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Abstract

A Legendre and Chebyshev dual-Petrov—Galerkin method for hyperbolic equations is introduced and analyzed. The dual-Petrov—
Galerkin method is based on a natural variational formulation for hyperbolic equations. Consequently, it enjoys some advantages which
are not available for methods based on other formulations. More precisely, it is shown that (i) the dual-Petrov—Galerkin method is
always stable without any restriction on the coefficients; (ii) it leads to sharper error estimates which are made possible by using the opti-
mal approximation results developed here with respect to some generalized Jacobi polynomials; (iii) one can build an optimal precon-
ditioner for an implicit time discretization of general hyperbolic equations.
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1. Introduction

We consider in this paper Legendre and Chebyshev
approximations of the linear hyperbolic equation

Qu—+0.(au) +bu=f, |x|<1, 0<t<T, (1.1)
with given initial data and appropriate non-periodic
boundary conditions.

There exist a large body of literature on using spectral
methods for solving hyperbolic systems (cf. [10,4,3,9] and
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the references therein). We refer in particular to the recent
review paper by Gottlieb and Hesthaven [9] for a up-to-
date account on this subject. Previous work can be essen-
tially classified into four different approaches: collocation,
Galerkin, tau (cf. [10]) and penalty (cf. [9]). In this paper,
we shall take a different point of view by proposing a
dual-Petrov—Galerkin method.

The dual-Petrov—Galerkin method was recently intro-
duced by Shen [22] for solving third and higher odd-order
differential equations. The key idea is to choose the trial
functions satisfying the underlying boundary conditions,
and the test functions satisfying the “dual” boundary condi-
tions. This approach enjoys a number of appealing advanta-
ges: (i) it leads to a strongly coercive bilinear form despite the
fact that the leading-order differential operator is not elliptic
and non-symmetric. (ii) it leads to a well-conditioned linear
system, sparse for problems with constant-coefficients,
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which can be efficiently solved; (iii) it leads to optimal error
estimates.

The purpose of this paper is to present a Legendre and
Chebyshev dual-Petrov—Galerkin method for hyperbolic
equations, and to investigate whether their advantages
for third and higher-order equations would carry over to
first-order equations. The following three issues will be
addressed:

(1) Stability: We shall show that the dual-Petrov—Galer-
kin method is always stable without any sign restric-
tion on the coeflicients a and b.

(2) Error analysis: We shall develop new approximation
results based on the special basis functions which
can be regarded as generalized Jacobi polynomials
with index o < —1 and/or B < —1. We shall then
use these new approximation results to derive sharper
error estimates for the dual-Petrov—Galerkin method.

(3) Efficiency: We shall discuss some implementation
details of the dual-Petrov—Galerkin method in fre-
quency space as well as in physical space. In particu-
lar, we shall show that when working in frequency
space, the sparse matrix for a problem with constant
coefficients can be used as an optimal (independent of
number of modes) preconditioner for the full matrix
associated with a large class of variable coefficients.

The paper is organized as follows. In Section 2, we intro-
duce the spectral and pseudo-spectral dual-Petrov—Galer-
kin methods in a general setting and prove their stability.
In Section 3, we discuss some of the implementation
details. Then, in Section 4, we develop sharp approxima-
tion results based on special basis functions which are
mutually orthogonal in weighted (generalized) Jacobi
spaces. We then use these new approximation results to
derive, in Section 5, error estimates for the Legendre and
Chebyshev spectral dual-Petrov—Galerkin methods. We
conclude with several remarks.

We now introduce some notations which will be used
throughout the paper.

Let x(x) be a weight function in / = (—1, 1), which is not
necessary in L'(I). We denote by H(I)(r=0,1,...) the
weighted Sobolev spaces whose inner products, norms
and semi-norms are (-,-), ,| - |, and |- |, , respectively.
In particular, the norm and inner product of
L(I) = H)(I) are denoted by || - ||, and (-,-),, respectively.
The subscript ¥ will be omitted from the notations in case
of y(x) = 1.

We denote by w*#(x) = (1 —x)*(1+x)" the Jacobi
weight function. In particular, we use w(x) to denote
respectively the Legendre (w(x)=1) or Chebyshev
(w(x) = (1 — x2)7""*) weight function.

For any non-negative integer N, we denote by P the set
of all algebraic polynomials of degree < N. We shall use ¢
to denote a generic positive constant independent of any

¢ expression A < B to mean

2. The dual-Petrov—Galerkin method and its stability
2.1. An illustrative example

To illustrate the attractive properties of the dual-Pet-
rov—Galerkin method, we first consider the following
model equation:

Ou+adu=f, (x1)elx(0,T],
M(—l,t):(), te [O:T}a u(xso):uﬂ(x)a XEI,

where a is a positive constant.

2.1)

2.1.1. Variational formulation
Define the “dual” approximation spaces:

Vy={uePy:u(—-1)=0}, V;,={vePy:v(l)=0}
(2.2)
The Legendre or Chebyshev dual-Petrov—Galerkin method
for (2.1) is
{ Find uy(:,

(Ouuny o), + a(Bctin, vw),

t) € Vy such that for all ¢ € (0, 7],

= (f, UN)w, Yoy € V;V’
(2.3)

with uy|,_, = uoy being a suitable approximation to u, and
w(x) being either the Legendre or Chebyshev weight
function.

Note that for any vy € Vy, we have vy Iff € V5. Hence,
by setting wo(x) = w(x) {2, we can rewrite the dual Petrov—
Galerkin formulation (2.3) in the equivalent (weighted)
Galerkin formulation:

Find uy(-,t) € Vy such that for all ¢ € (0, 7],
(aruN: UN)(UU + a{axuNa UN)wU = (f: UN)wO: VUN € VN,
(2.4)
with uN‘,:() = UpN-
2.1.2. Stability

The key to stability is the following identities which can
be derived directly from an integration by parts:

1 5 1
(vmu)w”:./v(x)(l+x) dx, Ywely

1

(for o(x) = 1),

)= [ P02 a
J-1 24/(14+x)°(1 —x)
VoeVy (for o(x) = (1 —x*)""3).
(2.5)
Hence, taking vy = uy in (2.4) leads to that for w(x) =1,
1
_a MNCOO )dx+a[ ui,(lix)

1—x
[fuN1+x

2/ 2a/f21_x ’
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and for w(x) = s,

1 b, a ', 1
56,/ uNwo(x)dx—i—Ef uy; = dx
-1 1 (1+x)(1 —x)

1 1—x
S f,f"N\/md"
a ', 1 1o, 0 =x?
ngl%\ﬂ1+n%1_mdx+*”/H" tee &

The stability of the scheme follows immediately from the
above and the Gronwall inequality.

2.2. General setup

We introduce in this subsection a general setup and
some notations to be used throughout this paper.

Without loss of generality, we conventionally assume
that the variable coefficients a and b in (1.1) satisfy:

(1) a(£1,¢) does not change sign in [0, T];?
(2) the functions a,a,,b € L>(I x [0,T]).

To impose boundary conditions, we denote

r=ol={-1,1}, I :={x €T :xa(x,1) <0},

Ir'':=r\r-. (2.6)
The problem of interest is of the form

atu(xa t} + ax(a(xa t)u(xa t)) + b(xa I)M()C} t) = f(x= t}v
(x,t)EIx(0,T],u(x,t)=g(t), (x,I)EI”x[O,T];
u(x,0) =up(x), xel. (2.7)

More precisely, the boundary conditions are as follows:
(i)p u(£1,0) = g.(1), if a(=1,0) > 0,a(1,7) < O;
(ii)B u(—1,t) =g_(¢), if a(=1,¢) > 0,a(l,t) = 0;
(i), u(1,0) = g.(1), if a(~1,0) < 0,a(L,1) < O;
(iv); no BC, if a(—1,#) <0,a(l,1) = 0.

(2.8)

Since the non-homogeneous boundary conditions can be
easily homogenized by subtracting a simple linear function
from the exact solution, we shall only consider, without
loss of generality, the case g.(f) = 0.

To formulate the dual Petrov—Galerkin formulation uni-
formly for the four cases, we use the notations

(-1, dflert, . (-1, if —l1el",
Tl =1

2.9
ifler, if —1ert (29)
and define the weight functions

qne a(+1,¢) change sign, the variational
cordingly.

wp(x) = o(X)o* (%),  w(x) = (1 - ) wp(),
(%) = (1 —x)wo(x).

More precisely, corresponding to each boundary condi-
tion (i)g—(iv)g in (2.8), we have

(), a=B=-1; (i),a=1p=—1;
(iii)y 6= -1,p=1; (iv),a=p=1.
Hereafter, the conditions or expressions labeled by (i), cor-
respond to the boundary condition (i), with g, (f) =0 in
(2.8), and likewise for (ii),—(iv)s-

For each of the boundary conditions (i),—(iv),, we
define the “dual” approximation spaces:

Vy={ue€Py:u(+l)=0}, Vi =Py, for (i)
VN:{M EPN:“(_I):O}s V":{”EPN:UU):O}’ for (ii)B;
Vy=A{uePy:u(l)=0}, Vi ={vePy:v(-1)=0}, for (ii);

Vy=Pyn_2, Vy={ve€Py:v(£l)=0}, for (iv);.

(2.10)

>l

(2.11)

(2.12)

One verifies readily that dim(Vy)=dim(¥V}), and

o™ € V%, for all vy € Vy.
2.3. Spectral approximation

With the above setup, we are ready to formulate the
approximation schemes. The Legendre or Chebyshev spec-
tral dual-Petrov—-Galerkin approximation to (2.7) is

Find uy(-,£) € ¥y such that for all ¢t € (0, T},
{ (Buw,vw), + (Oc(auy), vw),, + (buy,vw),
= (f! UN)w’

with uy|,_, = upy being a suitable approximation of u, (to
be specified later). .

Since for any vy € ¥y, we have vyw*” € V%, the scheme
(2.13) is equivalent to the following weighted Galerkin for-
mulation (notice that w, = ww®):

(2.13)
Yoy € VR;,

(Bitaw, vn ), + (Oc(aun), vw),,, + (btan, vw),,

= (f: UN)wO:

with uy|,_y = upy. It will become clear that the dual-Pet-
rov—QGalerkin scheme (2.13) is more suitable for implemen-
tation, while the weighted Galerkin formulation (2.14) is
more convenient for stability and error analysis.

The following coercivity property is essential for the
well-posedness of the problems (2.7) and (2.14).

Lemma 2.1. Let
A(u,v) = (6:(au), v),, + (bu,v),, .

Ifu € L2, (I) and u, € L}, (), then there exist three real num-
bers 4; (i =0,1,2) with A;, 13 > 0 such that for ¢ € (0,T],

Jollullg, + Allully, < A, u) < dolull; (2.16)

w?

Find uy(-,£) € ¥y such that for all ¢t € (0, T},
{ (2.14)

Yoy € VN,

(2.15)

where the weight functions wy and , are defined in (2.10).
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Proof. We first claim that if « € L2, (/) and u, € L, (1),
then w?w, € C(I). Indeed, for any xl,xz € [-1,1], we have
from the definitions of wy and w,; that

|1 (x2) 0 (x2) — 1> (31 Jooo (31|

xy X Xy
:f By (12ay) dx gz/ |6xu|\u|cogdx+/ 2 [Quoo dx
x] X1

x|
=5 X2
(B + uPYonds + [ uf'o ds

X1 X1

IZ 2 xz 2
s/ 10,4 woder/ 2w, d.
X1 X1

Here, we used the inequalities: wy < cu1 and |8,wo| € w.
Hence, letting x, — xl, we find that w?w, € C(I). Thanks
to this fact and u € Lw1 (D), ie.,

[ g,

1 —x2

we have that u?(x)wy(x) — 0 as |x| — 1. Integration by
parts yields that

1 1
A(u,u) = /l(axa+b)u2wgdx+% [Iaax(uz)a)gdx

1
= [ suwg dx, (2.17)
J-1
where
1 1
s(x,t) = iaxa +b— el Oxy. (2.18)

More precisely, we have from (2.10) that in the Legendre
case (w=1):

axa +b— —5 y
la a+b+74,
10a+b—7%,
10+ b+,

for (i);

for (ii);
for (iii);
for (iv),

s(x, ) = (2.19)

and in the Chebyshev case (w = 71177)

laxa+b 21 xz’ (1):
Wa+b+182E, for (ii);
10a+b—1 557, (i

1 (2+x)a
1 1 _xa_
Eaxa +b+; 2 1=

for

s(x, ) = (2.20)

for (iii);
for (iv).

Next, by an argument similar to the proof of Lemma 1.1 in
[4], we prove that there exist three constants 4; (i =0, 1,2)
with A;, 4, > 0 such that

A1 }LZ
- <
1-x2 ST &

Indeed, the inequality at the right-hand side in the above
relation is obvious so we only need to prove the one at
the left-hand side. Let us consider for instance the case (i)

Jo + < s(x, 1) Helx[0,7). (221)

uity of a(x, r) and the condi-
way from zero on [0, 7], we

know that there exists 6 € (0,1) such that —%%; > ]flxz
with A; > 0 and x € I\ [0, 5]. Then, since O.a and b are
bounded in 7, and —*; is bounded in [-4,d], we infer
(2.21). The other cases can be proved in a similar way.
Finally, the desired result follows from (2.17) and
(2.21). O

Remark 2.1. We may even require that the constant
Zo = 0. Indeed, if 4y < 0, the change of variable u — e*'u
in (2.7) leads to the same equation with b(x) replaced by
b(x) — o (cf. [4]). Hence, the transformed equation will sat-
isfy s(x,1) = %5, x € L.

We note that the existence and uniqueness of solutions
for (2.7) in the weighted Sobolev spaces that we consider
here have been established recently in [13]. We provide

below an a priori estimate which is an immediate conse-
quence of Lemma 2.1:

Theorem 2.1. Let u and uy be respectively the solutions of

(2.7) and (2.14). If ug € L, (1) and f € L*(0,T; L2, (I)), then

we have

S Nwolly + Il 20,22, 0y
(2.22)

Hu“LO“(U,T:,Ll%(I)) + 4 HM||LE(U,T;,L31(1))

and

y T A'lHuNHLZ(O.T;LiI o S oy, + Hf”Ll(o,T;ng @)
(2.23)
where the weights e; (i =0,1,2) are defined in (2.10).

(e | o= .73, ()

Proof. Taking the inner product of the first equation of
(2.7) with wou, and using the fact: w} = w,m,, we derive
from the Cauchy-Schwarz inequality that

1 2 Al 2 1 2
SO, +A(0) = (7,0, < 5 I3, +55 15,
Hence, by Lemma 2.1,

1 2 M

5 0llulle, +3|lullw1 ol [|u| 2, +tar HwaZ (2.24)

Consequently, using the Gronwall inequality leads to
(2.22).

Following exactly the same procedure, one can prove
(2.23). O

Remark 2.2. The definition of & and B is different from e~
and et defined in (1.3) of [4]. Hence, although the approach
in this section is similar to that in [4], our variational for-
mulation, and therefore our scheme as well as its stability
and convergence properties, is different from theirs. In par-
ticular, Theorem 2.1 holds without assuming that the coef-
ficients @ and b satisfy any coercivity condition such as (1.2)
in [4]. We note that by assuming a(x) > 0, a different set of
stability conditions involving the weight and a(x) is derived
recently in [16].
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2.4. Pseudo-spectral approximation

In practical implementations, the continuous inner
product (-, ), should be replaced by a discrete inner prod-
uct (-, )y, (pseudo-spectral) which is based on a suitable
Gaussian-type quadrature.

Let (-,-)y. be the discrete inner product associated,
respectively, with the Gauss—Lobatto, Gauss—Radau (with
xo = —1), Gauss—Radau (with xy = 1) and Gauss quadra-
ture for the four different boundary conditions (i),
(ii)g, (iii), and (iv),. Let Iy : C(I) — Py be the correspond-
ing interpolation operator. We recall that (cf. [3])

Yuv S PZN+(5} (225)

(hﬁ, U)N,w = (u: U)tm
where d = 1,0, —1 for Gauss, Gauss—Radau and Gauss—
Lobatto, respectively.

It is well-known that one needs to use the skew-symmet-
ric form in a pseudo-spectral approximation to ensure the
theoretical stability for general situations (see [17,4,9]).

We denote

1
AN(MN}UN) = — (QaIMN + axIN(aMN),UN>N7w

2

- <(laxa + b)uN, UN> .
2 N,w

The skew-symmetric Legendre or Chebyshev pseudo-spec-
tral dual-Petrov—Galerkin approximation to (2.7) is:

(2.26)

Find wuy(-,t) € Vy such that forall 0 < ¢ < T,
VUN (S V::V
(2.27)

(O, v )y o + An (v, vn) = (f, 08) y o)

Lemma 2.2. Let A; (i =0, 1,2) be the same as in Lemma 2.1.
Then,

Aolluy 2, + Allun s, < An(uy, uyw™”)
(2.28)

< AZH“NH;, Yuy € Vy,

where w®b, wqo and w, correspond to any of the boundary
conditions in (2.8).

Proof. The proof is essentially the same as that of Lemma
2.1. Thanks to (2.25), we only need to show

. A &P &
<(Ao 1 I 2) Uy, Uy “8> < Ay (uy, uy ™)
—X No

PR )
SE—
Nw

(2.29)
Indeed, we derive from (2.25) and integration by parts that

{aluy, uNcu&‘ﬁ)le = (0, uy, IN(auN)w&’ﬂ)N,w

(auy) ™),

= —(MN, EBXIN(auN)wg +IN(auN)axwg)
= _<axIN (GMN), uNw&’ﬁ>N,w

-1 8,p
— (aw, O oy, uyw -ﬂ)N:w,

which along with (2.26) implies that

AN(MN, HNC()i"ﬁ) = < (% axa +b-— %awglaxwg) Uy, I)N> .
N,w
(2.30)

Hence, (2.29) is a directly consequence of (2.19). O

Thanks to the above lemma, we have immediately the
following stability result:

Theorem 2.2. If uoy € L2, (I) and f € L*(0,T; L2 (1)), then
we have

et e 0,702, ayy + Aillun 20,722, )

< [luon|le, + HINfHﬁ(o,m;Z(;))- (2.31)

3. Implementations

In this section, we discuss some of the implementation
details of the dual-spectral-Galerkin method. We note that
the slightly more costly skew-symmetric form may not be
necessary since the standard form is often numerically sta-
ble, at least for well-resolved problems (cf. [11,8,9]). Hence,
we present two implementations below, one uses the skew-
symmetric form (2.27) with basis functions in frequency
space, and the other is the standard pseudo-spectral form
with basis functions in physical spaces.

3.1. Implementations in frequency space

To simplify the presentation, we shall only provide
details for the second boundary condition in (2.8). The
other cases can be treated in a similar fashion.

As demonstrated in [20,21], it is advantageous to use
basis functions which are compact combinations of the
Legendre and Chebyshev polynomials. Therefore, we set
in the Legendre case

b (x) = Li(x) + Lisa (x), Y (x) = Li(x) — Ly (x)

and in the Chebyshev case
bp(x) = (1 +x)Ti(x),  dilx) = (1 —x)Te(x),

where L;(x) and T;(x) are respectively the Legendre and
Chebyshev polynomials of degree k. Then, we have for
the second case in (2.12),

V= Span{¢0: ¢Ia ceey qufI}}

Vi =span{y, ¥y,.... ¥y} (3.1)
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Therefore, setting

fj = (fa‘pj)N_wa = (,nyfI:---ny—l)t:
N-1

~ = e - t

uy = Y Gy, = (fho, i, ..., 0n1)',
k=0

Mk = (d’ka%)N,ws M= (mjk)j,kzo.,l,...,N—]s

L,
Sik = 2 <aq’)k + 0udn(ady), ¢j>N’wi S = (Sjk)j,k:O.l,...,Nfl’

1
4 = <(2axa + b) D %>N , O= (qjlc)j.k:O,l ..... N-1

(3.2)
we find that (2.27) becomes the following system of ODEs:
Miy, + (S + Q)i = f. (3.3)
We recall that the discrete inner product (-,-),, here is

associated with the Gauss—Radau interpolation nodes with
Xog = —1.

To avoid severe restrictions on time step associated with
explicit time discretizations of spectral methods, we shall
consider implicit schemes for integrating (3.3). After dis-
cretizing (3.3) by a suitable implicit scheme, we need to
solve at each time step the following linear system:

(oM + 8+ Q)it = g,

where o = O(4) is a constant.

It follows from the orthogonality of Legendre and
Chebyshev polynomials that m = 0 for |j — k| > 1. Hence,
the mass matrix M is (non-symmetric) tridiagonal and its
entries can be easily determined.

On the other hand, the matrices S and Q are usually full,

unless @ and b are simple, low-order polynomials in x.

(3.4)

3.1.1. Case 1: a(x,t) = a and b(x,t) = b are two constants
In this simple case, we have from (4.6) and (A.13) that
for w(x) =1,

sie =& ¥y, = a(d1¥y),, = 220, (3.5)
bt hvo =0, Y-k >1,
while for o(x) = A=,
e=aldod e =aldn), =0, V-k>1
9 = b(¢y, %)N‘w =0, V[j—kl>2
Let us denote
S,?k = (d’;:d’j)N,m’ So = (sEk)j,k:[],l.,..,N—I: (3.7)
e = (b, ltbj)N,cub Oy = (q?k)j,k:[],l,...,z\’fl‘
Then, we can rewrite (3.4) as
(M + aSo + bQy)it = &, (3.8)

which can be efficiently inverted.
As we demonstrate below, the linear system in this sim-

ective preconditioner for the

3.1.2. Case 2: variable coefficients

As observed above, for general variable coefficients a
and b, the matrices S and Q are full. Hence, a direct inver-
sion of (3.4) is not advisable. However, we shall use Lemma
2.2 to show that (3.4) can be solved effectively by using a
preconditioned iterative method.

Since ¢ w" ! € ¥}, there exists a unique set of {A}
such that

N-1

p0" = gy, k=0,1,...,N—1 (3.9)
J=0

We denote H = (hy), o, y_; and for v=(vg,vy,..

vy_1)', we define (v, v}, := Zjv o v; which is the inner prod-

uct in /.

Let uy, {#;} and & be the same as before, we have
N-1

~ 0 ~
E ukhkjsﬂug

k=0
N-1

=Y ki (), Yy il

k=0

<Z u.!¢*g, Z urhiy >
k. j=0 Nw
N-1 N-1
<Z ﬁlqb;, Zﬁk¢kwl’l>
=0 k=0

(HSolt, 1), =

N,w
= (Ouuy, 0" lun)y, = (Qstin, Un )y (3.10)
Therefore, by (2.5),
(HSoit, i) p = ||uy]|%, , for @ =1;
1 - 3 1
sl < (HSoit @ < S unlls,, for o= =0
(3.11)
Similarly,
(H(«M + 8 + Q)i @)
N-1
= Z Ty (amy; + 57+ q,)
kjd=0
N-1 1 1 N-1
(35 {i (aqs; + BIIN(anJ)) + (a +50a+ b) @} VS whyy,
=0 k=0 N

<§ i B (aqs; + a_JN(mﬁj)) (a + %Qa n z;) ¢,] f ,1k¢kw1,1>
N.ow

j=0 k=0

= <% (aB,uy + B Iy (auy) + (oc + %axa + b) uy, uNwl’_l> (3.12)

N.w

Hence, thanks to Lemma 2.2,

(e + Ao)[luwlls, + Arllunlls, < (H(aM + S + Q)at, )2
< alluyll?, + Azllunl,

Assuming o + Ay = 0 (which holds for most cases since
o= O(ﬁ) > 1, see Remark 2.1 otherwise), we derive from
the above, (3.11) and the fact wy < w; that
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Table 1
number of BCG iterations needed with (8M + S;)”" as preconditioner

N 8 16 32 64 128 256
Example [ witha =1, f=0 6 7 7 7 7 7
Example I with « = f = 100 4 5 7 11 12 12
Example [l witha =1, f=0 8 16 33 68 125 260
Example I with o = = 100 3 5 6 8 8 8

1 - -
E}LI(HSOu,u)lz < (H(aeM + S+ Q)u, i) p
3
2

The relation (3.13) indicates that a good preconditioner for
oM+ S+Q0is S, ', In fact, a more robust preconditioner is
(BM + 50)71 for some B > 0 with f ~ o for o > 1.

In Table 1, we list the number of BCG iterations needed
to achieve six-digit accuracy for solving (3.4) in the Legen-

dre case for the following two test examples using
(BM +5,)"" as preconditioner:

< 5 (o + A2) (HSolt, 1) . (3.13)

Example 1. a(x)=2+sin(2nx), b(x) = —2ncos(2nx). (a(x)
does not change sign in (—1, 1)).

Example II. a(x) =1+ 2sin(2nx), b(x) = —4ncos(2nx).
(a(x) changes sign in (—1,1)).

Note that in the Legendre case, we have Sy = 2/. Hence,
no preconditioner is needed in this case if we take f = 0.

We observe from Table 1 that (i) for Example I where
a(x) does not change sign, the preconditioner is very robust
for both o = 1 and o« = 100, and (ii) for Example II where
a(x) changes sign, the preconditioner is only robust when
o is sufficiently large and f ~ a. This is consistent with
(3.13) where it is assumed that « + 4 = 0.

We note however that although the preconditioner built
in the frequency space is quite robust with respect to N, it
may not be robust with large variations of @ and b. For the
latter case, it may be advantageous to use an implementa-
tion in physical space which we shall discuss below.

3.2. Implementations in physical space

Let {xj}j.”; o (with xp = —1) be the set of Legendre or
Chebyshev Gauss—Radau points. We set xy;1 = 1. Hence,
replacing (-,-), by the discrete inner product (-,-)y, in
(2.13), the standard pseudo-spectral dual-Petrov—Galerkin
method is:

Find uy(-,t) € ¥y such that for all ¢ € (0, 7],
(@, vn)y o, + (Ox(auy) + buy, ox)y ,
=(f,on)yw Yoy €EVy.
Let ¢ +(x) € Py be the Lagrange polynomial associated with
{xj}jy:(, such that (}j(xk} = 0y for j,k=0,1,...,N, and let
;(x) € Py be the Lagrange polynomial associated with

(3.14)

0 =y, for jk=1,2,...,N+1.

;&N}a
(3.15)

VN= span{(}l,sz,...,(iﬁ,\r}, V;] ZSPHH{&I,{LZ,...

and we have
Wi 1= (&ka&j)f\f\m = (Sj'kpj1
Sjk = <ax(a<2;,,), 'Lj),v,w
= (a(x;, ), (x)) +Bea(xi,1)819) p; + a(=1,0) B, (= 1) (= 1)y,
5 = (b, b))y o, = (5 )3igp,
U)o = @000, +f (1,000 (=1)po.
(3.16)

Let us denote

.....

Q= (qjk)j,kzl,z,....N’
N

Uy = ZMN(xjtt)‘E)k(x)’ u=(u(x1,t),u(x2,1),...,u(xy, t))r':
k=1

g = (=1),92(=1),... . (-1)),
f= (.f(xl;t):f(xlat)a'“sf(xNat))f’
(3.17)

Then, (3.14) becomes
Wu, + (S+ Qu=Wf+1(—1,t)p.e. (3.18)

In a pointwise form, the above equation, after inverting the
diagonal matrix F, can be written as:

Find uy € Py for all ¢t € (0, T] such that
Oy (x;,t) + O, (alx, Huy(x, t))[x:xj_ + b(x;, un(x;, 1)
=S t) + 9 (=) 2 (=1,0) — a(=1,0uy(=1,1)),
1<j<N,
uy(—1,¢8) =0.
(3.19)

Hence, the dual-Petrov—Galerkin method does not corre-
spond to a pure collocation method, instead, it is a pseudo
collocation scheme with an additional boundary residual
term on the right-hand side.

In Fig. 1, we plot the eigenvalue distribution of W ~'§ for
various N, where I and S are the matrices defined in (3.17)
with a(x) = 1. It is clear that for all N, the real parts of the
eigenvalues are always positive, indicating the good stabil-
ity of our dual-Petrov formulation.

Remark 3.1. One may solve (3.18) using a suitable explicit
scheme, which will be subjected to a usual CFL constraint
(see, for instance, [10,12]). On the other hand, since (3.18)
was derived from a proper variational formulation with a
coercive bilinear form, it may be possible, as in the case of
elliptic equations (cf. [18,5,19]), to build an optimal finite
element preconditioner which is robust with respect to both
the number of points and the large variations of coefficients
a and b. However, this subject and a detailed study on the
robustness of the preconditioning in frequency space is
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Fig. 1. Eigenvalue distribution of WS with a(x) = 1.

beyond the scope of this paper and will be investigated
elsewhere.

4. Error estimates

In this section, we shall present some optimal Legendre
and Chebyshev approximation results measured in strong
norms, and perform the error analysis for the proposed
dual-Petrov—Galerkin schemes.

4.1. Legendre case (w=1)

We first introduce the basis functions for the dual spaces
in (2.12). Let
@5(x) = Lnt2(x) = Ln(x),  ,(x) = La(x) + Lns1 (x),
W, (x) = La(x) — Lns1 (x)-

Thanks to the fact: Ly(41) = (+1)*, one verifies that
@, (£1) = ¢,(—1) =y, (1) = 0. Let J*’(a, f > —1) be the
classical Jacobi polynomial of degree k (see Appendix A
for its properties). The following identities hold (see
Appendix B for the proof):

(4.1)

0.0) = = 51y (L= XWH ),

0.0,(06) = (2n+ Ly (o) 2)
B = (L4210, 09,00 = (14 UG (43)
h(@) = (=200, () = ~(n+ VPG, (44)

The orthogonality of Jacobi polynomials (cf. (A.1)) implies
that {o,}, {¢.} and {Y,} are mutually orthogonal in

L2 (I), L% (I) and L2, ,,(I), respectively. Hence, {¢,},
{¢,} and {y,,} can be viewed as extensions of the classical
Jacobi polynomials to the cases with parameters

a_l) and {OC,,B)Z(—I,O),
that

[ 2008 = = [ 6,00uLner ()5 = 201,
I I

(4.5)
/é¢mw [¢aawmw Wrm. (46)

Besides, as shown in Appendix B, we have

/d%@ﬁ%md%HMM=A%M,n>z>m
I

4.7)
/dmwﬁmmemm=M%m,n>z>m
I
(4.8)
/dm@ﬁmmdﬂmm=¢%m,n;z;m
I
(4.9)
with
I(n+1+1) I(n+1+1)
m _ 2 _
(4.10)

4.1.1. Legendre approximations
We first notice that the polynomial space Vi in (2.12)
for cases ig—ivg are respectively identical to

(i), V3" = span{g;: 0 <k <N -2},
(ii); V%" = span{gy : 0 <k <N -1},
(iii)y V3" = span{y; : 0 <k <N -1},
(iv), V' =span{L; : 0 <k <N —2}.

For each pair («, ) listed below,

(i)B‘x:ﬁ:_l: (ii)BOC=0,B=—1,

(iii)y 0= —1,8=0, (iv)ya=p=0, (4.11)
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we define the weighted Sobolev space

) ={u: due L’ u(),0<1<r}, reN, (412)

equipped with the norm and semi-norm
1
Hu||b,;ﬁ = (Z ||6iu||imr) y > = ||a;u||ww.;;.r.
’ =0 '

Consider the orthogonal projection z : L2,,(I) — V%
defined by
(nFu — u,vy) oy =0, Yoy € VP, (4.13)

Let us first present a very special property of rr,;;ﬂ .

Lemma 4.1. For each pair (o, f8) in (4.11), let (&, ,@) be the
corresponding pair defined in (2.11). Then

(6 (mfu — u), uNwi‘ﬁ) =0, VoyeVy (4.14)
and
(@ (nfu —u),05) =0, Vi € V3. (4.15)

Proof. For each case of (1)g—(iv)s, we notice that

i
(ni;ﬁu — w)vy™?

1=0, o, (vyw® )EV

Hence, (4.14) is a direct consequence of an integration by
parts and the definition (4.13). Since any vy € V} can be
expressed as vy = ove™P with vy € VN ,(4.15) follows from
(4.14). O

We are now in position to state the main approximation
properties of these orthogonal projection operators.

Theorem 4.1. For each pair of (a, ) in (4.11), and for any
u € By 4(I) with r € N,

||a'” Py — )

S N0l gesror

tm pim o~

0<m<r.
(4.16)

Proof. The result with o = f =0 is well-known (see, for
instance, [7,2]). A more general result (for all « and § which
are integers) was presented in [15] but the proof was omit-
ted due to space limitation. For the readers’ convenience,
we provide below a detailed proof for (4.16) with (i)
o = f§ = —1. The other cases can be proved similarly.

For any u € L2, (I), we write

u(x) =D i, (x),  With @ty = —5 (4, 9,) 11 (4.17)
n=0 n,0
So formally we have from (B.1) and (A.1) that
) (4.18)

On the other hand,

iy u(x) — u(x) =

Hence, by (4.2) and (4.18),

||a;”(:rr Tlu—u Hw‘”l_ Z u‘unm i Z -u'nr)u:zi

n=N-—1 n=N-1

< Cop 1021

where by (4.10) and the Stirling formula (see [6]),

(1)

C,, = max 2" < N2m), O
mr sy v ‘u(l)

4.1.2. Convergence of (2.13) with w = 1

Let u and uy be the solutions of (2.7) and (2.13) (with
o = 1), respectively, and set

ey =7rj{;ﬁu—uN, ey =U— Uy = (u—ni}ﬂu)—o—é)v.

Theorem 4.2. Let uy|,_o = uony = n;j‘ﬁuo. For each of the
pair (a,f) in (4.11), assuming u € L*(0,T;L2 ()N

L>(0,T; B, 4(1)) and om € L*(0,T; B, ﬂl(l)) with mteger
r = 1, we have

(|t — ”HL"’(U‘T;L%UU))

- -1
SN ’(H@,@; uHLZ(U,T;LiI mt |‘a:”HLm(U,T;li,A,_,;A,(1))) )

=151 (

(4.19)
where wqy and w; are given in (2.10).
Proof. By (2.7) and (2.14),
(G,éN, UN)CU[) +A(é]v, UN) = (6, (ﬁi}ﬁu — u) f IJN)wU
+ (0c(a(ny'u — u)),vn),,,
+ (b(nﬁ,ﬁu — M), UN)[UQ’ VUN c VN'
(4.20)

Taking vy = éy in (4.20) and using (2.23) (note: &y (0) = 0),
we find that

1en =7z, @y + Al1enllzo,rz2, 0y S G1 + G2 (4.21)
with

61 = (=) e o

Gy = ||o:(a(7u — u)) + b(m3fu — ”)”LZ(O;T;L?UZ(IJ)'

By (4.16) with m = 0, 1, and the definition of w;(< w*#) in

(2.10),
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G s ||ax(1tf{}ﬁu

<N1 "8, l“”Ll 072

- “) ”L2 01522, (1)

gt O

and using the fact a,a,,b € L*(I x (0,T]),

G, < ||nPu SNl_r“a;"”LZ(O.T;H

- “”LZ(o,r;a;Hun 2 i @)

Hence, plugging the estimates of G, and G into (4.21)
leads to

HéN”L"C 0,7;.2 () + 4 ”éN”Ll 0,7;L2 ()

—r r— 1
<N1 (||5 a HLZ(U TLZW L @) + ||a u”LZ(ouZwMU}))'

(4.22)

Since in the Legendre case, wy = w B < @b (cf. (2.11) and
(4.11)), using (4.16) (with m = 0) and (4.22) yields that

||un — u”L”‘(O,T;LiU )

< Hﬁ;ﬁ” - “”Lm(o,r;ﬁ% ay t |IéN”L°°(0,T;Li,U @)

< Hﬁ;\;ﬂ” - ””Loc 0T 4 (1) + ”éN”L*(ﬂ,T;LZm 09)]

SN r(Ha o, ”||L2(0 T2 yn (185l O, 0 r(})j)-

@t =1,pr— 1

This completes the proof. [

Remark 4.1. If a(x) is a constant, the above result can
be slightly improved. Indeed, when taking vy =éy in
(4.20) in this case, thanks to Lemma 4.1, we find that the
term corresponding to G, becomes = ||b(nPu—
u) HLQ(U’T;LE% (- Therefore,

G < max 1B(x)|[| 7y e — “||L2(n,r;L52(I)J
X€

< Nﬁr”a;u”LZ(O.T;Li‘rﬁ.,(l))a

and
G] S N_r”afa;uHLZ(U:T:“LZIH-.BHU)) '
Hence, we have
[lun — u”Lx(o,T:LiO(I)J
sV (I80mlors, o+ 0z, 0):

4.2. Chebyshev case (v = (I _xz)ﬂ’/Z)

In this subsection, we perform the error analysis of the
Chebyshev dual-Petrov—Galerkin scheme (2.13) with
V[V given by (i)g—(iv)s in (2.12).

4.2.1. Chebyshev approximations
First, we establish an embedding result associated with
the weights given by (2.10)—(2.11):

on(x) = o(x)o ! (x) = w2,

o1(x) = (1 - %) ' oo(x) =

1/2173/2, wfafz,uz, wl/z,lfzy

@ 5252 g 2SR 52

(4.23)

ively.

w V212

Lemma 4.2

[ully S llaelly e Vo € L3, (1) N H (1), (4.24)
and

el S llullyy, Yu €Ll (1) NHL). (4.25)

Proof. We first prove (4.24). The case (iv); (ie.,
w, = w /3712 = @) is well-kknown (cf. [3]). For the case
(1) (ie., @1 = w¥*7%2), we recall the Hardy inequality

[

L [ w(y)dy)z(l —x)dx

—T W@ -9, (4.26)
and
/ (fo VI (142
< [ W1+ e, (4.27)

which hold for any measurable function ¢(x), and real num-
ber d < 1. Taking = 0,u and d = —% in (4.26) leads to

/01 W(x)(1 —x2) " dx g Aluz(x)(l ST
3 jﬂ 0l —x) P

1
< / @®,)*(1 — x) " dx
0

A similar inequality holds on the subinterval [—1,0] by
using (4.27). A combination of them yields

(4.28)

2 2 2
uellz, S N10cullsy, S [laell} -

Since the proofs for the cases (ii), and (iii), are essentially
the same, we will only consider the case (iii),. Thanks to
(4.28), we have

/uz(x)(l—x)*5f2(1+x)*‘/2dxs [ P (x)(1 —x) "
0 JO
! W21 — x) 12
5.[0 (B (1 —x) V2 dx

1
< [ (0,)*(1 — x*) " dx.
JO

(4.29)
On the other hand,

/0 W (x)(1—x) (1 +2) P dx 5 [0 W2(x)(1 — x2) ™ dx.

1

A combination of them leads to the desired result.
The inequality (4.25) can be proved in a similar
fashion. O
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As in the Legendre case, we need to derive some Cheby-
shev approximation results in suitable weighted Sobolev
spaces. Let us define the subspaces of H. (1):

of,(I) = {u € Hy,(I) : u(~1) = 0},
"H,,(I) = {u € H,(I) : u(1) = 0}
and Hé,m(l) = oH. (1) N°H} (I). Below, we shall use ¥ to
denote H, (1), oH,(I), °H,(I) and H}(I) for the cases
(1)g, (ii)g, (1il); and (iv)y, respectively.

Define the orthogonal projection: n}\,m V= VN
(defined in (2.12) for each case) by
VUN € VN.

(4.30)

—u), GXUN)

+ (“}v,m“ —u, vN)w = 0:

w

(éx(n}\,wu

Lemma 4.3. For any ue€ Vﬂst/z,&/z(") with integer
r = 1, we have that for each case of (1)g—(iV)g,

It =l S NNl w=0,1  (431)

wow ~

If, in addition, u € Li(l) with ¥ = wy or w, given in (4.23),
then

Hn}‘,;wu — u||/ < Nl_r||6;u w3232 (4.32)
Proof. The estimate (4.31) for (i), H, ,-orthogonal projec-
tion, and (iv) H} -orthogonal projection, can be found, for
instance in [3], an improvement with the semi-norm in the
upper bound can be found in [14]. The other two cases of
(4.31) are stated in Theorem 3.2 of [14]. Then, a combina-

tion of Lemma 4.24 and (4.31) implies (4.32). [

4.2.2. Convergence of (2.13) with w = (1 —x2)~!7

Theorem 4.3. Let uy(0) = ugy = ”}1\«',0;“0- If uel?0,T;
L3, (D) NL®(0,T;B” 3, 5,5(1)) and ou € L*0,T;
8131/2,_3/2(1)) with integer r > 2, then

Ju — “N”Lx(oj;Lg,o ) T Aallu— "“NHJLZ(QMg1 (1)

-r r—1 r
SN (Ha,ax u"LE(O,T;Li,_Sm_S’.Z(1)) + Hax“‘|L®(O,T;Lif_3’,2_r_3_‘,2 (1}))'
(4.33)

where A1, wgy and w; are the same as in Theorem 2.1 (also see

(4.23)).

Proof. Set éy=ny u—uy and ev=u—uy=(u—
my 4) + éy. By an argument similar to the derivation of
(4.21), we have

.72 ) S Wl + WZ’ (4'34)

|

where

W= H@,(n}mwu - “)||L2(0,T;L52(1)p

Wy= Hax(a(“}v_,w“ —u)) + b(“}v,w” —u) HLZ(U,T;LEHZ(I))
and

Wy = @ VB2 212 (1232 (32302

for the cases (i)g—(iv)s, respectively. Since w; < w, we de-
rive from (4.31) that

W] < Nl_’||6t6;’lu||Lz(0:mg ¥ 2

A\

r—5/2,r 5,-’2(IJ)7

and

A\

W2 SN17I||a;HHL2( r 1

g2
U=T=Lmr 3/2, 3/2(1))’

On the other hand, by (4.32), we have that

1 1
|7y ot — u”Lx(O,T;L‘;’-uO ay T Ay — “HLﬁ(o,r;Lgl )

< Nlr(”a;””;:x(o,rﬁ

S Nl_rHa:””Lw(o,r;H
m

@ T Ha;“”ﬂ(o:riir s 3f,z(r)))
(4.35)

r—3/2,r-3/2

s D)

Hence, using a triangle inequality and the above estimates
leads to the desired result. [

5. Concluding remarks

We presented in this paper a Legendre and Chebyshev
dual-Petrov—Galerkin method for hyperbolic equations.

The dual-Petrov—Galerkin method is based on a natural
variational formulation for hyperbolic equations. A dis-
tinctive feature of this variational formulation is that the
associated bilinear form for general hyperbolic equations
is coercive. An immediate consequence of this property is
that the dual-Petrov—Galerkin method is always stable
without any restriction on the coefficients. Another conse-
quence is that one can build robust preconditioners as in
the elliptic equations. In fact, by working in the frequency
space, we were able to build an optimal (in the sense that
for a given accuracy, the required iteration number is inde-
pendent of the number of modes) preconditioner, which is
the sparse matrix associated with an equation with suitable
constant coefficients, for the linear system of an implicit
time discretization of general hyperbolic equations.

This paper is our first effort in developing robust spec-
tral algorithms for hyperbolic equations/systems. In future
works, we shall investigate whether the dual-Petrov—Galer-
kin framework can be extended to effectively handle hyper-
bolic systems, and whether one can build more robust
preconditioners using a suitable finite element approxima-
tion of the dual-Petrov—Galerkin formulation. We shall
also investigate the numerical and theoretical issues of
the dual-Petrov—Galerkin method for nonlinear hyperbolic
equations.
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Appendix A. Properties of Jacobi polynomials

We collect below some relevant formulas of the Jacobi
polynomials used in this paper. The Jacobi polynomials
J5(x)(a, B > —1) are orthogonal with respect to the Jacobi

welght w*f = (1 —x)*(1+x)”,

[0 e ) s = y:=ﬂam, (A1)
with

b 2 P+ a+ Dl(n+ B+ 1) (A2)

Cut+oa+p+ DI+ D)I(n+a+p+1)

There hold the following recursive formulas (cf. Szegd [23]
and Askey [1]):

T ) =T @) =T (x), B> 0; (A.3)
JHP(x) = m{n+ﬁ ) (x) + (n+ )2 ()}, o, B> 0
(A.4)
(=775 =52 f a0 -+ D),
(A.5)
(1+x)JF4 (x) = ﬁi[ﬂ-z{ (n+ B+ DI (x) + (n+ 122 (x) )5
(A.6)
GIJ:'ﬁ(x):%(n+a+,ﬁ'+I)iji‘ﬁ“(x), nz=l. (A7)

The Legendre polynomials: L,(x) := J%°(x),n = 0, satisfy

(2?’1 + I)Ln(x) = aILﬂ+l (x) - aanfl(x)a h = 11 (AS)
nn+1
(1 = )BuLn(x) = 2(’1—+1)(Ln,1(x) CLea(®), n> 1.
(A.9)
The Chebyshev polynomials are defined by
Tt )
T.(x) = ——— =cos(narccos(x)), n = 0. (A.10)
J,[ (1)
We have that
2%T,(x) = Tyt (x) + Tra (x), n =1 (A.11)
(1= x2)8,T,(x) = g(Tn,l(x) —T,a(x), n=1  (Al2)
As a consequence,
—1
(1= X)3.((1 +0)Ta(x)) = 5= Tet (1) + Tu(x)
n+1
- TT"“(x)' (A.13)

Appendix B. The proofs of (4.2)-(4.4) and (4.7)-(4.9)

Using (A.7), (A.8) and (A.9), we obtain (4.2). Then, the

grectly from (A.6). Next, we
and (4.1) that

B, %( FAIN) + 51+ 17,1 ()
(A %(n+2)_]11(x)+ (n+ 1)(']:11’0(3‘)—.]2’1@))
:%( +2)7, () - (”+1)JS’1(3€))+%(H+I)J},’O(x)

o+ 1)),

Similarly, we can prove (4.4).
Using (A.7), (4.2) and an induction argument, we find
that

00n(x) = (21 + 3)0 Ly (%) = Kt 215 (%) (B.1)
with
- (2n+3)F(n+l+1).

’ 27 r(n+2)
Therefore, (4.7) follows from the orthogonality (A.1) with
‘uy(zl; =1 Y iis =2(2n+ 3)%

Similarly, we can prove (4.8) and (4.9).
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