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Abstract
We develop a set of numerical schemes for the Poisson–Nernst–Planck equations. We
prove that our schemes are mass conservative, uniquely solvable and keep positivity
unconditionally. Furthermore, the first-order scheme is proven to be unconditionally
energy dissipative. These properties hold for various spatial discretizations. Numerical
results are presented to validate these properties. Moreover, numerical results indicate
that the second-order scheme is also energy dissipative, and both the first- and the
second-order scheme preserves the maximum principle for cases where the equation
satisfies the maximum principle.

Mathematics Subject Classification 65M12 · 35K61 · 35K55 · 65Z05 · 70F99

1 Introduction

The Poisson–Nernst–Planck (PNP) equations describe the dynamics of charged par-
ticles in an electric field that is also affected by these particles, and have been used
to model physical systems involving motions of charged particles, including electro-
chemistry [4], semiconductors [19,40], and several biological phenomena [5,10,13].
When discussing the interplay of an electric field and a flow field, the PNP equation
can also be coupled with the Navier–Stokes equation [41].

This work is supported in part by AFOSR FA9550-20-1-0309, NSF DMS-2012585, NSFC 11688101 and
12001524.

B Jie Shen
shen7@purdue.edu

Jie Xu
xujie@lsec.cc.ac.cn

1 Department of Mathematics, Purdue University, West Lafayette IN 47907, USA

2 LSEC & NCMIS, Institute of Computational Mathematics and Scientific/Engineering Computing
(ICMSEC), Academy of Mathematics and Systems Science (AMSS), Chinese Academy of Sciences,
Beijing 100190, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-021-01203-w&domain=pdf


672 J. Shen, J. Xu

A distinct feature of the PNP equations is that they are built as Wasserstein gradient
flows [1]. Wasserstein gradient flows are usually used to describe the evolution of
the concentration c which remains positive, given a positive initial condition. The
dissipation operator in Wasserstein flow is nonlinear, given by ∇ · (c∇(·)), whose
negativity also requires c to be positive. Meanwhile, in most cases the energy is well-
defined with a lower bound only when c is positive, for which we mention a few
models from different areas [2,7,12,23,29,35,38,49]. Numerically, it is thus crucial to
construct schemes that preserve positivity and energy dissipation at the same time.

If one aims to design schemes featuring only unconditional positivity preservation,
or only unconditional energy dissipation, there have been various approaches. How-
ever, this turns out not to be easy if both properties are desired. Typical techniques
of designing energy dissipative time-discretized schemes for gradient flows, such as
convex splitting [15,16,42], stabilization [47,54], auxiliary variable approaches [3,24]
(including IEQ [50,53] and SAV [43,45,46]), usually have no definite effect on pos-
itivity preserving properties. One possible way to avoid dealing with positivity is to
regularize the equation (see, for example [9,39,50]), so that the equation admits solu-
tions that may be negative. However, regularization cannot preserve positivity in the
strong sense. On the other hand, the tools for positivity preservation, such as limiter
[51,52] or seeking discrete maximum principle [48], are often inconsistent with the
structure needed for proving unconditional energy dissipation.

This difficulty is indeed reflected in the previous works on PNP equations. Vari-
ous schemes have been applied [6,14,21,22,27,34,37]. Numerical analyses have also
been carried out. Some schemes require CFL conditions for positivity preservation
or energy dissipation [18,31,32,39]. Some schemes exhibit energy dissipation with a
prerequisite on positivity that lacks rigorous proof [20,25,36]. Recently, a few schemes
have been proposed based on a reformulation by rewriting the flux using a total dif-
ferential [11,26,28,30] (see also [33] for applications beyond PNP equations). The
advantage of the reformulation is that one can easily write down first-order-in-time
finite difference schemes with positivity preserved unconditionally. As for the energy
stability, a discrete energy law is proved in both [26] and [28], although the discrete
energy in [26] is without a lower bound, and the existence of the numerical solution in
[28] is proved with a restriction on the time step. On the other hand, a discrete energy
law is proved in [30] for a linear scheme with an O(1) bound on the time step.

In this paper, we shall construct schemes for PNP equations which unconditionally
(independently of the time step and grid size) satisfy the four properties below: they are
(i) mass conservative, (ii) uniquely solvable, (iii) positivity preserving, and (iv) energy
dissipative. The key ingredient in constructing such schemes is to consider the PNP
equation as aWasserstein gradient flow, i.e., to interpret the dissipative term∇ ·(D∇c)
as∇ · (Dc∇ log c) fromwhich an energy law in theWasserstein metric can be derived.
We discretize the PNP equations in the context of Wasserstein gradient flow, based on
the form ∇ · (Dc∇ log c). The appearance of a logarithmic function in the schemes is
essential to guarantee the concentration, which is also part of the diffusion coefficient,
to be positive. This is attained by treating the coefficient c explicitly, and log c from the
variational derivative of the energy implicitly. The key for achieving the nice properties
stated above is that the schemes can be interpreted as minimization of a strictly convex
functional, which implies the uniquely solvability, positivity and energy dissipation.
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Such an idea has been successfully implemented for a Cahn–Hilliard equation with
Flory–Huggins energy potential [8] (which is not a Wasserstein gradient flow), and
for a class of Keller–Segel equations [44] (which is a Wasserstein gradient flow in a
special case).

We start by constructing a first-order time discretization scheme and show that it
satisfies the four properties (i)–(iv), and we believe that it is the only scheme which
is both unconditionally positivity preserving and unconditionally energy dissipative.
We then construct a second-order scheme, and show that it satisfies the properties
(i)–(iii). We also discuss how to construct fully discrete schemes which can preserve
the properties of the time discretization schemes. The schemes are suitable for both
Galerkin-type (finite element, spectral, etc.) and finite difference discretizations. At
each time step these schemes lead to a nonlinear system, but since the unique solution
of this is the minimizer of a strictly convex functional, it can be solved efficiently by
Newton’s iteration. We provide ample numerical results to show that both first- and
second-order schemes satisfy the four properties. Moreover, in some special cases,
where the solution of the PNP equation satisfies amaximum principle and electrostatic
energy dissipation, both the first- and second-order scheme can also preserve the
maximum principle and the electrostatic energy dissipation.

The rest of paper is organized as follows. In Sect. 2, we introduce the PNP equations
and state some of their properties that we desire to inherit in numerical solutions. Then,
we construct numerical schemes inSect. 3 andprove that they satisfy the four properties
stated earlier. We start by writing down the semi-discrete-in-time scheme, followed by
careful discretization in space so that the properties of the time discretization schemes
can be preserved under full discretization. Numerical results are presented in Sect. 4.
Concluding remarks are given in the last section.

2 PNP equations

Wefirst introduce thePNPequations in a general form, and thenpayparticular attention
to a popular two-component system because it possesses extra properties.

2.1 General form

We consider a system with N species of charged particles driven by Brownian motion
and the electric field in an open bounded domain � ⊂ R

d (d = 1, 2, 3). The system
is charged with a fixed constant density ρ0. To write down the dimensionless PNP
equations governing the motion of this system, we introduce some dimensionless
quantities (functions) below:

• ci (x) is the density of the i-th species;
• φ(x) is the internal electric potential contributed by the charged particles; φe(x)

is a given external electric potential;
• The chemical potential w.r.t. ci is μi = log ci + zi (φ + φe);
• The constants zi , Di > 0 are the valence and the diffusion constant of the i-th
species, and ε > 0 is the permittivity.
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Then, the PNP equations are written as

∂ci

∂t
=∇ · (Di ci∇μi ) = ∇ ·

(
Di ci∇

(
log ci + zi (φ + φe)

))
in � (i = 1, . . . , N ),

(2.1)

where the internal electric potential φ is determined by

− ∇ · (ε∇φ) = ρ0 +
N∑

i=1

zi ci in �. (2.2)

Noticing that ∇c = c∇ log c, we can rewrite (2.1) as

∂ci

∂t
= ∇ ·

(
Di
(∇ci + zi ci∇(φ + φe)

))
in � (i = 1, . . . , N ), (2.3)

which is in the form most often used in the literature.
The boundary conditions are imposed on μi and φ. They can be either periodic on

bothμi and φ; or, be of Neumann type on the flux to guarantee the mass conservation,

ci
∂μi

∂n
= ci

∂
(
log ci + zi (φ + φe)

)

∂n
= ∂ci

∂n
+ zi ci

∂(φ + φe)

∂n
= 0,

and either Dirichlet, Neumann, or Robin boundary conditions on φ,

φ = 0; or
∂φ

∂n
= 0; or αφ + β

∂φ

∂n
= 0, α, β > 0.

If using periodic or Neumann boundary conditions on φ, we require that

ρ0 +
∑

zi c̄i = 0,
∫

�

φ dx = 0,

where c̄i is the average density of the i-th species.

Remark 2.1 We only consider periodic or homogeneous boundary conditions above
on φ. For non-homogeneous boundary conditions such as φ|∂� = g, we can split φ

as φ1 + φ2, with

− ∇ · (ε∇φ1) = ρ0 +
N∑

i=1

zi ci , φ|∂� = 0,

− ∇ · (ε∇φ2) = 0, φ|∂� = g.

Note that φ2 does not depend on ci . Thus, φ2 actually acts as an external potential and
could be added to φe. It is known that the profiles of ci can sensitively depend on the
boundary conditions [18]. In the above formulation, it actually implies that φ2, which
goes in to the external potential, greatly affects the profile.
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The total free energy of the system is given by

E({ci }, φ) =
∫

�

N∑
i=1

ci (log ci − 1) +
(

ρ0 +
N∑

i=1

zi ci

)(
1

2
φ + φe

)
dx. (2.4)

Assuming ‖φe‖L∞(�) ≤ A, we derive that the total energy is bounded from below.
Indeed, we have

ci log ci − ci + ziφeci ≥ ci log ci − (|zi |A + 1)ci ,

which is bounded from below. For the term with the internal potential φ, we derive by
integration by parts that

∫ ⎛
⎝ρ0 +

N∑
i=1

zi ci

⎞
⎠φ dx =

⎧
⎪⎨
⎪⎩

∫
ε|∇φ|2 dx, with periodic, Dirichlet or Neumann B.C.,∫
ε|∇φ|2 dx +

∫

∂�
ε
α

β
|φ|2 dS, with Robin B.C..

The PNP equations (2.1)–(2.2) satisfy several important properties:

1. Mass conservation: Integrating (2.1) over �, we obtain immediately

∫

�

ci (·, t)dx =
∫

�

ci (·, 0)dx.

2. Positivity: The well-posedness of (2.1)–(2.2) (cf. [41]) ensures that, if ci (·, 0) > 0,
then we still have ci (·, t) > 0 for any t > 0.

3. Energy dissipation:

dE

dt
= −

∫ N∑
i=1

Di ci |∇μi |2 dx. (2.5)

To derive the above energy dissipation, we need to observe thatμi = δE

δci
. Actually,

the variation δφ satisfies

−∇ · (ε∇(δφ)
) =

N∑
i=1

ziδci ,

with the same boundary conditions as φ. Regardless of the type of the boundary
conditions, we have

∫
−δφ∇ · (ε∇φ) dx =

∫
−∇ · (ε∇(δφ)

)
φ dx.
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So we have

δ

∫ (
ρ0 +

N∑
i=1

zi ci

)
φ dx =

∫
φ

N∑
i=1

ziδci − δφ∇ · (ε∇φ) dx

=
∫

φ

N∑
i=1

ziδci − ∇ · (ε∇(δφ)
)
φ dx = 2

∫
φ

N∑
i=1

ziδci dx

Therefore, by multiplying the equation (2.1) with μi , taking the integral and sum-
ming up over i , we obtain (2.5).

2.2 A two-component system

We consider a two-component system (N = 2) which has attracted special attention
in the literature. We set z1 = 1, z2 = −1, ε = 1 and the external electric potential
φe = 0. Denote p = c1 and n = c2. Let the average density be c̄1 = c̄2 so that ρ0 = 0.
The PNP equation becomes

∂ p

∂t
= ∇ ·

(
D1 p∇(log p + φ)

)
, (2.6)

∂n

∂t
= ∇ ·

(
D2n∇(log n − φ)

)
, (2.7)

− 
φ = p − n, (2.8)

where p and n denote the concentration of positively and negatively charged particles,
respectively, and φ is the electronic potential. This system is named after W. Nernst
andM. Planck to describe the potential difference in a galvanic cell (e.g., rechargeable
batteries, or biological cells), and has applications in many different fields including
chemistry, biology, plasma physics, and modeling of semi-conductor devices.

The above system has two special properties stated below, which are satisfied only
under the periodic or Neumann boundary conditions for p, n, φ. They do not neces-
sarily hold for the general form of PNP equations.

1. The electrostatic energy ‖∇φ‖2/2 is dissipative if D1 = D2 = D. Indeed, multi-
plying (2.6) and (2.7) with φ and calculating their difference, we obtain

d‖∇φ‖2/2
dt

= −D
∫ [

(p − n)2 + (p + n)|∇φ|2
]
dx. (2.9)

It needs to be pointed out that the electrostatic energy is part of the total energy
(2.4), by noticing the derivation below (2.4).

2. The solutions p and n satisfy maximum principle. In [17], it is shown in a general
setting that if initially we have 0 < ε(0) ≤ p, n ≤ A(0), then at any time T > 0
there exist A(T ), ε(T ) > 0 such that ε(T ) ≤ p, n ≤ A(T ). We give a short formal
derivation for the maximum principle below. Multiplying (2.6) with pk−1, we
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obtain

∫
1

k
· ∂ pk

∂t
dx = − D1

∫
(k − 1)pk−2|∇ p|2 + p∇(pk−1) · ∇φdx

= − D1

∫
(k − 1)pk−2|∇ p|2 + k − 1

k
∇(pk) · ∇φdx.

Since we adopt periodic or Neumann boundary conditions on φ, we deduce that

∫
1

k
· ∂ pk

∂t
dx = − D1

∫
(k − 1)pk−2|∇ p|2 + k − 1

k
pk(p − n)dx.

Similarly, multiplying (2.7) with nk−1, we have

∫
1

k
· ∂nk

∂t
dx = − D2

∫
(k − 1)nk−2|∇n|2 − k − 1

k
nk(p − n)dx.

Taking the sum of the above two equations, and noting that p, n > 0, we obtain

∫
∂(pk/D1 + nk/D2)

∂t
dx = −

∫
k(k − 1)(pk−2|∇ p|2 + nk−2|∇n|2)

+(k − 1)(pk − nk)(p − n)dx ≤ 0. (2.10)

So we have

‖p(t)‖Lk ≤
(

‖p(t)‖k
Lk + D1

D2
‖n(t)‖k

Lk

)1/k

≤
(

‖p(0)‖k
Lk + D1

D2
‖n(0)‖k

Lk

)1/k

≤
(
1 + D1

D2

)1/k

max{‖p(0)‖L∞ , ‖n(0)‖L∞}.

Taking the limit k → +∞, we obtain

max{‖p(t)‖L∞ , ‖n(t)‖L∞} ≤ max{‖p(0)‖L∞ , ‖n(0)‖L∞}.

Note that the inequality (2.10) also holds for k < −1, we then obtain by taking
k → −∞ that

max

{∥∥∥∥
1

p(t)

∥∥∥∥
L∞

,

∥∥∥∥
1

n(t)

∥∥∥∥
L∞

}
≤ max

{∥∥∥∥
1

p(0)

∥∥∥∥
L∞

,

∥∥∥∥
1

n(0)

∥∥∥∥
L∞

}
.

Although we are not aiming to design numerical schemes guaranteeing these two
properties theoretically, we are still interested in and will examine whether they can
be kept in the numerical solutions.
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3 Numerical scheme

We construct in this section numerical schemes for (2.1)–(2.2). We start from a
first-order scheme and prove that it enjoys the four nice properties described in the
introduction. We then construct a second-order scheme which enjoys the first three
properties.

3.1 First-order scheme

We first write down the time-discretized scheme for (2.1)–(2.2):

cn+1
i − cn

i

δt
= ∇ · (Di c

n
i ∇μn+1

i ) = ∇ ·
(

Di c
n
i ∇( log cn+1

i + zi (φ
n+1 + φe)

))
, i = 1, . . . , N ,

(3.1)

− ∇ · (ε∇φn+1) = ρ0 +
N∑

i=1

zi c
n+1
i , (3.2)

with the boundary conditions imposed onμn+1
i = log cn+1

i + zi (φ
n+1+φe) and φn+1

as in the PDE system (2.1)–(2.2).

Theorem 3.1 Assume cn
i > 0 for all i . For any solution to the scheme (3.1)–(3.2), we

have

1. Mass conservation:

∫
cn+1

i dx =
∫

cn
i dx.

2. Positivity preserving: cn+1
i > 0 for all i .

3. Energy dissipation:

En+1 − En ≤ −δt
∫ N∑

i=1

Di c
n
i

∣∣∣∇μn+1
i

∣∣∣
2
dx, n ≥ 0, (3.3)

where Ek = ∫
�

∑N
i=1 ck

i (log ck
i − 1) +

(
ρ0 +∑N

i=1 zi ck
i

)
( 12φ

k + φe) dx.

Proof We shall only prove the theorem for the Neumann boundary conditions on φ

and μi . The results with other boundary conditions can be proved in the same way, as
we will point out afterwards.

Taking the integral of (3.1) over � and using the Neumann boundary conditions
on the chemical potential, we obtain the mass conservation.

The positivity follows from the appearance of log cn+1
i .

It remains to prove the energy dissipation. To this end, we take the inner product
of the equation (3.1) with log cn+1

i + zi (φ
n+1 + φe), summing up for 1 ≤ i ≤ N , we
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arrive at

N∑
i=1

(cn+1
i − cn

i , log cn+1
i ) +

(
ρ0 +

N∑
i=1

zi c
n+1
i − ρ0 −

N∑
i=1

zi c
n
i , φn+1 + φe

)

=
N∑

i=1

(cn+1
i − cn

i , log cn+1
i ) +

(
∇φn+1 − ∇φn, ε∇φn+1

)

+
(

ρ0 +
N∑

i=1

zi c
n+1
i − ρ0 −

N∑
i=1

zi c
n
i , φe

)

= −δt
∫ N∑

i=1

Di c
n
i

∣∣∣∇(log cn+1
i + zi (φ

n+1 + φe))

∣∣∣
2
dx.

We note that by Taylor expansion we have

(a − b) log a = (a log a − a) − (b log b − b) + (a − b)2

2ξ
, ξ ∈ [min{a, b},max{a, b}].

(3.4)

We also have

(∇φn+1 − ∇φn) · ∇φn+1 = 1

2
(|∇φn+1|2 − |∇φn|2 + |∇φn+1 − ∇φn+1|2).

(3.5)

With the above equalities, we immediately derive (3.3). 
�

It remains to examinewhether there exists a solution for the scheme. Below, we give
a formal derivation by formulating it as the minimizer of a strictly convex functional.
Still, we examine the Neumann boundary conditions for φ and μi . Let us introduce
linear operators Ln

i , which are defined as follows: let Ln
i g = u if they satisfy the

following elliptic equation with the Neumann boundary conditions,

−∇ · (cn
i ∇u) = g,

∫
udx = 0.

Also, we defineL as above where we replace cn
i with ε. The linear operatorsLn

i andL
are symmetric and nonnegative in the sense (u,Lu) ≥ 0. We consider the following
functional

F[cn+1
i ] =

N∑
i=1

(cn+1
i log cn+1

i − cn+1
i , 1) + 1

2δt

N∑
i=1

(
cn+1

i − cn
i ,Ln

i (cn+1
i − cn

i )
)
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+ 1

2

(
ρ0 +

N∑
i=1

zi c
n+1
i ,L

(
ρ0 +

N∑
i=1

zi c
n+1
i

))
+
(

ρ0 +
N∑

i=1

zi c
n+1
i , φe

)
.

(3.6)

The above functional is strictly convex, because
∫

cn+1
i log cn+1

i + (ziφe − 1)cn+1
i dx

is strictly convex about cn+1
i , and the remaining terms give a quadratic nonnegative

functional. Its Euler–Lagrange equation under the constraints of mass is

1

δt
Ln

i (cn+1
i − cn

i ) + log cn+1
i + ziL

(
ρ0 +

N∑
i=1

zi c
n+1
i

)
+ ziφe

= 1

δt
Ln

i (cn+1
i − cn

i ) + log cn+1
i + zi (φ

n+1 + φe) = λi ,

∫
(cn+1

i − cn
i )dx = 0.

where λi are the Lagrange multipliers for the mass conservation. It is easy to see
that the above equations are equivalent to (3.1)–(3.2). The functional F has a unique
minimizer. Moreover, the minimizer cannot have cn+1

i (x) = 0, because the derivative
of the term cn+1

i log cn+1
i − cn+1

i has the derivative log cn+1
i that tends to −∞ at

zero. Hence, the unique minimizer must have cn+1
i > 0 for all i , which is the unique

solution to the Euler–Lagrange equation, hence to the scheme, because we can solve
φ uniquely from (3.2).

The above formal derivation can be converted into a rigorous proof after we dis-
cretize in space. Before going on, let us explain the difference when using other
boundary conditions, both for the theorem and for the formal derivation above. For
the periodic boundary conditions, everything is exactly the same. When using Dirich-
let or Robin boundary conditions, we do not need the average equals to zero when
defining the operator L (but still need for Ln). For the energy dissipation for Robin
boundary conditions, we need an extra term

∫
∂�

εαβ|φ|2dS, which can be dealt with
in the same way as

∫
�

ε|∇φ|2dx. Thus, we will still focus on the Neumann boundary
conditions below.

We now discuss how to construct spatial discretizations which preserve the nice
properties for the scheme (3.1)–(3.2). Note that in the proof of Theorem 3.1, we have
used non-standard functions like log cn+1

i as test function. Therefore, the proof can
not be directly extended to a straightforward discretization in space since the discrete
version of log cn+1

i is usually not in the discrete test space. We need to carefully
discretize the space to keep the properties stated in Theorem 3.1 in the discrete sense
(cf. [32]).

Let us first discuss Galerkin type discretizations with finite-elements or spectral
methods. Since there are differential operators with variable coefficients, we need to
define a discrete inner product, i.e. numerical integration, on a finite set of points
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Z = {z}:

[u, v] =
∑
z∈Z

βzu(z)v(z), (3.7)

where we require that the weights βz > 0. For finite element methods, the sum should
be understood as

∑
K⊂T

∑
z∈Z(K ) where T is a given triangulation.

As we havementioned, we still consider Neumann boundary conditions. Let X M ⊂
H1(�) be a finite dimensional approximation space. Assume that there is a unique
function ψz(x) in X M satisfying ψz(z′) = 1z=z′ for z, z

′ ∈ Z . Then, we can define
IM : C(�) → X M as the interpolation operator about the points in Z .

Our Galerkin method for the first-order scheme (3.1)–(3.2) is: to find {cn+1
i } and

φn+1 in X M satisfying

[
cn+1

i − cn
i

δt
, v

]
= −

[
Di c

n
i ∇
(

IM

(
log cn+1

i + zi (φ
n+1 + φe)

))
,∇v

]
, v ∈ X M ,

(3.8)

(ε∇φn+1,∇w) =
[
ρ0 +

N∑
i=1

zi c
n+1
i , w

]
, w ∈ X M . (3.9)

We emphasize that in the above, (·, ·) represents the continuous L2 inner product,
while [·, ·] represents the discrete L2 inner product defined in (3.7).

Theorem 3.2 The fully discretized scheme (3.8)–(3.9) enjoys the following properties:

1. Mass conservation:

[cn+1
i , 1] = [cn

i , 1].

2. Unique solvability: the scheme (3.8)–(3.9) possesses a unique solution ({cn+1
i ∈

X M }, φn+1 ∈ X M ).
3. Positivity preserving: if cn

i (z) > 0 for all i and z ∈ Z, we have cn+1
i (z) > 0 for

all i and z ∈ Z.
4. Energy dissipation:

Ẽn+1 − Ẽn ≤ −δt
N∑

i=1

[Di c
n
i ∇μn+1

i ,∇μn+1
i ], (3.10)

where μn+1
i = IM

(
log cn+1

i + zi (φ
n+1 + φe)

)
and the discrete energy is defined

as

Ẽn =
N∑

i=1

[cn
i log cn

i − cn
i , 1] +

[
ρ0 +

N∑
i=1

zi c
n
i ,

1

2
φn + φe

]
. (3.11)
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Proof The mass conservation is obtained by choosing v = 1.
Next, we look the unique solvability and positivity. Since we have cn

i (x) =∑
z cn

i (z)ψz(x), let us denote the vector (cn
i (z), z ∈ Z) as c̃n

i . Similarly we denote
(φn(z), z ∈ Z) and (φn

e (z), z ∈ Z) by the vectors φ̃n and φ̃e, respectively. We define
the following stiffness and mass matrices:

An
i = [Di c

n
i ∇ψz,∇ψz′ ], A = ε(∇ψz,∇ψz′), B = [ψz, ψz′ ].

It is clear that B is a diagonal matrix with positive elements since βz > 0, and A
is symmetric positive semi-definite. If cn

i (z) > 0 for z ∈ Z , the matrices An
i are

symmetric positive semi-definite. Furthermore, An
i x̃ = 0, similarly Ax̃ = 0, if and

only if all the components of x̃ are equal. Therefore, An
i and A have one zero eigenvalue

with all other eigenvalues being positive. Hence, the eigen-decomposition of A takes
the form A = T t�T with � = diag(0, μ2, . . . , μM ) and μ j > 0 for j = 2, . . . , M .
We denote by A∗ the pseudo-inverse given by A∗ = T tdiag(0, μ−1

2 , . . . , μ−1
M )T .

Similarly we can define (An
i )∗ for i = 1, . . . , N . With the above notations, we can

rewrite the scheme (3.8)–(3.9) in matrix form as follows:

1

δt
B(c̃n+1

i − c̃n
i ) = −An

i

(
log c̃n+1

i + zi (φ̃
n+1 + φ̃e)

)
, (3.12)

Aφ̃n+1 = B

(
ρ0 +

N∑
i=1

zi c̃
n+1
i

)
. (3.13)

Multiplying the above equations by pseudo-inverse (An
i )∗ and A∗, we find

1

δt
(An

i )∗B(c̃n+1
i − c̃n

i ) + log c̃n+1
i + zi (φ̃

n+1 + φ̃e) = λi1, (3.14)

φ̃n+1 = A∗ B(ρ0 +
N∑

i=1

zi c̃
n+1
i ) + λ1, (3.15)

with 1 representing the all-one vector. Eliminating φ̃n+1 from the above, and then
multiplying B to the first equation, we arrive at

1

δt
B(An

i )∗B(c̃n+1
i − c̃n

i ) + B log c̃n+1
i + zi

⎛
⎝B A∗B(ρ0 +

N∑
i=1

zi c̃n+1
i ) + Bφ̃e

⎞
⎠ = λ′

i B1,

along with the mass conservation 1t B(c̃n+1
i − c̃n

i ) = 0. Here, λ′
i = λi − ziλ acts as

the Lagrange multiplier for the mass conservation. One can then easily check that the
above is the Euler–Lagrange equation of the function

F̃[c̃n+1
1 , . . . , c̃n+1

N ]
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= 1

2δt

N∑
i=1

(c̃n+1
i − c̃n

i )t B(An
i )∗ B(c̃n+1

i − c̃n
i ) +

N∑
i=1

(c̃n+1
i )t B(log c̃n+1

i − 1)

+ 1

2

(
ρ0 +

N∑
i=1

zi c̃
n+1
i

)t

B A∗ B

(
ρ0 +

N∑
i=1

zi c̃
n+1
i

)
+ φ̃t

e B

(
ρ0 +

N∑
i=1

zi c̃
n+1
i

)
.

Since B is diagonal and positive definite, and (An
i )∗, A∗ are symmetric and nonneg-

ative, it is clear that the above function is strictly convex about c̃n+1
i . Therefore,

F̃[c̃n+1
1 , . . . , c̃n+1

N ] has a unique minimizer in the region ci (z) ≥ 0, which is the
domain of F̃ by noticing that we have terms cn+1

i (z) log cn+1
i (z) in F̃ . Below we

eliminate the possibility of c̃n+1
i (z) = 0. If this is done, the unique minimizer satisfies

{c̃n+1
i > 0}i=1,...,N . With c̃n+1

i , we can then determine a unique φ̃n+1 from (3.13).
Let us prove by contradiction. Without loss of generality, suppose the minimizer

has c̃n+1
1 (z) = 0. Choose another z′ such that c̃n+1

1 (z′) > 0. Keep the other c̃n+1
i ,

and substitute c̃n+1
1 by d̃n+1

1 = c̃n+1
1 + βz′ρez − βzρez′ , where we use ez to denote

the vector with the entry one for the z-component and zero entry for others. Next, we
will show that when ρ is small enough, F̃[d̃n+1

1 , c̃n+1
i |i=2,...,n] < F̃[c̃n+1

i |i=1,...,n].
In the following, we denote two quantities in the inequality in short by F̃[d̃n+1

1 ] and
F̃[c̃n+1

1 ].
Split F̃ into two parts:

F̃1 =
N∑

i=1

(c̃n+1
i )t B(log c̃n+1

i − 1),

and F̃2 = F̃ − F̃1. Note that F̃2 is a quadratic function. Thus, there exists a constant
A1 > 0 such that for ρ small enough,

|F̃2[d̃n+1
1 ] − F̃2[c̃n+1

1 ]| < A1ρ.

Now we turn to F̃1. Let a = c̃n+1
1 (z′) > 0. We can calculate that

F̃1[d̃n+1
1 ] − F̃1[c̃n+1

1 ] = βzβz′ρ log(βz′ρ) + βz′
(
(a − βzρ) log(a − βzρ) − a log a

)
.

Since a > 0, for ρ small enough, we have

|(a − βzρ) log(a − βzρ) − a log a| < A2ρ.

Thus, if we choose βzβz′ log(βz′ρ) < −A1−βz′ A2, we arrive at F̃[d̃n+1
1 ] < F̃[c̃n+1

1 ],
which is the contradiction we want.
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It remains to prove the energy dissipation. To this end, we choose v = δtμn+1
i =

δt IM
(
log cn+1

i + zi (φ
n+1 + φe)

)
in (3.8) and take the sum for 1 ≤ i ≤ N , leading to

− δt
N∑

i=1

[Di c
n
i ∇μn+1

i ,∇μn+1
i ]

=
N∑

i=1

[
cn+1

i − cn
i , IM

(
log cn+1

i + zi (φ
n+1 + φe)

)]

=
N∑

i=1

[cn+1
i − cn

i , log cn+1
i ] +

[
ρ0 +

N∑
i=1

zi c
n+1
i − ρ0 −

N∑
i=1

zi c
n
i , φn+1 + φe

]
.

Then, by using (3.9) and (3.5), we have

2

⎡
⎣ρ0 +

N∑
i=1

zi cn+1
i − ρ0 −

N∑
i=1

zi cn
i , φn+1

⎤
⎦

= 2(∇φn+1 − ∇φn, ε∇φn+1)

=
(
(∇φn+1, ε∇φn+1) − (∇φn, ε∇φn) + (∇(φn+1 − φn), ε∇(φn+1 − φn)

))

=
⎡
⎣ρ0 +

N∑
i=1

zi cn+1
i , φn+1

⎤
⎦−

⎡
⎣ρ0 +

N∑
i=1

zi cn
i , φn

⎤
⎦+ (∇(φn+1 − φn), ε∇(φn+1 − φn)

)
.

We can then obtain (3.10) by using (3.4). 
�
Remark 3.3 1. For Dirichlet boundary conditions on φ, we just need to change the

function space for φ and w from X M to X M0 requiring that the boundary value is
zero. For Robin boundary conditions on φ, we just need to add the surface integral
in (3.9).

2. The positivity is preserved on the discrete points z ∈ Z , while the function ψz(x)

may not be positive for any x.

Let us nowbriefly discuss how to construct finite difference schemeswhich preserve
the properties of the time discretizations in the last section. An important aspect in
finite difference schemes is to carefully implement the boundary conditions such that
the summation by parts holds, which is crucial to guarantee the mass conservation (cf.
[18] for comparison of non-conservative vs conservative discretization) and to derive
the energy dissipation. This is not difficult on rectangular domains. We write down the
2D case, which is to be used in our numerical test, with the domain [0, L]2 discretized
at M2 points x j,k = ((

j − 1
2

)
δx,

(
k − 1

2

)
δx
)
, j, k = 1, . . . , M where δx = L/M .

The scheme is written as

(ci )
n+1
j,k − (ci )

n
j,k

δt
= Di

δx2

[
(ci )

n
j+1,k + (ci )

n
j,k

2

(
(μi )

n+1
j+1,k − (μi )

n+1
j,k

)
(3.16)
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−
(ci )

n
j,k + (ci )

n
j−1,k

2

(
(μi )

n+1
j,k − (μi )

n+1
j−1,k

)
,

+
(ci )

n
j,k+1 + (ci )

n
j,k

2

(
(μi )

n+1
j,k+1 − (μi )

n+1
j,k

)

−
(ci )

n
j,k + (ci )

n
j,k−1

2

(
(μi )

n+1
j,k − (μi )

n+1
j,k−1

)]
, 1 ≤ j, k ≤ M, 1 ≤ i ≤ N ,

− ε
φn+1

j+1,k + φn+1
j−1,k + φn+1

j,k+1 + φn+1
j,k−1 − 4φn+1

j

h2
= ρ0 +

N∑
i=1

zi (ci )
n+1
j,k , 1 ≤ j, k ≤ M,

(3.17)

where (μi )
n
j,k = (

log ci +zi (φ+φe)
)n

j,k . Tofix the idea,we still consider theNeumann
boundary conditions. To have the summation by parts, we shall impose boundary terms
like below,

(μi )
n+1
0,k − (μi )

n+1
1,k

h
= 0,

(μi )
n+1
M+1,k − (μi )

n+1
M,k

h
= 0,

φn+1
0,k − φn+1

1,k

h
= 0,

φn+1
M+1,k − φn+1

M,k

h
= 0.

(3.18)

The above boundary discretization is for ∂u/∂n|∂�. The term u|∂� shall be discretized
by 1

2 (u0,k + u1,k) for the summation by parts, if we consider Dirichlet or Robin
boundary conditions on φ.

For the above scheme, we have

Theorem 3.4 The finite difference scheme (3.16)–(3.18) enjoys the following proper-
ties:

1. Mass conservation:

δx2
M∑

j,k=1

(ci )
n+1
j,k = δx2

M∑
j,k=1

(ci )
n
j,k, 1 ≤ i ≤ N .

2. Unique solvability: the scheme (3.16)–(3.18)possesses a unique solution ({(ci )
n+1
j,k },

φn+1
j,k ).

3. Positivity preserving: if (ci )
n
j,k > 0 for all i and ( j, k), we have (ci )

n+1
j,k > 0 for

all i and ( j, k).
4. Energy dissipation: we have

Ẽn+1− Ẽn ≤ − δt
N∑

i=1

Di

δx2

∑
1≤ j≤M−1
1≤k≤M

(ci )
n
j+1,k + (ci )

n
j,k

2

(
(μi )

n+1
j+1,k −(μi )

n+1
j,k

)2

+
∑

1≤ j≤M
1≤k≤M−1

(ci )
n
j,k+1 + (ci )

n
j,k

2

(
(μi )

n+1
j,k+1 − (μi )

n+1
j,k

)2
, (3.19)
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where the discrete energy is defined as

Ẽn =
N∑

i=1

M∑
j,k=1

(ci )
n
j,k(log(ci )

n
j,k − 1) +

M∑
j,k=1

[
ρ0 +

N∑
i=1

zi (ci )
n
j,k

]
·
[
1

2
φn

j,k + (φe) j,k

]
.

(3.20)

Proof The mass conservation is obtained by taking the sum over 1 ≤ j, k ≤ M on
(3.16) and using the boundary conditions of (μi )

n+1
j,k in (3.18).

The unique solvability and positivity can be proved similar to Theorem 3.2 by
choosing the matrices as those given by finite difference discretization, which we
write down and discuss below.

Now, the vector c̃n
i is formed by (ci )

n
j,k for 1 ≤ j, k ≤ M . To find the definition of

the matrix An
i , we regard the right-hand side of (3.16) as −(1/δx2)An

i μ̃i
n+1.

We say that ( j, k) and ( j ′, k′) are adjacent if | j − j ′| + |k − k′| = 1. To describe
the matrix An

i , let us first fix a grid point ( j, k) where 2 ≤ j, k ≤ M − 1. In the
row corresponding to the grid point ( j, k), one can check that the only off-diagonal
nonzero entries correspond to the adjacent indices. Moreover, the diagonal entry,

Di

[
2(ci )

n
j,k + 1

2

(
(ci )

n
j+1,k + (ci )

n
j−1,k + (ci )

n
j,k+1 + (ci )

n
j,k−1

)]
,

is positive, while the off-diagonal nonzero ones are negative, with the sum of the
these nonzero entries being zero. When j or k takes 1 or M , we take the boundary
conditions into consideration and find that the above statement still holds. Another
observation is that the matrix An

i is symmetric. As a result, the eigenvalues of An
i are

nonnegative, thus positive semi-definite. Furthermore, the only zero eigenvector is the
all-one vector. Actually, assume that An

i ṽ = 0. Starting from a maximum entry of ṽ

which is denoted by v0, we deduce from the diagonal dominance that all the adjacent
entries equal to v0. Since every grid point is accessible by a series of adjacent grid
points, all the entries of ṽ equal to v0.

Similarly, we can define A from the left-hand side of (3.17). The matrix B is given
by B = δx2 I where I represents the identity matrix. In this way, we express the
scheme (3.16)–(3.18) in the form of (3.12)–(3.13). From now on, we can follow the
derivation in Theorem 3.2 to prove the unique solvability and positivity.

The energy dissipation is derived by multiplying (3.16) with (μi )
n+1
j,k and taking

the sum over 1 ≤ j, k ≤ M . On the right-hand side, the summation by parts is then
done by noting the boundary conditions of (μi )

n+1
j,k . On the left-hand side, we deal

with the terms with φn+1
j,k in the same way as the last equation in the proof of Theorem

3.2, using (3.17). 
�

3.2 Second-order scheme

Apparently we can use second-order BDF scheme with Adams-Bashforth extrap-
olation to construct a second-order scheme. However, since the Adams-Bashforth
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extrapolation can not preserve positivity, we need to modify it with

c∗
i =

{
2cn

i − cn−1
i , if cn

i ≥ cn−1
i ,

1
2/cn

i −1/cn−1
i

, if cn
i < cn−1

i .
(3.21)

Note that both expressions above are second-order extrapolation, meanwhile c∗
i > 0 if

cn
i , cn−1

i > 0. Then, a second order fully-discretized scheme can be written as follows:
to find {cn+1

i } and φn+1 in X M satisfying

[
3cn+1

i − 4cn
i + cn−1

i

2δt
, v

]
= −

[
Di c

∗
i ∇
(

IM

(
log cn+1

i + zi (φ
n+1 + φe)

))
,∇v

]
, v ∈ X M ,

(3.22)

(ε∇φn+1,∇w) =
[
ρ0 +

N∑
i=1

zi c
n+1
i , w

]
, w ∈ X M . (3.23)

To obtain c1i , a natural choice is to use the first-order scheme given in the above, so
that c1i preserves the desired properties.

Similar to the first-order scheme, we have

Theorem 3.5 Assume that c1i is calculated from the first-order scheme. The fully
discretized scheme (3.22)–(3.23) enjoys the following properties:

1. Mass conservation:

[cn+1
i , 1] = [cn

i , 1].

2. Unique solvability: the scheme (3.22)–(3.23) possesses a unique solution ({cn+1
i ∈

X M }, φn+1 ∈ X M ).
3. Positivity preserving: cn+1

i (z) > 0 for all i and z ∈ Z.

Proof The proof follows the same route of Theorem 3.2. Now, thematrix An
i is defined

as

An
i = [Di c

∗
i ∇ψz,∇ψz′ ],

which is positive semi-definite by noticing c∗
i (z) > 0. The matrices A and B are the

same as defined in Theorem 3.2. The convex function F̃ is defined as

F̃[c̃n+1
1 , . . . , c̃n+1

N ]

= 1

12δt

N∑
i=1

(3c̃n+1
i − 4c̃n

i + c̃n−1
i )t B(An

i )∗ B(3c̃n+1
i − 4c̃n

i + c̃n−1
i )

+
N∑

i=1

(c̃n+1
i )t B(log c̃n+1

i − 1)
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+ 1

2

(
ρ0 +

N∑
i=1

zi c̃
n+1
i

)t

B A∗ B

(
ρ0 +

N∑
i=1

zi c̃
n+1
i

)
+ φ̃t

e B

(
ρ0 +

N∑
i=1

zi c̃
n+1
i

)
.

Using the same derivation of Theorem 3.2, we conclude the proof. 
�
Remark 3.6 Unfortunately, we are unable to prove the energy dissipation. The reason
is that we do not have an analog of (3.4) to deal with the term (3cn+1

i − 4cn
i +

cn−1
i , log cn+1

i ).

4 Numerical experiments

In this section, we present several numerical experiments to validate our theoretical
results in the previous section. We first present two examples to examine accuracy and
stability of our schemes. In these two examples, the equations are solved in [0, 2π ]2
with periodic boundary conditions and discretized by Fourier spectralmethod in space.
We will verify the convergence order as well as the mass conservation, positivity
preserving and energy dissipation. Then, we present two other examples with Dirichlet
and Neumann boundary conditions, one for two species and one for three species, on
the domain [0, 1]2, discretized with the finite difference scheme (3.16)–(3.17).

Note that at each time step, the scheme is nonlinear, but it is shown that it possesses
a unique solution which is the minimizer of a strictly convex function. Hence, it can be
solved efficiently by Newton’s iteration method. For a given Newton’s direction, line
search is incorporated to obtain a damped step length. We adopt a simple backtracking
line search method, to half the step length until the residue of the nonlinear equations
decreases, which requires the concentration to be positive since we have logarithm
functions in the nonlinear equations. The linear system to obtain theNewton’s direction
is solved using the preconditionedGMRES iteration. For Fourier spatial discretization,
we utilize the preconditioner given by choosing {ci }, φ as constant functions. For
finite difference discretization, the preconditioner is constructed by incomplete LU
factorization without filling. The tolerance for Newton’s iteration is 10−9, and that
for GMRES iteration is chosen as 10−6. This approach proves to be quite efficient,
as we will present below.

Example 1 (Accuracy test) Let z1 = 1, z2 = −1, p = c1, n = c2, D1 = D2 = 1,
and ρ0 = 0, like in Sect. 2.2. We set the external field φe = 0 and ε = 1. We use the
first-order and second-order schemes with 64× 64 Fourier spectral modes for spatial
discretization. The initial value is chosen as

p(x, 0) = 1.1 + sin x cos y, n(x, 0) = 1.1 − sin x cos y.

The reference solution is obtained by the second-order scheme with δt = 10−4. The
errors by the two schemes are plotted in Fig. 1, which clearly shows the expected first-
and second-order accuracy.
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Fig. 1 (Example 1) Convergence rate of two schemes (triangle: first order; circle: second order). The error
is calculated as

√
‖pn(·) − p(·, tn)‖2 + ‖nn(·) − n((·, tn)‖2. The dashed lines represent the reference to

first and second order convergence

Fig. 2 (Example 2) Profiles of p and n on the line x = y, at t = 0.2 (upper-left), 0.6 (upper-right), 0.8
(lower-left), 1 (lower-right)
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Fig. 3 (Example 2) Left: total energy density and electrostatic energy density. Middle: deviation of the
average concentration to the initial. Right: Lower and upper bound

Example 2 (Highly disparate initial value) The domain, boundary conditions, φe, ε,
and the spatial discretization are the same asExample 1.We choose the initial condition
as follows,

p(x, y, 0) = 1 + 10−6 − tanh
(
2
(
(x − 0.8π)2 + (y − 0.8π)2 − (0.2π)2

))
,

n(x, y, 0) = 1 + 10−6 − tanh
(
2
(
(x − 1.2π)2 + (y − 1.2π)2 − (0.2π)2

))
,

so that min p(x, y, 0) = min n(x, y, 0) ≈ 10−6, max p(x, y, 0) = max n(x, y, 0) ≈
1.65. The initial condition indicates that the positive and negative charged particles
accumulates in two regions centered at (0.8π, 0.8π) and (1.2π, 1.2π), respectively.
By Sect. 2.2, the exact solution satisfies maximum principle and the dissipation of
electrostatic potential.

We use the second-order scheme with the time step δt = 10−3. To show the profiles
of p and n, we plot them on the line x = y at t = 0.1, 0.2, 0.4, 1 in Fig. 2. We also
examine the energy dissipation of the total energy and the electrostatic energy in Fig. 3
(left), and find they indeed decrease as t grows. The change of average concentration
is given in Fig. 3 (middle), where we find that the error is negligible. We also plot the
lower and upper bounds of p and n about t in the right of Fig. 3, where we observe
that the numerical results keep the maximum principle.

We also experiment with a larger time step δt = 10−2, where the maximum prin-
ciple and energy dissipation are still observed.

Efficiency of the scheme. Let us use the Example 2 to examine the efficiency.We plot
the number of Newton iterations, and the maximum number of the GMRES iteration
in each Newton step, for δt = 10−3 and 10−2. The number of the Newton iterations
is slightly larger in the first few time steps, and for most time steps we only need 3–4
Newton iterations. For the larger time step, one intuitively expects that more Newton
iterations are needed, but it turns out that we only need 1–2 more in this example.

Effect of boundary values. In the following two examples, we solve the PNP equa-
tions on [0, 1]2. The Neumann boundary conditions are imposed on μi , while on
φ the Dirichlet boundary conditions are imposed for the four solid line segments,
1/4 ≤ x ≤ 3/4, y = 0, 1 and 1/4 ≤ y ≤ 3/4, x = 0, 1, shown in Fig. 5. For
other boundaries, the homogeneous Neumann boundary conditions are imposed. The
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Fig. 4 (Example 2) Number of
Newton iterations in each time
step, for two δt

Fig. 5 Examples 3 & 4:
illustration of boundary
conditions on φ. On solid lines
Dirichlet boundary conditions
are imposed, while on dotted
lines Neumann boundary
conditions are imposed

external potential φe is obtained by solving −∇ · (ε∇φ) = 0 with the same types of
boundary conditions in Fig. 5, but nonhomogeneous on the four solid line segments,
specified by φL

B(y), φR
B (y), φD

B (x), φU
B (x). Recall that for φ we always assume homo-

geneous boundary conditions. So, it is equivalent to require that the total electric
potential φtotal = φ + φe satisfies

− ∇ · (ε∇φtotal) = ρ0 +
N∑

i=1

zi ci ,

φtotal(0, y) = φL
B(y), φtotal(1, y) = φR

B (y),
1

4
≤ y ≤ 3

4

φtotal(x, 0) = φD
B (x), φtotal(x, 1) = φU

B (x),
1

4
≤ x ≤ 3

4
∂φtotal

∂n
= 0, elsewhere.
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Fig. 6 (Example 3) Concentration, electric potential, and energy for a = 2.5

Fig. 7 (Example 3) Maximum and minimum concentration for different a

Example 3 (Two-component system with boundary potential)We let z1 = 1, z2 = −1,
p = c1, n = c2, D1 = D2 = 1, and ε = 0.01, ρ0 = 0. The initial value is chosen as
p(x, y, 0) = n(x, y, 0) = 1. The boundary values are specified as follows,

φL
B(y) = a

(
y − 1

4

)
, φR

B (y) = a

(
3

4
− y

)
, φD

B (x) = a

(
x − 1

4

)
, φU

B (y) = a

(
3

4
− x

)
,

where a is a parameter to be varied. We discretize the space using finite difference
method with 32 × 32 points, and solve the first-order scheme with the time step
δt = 4 × 10−3. The system reaches steady state after running 100 steps to t = 0.4.
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Fig. 8 (Example 4) Concentration and eletric potential for A = 1

Fig. 9 (Example 4) Total energy and electrostatic energy for different boundary values

For a = 2.5, we plot p, n, φtotal in Fig. 6. They are mostly flat except near the
boundary, with p peaking where φtotal reaches minimum on the boundary, n peaking
where φtotal reaches maximum on the boundary. Actually, the profile of n is identical
to the profile of p rotated by 90 degrees due to the symmetry of the boundary values
on φtotal . The total energy and electrostatic energy are also plotted in Fig. 6, where
the electrostatic energy here is defined by

∫
φtotal(p − n)dxdy.
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Fig. 10 (Example 4) The concentration evolution close to the left (left column) and the upper boundary (right
column), for different boundary values. Here we plot the concentration at two grid points (h/2, 0.5− h/2)
and (0.5 − h/2, h/2), near the center of two boundaries, where h = 1/32

Both of them show dissipation, although for the latter it is not proved. We also exam-
ine how the maximum and minimum concentration evolve with different value of a.
Because of the symmetry, we only plot p in Fig. 7.

Example 4 As the last example, we consider a three-component system. Choose z1 =
1, z2 = −1, z3 = 2, and D1 = D2 = D3 = 1. The other settings are identical to
Example 3. The initial value is chosen as c1(x) = c3(x) = 1 and c2(x) = 3 so that the
system is electrically neutral. The boundary values are chosen as constants on each
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line segments:

φL
B = φR

B = −A, φD
B = φU

B = A.

The spatial and time discretization are also identical to Example 3.

For A = 1, the concentration and total electric potential are plotted in Fig. 8.
We also find that they are mostly flat except near the boundary. The two types of
positive particles accumulate at the left and right boundaries, with c3 larger, while
the negative particles accumulate at the other two boundaries. We also compare the
energy dissipation (Fig. 9) and the concentration near the boundaries (Fig. 10).

5 Concluding remarks

We proposed in this paper first- and second-order schemes for the PNP equations. We
proved that both schemes are unconditionally mass conservative, uniquely solvable
and positivity preserving; and that the first-order scheme is also unconditionally energy
dissipative.Whilewe cannot prove the energydissipation for the second-order scheme,
our numerical result indicates that it is energy dissipative as well.

The schemes lead to nonlinear system at each time step but it possesses a unique
solution which is the minimizer of a strictly convex functional. Hence, its solution
can be efficiently obtained by using a Newton’s iteration method. We presented
ample numerical tests to verify the claimed properties for both first- and second-order
schemes. In addition, in special cases where the PNP equation possesses maximum
principle and electrostatic energy dissipation, our numerical results show that the
schemes also satisfies them.
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