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SECOND-ORDER CONVEX SPLITTING SCHEMES FOR
GRADIENT FLOWS WITH EHRLICH–SCHWOEBEL TYPE

ENERGY: APPLICATION TO THIN FILM EPITAXY∗
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Abstract. We construct unconditionally stable, unconditionally uniquely solvable, and second-

order accurate (in time) schemes for gradient flows with energy of the form
∫
Ω(F (∇φ(x))+ ε2

2
|Δφ(x)|2)

dx. The construction of the schemes involves the appropriate combination and extension of two clas-
sical ideas: (i) appropriate convex-concave decomposition of the energy functional and (ii) the secant
method. As an application, we derive schemes for epitaxial growth models with slope selection
(F (y) = 1

4
(|y|2 − 1)2) or without slope selection (F (y) = − 1

2
ln(1 + |y|2)). Two types of uncon-

ditionally stable uniquely solvable second-order schemes are presented. The first type inherits the
variational structure of the original continuous-in-time gradient flow, while the second type does not
preserve the variational structure. We present numerical simulations for the case with slope selection
which verify well-known physical scaling laws for the long time coarsening process.

Key words. unconditional stability, second order scheme, convex-concave decomposition, epi-
taxial growth, Ehrlich–Schwoebel type energy
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1. Introduction. Coarsening, i.e., the process by which a group of objects of
different sizes transforms into a group consisting of fewer objects with larger average
size, is a very common natural phenomenon and has attracted considerable attention
recently [9]. The coarsening process usually takes place on a very long time scale
for large systems [10]. Therefore it is important to have accurate and efficient time
stepping with regard to numerical simulation.

Many phenomenological macroscopic coarsening processes are energy driven in the
sense that the dynamics is the gradient flow of a certain “energy functional” [15, 16].
One well-known example associated with epitaxial thin film growth is the gradient
flow with the “energy” taking the (nondimensionalized) form

(1.1) E(φ) =

∫
Ω

(
F (∇φ(x)) + ε2

2
|Δφ(x)|2

)
dx,
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106 J. SHEN, C. WANG, X. WANG, AND S. M. WISE

where F (y) is a smooth function of its argument y, Ω = T
d is the d dimensional

periodic box with period 2π and d ≥ 2, φ : Ω → R is a periodic height function (in a
moving reference frame) with average zero, and ε is a constant (inversely proportional
to the size of the system). The first term,

(1.2) EES(φ) :=

∫
Ω

F (∇xφ(x)) dx,

represents a continuum description of the Ehrlich–Schwoebel effect—according to
which adatoms (absorbed atoms) must overcome a higher energy barrier to stick to a
step from an upper rather than from a lower terrace [8, 24]—while the second term,

(1.3) ESD(φ) :=

∫
Ω

ε2

2
|Δφ(x)|2 dx,

represents the surface diffusion effect. The case with higher order diffusion as well as
Neumann-type boundary condition (∂φ∂n

∣∣
∂Ω

= ∂Δφ
∂n

∣∣
∂Ω

= 0) can be considered as well
[10, 19].

There are two popular choices for the Ehrlich–Schwoebel energy (1.2): the case
without slope selection,

(1.4) E1(φ) =

∫
Ω

(
−1

2
ln(1 + |∇φ|2) + ε2

2
|Δφ|2

)
dx,

and the case with slope selection,

(1.5) E2(φ) =

∫
Ω

(
1

4

(
|∇φ|2 − 1

)2
+
ε2

2
|Δφ|2

)
dx.

The second energy may be viewed as an approximation of the first energy under
the assumption that the gradient of the height is small [20]. There are significant
differences between the two models with the second (simplified) model having a slope
selection mechanism (structures with |∇φ| = 1 are preferred) that is absent in the
first model. This leads to differences in energy minimizers and long time coarsening
processes [15, 17, 20].

The variational derivatives of these functionals, which may be interpreted as chem-
ical potentials, can be calculated formally as

(1.6) μ :=
δE

δφ
= −∇x · ∇yF (∇xφ) + ε2Δ2φ.

The gradient flow then takes the form

(1.7)
∂φ

∂t
= −Mμ =M

(∇x · ∇yF (∇xφ)− ε2Δ2φ
)
,

where M > 0 is a mobility, which can be always set to 1 (M = 1) by rescaling the
time. Periodic boundary conditions are assumed for φ in both spatial directions for
simplicity.

The physically interesting coarsening process for spatially large systems (small ε)
occurs on a very long time scale. For instance, for the model with slope selection, the
minimal energy is of the order of ε [15]. Assuming the widely believed t−

1
3 scaling for

the energy [17, 20, 21], it requires about 1
ε3 time for the system to reach saturation

from an initially order one profile. (The saturation time would be of the order of
ε−2 under the scaling that we have adopted for our equation.) Therefore, numerical
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UNCONDITIONALLY STABLE SECOND-ORDER SCHEME 107

simulations for the coarsening process of large systems require long time accuracy and
stability. In particular, higher order (with respect to time discretization) schemes are
very desirable. In addition, unconditional energy stability is also coveted, since one
would like to have the capability of preserving the stability even if large time steps
are taken (in adaptive time stepping for instance).

Various first-order unconditionally energy stable schemes for models of thin film
epitaxial growth were derived recently [4, 30]. The purpose of this manuscript is to
construct convex splitting schemes that are second-order in time, uniquely solvable,
and unconditionally energy stable for gradient flows with Ehrlich–Schwoebel type
energy and to apply them to models of thin film epitaxy. We note that second-order,
uniquely solvable, and unconditionally energy stable schemes have been constructed
recently in [31] for Swift–Hohenberg and phase field crystal type equations. The
schemes in [31] can be applied to Allen–Cahn and Cahn–Hilliard type equations, as
well as other gradient flows where the nonlinearity involves only the height function.
(We refer to [6, 25, 26, 33, 5, 29] for other related convexity splitting schemes.) It is not
obvious whether any of the schemes from the works just mentioned can be extended
to gradient flows with an Ehrlich–Schwoebel type energy that is a function of the
gradient of the height function (instead of the height function only). We also point
out that efficient first-, second-, and third-order in time accurate schemes have been
investigated in [32], where the authors derived energy stability for their first-order
scheme under certain assumption on the numerically computed solution itself.

The rest of the paper is organized as follows. In section 2 we present and analyze
a family of second-order in time, uniquely solvable, unconditionally energy stable
schemes that preserves the variational structure of the continuous in time model. We
introduce alternative schemes with all the desired properties except the variational
structure in section 3. Section 4 is devoted to specific applications to the models of
thin film epitaxial growth with or without slope selection. Fully discretized schemes
are discussed in section 5. We specifically discuss three space discretization methods,
including finite difference, Galerkin–Fourier-spectral, and collocation Fourier-spectral
methods. Numerical results—obtained using the finite difference method in space and
the time stepping proposed in section 2—applied to the case with slope selection are
presented in section 6. We offer our concluding remarks in section 7.

2. The scheme with variational structure. Without loss of generality, we
assume that the Ehrlich–Schwoebel type energy density F (y) is smooth and possesses
a convex (+, concave −, respectively) splitting with a quadratic concave term, i.e.,

(2.1) F (y) = F+(y) + F−(y) with F−(y) = −C|y|2.
The philosophy we shall use to construct a second-order energy stable scheme is

a combination of the convex-concave splitting (see [12], for instance) and the secant
method (see, for instance, [6]) modified so that it can be applied to the vector form
and utilized on the convex part only.

Following the general idea of treating the convex part implicitly and the concave
part explicitly, a second-order convex splitting scheme should take the following form
for the gradient flow (1.7):

φn+1 − φn

k
+
ε2

2
Δ2(φn+1 + φn) +∇x ·Hn+1

n (F+)

= ∇x ·
(
3

2
∇yF−(∇xφ

n)− 1

2
∇yF−(∇xφ

n−1)

)
,(2.2)
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108 J. SHEN, C. WANG, X. WANG, AND S. M. WISE

whereHn+1
n (F+) should be chosen such that the above scheme is second-order at tn+ 1

2

and energy stable. Since the energy stability is usually proved by taking the inner
product of the above with (φn+1 − φn), the following inequality has to be satisfied:

(2.3) (Hn+1
n (F+),∇(φn+1 − φn)) ≥

∫
Ω

F+(∇φn+1) dx−
∫
Ω

F+(∇φn) dx.

Let us set ym = ∇xφ
m. Then, by direct calculation, we have∫

Ω

F+(∇φn+1) dx−
∫
Ω

F+(∇φn) dx

=

∫
Ω

∫ 1

0

d

dτ
F+(y

n + τ(yn+1 − yn)) dτ dx

=

∫
Ω

∫ 1

0

∇yF+(y
n + τ(yn+1 − yn)) dτ · (yn+1 − yn) dx

= −
∫
Ω

∇x ·
(∫ 1

0

∇yF+(y
n + τ(yn+1 − yn)) dτ

)
(φn+1 − φn) dx.

(2.4)

Therefore, a natural choice for Hn+1
n is

(2.5) Hn+1
n (F+) = −∇x ·

(∫ 1

0

∇yF+(y
n + τ(yn+1 − yn)) dτ

)
,

and our second-order convex splitting scheme is

φn+1 − φn

k
+
ε2

2
Δ2(φn+1 + φn)−∇x ·

(∫ 1

0

∇yF+(y
n + τ(yn+1 − yn)) dτ

)

= ∇x ·
(
3

2
∇yF−(∇xφ

n)− 1

2
∇yF−(∇xφ

n−1)

)
.(2.6)

Alternatively, we can write the above scheme in the weak form: find φn+1 ∈ Ḣ2
per(Ω) :=

{φ ∈ H2(Ω) : φ is periodic with average zero} such that

(2.7)

(
φn+1 − φn

k
, ψ

)
+

(
ε2

2
Δ(φn+1 + φn),Δψ

)

+

(∫ 1

0

∇yF+(y
n + τ(yn+1 − yn)) dτ,∇xψ

)

=

(
3

2
∇yF−(∇xφ

n)− 1

2
∇yF−(∇xφ

n−1),∇xψ

)
∀ψ ∈ Ḣ2

per(Ω),

where yn+1 = ∇xφ
n+1 and yn = ∇xφ

n.
Note that the treatment of the concave part is unique in the following sense: for

quadratic energy, this is the only way to get second-order accuracy with an explicit
two-step treatment. The treatment of the diffusion term is not unique. We have
utilized the midpoint rule corresponding to the Crank–Nicolson approach. Alternative
approximations, such as 3

4Δ
2φn+1+ 1

4Δ
2φn−1, can be used as well if more dissipation

is desired.
The main result of this section is the following theorem.
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Theorem 2.1. Under the assumption (2.1), the scheme (2.7) is second-order
accurate in time and unconditionally stable. More precisely, we have

(2.8)

E(φn+1) +
C

2
‖∇(φn+1 − φn)‖2 + ‖φn+1 − φn‖2

k
+
C

2
‖∇(φn+1 + φn−1 − 2φn)‖2

= E(φn) +
C

2
‖∇(φn − φn−1)‖2.

Moreover, at each time step, the scheme corresponds to the Euler–Lagrange equation
for the following strictly convex coercive variation problem:

(2.9) Escheme(φ, φ
n, φn−1) =

ε2

2
‖Δφ‖2 + 1

2k
‖φ‖2 +

∫
Ω

Fp(∇φ,∇φn) dx

+

∫
Ω

(
−∇ ·

(
3

2
∇yF−(∇φn)− 1

2
∇yF−(∇φn−1)

)
+
ε2

2
Δ2φn − φn

k

)
φdx

with

(2.10) Fp(∇φ,∇φn) =
∫ 1

0

1

τ
(F+(∇φn + τ(∇φ −∇φn))− F+(∇φn)) dτ.

Therefore, the scheme is uniquely solvable provided that F+(y) and ∇yF+(y) grow
most like a polynomial in y.

Proof. By taking the Taylor expansion at tn+ 1
2
, it is straightforward to see that

the scheme is second-order accurate in time. We omit the details for the sake of
brevity.

The unconditional stability of the scheme is guaranteed by the discrete energy
law (2.8). In order to derive this discrete energy law, we take ψ = φn+1 −φn in (2.7).

Obviously, we have∫
Ω

− ε
2

2
Δ2(φn+1 + φn)(φn+1 − φn) dx = − ε

2

2

∫
Ω

(|Δφn+1|2 − |Δφn|2) dx.(2.11)

Thanks to the assumption (2.1), we have ∇yF−(y) = −2Cy. Therefore,

−
∫
Ω

(
3

2
∇yF−(∇xφ

n)− 1

2
∇yF−(∇xφ

n−1)

)
· ∇x(φ

n+1 − φn) dx

= C

∫
Ω

(3∇φn −∇φn−1) · (∇φn+1 −∇φn) dx

= 2C

∫
Ω

∇φn · (∇φn+1 −∇φn) dx+ C

∫
Ω

(∇φn −∇φn−1) · (∇φn+1 −∇φn) dx

= C

∫
Ω

(− |∇φn|2 + |∇φn+1|2 − |∇(φn+1 − φn)|2 + (∇φn −∇φn−1)

·(∇φn+1 −∇φn)) dx
= C

∫
Ω

(
−|∇φn|2 + |∇φn+1|2 − 1

2
|∇(φn+1 − φn)|2 + 1

2
|∇φn −∇φn−1|2

)

− C

∫
Ω

1

2
|∇(φn+1 + φn−1 − 2φn)|2 dx.(2.12)

Combining the above two inequalities and (2.4), we deduce the desired discrete energy
law (2.8).
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On the other hand, we can easily verify that

(2.13) ∇x ·
(∫ 1

0

∇yF+(y
n + τ(yn+1 − yn)) dτ

)
= −δ

∫
Ω
Fp(∇φn+1,∇φn) dx

δφn+1
.

Therefore the scheme (2.6) is the Euler–Lagrange equation of the energy functional
given in (2.9). The convexity of Fp follows from the convexity of

1

τ
(F+(∇φn + τ(∇φ −∇φn))− F+(∇φn))

for all τ ∈ (0, 1], thanks to the convexity of F+. In turn, the coercivity of the
energy functional (2.9) then follows from the convexity of Fp and the diffusion term.
Therefore, the unique solution to the scheme exists and is the unique minimizer of
the energy functional (2.9) under usual differentiability and growth conditions on F+

[7, 11, 13].

3. Alternative schemes without variational structure. Alternative second-
order unconditionally stable and uniquely solvable schemes do exist if we do not care
about the preservation of the variational structure. In this case, straightforward gen-
eralization of the secant method would work without involving the integral form that
we used in deriving the scheme with variational structure that we presented in the
previous section. The resulting schemes are generally more compact than the schemes
derived in the previous section, although they lack the variational structure. Here we
illustrate two alternative ways of deriving second-order unconditionally stable and
uniquely solvable schemes for equations of thin film epitaxial growth with or without
slope selection.

Without loss of generality, we assume that the Ehrlich–Schwoebel type energy
density F (y) is smooth and takes the form

(3.1) F (y) = G(|y|2).
This certainly fits the thin film epitaxy models that we are interested in here with
G(ξ) = − 1

2 ln(1 + ξ) for the case without slope selection and G(ξ) = 1
4 (ξ− 1)2 for the

case with slope selection.
Following the general convex-splitting idea (see, for instance, [12, 30]), we assume

that it possesses a convex-concave splitting with a quadratic concave term, i.e.,

(3.2) G(ξ) = G+(ξ) +G−(ξ) with G′′
+ ≥ 0, G′

+ ≥ 0, and G−(ξ) = −Cξ.
We now construct a scheme with the following considerations: (i) the concave

quadratic term associated with G− can be treated explicitly via a classical two-level
method as before in order to preserve the energy law and maintain the second-order

accuracy; (ii) likewise, the convex quadratic term ( ε
2

2 ‖Δφ|2) can be treated easily
using classical midpoint type approximation; (iii) for the convex part associated with
G+, we mimic the classical secant method for second-order approximation (see, for
instance, [6]) in this vector setting. Taking into account the above considerations, we
arrive at the following second-order scheme:

φn+1 − φn

k
= ∇ ·

(
G+(|∇φn+1|2)−G+(|∇φn|2)

|∇φn+1|2 − |∇φn|2 (∇φn+1 +∇φn)
)

+ ∇ · (3G′
−(|∇φn|2)∇φn −G′

−(|∇xφ
n−1|2)∇φn−1

)− ε2

2
Δ2(φn+1 + φn).(3.3)
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The weak form of the above scheme is as follows: find φn+1 ∈ Ḣ2
per(Ω) such that

(3.4)

(
φn+1 − φn

k
, ψ

)
+

(
ε2

2
Δ(φn+1 + φn),Δψ

)

+

(
G+(|∇φn+1|2)−G+(|∇φn|2)

|∇φn+1|2 − |∇φn|2 (∇φn+1 +∇φn),∇ψ
)

=
(
3G′

−(|∇φn|2)∇φn −G′
−(|∇xφ

n−1|2)∇φn−1,∇ψ) ∀ψ ∈ Ḣ2
per(Ω).

Theorem 3.1. Under the assumption (3.2), the alternative scheme (3.3) is
second-order accurate in time, unconditionally energy stable in the sense that

(3.5) E(φn+1) +
C

2
‖∇(φn+1 − φn)‖2 + ‖φn+1 − φn‖2

k

+
C

2
‖∇(φn+1 + φn−1 − 2φn)‖2 = E(φn) +

C

2
‖∇(φn − φn−1)‖2.

Moreover, for the case of an energy functional given by the model with slope selection
(1.5), and with the splitting given by G+(ξ) =

1
4ξ

2 + 1
4 , G−(ξ) = − 1

2ξ, the scheme is
uniquely solvable.

Proof. Again, the second-order accuracy of this scheme (3.4) can be verified by
taking the Taylor expansion at tn+ 1

2
.

In order to prove the energy law (3.5), we take ψ = φn+1 − φn in (3.4). Notice
that with the assumption (3.2), the contribution of the concave part is exactly the
same as in (2.12). Thus, the energy law (3.5) follows similarly.

To prove the unique solvability, we need the following lemma.
Lemma 3.2. Consider the (nonlinear) problem

(3.6)
φ

k
−∇ · F(∇φ,x) + ε2

2
Δ2φ = f,

where F , f are given (smooth) functions. Then a sufficient condition on uniqueness
(of sufficiently smooth solutions) is that the symmetric part of the Jacobian of F is
nonnegative.

Proof of Lemma 3.2. Suppose we have two solutions φ, φ̃ to the general scheme
(3.6). Then, we have

φ− φ̃

k
−∇ · (F(∇φ,x) −F(∇φ̃,x)) + ε2

2
Δ2(φ− φ̃) = 0.

Taking the inner product of this equation with φ− φ̃, we deduce

0 =
‖φ− φ̃‖2

k
+

∫
Ω

(F(∇φ,x) −F(∇φ̃,x)) · ∇(φ− φ̃) dx+
ε2

2
‖Δ(φ− φ̃)‖2

=
‖φ− φ̃‖2

k
+

∫
Ω

∫ 1

0

(J(F)(∇φ̃ + τ∇(φ − φ̃),x)∇(φ − φ̃)) dτ

· ∇(φ − φ̃) dx+
ε2

2
‖Δ(φ− φ̃)‖2

≥ ‖φ− φ̃‖2
k

+
ε2

2
‖Δ(φ− φ̃)‖2,
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where in the last step we have used the assumption that the symmetric part of the
Jacobian of F is nonnegative.

It is now straightforward to prove the unique solvability stated in the theorem.
Indeed, with the specific choice of G+ and G−, we have

J(F(y))

=

∫ 1

0

∫ s

0

G′′
+(|y|2 + τ(|y0|2 − |y|2))[|y0|2 − |y|2 + 2y⊗ (y + y0)] dτds +G′(|y|2)I

=
1

4

(
(|y0|2 + |y|2)I + (y + y0)⊗ (y + y0) + y ⊗ y − y0 ⊗ y0 + (y ⊗ y0 − y0 ⊗ y)

)
.

It is then straightforward to see that the symmetric part of this Jacobian matrix is
nonnegative.

Notice that this Jacobian matrix is nonsymmetric in general. Therefore, we can
conclude that the term ∇xF(∇φn+1) cannot be interpreted as the variational deriva-
tive of any energy functional of ∇φn+1 since that would imply the symmetry of the
Jacobian.

The scheme (3.3), while being more compact than the scheme (2.6), is only guar-
anteed to be uniquely solvable for the energy with slope selection (1.5). At the expense
of compactness we can construct a second-order unconditionally stable, uniquely solv-
able scheme for more general energy functional. In this case, we adapt the classical
secant method for the convex term to our vector setting via splitting the direction
and a symmetrization at the end. In the two-dimensional case, the scheme takes the
following form:

φn+1 − φn

k
= ∂x1

F+(∇φn+1)− F+(ψ
∗) + F+(ψ∗)− F+(∇φn)

∂x1(φ
n+1 − φn)

+ ∂x2

F+(∇φn+1)− F+(ψ∗) + F+(ψ
∗)− F+(∇φn)

∂x2(φ
n+1 − φn)

+ ∇x ·
(
3

2
∇yF−(∇xφ

n)− 1

2
∇yF−(∇xφ

n−1)

)
− ε2

2
Δ2(φn+1 + φn),(3.7)

where

ψ∗ = (∂x1φ
n, ∂x2φ

n+1), ψ∗(∂x1φ
n+1, ∂x2φ

n).

The scheme for the three-dimensional case can be constructed accordingly.
It is straightforward to verify that this scheme is second-order accurate, uncon-

ditionally stable, and uniquely solvable with the convex-concave decomposition as
before. It can also be verified that the scheme (3.7) coincides with the scheme (3.3)
for the model with slope selection using the convex-concave splitting given in (4.1).
Therefore, this scheme does not possesses variational structure. We leave the details
to the interested reader.

4. Application to thin film epitaxy.

4.1. Case with slope selection. In this case, a convenient splitting of the
Ehrlich–Schwoebel energy density F (y) = 1

4 (|y|2 − 1)2 is

(4.1) F+(y) =
1

4
|y|4 + 1

4
, F−(y) = −1

2
|y|2.
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We can explicitly calculate the (variational) potential defined in (2.10) associated with
the convex part of the scheme as

Fp(y,y0)

=

∫ 1

0

1

4τ
(|y0 + τ(y − y0)|4 − |y0|4) dτ

=

∫ 1

0

1

4
(|y0 + τ(y − y0)|2 + |y0|2)(2y0 + τ(y − y0)) · (y − y0) dτ

=

∫ 1

0

1

4
(2|y0|2 + 2τy0 · (y − y0) + τ2|y − y0|2)(2y0 · (y − y0) + τ |y − y0|2) dτ

=
1

4

(
4y0 · (y − y0)|y0|2 + 2(y0 · (y − y0))

2

+
4

3
y0 · (y − y0)|y − y0|2 + |y0|2|y − y0|2 + 1

4
|y − y0|4

)

=
1

4

(
1

4
|y|4 + 1

3
y0 · y|y|2 + 1

6
|y0|2|y|2 + 1

3
(y0 · y)2 + y0 · y|y0|2 − 25

12
|y0|4

)
.(4.2)

Therefore

(4.3)
δFp

δy
=

1

4
(|y|2y + |y0|2y0) +

1

12
(|y|2y0 + |y0|2y + 2(y0 · y)(y + y0)).

Thanks to (2.13), the scheme (2.6) becomes

φn+1 − φn

k
=

1

4
∇ · (|∇φn+1|2∇φn+1 + |∇φn|2∇φn)

+
1

12
∇ · (|∇φn+1|2∇φn + |∇φn|2∇φn+1

+ 2(∇φn · ∇φn+1)(∇φn +∇φn+1))

− Δ

(
3

2
φn − 1

2
φn−1

)
− ε2

2
Δ2(φn+1 + φn).(4.4)

On the other hand, it is easy to check that in this case, the scheme (3.3) (alter-
natively, scheme (3.7)) takes the form

φn+1 − φn

k
=

1

4
∇ · [(|∇φn+1|2 + |∇φn|2)(∇φn+1 +∇φn)]

− Δ

(
3

2
φn − 1

2
φn−1

)
− ε2

2
Δ2(φn+1 + φn).(4.5)

Note that the above scheme is more compact than the scheme (4.4). In fact, the
scheme (4.4) may be viewed as the symmetrization of the scheme (4.5).

4.2. Case without slope selection. In this case, a convenient convex-concave
splitting of the Ehrlich–Schwoebel energy density F (y) = − 1

2 ln(1 + |y|2) is [30]

(4.6) F+(y) = |y|2 − 1

2
ln(1 + |y|2), F−(y) = −|y|2.

It seems nontrivial to represent the (variational) potential Fp associated with the
convex part using elementary functions. However, we note that only the variational
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derivative is needed in the weak form of the scheme (2.7), and it can be calculated
explicitly as follows:∫ 1

0

(∇yF+)(y0 + τ(y − y0)) dτ

=

∫ 1

0

(
2(y0 + τ(y − y0))− y0 + τ(y − y0)

1 + |y0 + τ(y − y0)|2
)
dτ

= 2y0 + (y − y0)−
∫ 1

0

y0 + τ(y − y0)

1 + |y0 + τ(y − y0)|2 dτ
= 2y0 + (y − y0)

− y − y0

2|y− y0| ln
(
1 + |y0|2 − (y0·(y−y0))

2

|y−y0|2
)2

+
(
|y − y0|+ y0·(y−y0)

|y−y0|
)2

(
1 + |y0|2 − (y0·(y−y0)

|y−y0|
)2

+
(

y0·(y−y0)
|y−y0|

)2

−
y0|y − y0| − (y − y0)

y0·(y−y0)
|y−y0|

(1 + |y0|2)|y − y0|2 − (y0 · (y − y0))2

⎛
⎝tan−1

y0·(y−y0)
|y−y0| + |y − y0|

1 + |y0|2 − (y0·(y−y0))2

|y−y0|2

− tan−1

y0·(y−y0)
|y−y0|

1 + |y0|2 − (y0·(y−y0))2

|y−y0|2

⎞
⎠ ,(4.7)

where in the last step we have utilized the elementary calculus identity∫
c1 + c2τ

c23 + (c4 + c5τ)2
dτ =

c2
2c5

ln(c23 + (c4 + c5τ)
2) +

c1c5 − c2c4
c3c25

arctan
c4 + c5τ

c3

with c1 = y0, c2 = y − y0, c5 = |y − y0|, c4 = y0·(y−y0)
|y−y0| , c3 = 1 + |y0|2 − (y0·(y−y0))

2

|y−y0|2 .

This scheme enjoys the nice property of solvability and variational structure in
any dimension on top of the second-order accuracy and unconditional energy stability
at the expense of compactness. On the other hand, it is straightforward to write the
explicit form for the scheme (3.7) which works in two dimensions, although without
the variational structure.

5. Fully discrete schemes.

5.1. Spatial discretization via the finite difference method. This section
defines finite difference versions of the schemes (4.4) and (4.5) for the slope selection
equation

(5.1) ∂tφ = ∇ ·
(
|∇φ|2 ∇φ

)
−Δφ− ε2Δ2φ.

In contrast with Galerkin type methods—which we discuss in sections 5.2 and 5.3—
finite difference methods require the careful definition of difference operators and grid
functions in order to construct discrete-level versions of the PDE and the correspond-
ing energy. This process is made difficult in the present case by the complicated form
of the nonlinear 4-Laplacian operator −∇ · (|∇φ|2 ∇φ). Specifically, one must take
extra care to derive a difference approximation that has a reasonably nice discrete
energy. As is often the case with the finite difference method, the implementation of
the scheme is rather simple. It is the analysis, via the appropriate discrete energy
estimates, that is generally nontrivial.
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We will follow the format of [31] somewhat. Let Ω = (0, Lx) × (0, Ly), where
Lx = mx · h and Ly = my · h, where h > 0. Set pi = (i − 1/2) · h for i taking integer
and half-integer values. Let Emx = {pi | i = 1/2, 3/2, . . . ,mx + 1/2} and similarly for
Emy . Define Cmx = {pi | i = 1, 2, . . . ,mx}, C+

mx
= Cmx ∪ {p0, pmx+1}, and similarly

for Cmy and C+
my

. We define the following two-dimensional grid-function spaces:

Vmx×my =
{
u : Emx × Emy → R

}
,(5.2)

Cmx×my =
{
φ : Cmx × Cmy → R

}
, C+

mx×my
=
{
φ : C+

mx
× C+

my
→ R

}
,(5.3)

Eew
mx×my

=
{
f : Emx × Cmy → R

}
, Ens

mx×my
=
{
f : Cmx × Emy → R

}
.(5.4)

The functions of Vmx×my (vertex grid functions) are identified via ui+1/2,j+1/2 :=
u(pi+1/2, pj+1/2), those of Cmx×my and C+

mx×my
(cell-centered grid functions) are iden-

tified via φi,j := φ(pi, pj), those of Eew
mx×my

(east-west edge-centered grid functions)
are identified via fi+1/2,j := f(pi+1/2, pj), and, finally, those of Ens

mx×my
(north-south

edge-centered grid functions) are identified via fi,j+1/2 := f(pi, pj+1/2).
We define the operator dx : Eew

mx×my
→ Cmx×my componentwise via

(5.5) dxfi,j =
1

h

(
fi+1/2,j − fi−1/2,j

)
, i=1,...,mx

j=1,...,my

and define Dx : C+
mx×my

→ Eew
mx×my

componentwise via

(5.6) Dxφi+1/2,j =
1

h
(φi+1,j − φi,j) ,

i=0,...,mx
j=1,...,my

.

The operators dy : Ens
mx×my

→ Cmx×my and Dy : C+
mx×my

→ Ens
mx×my

are defined

analogously. The standard two-dimensional discrete Laplacian, Δh : C+
mx×my

→
Cmx×my , is defined as

Δhφi,j = dx(Dxφ)i,j + dy(Dyφ)i,j

=
1

h2
(φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j) ,

i=1,...,mx
j=1,...,my

.(5.7)

Define the center-to-vertex derivatives Dx, Dy : C+
mx×my

→ Vmx×my componentwise
as

Dxφi+1/2,j+1/2 :=
1

2h
(φi+1,j+1 − φi,j+1 + φi+1,j − φi,j) ,

i=0,...,mx
j=0,...,my

,(5.8)

Dyφi+1/2,j+1/2 :=
1

2h
(φi+1,j+1 − φi+1,j + φi,j+1 − φi,j) ,

i=0,...,mx
j=0,...,my

.(5.9)

The utility of these definitions is that the differences Dx and Dy are collocated
on the grid, unlike the case for Dx, Dy. Define the vertex-to-center derivatives
dx, dy : Vmx×my → Cmx×my componentwise as

dxui,j :=
1

2h

(
ui+1/2,j+1/2 − ui−1/2,j+1/2 + ui+1/2,j−1/2 − ui−1/2,j−1/2

)
, i=1,...,mx

j=1,...,my
,(5.10)

dyui,j :=
1

2h

(
ui+1/2,j+1/2 − ui+1/2,j−1/2 + ui−1/2,j+1/2 − ui−1/2,j−1/2

)
, i=1,...,mx

j=1,...,my
.(5.11)

We say the cell-centered function φ ∈ C+
mx×my

is periodic if and only if

φm+1,j = φ1,j , φ0,j = φm,j , j = 1, . . . ,my,(5.12)

φi,n+1 = φi,1, φi,0 = φi,n, i = 0, . . . ,mx + 1.(5.13)

A similar notion exists for periodic grid functions from Vmx×my , Eew
mx×my

, and Ens
mx×my

as well.
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The first-order convex-splitting, finite difference scheme for the slope selection
equation (5.1) scheme that was used (though not described) in [30] is the following:
given φn ∈ C+

mx×my
periodic, find φn+1 ∈ C+

mx×my
periodic such that

(5.14)
φn+1 − k

[
dx
{
rn+1Dxφ

n+1
}
+ dy

{
rn+1Dyφ

n+1
}]

+ kε2Δhw
n+1 = φn − kΔhφ

n,

where rn+1 := (Dxφ
n+1)2 + (Dyφ

n+1)2 ∈ Vmx×my , and w
n+1 := Δhφ

n+1 ∈ C+
mx×my

is periodic. The finite difference version of the compact scheme (4.5) is precisely as
follows: given φn−1, φn, wn ∈ C+

mx×my
periodic, find φn+1 ∈ C+

mx×my
periodic such

that

(5.15) φn+1 − k

4

[
dx
{(
rn+1 + rn

) (
Dxφ

n+1 +Dxφ
n
)}

+ dy
{(
rn+1 + rn

) (
Dyφ

n+1 +Dyφ
n
)} ]

+
kε2

2

(
Δhw

n+1 +Δhw
n
)
= φn − k

(
3

2
Δhφ

n − 1

2
Δhφ

n−1

)
,

where wn+1 is periodic. Finally, the second-order finite difference version of (4.4) is
as follows: given φn−1, φn, wn ∈ C+

mx×my
periodic, find φn+1 ∈ C+

mx×my
periodic such

that

φn+1 − k

4

[
dx
{
rn+1Dxφ

n+1
}
+ dy

{
rn+1Dyφ

n+1
}
+ dx {rnDxφ

n}+ dy {rnDyφ
n}]

− k

12

[
dx
{
rn+1Dxφ

n
}
+ dy

{
rn+1Dyφ

n
}
+ dx

{
rn+1Dxφ

n
}
+ dy

{
rn+1Dyφ

n
}]

− k

6

[
dx
{
r̂n+1

(
Dxφ

n+1 +Dxφ
n
)}

+ dy
{
r̂n+1

(
Dyφ

n+1 +Dyφ
n
)}]

+
kε2

2

(
Δhw

n+1 +Δhw
n
)
= φn − k

(
3

2
Δhφ

n − 1

2
Δhφ

n−1

)
,(5.16)

where r̂n+1 := Dxφ
n+1 ·Dxφ

n +Dyφ
n+1 ·Dyφ

n ∈ Vmx×my , and the other quantities
are the same as defined above.

We now define some grid inner products and norms:

(φ‖ψ) =
m∑
i=1

n∑
j=1

φi,jψi,j , φ, ψ ∈ Cmx×my ∪ C+
mx×my

,(5.17)

〈u‖v〉 = 1

4

m∑
i=1

n∑
j=1

(
ui+1/2,j+1/2vi+1/2,j+1/2 + ui−1/2,j+1/2vi−1/2,j+1/2(5.18)

+ ui+1/2,j−1/2vi+1/2,j−1/2 + ui−1/2,j−1/2vi−1/2,j−1/2

)
,

u, v ∈ Vmx×my ,

[f‖g]ew =
1

2

m∑
i=1

n∑
j=1

(
fi+1/2,jgi+1/2,j + fi−1/2,jgi−1/2,j

)
, f, g ∈ Eew

mx×my
,(5.19)

[f‖g]ns =
1

2

m∑
i=1

n∑
j=1

(
fi,j+1/2gi,j+1/2 + fi,j−1/2gi,j−1/2

)
, f, g ∈ Ens

mx×my
.(5.20)

If φ ∈ Cmx×my ∪ C+
mx×my

, then ‖φ‖2 :=
√
h2 (φ‖φ), and for all φ ∈ C+

mx×my
, define

(5.21) ‖∇hφ‖2 :=
√
h2 [Dxφ‖Dxφ]ew + h2 [Dyφ‖Dyφ]ns.
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We now can establish the following summation-by-parts formulae for periodic grid
functions. We omit the proofs for the sake of brevity.

Proposition 5.1. Let φ ∈ C+
mx×my

and u ∈ Vmx×my be periodic grid functions.
Then

(5.22) h2 〈Dxφ‖u〉 = −h2 (φ‖dxu) and h2 〈Dyφ‖u〉 = −h2 (φ‖dyu) .
If φ ∈ C+

mx×my
, f ∈ Eew

mx×my
, and g ∈ Ens

mx×my
are periodic grid functions, then

(5.23) h2 [Dxφ‖f ]ew = −h2 (φ‖dxf) and h2 [Dyφ‖f ]ns = −h2 (φ‖dyf) .
Let φ, ψ ∈ C+

mx×my
be periodic. Then

(5.24)
h2 [Dxφ‖Dxψ]ew+h

2 [Dyφ‖Dyψ]ns = −h2 (φ‖Δψ) and h2 (φ‖Δψ) = h2 (Δφ‖ψ) .
Now, a discrete energy corresponding to (1.5) may be defined as

(5.25) Eh(φ) :=
h2

4

〈(
(Dxφ)

2
+ (Dyφ)

2
)2

+ 1

∥∥∥∥1
〉
− 1

2
‖∇hφ‖22 +

ε2

2
‖Δhφ‖22

for all φ ∈ C+
mx×my

. Using the summation-by-parts formulae just given, and the
techniques for the space continuous case, we can establish the following result.

Corollary 5.2. The schemes (5.15) and (5.16) are second-order accurate in
time and space and unconditionally stable. More precisely, we find

(5.26)

Eh

(
φn+1

)
+
1

4

∥∥∇h(φ
n+1 − φn)

∥∥2
2
+
1

k

∥∥φn+1 − φn
∥∥2
2
+
1

4

∥∥∇h

(
φn+1 + φn−1 − 2φn

)∥∥2
2

= Eh (φ
n) +

1

4

∥∥∇h

(
φn − φn−1

)∥∥2
2
.

Both schemes are uniquely solvable. The scheme (5.16) enjoys the additional property
that it is the Euler–Lagrange equation for a strictly convex, coercive variation problem
(in finite dimensions).

Because of the last fact, solving the scheme (5.16) is equivalent to minimizing
a coercive, strictly convex functional, Eh,scheme(φ)—whose exact form we omit for
brevity—at each time step. To compute the results given in section 6 we use the simple
Polak–Ribiére variant of the nonlinear conjugate gradient method for the minimization
step [23]. In our implementation, in contrast to what is usually done (see, e.g., [1, 2]),
we avoid using Brent’s method in the line search stage, since it uses only information
about the function to be minimized, namely, Eh,scheme(φ). (Note also that since
Brent’s method is a comparison method, line minimizers are found with, at best,
only single-precision precision accuracy.) In place of Brent’s method for line search
(that is, line minimization of Eh,scheme(φ)) we directly use the gradient information
and a secant method to do the line search. In other words, instead of finding a line
minimizer, we perform the equivalent operation of finding a line zero of the gradient,
and to do the latter we use a simple secant method. This can be expressed as

(5.27) ᾱ = argminαEh,scheme(φ+ αζ) = argzeroα (δφEh,scheme(φ+ αζ)‖ζ) ,
where ζ is a given search direction and α ∈ R. Setting

(5.28) g(α) := (δφEh,scheme(φ+ αζ)‖ζ) ,
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we employ the secant search scheme

(5.29) α�+1 = α� − g(α�)

s�
, s� =

g(α�)− g(α�−1)

α� − α�−1
.

We have the guaranteed convergence lim�→∞ α� = ᾱ due to strict convexity. In this
way, we need not ever actually assemble or compute the functional Eh,scheme(φ).

5.2. Spatial discretization via Galerkin methods. Although the numerical
results we present later in section 6 are obtained using the finite difference method
of the previous subsection, for completeness we now discuss some Galerkin strategies
for spatial discretization. The present discussion shows the flexibility of the proposed
schemes and further emphasizes the point that what is most important for the stability
of the schemes is the structure of the temporal discretization.

To begin, notice that the proof of Theorem 2.1 (respectively, Theorem 3.1) is based
on the weak forms (2.7) (respectively, (3.4)). Therefore, the results of Theorem 2.1
(respectively, Theorem 3.1) can be straightforwardly extended for any consistent
Galerkin approximation—such as the Fourier–Galerkin and finite element Galerkin
approximations—of the semidiscrete scheme (2.7) (respectively, (3.4)). The only mod-
ification needed is to view the “energy” as defined on the finite dimensional Galerkin
space, compute the variational derivatives within the same Galerkin projected space,
and view the fully discrete scheme as time discretization of a gradient flow on the
finite dimensional Galerkin projected space.

From this point of view, Galerkin methods are in a sense more natural than the
finite difference method, because the theory and analyses extend almost trivially. On
the other hand, in contrast with finite difference methods, the implementation of such
schemes is a more challenging task. We now consider the ingredients for a practical
Fourier–Galerkin implementation.

5.3. Fourier–Galerkin method with numerical integration. While the re-
sults of Theorem 2.1 (respectively, Theorem 3.1) hold for Fourier–Galerkin approxi-
mation to (2.7) (respectively, (3.4)), it is usually not practical to implement a pure
Fourier–Galerkin method due to the convolution involved in computing nonlinear
terms. A common practice is to replace the integral by a numerical quadrature,
leading to the so-called Fourier–Galerkin method with numerical integration.

We now sketch some details of the Fourier–Galerkin method with numerical in-
tegration. For simplicity, we shall consider only the alternative scheme for the case
with slope selection, namely, the scheme (4.5). The Fourier–Galerkin method with
numerical integration for other schemes can be formulated in a similar fashion. Let
us first write the scheme (4.5) in the following weak form: find φn+1 ∈ Ḣ2

per(Ω) such
that(

φn+1 − φn

k
, ψ

)
= −1

4

(
(|∇φn+1|2 + |∇φn|2)(∇φn+1 +∇φn),∇ψ)

+

(
∇
(
3

2
φn − 1

2
φn−1

)
,∇ψ

)
− ε2

2
(Δ(φn+1 + φn),Δψ)

∀ψ ∈ Ḣ2
per(Ω).(5.30)

Given an even integer N , we set

(5.31) PN =

⎧⎨
⎩φ : φ(x) =

N/2∑
k=1

(ãk coskx+ b̃k sinkx)

⎫⎬
⎭D
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and xj =
2πj
N , j = 0, 1, . . . , N − 1. We also define the discrete inner product PN as

(5.32) (φ, ψ)N =
2π

N

N−1∑
j=0

φ(xj)ψ(xj),

and the corresponding discrete norm by ‖φ‖N =
√
(φ, φ)N . We recall that the above

quadrature rule is exact for φ, ψ ∈ P2N , i.e.,

(5.33) (φ, ψ)N = (φ, ψ) ∀φ, ψ ∈ P2N ,

and consequently,

(5.34) ‖φ‖2 = (φ, φ)N ∀φ ∈ PN .

In the multidimensional case, Ω = (0, π)d, d = 2, 3, we denote xj = Πd
k=1xjk with

0 ≤ jk ≤ N − 1, PN = Πd
k=1PN , and

(5.35) (φ, ψ)N =

(
2π

N

)d d∑
k=1

N−1∑
jk=0

φ(xjk )ψ(xjk ).

With the above notation, we can now write our Fourier–Galerkin method with nu-
merical integration for the scheme (5.30) as follows: find φn+1

N ∈ PN such that(
φn+1
N − φnN

k
, ψ

)
= −1

4

(
(|∇φn+1

N |2 + |∇φn|2)(∇φn+1
N +∇φnN ),∇ψ)

N

+

(
∇
(
3

2
φnN − 1

2
φn−1
N

)
,∇ψ

)
− ε2

2
(Δ(φn+1

N + φnN ),Δψ)

∀ψ ∈ PN.(5.36)

Using the same argument as in the proof of Theorem 3.1, we can prove the following
results.

Corollary 5.3. The scheme (5.36) is second-order accurate in time, uniquely
solvable, and unconditionally energy stable in the sense that

(5.37)

EN (φn+1
N ) +

1

4
‖∇(φn+1

N − φnN )‖2 + ‖φn+1
N − φnN‖2

k
+

1

4
‖∇(φn+1

N + φn−1
N − 2φnN )‖2

= EN (φnN ) +
1

4
‖∇(φnN − φn−1

N )‖2,

where

EN (φ) =
1

4
‖(|∇φ|2 − 1)‖2N +

ε2

2
‖Δφ‖2.

We observe that the weak formulation (5.36) can be intepreted as a Fourier-
collocation method thanks to the exactness of the quadrature (5.33). To this end,
we introduce the Lagrange functions ψj(x) ∈ PN such that ψj(xk) = δkj for all
0 ≤ k, j ≤ N − 1, and denote by DN the derivative matrix with (DN )jl := ψ′

l(xj). It
is shown (see, for example, [3]) that

(5.38) (DN )jl =

{
1
2 (−1)j+l cot (j−l)π

N , j = l,

0, j = l.
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Therefore, for φ ∈ PN , we have φ′(xj) =
∑N−1

k=0 (DN )jkφ(xk). In the multidimen-
sional case, it is clear that for φ ∈ PN, (∇φ)(xj) can be expressed by using the
one-dimensional derivative matrix DN . We can then denote (∇φ)(xj) = (∇Nφ)j,
where ∇N is the multidimensional derivative matrix. Similarly, we denote (Δφ)(xj) =
(ΔNφ)j.

Now, it is easy to check that the scheme (5.36) is equivalent to the following
Fourier-collocation method:

φn+1
N − φnN

k
=

1

4
∇N · ((|∇Nφ

n+1
N |2 + |∇Nφ

n|2)(∇Nφ
n+1
N +∇Nφ

n
N )
)

− ∇N

(
3

2
φnN − 1

2
φn−1
N

)
− ε2

2
Δ2

N(φn+1
N + φnN ),(5.39)

where, with a slight abuse of notation, φnN are vectors with entries being the values
of φnN at the collocation points {xj : 0 ≤ jk ≤ N − 1, k = 1, . . . , d}.

6. Numerical results. In this section we present some computational results
for the slope selection equation, i.e., (1.5)–(1.7) or (5.1). Specifically, we use our
second-order finite difference scheme (5.16) described in section 5.1 with the simple
nonlinear conjugate gradient solver described therein to solve the algebraic equations
at each time step. We first present a numerical test that gives evidence of the expected
second-order convergence of the scheme as h, k → 0. In a second test, we reproduce
some calculations from a previous paper [30] to show that in long-time calculations
the scheme predicts the accepted coarsening rates for the system.

As in [14] we perform a Cauchy-type convergence test of our scheme as h, k → 0
along a linear refinement path, namely, k = Ch. At the final time T , we expect the
global error to be O(k2)+O(h2) = O(h2), as h, k → 0, along such a path [18]. Observe
that the evolution equation (5.1) does not possess a natural time-dependent forcing
(or source) term that can be manipulated given a known solution (although one could
be easily added artificially). So instead of measuring the error with respect to a known

function via artificial means, we measure the Cauchy difference, δφ(T ) := φ
Nf

hf
− φNc

hc
,

where hc = 2hf , kc = 2kf , T = kfNf = kcNc, as hc, kc → 0. Here φhf
is the finite

difference solution obtained using the finer resolution mesh size hf , and φhc is the
finite difference solution obtained using the coarser resolution mesh size hc. Using a
linear refinement path, we again expect ‖δφ‖2 = O(h2c). Further details of the test can
be gleaned from [14]. Another option in this case—where there is no natural forcing
term to manipulate—is to compute the “exact” solution using very small time and
space step sizes h and k and use such a hyperfine solution to calculate “errors” for
more modest values of h and k. The same results are expected as would be expected
from such a test.

For the proposed convergence test, we use the final time T = 0.32, and the
refinement path is taken to be k = 0.1h. The other parameters are ε = 0.1 and
Lx = Ly = 3.2. The following periodic initial data are employed:

φ(x, y, 0) = 0.1 sin2
(
2πx

Lx

)
· sin

(
4π(y − 1.4)

Ly

)

− 0.1 cos

(
2π(x− 2.0)

Lx

)
· sin

(
2πy

Ly

)
.(6.1)
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Table 6.1

L2 Cauchy convergence test. The final time is T = 0.32, and the refinement path is taken to be
k = 0.1h. The other parameters are ε = 0.1; Lx = Ly = 3.2. The Cauchy difference is defined via
δφ := φhf

− φhc , where the approximations are evaluated at time t = T . The norm of the Cauchy

difference at T is expected to be O(k2) +O(h2) = O(h2), and this is confirmed in the test.

hc hf

∥
∥δφ

∥
∥
L2

h
Rate

1/16 1/32 4.844× 10−2 –
1/32 1/64 1.373× 10−2 1.82
1/64 1/128 3.478× 10−3 1.98
1/128 1/256 8.675× 10−4 2.00

01 = t1 = t

004 = t001 = t

00061 = t0006 = t

Fig. 6.1. Time snapshots of the evolution of the model with slope selection. The parameters
are ε = 0.03; Lx = Ly = 12.8; h = 12.8/512; k = 0.001, t ∈ [0, 400]; k = 0.01, t ∈ [4000, 6000]; and
k = 0.02, t ∈ [6000, 16000]. The left-hand sides of the snapshots show the filled contour plot of φ; the
right-hand sides show the filled contour plot of Δφ. The latter gives an indication of the curvature
of the surface z = φ(x, y). The pyramid/antipyramid shapes of the hills and valleys are evident in
the plots. The system clearly saturates (to a one-hill-one-valley configuration) by time 16,000.

The results are given in Table 6.1 and give solid supporting evidence for the expected
second-order convergence of the scheme.

We now reproduce a calculation from [30] where we use the scheme to predict
the coarsening exponents for the slope selection equation (5.1) on a square domain
beginning with random initial data. The results are given in Figures 6.1–6.3. The
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Fig. 6.2. Roughness and energy evolution for the simulation depicted in Figure 6.1. The final
simulation time is T = 16000. The theoretical coarsening exponents are α = 1/3 and β = −1/3,
where the roughness evolves like w(t) ∼ tα, and the energy, like E(t) ∼ tβ . These exponents are
reasonably well approximated in the simulations.
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linear fit
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Fig. 6.3. Roughness and energy evolution for ε = 0.04. The final simulation time is T = 2300.
All other parameters are the same as in Figures 6.1 and 6.2. The theoretical coarsening exponents
α = 1/3 and β = −1/3 are reasonably well approximated in the simulations.

parameters are ε = 0.03 (Figures 6.1 and 6.2) and ε = 0.04 (Figure 6.3); Lx =
Ly = 12.8; h = 12.8/512; k = 0.001, t ∈ [0, 400]; k = 0.01, t ∈ [4000, 6000]; and
k = 0.02, t ∈ [6000, 16000]. Note that the computation in Figure 6.3 is finished by
time t = 6000. The pyramid/antipyramid shapes of the hills and valleys are evident
in Figure 6.1, and the slopes of the faces of the pyramids are approximately 1. The
system depicted in Figure 6.1 clearly saturates (to a one-hill-one-valley configuration)
by time 16,000. (A similar one-hill-one-valley configuration represents the equilibrium
state for ε = 0.04 as well, though this is not shown.) Roughly speaking, the saturation
time can be gleaned from Figure 6.2 (or Figure 6.3 for the ε = 0.04 case) as the
time after which the roughness and energy are essentially flat. There are ways, as
we discuss in [4], that one can use a linear extrapolation of the early-time data to
obtain a cheap approximation of the saturation time. Basically, one uses the fact that
Emin(ε) = O(ε), though we do not pursue this topic here. We do point out that our
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calculations here yield

(6.2)
Emin(ε = 0.03)

Emin(ε = 0.04)
≈ 0.7469,

which confirms the linear dependence of Emin on ε.
The theoretical coarsening exponents for the slope selection equation (as deter-

mined by formal scaling arguments) are α = 1/3 and β = −1/3, where the roughness,
i.e.,

(6.3) w(t) =

√
1

|Ω|
∫
Ω

∣∣∣φ(x, t) − φ̄(t)
∣∣∣2dx,

evolves like w(t) ∼ O(tα), and the energy (1.5) evolves like E(t) ∼ O(tβ) [20]. (In
fact, there is a sense in which these exponents may be established rigorously [17],
though we do not need that level of detail here.) In Figures 6.2 and 6.3 we found
the linear least-squares fit of the log-log data up to time t = 100. Using these fits,
for ε = 0.03 (Figure 6.2) we calculate α ≈ 0.3218 and β ≈ −0.3042, and for ε = 0.04
(Figure 6.3) we calculate α ≈ 0.2997 and β ≈ −0.2918. Thus we observe that the
coarsening exponents are reasonably well approximated in our simulations, and our
figures agree with those found previously in [30]. This is also in accordance with ear-
lier works [22, 27, 28, 32], although we have computed to a much longer time horizon
(up to steady state), which leads to the “nonstraight” part of the coarsening curve.

7. Concluding remarks. We have presented and analyzed several second-order
in time, uniquely solvable, unconditionally energy stable, and convergent schemes for
gradient flows with Ehrlich–Schwoebel type energy. Applications to models for thin
film epitaxial growth with or without slope selection are presented. There are two
types of schemes: one type preserves the variational structure of the continuous in
time gradient flow while the other does not. The ones without variational structure
are usually more compact than the ones with variational structure. Fully discretized
schemes with either Galerkin–Fourier-spectral or Fourier–Galerkin with numerical
integration or finite difference in space are also presented and investigated. These fully
discrete schemes inherit the same desirable properties as their semidiscrete in time
counterparts, including second-order in time, unique solvability, and unconditional
energy stability. We believe that the same methodology may be applied to more
general energy functional.

Numerical experiments based on the scheme with variational structure and finite
difference discretization of space are conducted on the model with slope selection. Our
numerical results verifies the second-order accuracy as well as physical coarsening rates
of the system.

It is still not clear if the scheme proposed here possesses a discrete energy law
for general concave (not just quadratic) energy density. A positive answer would
be useful since there exists splitting of the Ehrlich–Schwoebel energy with quadratic
convex part and nonquadratic concave part for the case without slope selection. If, in
general, the concave part can be treated explicitly, we will have a second-order linear
scheme that is unconditionally energy stable for thin film epitaxy in the case without
slope selection. This would be a nice extension of a result on first-order linear schemes
that are unconditionally energy stable for the case without slope selection [4].

Acknowledgment. The financial support and warm hospitality of the Institute
for Mathematics and Its Applications at the University of Minnesota are gratefully
acknowledged.
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