂x

(
dx

dy
∂xu

)
,(3.29)

. . .

Dk
xu :=

dkU

dyk
=

dx

dy
∂x

(
dx

dy
∂x

(
. . .

(
dx

dy
∂xu

)
. . .

))
, k = 0, 1, 2, . . . .(3.30)

Then we have the following relations

‖U‖2ω0,1/α−1 =

∫ 1

−1

|U(y)|2(1 + y)1/α−1dy =
1

cα

∫ 1

−1

|u(x)|2dx =
1

cα
‖u‖2ω̃0,0 ,(3.31)

‖∂yU‖2ω1,1/α =

∫ 1

−1

|∂yU(y)|2(1− y)(1 + y)(1 + y)1/α−1dy =
1

cα
‖Dxu‖2ω̃1,1 ,(3.32)

. . .

‖∂kyU‖2ωk,k+1/α−1 =
1

cα
‖Dk

xu‖2ω̃k,k , k = 0, 1, 2, . . . .(3.33)

D
ow

nl
oa

de
d 

01
/2

3/
20

 to
 1

28
.2

10
.1

07
.2

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2364 JIE SHEN AND YINGWEI WANG

Let PN be the set of all polynomials of degree at most N , and define the Müntz
approximation space as

(3.34) VN := {p : p(x) = P (y(x)), ∀P ∈ PN}.

By Theorem 3.2, we know that

PN (I) = span{J0,1/α−1
k (y)}Nk=0, VN (I) = span{Ĵ0,1/α−1

k (x)}Nk=0.

Consider the weighted L2 spaces

L2
ω0,1/α−1(I) = {U : ‖U‖ω0,1/α−1 <∞} ,

L̃2
ω0,1/α−1(I) =

{
u : u(x) = U(y(x)), U(y) ∈ L2

ω0,1/α−1(I)
}
.

Let ΠN : L2
ω0,1/α−1(I)→ PN be the orthogonal projection defined by

(3.35) (ΠNU − U,P )ω0,1/α−1 = 0 ∀P ∈ PN .

We define πN : L̃2
ω0,1/α−1(I)→ PN by

(3.36) (πNu)(x) := (ΠNU)(y(x)).

Then we have πNu ∈ VN and by (3.25),

(πNu− u, p)L2 = cα (ΠNU − U,P )ω0,1/α−1 = 0 ∀p ∈ VN .(3.37)

Recall the error estimate for orthogonal projection ΠN defined in (3.35) (cf. The-
orem 3.35 in [22]): for 0 ≤ l ≤ m,

(3.38) ‖∂ly (ΠNU − U) ‖ωl,l+1/α−1 . N l−m‖∂my U‖ωm,m+1/α−1

for any U ∈ Bm
ω0,1/α−1(I) := {U : ∂kyU ∈ L2

ωk,k+1/α−1 , 0 ≤ k ≤ m}. To perform the
error estimates for the projection πN defined in (3.36), we define the mapped space

(3.39) B̃mω0,1/α−1(I) =

{
u : ‖u‖B̃m

ω0,1/α−1
<∞

}
equipped with the norm and seminorm

‖u‖B̃m
ω0,1/α−1

=

(
m∑
k=0

‖Dk
xu‖2ω̃k,k

)1/2

, |u|B̃m
ω0,1/α−1

= ‖Dm
x u‖ω̃m,m .

Theorem 3.3. Let u ∈ B̃m
ω0,1/α−1(I)∩ L̃2

ω0,1/α−1(I) and µ = 0, 1. Then for the L2

projection πN defined in (3.37), we have the following estimates:

(3.40) ‖∂µx (πNu− u)‖ω̃µ,s(µ) . Nµ−m|u|B̃m
ω0,1/α−1

,

where s(µ) =

{
0, µ = 0,

2/α− 1, µ = 1.
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Proof. By (3.25) and (3.26), we have

‖πNu− u‖L2 =
√
cα‖ΠNU − U‖ω0,1/α−1 ,(3.41)

‖∂x (πNu− u) ‖ω̃1,2/α−1 =
1
√
cα
‖∂y (ΠNU − U) ‖ω1,1/α .(3.42)

Thus, using the results (3.38) with l = 0, 1, we obtain (3.40) from (3.41)–(3.42) and
the definitions in (3.33) and (3.39).

Consider the weighted H1 spaces

H1
ω0,1/α−1(I) =

{
U : ‖U‖H1

ω0,1/α−1
<∞

}
,

H̃1
ω0,1/α−1(I) =

{
u : u(x) = U(y(x)), H1

ω0,1/α−1(I)
}
,

where the weighted H1 norm in H1
ω0,1/α−1(I) is defined by

‖U‖2H1

ω0,1/α−1
= ‖∂yU‖2ω0,1/α−1 + ‖U‖2ω0,1/α−1 .

By (3.25) and (3.27), the weighted H1 norm in H̃1
ω0,1/α−1(I) should be

‖u‖2
H̃1

ω0,1/α−1

= ‖∂xu‖2ω0,2−2α + ‖u‖2L2

= c̃α‖∂yU‖2ω0,1/α−1 + cα‖U‖2ω0,1/α−1 .

It is easy to know that

(3.43)
√

min(cα, c̃α)‖U‖H1

ω0,1/α−1
≤ ‖u‖H̃1

ω0,1/α−1
≤
√

max(cα, c̃α)‖U‖H1

ω0,1/α−1
.

Let us denote the inner product in H1
ω0,1/α−1(I) by

aω0,1/α−1(U, V ) = (U ′, V ′)ω0,1/α−1 + (U, V )ω0,1/α−1 ,

and define the orthogonal projection Π1
N : H1

ω0,1/α−1(I)→ PN by

(3.44) aω0,1/α−1(Π1
NU − U, V ) = 0 ∀V ∈ PN .

Similarly, we can define π1
N : H̃1

ω0,1/α−1(I)→ PN by

(3.45) (π1
Nu)(x) := (Π1

NU)(y(x)).

Recall the error estimate for orthogonal projection Π1
N defined in (3.44) (cf. Theorem

3.36 in [22]):

(3.46) ‖Π1
NU − U‖H1

ω0,1/α−1
. N1−m‖∂my U‖ωm−1,m+1/α−2

for any U satisfying ∂yU ∈ Bm−1
ω0,1/α−1(I). By (3.33), (3.43), and (3.46), we can prove

the following theorem.

Theorem 3.4. Let u satisfy u ∈ H̃1
ω0,1/α−1(I) and Dxu ∈ B̃m−1

ω0,1/α−1(I). Then for

the H1 projection π1
N defined in (3.45), we have the following estimate

(3.47) ‖π1
Nu− u‖H̃1

ω0,1/α−1
. N1−m‖Dm

x u‖ω̃m−1,m−1 .
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Fig. 2. The original and transformed domains.

4. Müntz–Galerkin method. In this section, we shall develop a Müntz–
Galerkin method using the Müntz–Jacobi functions for solving the problem −∆u = f
with Ω being the upper half of the unit disk with D-N boundary condition on the
bottom of Ω; cf. the left part of Figure 2.

4.1. Galerkin formulation. In polar coordinates, this problem reads

(4.1)

{ − 1
r (rur)r − 1

r2uθθ = f, (r, θ) ∈ (0, 1)× (0, π),
u |{r=1,0<θ<π}∪{0<r<1,θ=π}= 0, ∂u

∂n

∣∣
{0<r<1,θ=0} = 0.

Since the original domain is a half-disk, we cannot apply a Fourier transform in the
θ-direction to reduce the above problem to a sequence of one-dimensional problems
as in [20]. In order to apply a spectral method, we make the following transform,

(4.2)

{
t = 2r − 1 ∈ (−1, 1),
s = 2

π θ − 1 ∈ (−1, 1),

and denote ũ(t, s) = u ((t+ 1)/2, (s+ 1)π/2) , f̃(t, s) = f ((t+ 1)/2, (s+ 1)π/2). Then
the problem (4.1) becomes

(4.3)


−∂t ((t+ 1)∂tũ)− 4

π2
1
t+1∂ssũ = t+1

4 f̃ , (t, s) ∈ Ω̃ = (−1, 1)2,

ũ(t = ±1,−1 < s < 1) = 0,
∂ũ
∂s (−1 < t < 1, s = −1) = 0, ũ(−1 < t < 1, s = 1) = 0.

The original and transformed domains are shown in Figure 2.

Let (u, v) =
∫ 1

−1

∫ 1

−1
uv dtds. For a given finite-dimensional space VN , the

Galerkin approximation for problem (4.3) is to find ũN ∈ VN such that

(4.4) ((t+ 1)∂tũN , ∂tv) +
4

π2

(
1

t+ 1
∂sũN , ∂sv

)
=

(
t+ 1

4
f̃ , v

)
∀v ∈ VN .

Let φk(t) and ψj(s) be two sequences of one-dimensional basis functions satisfying
the boundary conditions in (4.3), respectively. Setting VN = span{φk(t)}Nk=0 ⊗ span
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{ψj(s)}Nj=0, and writing

(4.5) ũN (t, s) =

N∑
k=0

N∑
j=0

ukjφk(t)ψj(s)

in (4.4), we find that the problem (4.4) reduces to the following linear system

(4.6) SUM̃T +
4

π2
MUS̃T = F,

where U = (uk,j)0≤k,j≤N and

S = (skj), skj =
(
(t+ 1)φ′j(t), φ

′
k(t)

)
, S̃ = (s̃kj), s̃kj = (ψ′j(s), ψ

′
k(s)),

M = (mkj), mkj =

(
1

t+ 1
φj(t), φk(t)

)
, M̃kj = (m̃kj), m̃kj = (ψj(s), ψk(s)),

F = (fkj), fk,j =

(
t+ 1

4
f̃(t, s), φk(t)ψj(s)

)
.

(4.7)

In the classical Legendre–Galerkin method [20], we use polynomial basis functions
satisfying boundary conditions φk(−1) = φk(1) = 0 and ψ′j(−1) = ψj(1) = 0:

φk(t) = Lk(t)− Lk+2(t),(4.8)

ψj(s) = Lj(s)−
2j + 3

(j + 2)2
Lj+1(s)− (j + 1)2

(j + 2)2
Lj+2(s),(4.9)

where Ln is the nth degree Legendre polynomial. The stiffness and mass matrices
S, S̃, M, M̃ corresponding to the above basis sets are all sparse, so the linear system
(4.6) can be efficiently solved [20].

However, according to Theorem 2.2, the polynomial approximation will lead to a
poor convergence rate due to the singularity of the solution ũ(t, s) in the t direction
near the left endpoint t = −1. Instead, we should use Müntz–Jacobi functions with
α = 1

2 to replace φk(t) in the t-direction.

4.2. Müntz–Jacobi basis functions. As in the classical Legendre–Galerkin
method, we should construct basis functions satisfying required boundary conditions
using compact linear combinations [19] of Müntz–Jacobi functions. Namely, we can
determine the coefficient pair (ak, bk) such that for each k

φ
0,1/α−1
k (y) := J

0,1/α−1
k (y) + akJ

0,1/α−1
k+1 (y) + bkJ

0,1/α−1
k+2 (y)(4.10)

satisfies φ0,1/α−1(±1) = 0. In fact, using (A.7) and (A.8), we find

ak = − (1/α− 1)(2k + 1/α+ 2)

(k + 1/α)(2k + 1/α+ 3)
, bk = − (k + 2)(2k + 1/α+ 1)

(k + 1/α)(2k + 1/α+ 3)
.

We then obtain our desired basis functions in x:

φ̂
0,1/α−1
k (x) := φ

0,1/α−1
k (y(x))

= Ĵ
0,1/α−1
k (x) + akĴ

0,1/α−1
k+1 (x) + bkĴ

0,1/α−1
k+2 (x),(4.11)

where y(x) is defined in (3.11).
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Case (I): α = 1/2. In particular, taking α = 1/2 in (4.10) and (4.11) yields the
following basis functions

φ0,1
k (y) = J0,1

k (y)− 2

2k + 5
J0,1
k+1(y)− 2k + 3

2k + 5
J0,1
k+2(y),(4.12)

φ̂0,1
k (x) = Ĵ0,1

k (x)− 2

2k + 5
Ĵ0,1
k+1(x)− 2k + 3

2k + 5
Ĵ0,1
k+2(x).(4.13)

It remains to compute the stiffness and mass matrices associated with φ̂0,1
k (x), namely,

Ŝ0,1 = (ŝ0,1
kj ), ŝ0,1

kj =
(

(t+ 1)∂tφ̂
0,1
j (t), ∂tφ̂

0,1
k (t)

)
,

M̂0,1 = (m̂0,1
kj ), m̂0,1

kj =

(
1

t+ 1
φ̂0,1
j (t), φ̂0,1

k (t)

)
.

(4.14)

Unlike in the polynomial case where the stiffness and mass matrices are sparse and
can be computed with ease, the matrices in (4.14) are dense. Direct computations
using Gaussian quadratures are costly and may suffer loss of accuracy [14]. Below,
we shall find explicit relations between these two sets of stiffness and mass matrices,
which allow us to compute S0,1 and M0,1 efficiently and accurately.

It is obvious that J0,1
n (y) ≡ Ĵ0,1

n (x) and φ0,1
k (y) ≡ φ̂0,1

k (x) under the mappings

(3.10) and (3.11). The next theorem shows the relation between φ0,1
k (y) defined in

(4.12) and φk(y) defined in (4.8) .

Theorem 4.1. The basis functions φ0,1
k (y) defined in (4.12) can be written as a

linear combination of {φi(y) := Li(y)− Li+2(y)}ki=0, i.e.,

(4.15) φ0,1
k (y) =

2k + 3

(k + 1)(k + 2)(k + 3)

k∑
i=0

(−1)k−i(i+ 1)(i+ 2)φi(y).

Consequently, let S and M (resp., Ŝ0,1 and M̂0,1) be the stiffness and mass matrices

in (4.7) (resp., (4.14)) associated with φk = Lk − Lk+2 (resp., φ̂0,1
k ); we have

(4.16) M̂0,1 = 2HMHT , Ŝ0,1 =
1

2
HSHT ,

where H = (hk,j)
N
k,j=0 is a lower triangular matrix with nonzero entries

(4.17) hk,j =
(−1)k−j(2k + 3)(j + 1)(j + 2)

(k + 1)(k + 2)(k + 3)
, 0 ≤ j ≤ k ≤ N.

Proof. Let α = β = 0 in (A.4). Noticing that J0,0
n = Ln, we have the relation

between J0,1
n (y) and Ln(y):

(4.18) (1 + y)J0,1
n (y) = (Ln(y) + Ln+1(y)).

Let α = 0, β = 1 in (A.3), then we have

(4.19) (1− y)J1,1
n (y) =

2(n+ 1)

2n+ 3
(J0,1
n (y)− J0,1

n+1(y)).

By (4.18) and (4.19), we know that

(4.20) (1− y)2J1,1
n (y) =

2(n+ 1)

2n+ 3
(Ln(y)− Ln+2(y)),
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which implies that we can rewrite φk as

φk(y) = Lk(y)− Lk+2(y) =
2k + 3

2(k + 1)
(1− y2)J1,1

k (y).(4.21)

On the other hand, we can also rewrite φ0,1
k as

φ0,1
k (y) =J0,1

k (y)− 2

2k + 5
J0,1
k+1(y)− 2k + 3

2k + 5
J0,1
k+2(y)

(4.18)
=====

1

1 + y

[
Lk(y) +

2k + 3

2k + 5
Lk+1(y)− Lk+2(y)− 2k + 3

2k + 5
Lk+3(y)

]
(4.8)

=====
1

1 + y

[
φk(y) +

2k + 3

2k + 5
φk+1(y)

]
(4.21)

=====
2k + 3

2
(1− y)

[
1

k + 1
J1,1
k (y) +

1

k + 2
J1,1
k+1(y)

]
.(4.22)

Consider a new function

(4.23) ϕk(y) :=
1

1 + y

[
1

k + 1
J1,1
k (y) +

1

k + 2
J1,1
k+1(y)

]
.

Plugging α = β = 1 in (A.2) yields the three-term recurrence relation

(4.24)
1

k + 2
J1,1
k+1 =

2k + 3

(k + 1)(k + 3)
yJ1,1

k − 1

k + 3
J1,1
k−1, k ≥ 1.

It follows that

1

k + 1
J1,1
k +

1

k + 2
J1,1
k+1 =

(
(2k + 3)y

(k + 1)(k + 3)
+

1

k + 1

)
J1,1
k − 1

k + 3
J1,1
k−1

=

(
(2k + 3)(1 + y)− k

(k + 1)(k + 3)

)
J1,1
k − 1

k + 3
J1,1
k−1

=
(2k + 3)(1 + y)

(k + 1)(k + 3)
J1,1
k − k

k + 3

[
1

k + 1
J1,1
k +

1

k
J1,1
k−1

]
.(4.25)

Plugging (4.25) into (4.23) yields

(4.26) ϕk(y) =
(2k + 3)

(k + 1)(k + 3)
J1,1
k (y)− k

k + 3
ϕk−1(y).

From the recursive relation (4.26), we obtain the expansion

(4.27) ϕk(y) =
1

(k + 1)(k + 2)(k + 3)

k∑
i=0

(−1)k−i(i+ 2)(2i+ 3)J1,1
i (y).

Therefore,

φ0,1
k (y) =

2k + 3

2
(1− y2)ϕk(y),

(4.27)
=====

(2k + 3)(1− y2)

2(k + 1)(k + 2)(k + 3)

k∑
i=0

(−1)k−i(i+ 2)(2i+ 3)J1,1
i (y),(4.28)

(4.21)
=====

2k + 3

(k + 1)(k + 2)(k + 3)

k∑
i=0

(−1)k−i(i+ 1)(i+ 2)φi(y).(4.29)
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It remains to show (4.16).
Thanks to (4.29), we immediately obtain the relation

(4.30) M0,1 = HMHT , S0,1 = HSHT ,

where

S0,1 = (s0,1
kj ), s0,1

kj =
(

(1 + y)∂yφ
0,1
j (y), ∂yφ

0,1
k (y)

)
,

M0,1 = (p0,1
kj ), m0,1

kj =

(
1

1 + y
φ0,1
j (y), φk(y)

)
.

(4.31)

So we only need to relate M̂0,1, Ŝ0,1 to M0,1, S0,1.
We derive from the mapping defined in (3.10) and (3.11) with α = 1/2 that

ŝ0,1
kj =

∫ 1

−1

(1 + x)∂xφ̂
0,1
j (x)∂xφ̂

0,1
k (x)dx

=

∫ 1

−1

1 + y

2
∂yφ

0,1
j (y)∂yφ

0,1
k (y)dy =

1

2
s0,1
k,j ,

which shows that Ŝ0,1 = 1
2S

0,1. Similarly, we can show that M̂0,1 = 2M0,1. Therefore,
we obtain (4.16) from (4.30).

Finally, the linear system associated with the Müntz–Galerkin method for prob-
lem (4.4) is

(4.32) Ŝ0,1UM̃T +
4

π2
M̂0,1US̃T = F,

which can be efficiently solved by using the matrix diagonalization method [19] in
O(N3) operations.

Case (II): α = 1/q, where q is a positive integer. In this case, taking α = 1/q in
(4.10) and (4.11) yields the following basis functions

φ0,q−1
k (y) = J0,q−1

k (y) + aqkJ
0,q−1
k+1 (y) + bqkJ

0,q−1
k+2 (y),(4.33)

φ̂0,q−1
k (x) = Ĵ0,q−1

k (x) + aqkĴ
0,q−1
k+1 (x) + bqkĴ

0,q−1
k+2 (x),(4.34)

where

aqk = − (q − 1)(2k + q + 2)

(k + q)(2k + q + 3)
, bqk = − (k + 2)(2k + q + 1)

(k + q)(2k + q + 3)
.

Furthermore, it is easy to check that

(4.35) φ0,q−1
k (y) =

(2k + q + 1)(2k + q + 2)

4(k + 1)(k + q)
(1− y2)J1,q

k (y).

In order to obtain a relation similar to (4.15), we need the following

(4.36) J1,q
k =

k∑
j=0

dqk,jJ
1,1
j .

Actually, by the demotion relation (A.6), we can find a series of {di→(i+1)
k,j }q−1

i=1 such
that

J1,i+1
k =

k∑
j=0

d
i→(i+1)
k,j J1,i

j .D
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Then (dqk,j) can be obtained by the product of {di→(i+1)
k,j }q−1

i=1 . Plugging (4.36) into
(4.35) yields

φ0,q−1
k (y) =

(2k + q + 1)(2k + q + 2)

4(k + 1)(k + q)
(1− y2)

k∑
j=0

dqk,jJ
1,1
j (y)

(4.21)
=====

(2k + q + 1)(2k + q + 2)

2(k + 1)(k + q)

k∑
j=0

j + 1

2j + 3
dqk,jφj(y).(4.37)

Consider the stiffness and mass matrices with respect to the basis set {φ̂0,q−1
k }

defined in (4.34):

Ŝ0,q−1 = (ŝ0,q−1
kj ), ŝ0,q−1

kj =
(

(1 + x)∂xφ̂
0,q−1
j (x), ∂xφ̂

0,q−1
k (x)

)
,

M̂0,q−1 = (p̂0,q−1
kj ), m̂0,q−1

kj =

(
1

1 + x
φ̂0,q−1
j (x), φ̂0,q−1

k (x)

)
.

(4.38)

Then we can find the relations between Ŝ0,q−1, M̂0,q−1 defined above and M,S defined
in (4.7) as follows:

(4.39) M̂0,q−1 = qHqMHT
q , Ŝ0,q−1 =

1

q
HqSH

T
q ,

where Hq = (hqk,j)
N
k,j=0 is a lower triangular matrix with nonzero entries

(4.40) hqk,j =
(2k + q + 1)(2k + q + 2)(j + 1)

2(k + 1)(k + q)(2j + 3)
dqk,j , 0 ≤ j ≤ k ≤ N.

4.3. Error estimates. Since in the Müntz–Galerkin method (4.4), the
s-direction is treated with the usual polynomials so its error estimate is well known
[22], we only need to consider applying the Müntz–Galerkin method to the one-
dimensional problem:

(4.41)

 − ∂x((1 + x)∂xu) +
1

1 + x
u = f, x ∈ I = (−1, 1),

u(±1) = 0,

where f is a given function.
We define X = {u : |||u|||E <∞} with

(4.42) |||u|||E :=
√
a(u, u) =

(
‖u′‖2ω0,1 + ‖u‖2ω0,−1

)1/2
.

Then, a weak formulation of (4.41) is to find u ∈ X such that

a(u, v) := ((1 + x)u′, v′) +
(
(1 + x)−1u, v

)
= (f, v) ∀v ∈ X.(4.43)

It is easy to verify that the bilinear form a(·, ·) is continuous and coercive in X, so
(4.43) is well posed.

Let PN be the set of all polynomials of degree at most N , and define

(4.44) P0
N := {u(y) ∈ PN : u(±1) = 0}.
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We define the Müntz–Jacobi approximation space

(4.45) V0
N := {φ : φ(x) = Ψ(y(x)), ∀Ψ ∈ P0

N}.

Then, the Müntz–Galerkin approximation to (4.41) is to find uN ∈ V0
N such that

a(uN , vN ) : = (∂xuN , ∂xvN )ω0,1 + (uN , vN )ω0,−1 = (f, vN ) ∀vN ∈ V0
N .(4.46)

Let us recall the definition of generalized Jacobi polynomials {J−1,−1
n }∞n=0 [9, 10]:

(4.47) J−1,−1
n (y) := (1− y2)J1,1

n−2(y) ∀n ∈ N.

On the other hand, it is known that the Legendre basis {φk(y)}∞k=0 with Dirichlet
boundary conditions satisfy the following:

φk(y) := Lk(y)− Lk+2(y) =
2k + 3

2(k + 1)
(1− y2)J1,1

k (y) =
2k + 3

2(k + 1)
J−1,−1
k+2 (y).(4.48)

Furthermore, for the Jacobi basis functions {φ0,1/α−1
k } defined in (4.10), we have

φ
0,1/α−1
k (y) =

(2k + 1/α+ 1)(2k + 1/α+ 2)

4(k + 1)(k + 1/α)
(1− y2)J

1,1/α
k (y)

=
(2k + 1/α+ 1)(2k + 1/α+ 2)

4(k + 1)(k + 1/α)
(1− y2)

k∑
j=0

djJ
1,1
j (y)

=

k∑
j=0

d̃j,kJ
−1,−1
j+2 (y),(4.49)

where the coefficients {dj} are called connection coefficients [24] between two Jacobi

families {J1,1/α
k } and {J1,1

k }. Now it is clear that

P0
N (I) = span{φ0,1/α−1

k (y)}N−2
k=0 = span{J−1,−1

k (y)}Nk=2,

V0
N (I) = span{φ̂0,1/α−1

k (x)}N−2
k=0 .

Consider the weighted L2 spaces

L2
ω−1,−1(I) = {U : ‖U‖ω−1,−1 <∞} ,

L̃2
ω−1,−1(I) =

{
u : u(x) = U(y(x)), U(y) ∈ L2

ω−1,−1(I)
}
.

Let Π0
N : L2

ω−1,−1(I)→ P0
N be the orthogonal projection defined by

(4.50) (Π0
NU − U,Φ)ω−1,−1 = 0 ∀Φ ∈ P0

N ,

where the weight ω−1,−1(y) = (1− y2)−1. We define π0
N : L̃2

ω−1,−1(I)→ V0
N ,

(4.51) (π0
Nu)(x) := (Π0

NU)(y(x)).

Then we easily derive by definition that(
π0
Nu− u, φ

)
ω̃−1,−1/α = cα

(
Π0
NU − U,Φ

)
ω−1,−1 = 0 ∀φ ∈ V0

N ,(4.52)

where ω̃−1,−1/α is defined in (3.24) by setting a = −1, b = −1/α, and cα = 21−1/α

α is
a constant only dependant on α.
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To describe the error of the Müntz–Jacobi approximation for the above projections
Π0
N and π0

N , we find that the weighted norms of functions Dk
xu and ∂kyU defined in

(3.30) are related by

‖U‖2ω−1,−1 =

∫ 1

−1

|U(y)|2(1 + y)−1/α(1− y)−1(1 + y)1/α−1dy

=
1

cα

∫ 1

−1

|u(x)|2ω̃−1,−1/αdx =
1

cα
‖u‖2ω̃−1,−1/α ,(4.53)

‖∂yU‖2ω0,0 =

∫ 1

−1

|∂yU(y)|2(1 + y)1−1/α(1 + y)1/α−1dy

=
1

cα
‖Dxu‖2ω̃0,−1/α+1 ,(4.54)

. . .

‖∂kyU‖2ω−1+k,−1+k =
1

cα
‖Dk

xu‖2ω̃−1+k,−1/α+k .(4.55)

Recall the error estimate for orthogonal projection Π0
N defined in (4.50) (cf. The-

orem 6.1 in [22]): for 0 ≤ l ≤ m,

(4.56) ‖∂ly
(
Π0
NU − U

)
‖ω−1+l,−1+l . N l−m‖∂my U‖ω−1+m,−1+m

for any U ∈ Bmω−1,−1(I) := {U : ∂kyU ∈ L2
ω−1+k,−1+k , 0 ≤ k ≤ m}.

Next, we define the mapped space

(4.57) B̃mω−1,−1/α(I) =

{
u : ‖u‖B̃m

ω−1,−1/α
<∞

}
,

equipped with the norm and seminorm

‖u‖B̃m
ω−1,−1/α

(
m∑
k=0

‖Dk
xu‖2ω̃−1+k,−1/α+k

)1/2

, |u|B̃m
ω−1,−1/α

= ‖Dm
x u‖ω̃−1+m,−1/α+m .

We now present our main approximation result for Müntz–Jacobi approximations.

Theorem 4.2. Let u ∈ B̃m
ω−1,−1/α(I) ∩ L̃2

ω−1,−1(I) and µ = 0, 1. Then we have

(4.58) ‖∂µx (π0
Nu− u)‖ω0,ŝ(µ) . Nµ−m|u|B̃m

ω−1,−1/α
,

where ŝ(µ) =

{
− 1, µ = 0,

1, µ = 1.

Proof. First of all, for any u and U satisfying the relation (3.16), we have

‖u‖2ω0,−1 =

∫ 1

−1

|u(x)|2(1 + x)−1dx =
1

α

∫ 1

−1

|U(y)|2(1 + y)−1dy =
1

α
‖U‖2ω0,−1 ,(4.59)

‖∂xu‖2ω0,1 =

∫ 1

−1

|∂xu(x)|2(1 + x)dx = α

∫ 1

−1

|∂yU(y)|2(1 + y)dy = α‖∂yU‖2ω0,1 .(4.60)

Thanks to (4.59) and (4.60), we have the following estimates

‖π0
Nu− u‖ω0,−1 =

1√
α
‖Π0

NU − U‖ω0,−1 ≤ 1√
α
‖Π0

NU − U‖ω−1,−1 ,(4.61)

‖∂x
(
π0
Nu− u

)
‖ω0,1 =

√
α‖∂y

(
Π0
NU − U

)
‖ω0,1 ≤

√
α‖∂y

(
Π0
NU − U

)
‖ω0,0 .(4.62)
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Thus, using the result (4.56) with l = 0, 1, we obtain (4.58) from (4.61)–(4.62) and
the definitions in (4.55) and (4.57).

We can now state error estimates for our Müntz–Galerkin method.

Theorem 4.3. Let u and uN be the solutions of (4.43) and (4.46), respectively.
If u ∈ B̃m

ω−1,−1/α(I) ∩ L̃2
ω−1,−1(I), we have

(4.63) |||u− uN |||E . N1−m|u|B̃m
ω−1,−1/α

.

Proof. By (4.43) and (4.46), we have

(4.64) a(u− uN , vN ) = 0 ∀vN ∈ V0
N .

It implies that

|||u− uN |||2E = a(u− uN , u− uN ) = a(u− uN , u− π0
Nu)

≤ |||u− uN |||E |||u− π0
Nu|||E .

The desired result (4.63) follows from the above and (4.58).

5. Numerical experiments. In this section, we present several numerical ex-
periments to illustrate the efficiency and the accuracy of our Müntz–Galerkin method.

5.1. Model problem. Consider the one dimensional problem

(5.1)

 − (ru′)′ +
u

r
= f(r), r ∈ (0, 1),

u(0) = u(1) = 0

with the exact solution given by u(r) = rp − r + sin(πr), where p is a parameter to
be chosen.

We choose two categories for the values of p: (i) p = 1/2, 3/2, 5/2; (ii) p =
1/3, 4/3, 7/3. We first solved the above problems by the classical Legendre–Galerkin
method with basis functions defined in (4.8) [20]. The errors with energy norm in log-
log scale are shown in the left parts of Figures 3 and 4 We observe that the convergence
rates are algebraic due to the singular term rp in the solution. We then solved the
same problems by the Müntz–Galerkin method (4.46) using the basis function (4.11)
with α = 1/2 for p = 1/2, 3/2, 5/2 and α = 1/3 for p = 1/3, 4/3, 7/3. The errors with
energy norm in semilog scale are plotted on the right parts of Figures 3 and 4. We
observe that the errors converge exponentially. These results are consistent with the
error estimates in Theorem 4.3.

5.2. Semicircular membrane with a free half-edge. Next, we consider the
so-called Motz’s problem [18] which is the following Poisson equation in a semicircular
domain with N-D mixed boundary condition on the bottom (see Figure 5):

(5.2)

{
−∆u = 1 in Ω,
u = 0 on Γ1 ∪ Γ3,

∂u
∂n = 0 on Γ2,

where Γ1 = {(r, θ) : r = 1, 0 ≤ θ ≤ 2π}, Γ2 = {(r, θ) : 0 ≤ r < 1, θ = 0}, Γ3 =
{(r, θ) : 0 < r < 1, θ = 2π}. It is shown in Theorem 2.2 that the exact solution in the
vicinity of the origin takes the form (2.7).
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Fig. 3. Convergence rates for problem (5.1) with p = 1/2, 3/2, 5/2.
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Fig. 4. Convergence rates for problem (5.1) with p = 1/3, 4/3, 7/3.

We solve this problem using two methods:
1. Legendre–Galerkin method: using classical Legendre basis in (4.8) and (4.9);
2. Müntz–Galerkin method: using the Legendre basis (4.9) in the θ direction

and the Müntz basis (4.13) in the r direction to treat the singularity at r = 0.
The comparison of convergence rates in the L2-norm is shown in Figure 6. The rates
of convergence are greatly improved (from second order to fifth order) since the main
singularity at the origin is taken care of in our proposed Müntz–Galerkin method, but
we did not attempt to treat the mild singularities at the two corners.

5.3. The eigenvalue problem. As the last example, we focus on the spectral
problems of a Laplacian operator with mixed Dirichlet–Neumann boundary conditions
on the half-unit disc:



−∆u =
4λ

(1 + r2)2
u in Ω = {(r, θ) : 0 < r < 1, 0 < θ < π},

∂u

∂n

∣∣∣∣
∂1Ω

= 0 on ∂1Ω = {(r, 0) : r ∈ (0, 1)} ∪
{

(1, θ) :
∣∣∣θ − π

2

∣∣∣ < π

4

}
,

u|∂2Ω = 0 on ∂2Ω = {(r, π) : r ∈ (0, 1)} ∪
{

(1, θ) :
∣∣∣θ − π

2

∣∣∣ > π

4

}
.

(5.3)
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Fig. 5. Semicircular membrane with a free half-edge.

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

Log( N )

L
o

g
 (

 E
rr

o
rs

 )

 

 

Legendre

Muntz

O(N
−2

)

O(N
−5

)

Fig. 6. Convergence rates: Legendre–Galerkin method and Müntz–Galerkin method.

This problem is related to the isospectrality question for mixed Dirichlet–Neumann
boundary conditions, called the Zaremba problem [25]. Jakobson et al. [11, 12] pro-
posed a conjecture about the first eigenvalue Λ1 of the problem (5.3). Since a rigorous
proof of this conjecture is still not available, attempts [11] have been made to numer-
ically verify it.
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Fig. 7. Boundary conditions and computational domain of the problem (5.3).

Table 1
First eigenvalues obtained by FEMs.

DOF
P1 adaptive conforming P1 adaptive nonconforming

Λ1 ∆Λ1 Λ1 ∆Λ1

169 2.45590105457 2.13042989031
625 2.36301118569 9.2890e-02 2.20743747322 7.7008e-02
2401 2.32089716556 4.2114e-02 2.24561396752 3.8176e-02
9409 2.30111238184 1.9785e-02 2.26440630518 1.8792e-02
37249 2.29161462311 9.4978e-03 2.27364314423 9.2368e-03

Using the transformation given in (4.2), the problem (5.3) becomes



− ∂t ((t+ 1)∂tũ)− 1

π2

1

t+ 1
∂ssũ = λ

16(t+ 1)

(4 + (t+ 1)2)2
ũ in Ω̃ = [−1, 1]2,

∂sũ(t, 0) = 0, t ∈ (−1, 1),

∂tũ(1, s) = 0, s ∈ (1/4, 3/4),

ũ(t, 1) = ũ(−1, s) = 0, t ∈ (−1, 1), s ∈ (0, 1),

ũ(1, s) = 0, s ∈ (0, 1/4) ∪ (3/4, 1),

(5.4)

where ũ(t, s) = u ((t+ 1)/2, πs). The original and transformed domains are shown in
Figure 7.

We solve the above problem using the Müntz spectral-element method. More
precisely, we divide the transformed domain into three subdomains, and use the
Müntz basis sets in the t direction, and the Legendre basis set in each subinterval
(0, 1/4), (1/4, 3/4) and (3/4) plus two nodal basis centered at the s = 1/4 and 3/4 in
the s direction.

The approximate first eigenvalues obtained by P1 adaptive conforming and non-
conforming finite element methods in [11] and our Müntz spectral-element method
are shown in Tables 1 and 2, respectively. Here, we denote DOF as the degree of
freedoms, N as the maximal degree of polynomials, Λ1 and ∆Λ1 as the approximate
first eigenvalue and difference between the two successive values of Λ1, respectively.

It is well known that for eigenvalue problems, the conforming finite element
method always gives upper bounds while the nonconforming one here gives lower
bounds. Based on the numerical results shown in Table 1, we can conclude that the
first eigenvalue should be located in the interval 2.2736 < Λ1 < 2.2916, which means
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Table 2
First eigenvalues obtained by Müntz spectral-element method.

N DOF Λ1 ∆Λ1

8 208 2.297300191344
16 800 2.281650971945 1.5649e-02
32 3136 2.276933351716 1.2834e-03
64 12416 2.275629083928 1.3745e-04
128 49408 2.275285624415 1.5959e-05
192 110976 2.275225763943 3.3971e-06
232 161936 2.275218759615 2.5856e-07

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6
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0.8

0.9

1

Fig. 8. Contour of the first eigenfunction of problem (5.3).

the number of significant digits obtained by these finite element methods is only 2.
However, the results in Table 2 indicate that we can achieve 6 significant digits with a
smaller DOF by using the Müntz spectral-element method. Note also that, with the
same DOFs, our Müntz spectral-element method is also much faster than adaptive
finite element methods (FEMs), since we use a direct matrix diagonalization method
on each subdomain with a total cost being a small multiple of DOF3/2. It demon-
strates that for this problem the Müntz–Galerkin method is much more efficient than
adaptive FEMs.

In Figure 8, we plot the first eigenfunction obtained by the Müntz spectral-element
method.

6. Concluding remarks. We developed in this paper the Müntz–Galerkin meth-
ods for problems with singular solutions for which the direct spectral method with
the usual polynomial basis functions does not lead to a satisfactory convergence rate.
Assuming that we have a singular expansion for the solution near a singular point in
the form O(rα), our Müntz–Galerkin method is based on Müntz polynomials defined
from the singular expansion. To overcome the poor conditioning of the Müntz poly-
nomials, we explored relations between Jacobi polynomials and Müntz polynomials,
and developed efficient implementation procedures for the Müntz–Galerkin method.
We also developed a framework to analyze the approximation errors of Müntz poly-
nomials and derived the optimal error estimates for the Müntz–Galerkin method. As
examples of applications, we employed the Müntz–Galerkin method to solve the Pois-
son equation with mixed Dirichlet–Neumann boundary conditions, and showed that
the Müntz–Galerkin method leads to much improved rates of convergence compared
to classical spectral methods.
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Note that the rates of convergence by our Müntz spectral method for the last two
problems in section 5 are not exponential, since we only treated the main singularity
at the origin, but did not make special treatments for the weaker singularities at
(r, θ) = (1, 0), (1, π) for the problem in subsection 5.2 and at (1, π/4) and (1, 3π/4)
for the problem in subsection 5.3. How to efficiently treat all these singularities
simultaneously is still under investigation.

We showed the explicit formula for the Müntz–Jacobi basis functions as well as the
efficient algorithm to compute the corresponding stiffness and mass matrices only for
a special Müntz sequence Λ(α), where α = 1/q and q is an integer. For the case with
arbitrary Müntz sequence, one could employ the quadrature technique developed in
[14] to calculate the inner products. We shall consider singular problems characterized
by other typical Müntz sequences in the future.

Appendix A. Some useful formulas for Jacobi polynomials. The Jacobi
polynomials, denoted by Jα,βn (x), are orthogonal with respect to the Jacobi weight
ωα,β(x) := (1− x)α(1 + x)β over the interval I := (−1, 1), namely,

(A.1)

∫ 1

−1

Jα,βn (x)Jα,βm (x)ωα,β(x)dx = γα,βn δmn,

where the δmn is the Kronecker function and

γα,βn =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n!Γ(n+ α+ β + 1)
.

Here Γ(·) is the gamma function.
The Jacobi polynomials are generated by the three-term recurrence relation

(A.2) Jα,βn+1(x) = (aα,βn x− bα,βn )Jα,βn (x)− cα,βn Jα,βn−1(x), n ≥ 1,

with

Jα,β0 (x) = 1, Jα,β1 (x) =
1

2
(α+ β + 2)x+

1

2
(α− β),

where

aα,βn =
(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
,

bα,βn =
(β2 − α2)(2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
,

cα,βn =
(n+ α)(n+ β)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
.

This relation allows us to evaluate the Jacobi polynomials at any given abscissa
x ∈ [−1, 1], and it is the starting point to derive the following useful properties.

1. Index shifting:

Jα+1,β
n =

2

2n+ α+ β + 2

(n+ α+ 1)Jα,βn − (n+ 1)Jα,βn+1

1− x
,(A.3)

Jα,β+1
n =

2

2n+ α+ β + 2

(n+ β + 1)Jα,βn + (n+ 1)Jα,βn+1

1 + x
.(A.4)
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2. Demotion relation:

Jα+1,β
n (x) =

n∑
l=0

κ
(α,β)→(α+1,β)
nl Jα,βl (x),(A.5)

Jα,β+1
n (x) =

n∑
l=0

κ
(α,β)→(α,β+1)
nl Jα,βl (x),(A.6)

where

κ
(α,β)→(α+1,β)
nl =

Γ(n+ β + 1)

Γ(n+ α+ β + 2)
× (2l + α+ β + 1)Γ(l + α+ β + 1)

Γ(l + β + 1)
,

κ
(α,β)→(α,β+1)
nl =(−1)n+l Γ(n+α+1)

Γ(n+α+β+2)
× (2l+α+β+1)Γ(l+α+β+1)

Γ(l+α+1)
.

3. Boundary values:

Jα,βn (−1) = (−1)n
Γ(n+ β + 1)

n!Γ(β + 1)
,(A.7)

Jα,βn (1) =
Γ(n+ α+ 1)

n!Γ(α+ 1)
.(A.8)

4. Derivatives:

(A.9) ∂xJ
α,β
n (x) =

1

2
(n+ α+ β + 1)Jα+1,β+1

n−1 (x).
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