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UNCONDITIONALLY BOUND PRESERVING AND ENERGY
DISSIPATIVE SCHEMES FOR A CLASS OF KELLER--SEGEL

EQUATIONS\ast 

JIE SHEN\dagger AND JIE XU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We propose numerical schemes for a class of Keller--Segel equations. The discretiza-
tion is based on the gradient flow structure. The resulting first-order scheme is mass conservative,
bound preserving, uniquely solvable, and energy dissipative, and the second-order scheme satisfies
the first three properties. For parabolic-elliptic equations, the schemes are decoupled. Numerical
examples are presented to show that besides the above properties, the schemes are efficient and able
to capture the spiky solutions for the aggregation in chemotaxis.
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1. Introduction. The Keller--Segel equations, proposed in [24, 20, 21], describe
chemotaxis in biology. Chemotaxis refers to the motion of organisms according to
signals (usually chemical, called chemoattractants) that can be generated by the or-
ganisms themselves. The chemotaxis system has two competing mechanisms: the
diffusion from the Brownian motion, and the aggregation directed by the signals.
This kind of competition can be found in various other systems. For each organism
and signal, the evolution is described by a parabolic equation. In many cases, the
signal responds to the concentration of organism much faster than the organism re-
sponds to the signal. So it is common to simplify the parabolic equation for the signal
as an elliptic equation.

In the classical Keller--Segel system, the aggregation may lead to blow-up solu-
tions. This property has drawn much attention in mathematical analysis. On the
other hand, blow-up does not happen in real systems. It actually implies that the
concentration reaches several orders of magnitude larger and is beyond the range that
the model can describe. Thus, many modifications of the classical model have been
proposed to eliminate the blow-up. The modified models proved to exhibit spiky so-
lutions but will not blow up. The literature on this topic is huge, of which we only
mention the book [25] and some review articles [18, 1].

Compared with the analytical works, the numerical methods for Keller--Segel
equations are far from well studied. The main difficulties in constructing suitable
numerical schemes are to keep several essential properties of the Keller--Segel equa-
tions such as positivity, mass conservation, and energy dissipation. Of these three
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BOUND PRESERVING SCHEME FOR KELLER--SEGEL EQUATIONS 1675

properties, the positivity of the numerical solutions receives the most attention, but
provable energy dissipation is rarely acheived. Most existing works focus on the clas-
sical Keller--Segel system. Some numerical schemes are developed with the discussion
of positive-preserving conditions [16, 9, 15, 14, 13, 7]. These schemes depend on par-
ticular spatial discretization and usually lead to strict CFL restrictions on the time
step. There exist, however, some unconditionally positivity-preserving schemes. One
is a linear finite-volume scheme proposed in [33], (see also [2]), where the upwind
technique is utilized. The scheme is restricted to the parabolic-elliptic system, is only
applicable to finite-volume spatial discretization, and is only a first-order approxi-
mation both in time and space. The other is a recent work which reformulates the
equation to arrive at a positivity-preserving scheme [23]. The reformulation depends
on the particular form of the classical Keller--Segel equations and thus is not easily
extended to modified systems. Modified systems are examined in [22], but without
effort on keeping the desired properties. In particular, in some modified systems one
can show that the concentration is bounded in certain intervals. Very recently, a non-
linear finite-volume-based scheme, which adopts the upwind technique, was proposed
in [10]. This scheme is able to bound the solution in the desired interval and keep
energy dissipation unconditionally, but it has the same restriction metioned above for
the scheme in [33].

In this work, we construct a new class of numerical schemes for the classical and
modified systems with a gradient flow structure. Generally, a gradient flow can be
written as \partial \rho /\partial t = \scrG (\rho ) \circ (\delta E/\delta \rho ), where the dissipation operator \scrG is nonpositive.
For Keller--Segel equations, the dissipation operator is nonlinear, taking the form
\nabla \cdot (\eta (\rho )\nabla (\cdot )), where \rho represents the concentration of the organism. To ensure this
operator is nonpositive, \rho needs to be constrained in the interval where \eta (\rho ) \geq 0.
A typical case is \eta (\rho ) = \rho that the classical Keller--Segel system takes. It leads to
Wasserstein gradient flows, where \rho needs to be constrained nonnegative. So, special
treatment is needed for preserving its bound in numerical schemes. Therefore, the
existing approaches to gradient flows, such as the recently developed SAV approach
[29, 30, 27], cannot be easily applied.

The key ingredient in our new schemes is to rewrite the term \Delta \rho as \nabla \cdot 
\bigl( 

1
f \prime \prime (\rho )\nabla 

f \prime (\rho )
\bigr) 
where 1

f \prime \prime (\rho ) = \eta (\rho ), then to discretize using this interpretation by treating f \prime (\rho )

implicitly and f \prime \prime (\rho ) explicitly. Then, with a proper treatment of other terms, we can
show that the solution to our scheme is the unique minimizer of a strictly convex
functional that confines the variable in the interval where \eta (\rho ) > 0. Therefore, the
solution can be efficiently obtained by Newton's iteration. A similar idea is adopted
for Cahn--Hilliard equations with logarithmic potential [8] and Poisson--Planck--Nernst
equations [28]. In particular, our schemes satisfy unconditionally four desired prop-
erties, i.e., (i) mass conservation, (ii) unique solvability, (iii) bound preserving, (iv)
energy dissipation, without restriction to specific spatial discretizations.

The rest of paper is organized as follows. In the next section, we describe the
class of Keller--Segel systems that will be considered in this paper and derive some
basic properties which will be used later. Then we construct our numerical schemes
in section 3. The time discretization is proposed first, followed by a discussion on the
spatial discretization. We will show that the first-order schemes satisfy the proper-
ties (i)--(iv), and the second-order schemes satisfy (i)--(iii). In section 4, we provide
numerical examples to verify our theoretical results and compare the aggregation in
different models. A conclusion is given in section 5.D
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1676 JIE SHEN AND JIE XU

2. Keller--Segel equations and their regularizations. We start from the
simplest system where only one organism and one chemoattractant are present, and
we consider the following Keller--Segel system in a bounded domain \Omega :

\partial \rho 

\partial t
= D

\bigl( 
\gamma \Delta \rho  - \chi \nabla \cdot (\eta (\rho )\nabla \phi )

\bigr) 
,(2.1)

\tau 
\partial \phi 

\partial t
= \mu \Delta \phi  - \alpha \phi + \chi \rho ,(2.2)

with either periodic boundary conditions or no-flux boundary conditions on \rho and the
Neumann boundary conditions on \phi ,

\gamma 
\partial \rho 

\partial \bfitn 
 - \chi \eta (\rho )

\partial \phi 

\partial \bfitn 
= 0,

\partial \phi 

\partial \bfitn 
= 0 on \partial \Omega .

The boundary conditions on \rho ensure its mass conservation. In the above, the un-
knowns are \rho , the concentration of the organism, and \phi , the concentration of the
chemoattractant. The first equation describes the motion of the organism governed
by the diffusion and the attraction by the chemoattractant. The second equation
describes the distribution of the chemoattractant affected by the organism.

The parameters D, \gamma , \chi , \tau , \mu , \alpha are all positive, of which \chi and \tau are particularly
important: \chi is the chemotactic sensitivity, and \tau describes how fast the chemoat-
tractant concentration reacts to the organism concentration. The model is called the
parabolic-parabolic system when \tau > 0 and the parabolic-elliptic system when \tau = 0
as an approximation of rapid reaction.

The function \eta (\rho ) describes the concentration-dependent mobility. It is the choice
of \eta (\rho ) that characterizes different models. A basic assumption is that \eta (s) is a smooth
function with \eta (0) = 0. Moreover, one of the following conditions should hold:
(a) \eta (s) > 0 for s > 0.
(b) There exists a positive constant M such that \eta (M) = 0 and \eta (s) > 0 for 0 < s <

M .
Let us denote by J = (0,+\infty ) with \=J = [0,+\infty ) for \eta (s) with condition (a), and
J = (0,M) with \=J = [0,M ] for \eta (s) with condition (b). Some typical choices of \eta are
as follows:
(i) In the classical Keller--Segel system, the mobility \eta (\rho ) = \rho .
(ii) Assume that the mobility is bounded, given in [31, 32] by

(2.3) \eta (\rho ) =
\rho 

1 + \kappa \rho 
,

with \kappa > 0.
(iii) Assume that the organism has a saturation concentration M > 0, and the mo-

bility tends to zero when it is near saturation [17, 11],

(2.4) \eta (\rho ) = \rho (1 - \rho /M).

Then, solutions of (2.1)--(2.2) satisfy the following bound preserving properties:
\bullet if \eta (s) satisfies condition (a), we have \rho (\bfitx , t) \geq 0 if \rho (\bfitx , 0) \geq 0;
\bullet if \eta (s) satisfies condition (b), we have 0 \leq \rho (\bfitx , t) \leq M if 0 \leq \rho (\bfitx , 0) \leq M .

Indeed, the above properties can be proved by splitting \rho into a positive part \rho in and
a negative part \rho out if \eta (s) satisfies condition (a), or into two parts

\rho in =

\left\{   0, \rho \leq 0,
\rho , 0 < \rho < M,
M, \rho \geq M,

\rho out =

\left\{   \rho , \rho \leq 0,
0, 0 < \rho < M,
\rho  - M, \rho \geq M,
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BOUND PRESERVING SCHEME FOR KELLER--SEGEL EQUATIONS 1677

if \eta (s) satisfies condition (b), followed by considering an auxiliary problem (cf., for
example, [26]),

\partial \rho 

\partial t
= D

\bigl( 
\gamma \Delta \rho  - \chi \nabla \cdot (\eta (\rho in)\nabla \phi )

\bigr) 
.

It is easy to notice that \eta (\rho in) > 0 for \rho \in J , and \eta (\rho in) = 0 for \rho /\in J . Therefore,
by taking the inner product with \rho out, it can be deduced that \rho out = 0, which implies
that \rho in also satisfies the original equation.

For the classical system (\eta (\rho ) = \rho ), many works on mathematical analysis have
been done on the blow-up behavior. In particular, in the two-dimensional case,
whether the blow-up may appear depends on the total mass about \rho (a conserved
quantity) m =

\int 
\Omega 
\rho d\bfitx . We do not attempt to summarize all existing results but only

state a typical result for the case \gamma = \mu = 1, \tau = \alpha = 0: there exists a critical value
m\ast for the total mass such that, for m < m\ast , the solution exists globally in time,
while for m > m\ast , the solution blows up in finite time (see [3, 5, 6]).

The effect of mobility \eta (s) on the blow-up is also discussed [19]. For \eta bounded
by a power function \eta (s) \leq cs\alpha with sufficiently small \alpha > 0, it is guaranteed that
the solution exists globally and is uniformly bounded. Note that \eta is bounded in the
choices (2.3) and (2.4), and thus for such \eta no blow-up can occur.

Next, we formulate the system (2.1)--(2.2) as a gradient flow about (\rho , \phi ). We will
see that the choice of \eta (\rho ) leads to different free energy that also bounds the solution
in the interval \=J . Let f \prime \prime (s) = 1/\eta (s) > 0 that is defined only in the open interval J .
Thus, we could define by integration a strictly convex function f(s) in J . We shall also
state some other simple properties on the function f . Notice that \eta (s) is smooth on \=J
and \eta (0) = 0. So, under condition (a), there exists a constant c such that 0 < \eta (s) < cs
for sufficiently small s > 0, leading to f \prime \prime (s) > 1/cs. Thus, we have the estimate
f \prime (s) < C1 + (1/c) log s for s > 0 sufficiently small, hence lims\rightarrow 0+ f

\prime (s) =  - \infty .
Similarly, under condition (b), we also have lims\rightarrow M - f \prime (s) = +\infty since \eta (M) = 0.
Therefore, f \prime (s) is a strictly monotonically increasing function that is defined only in
the open interval J . However, it is possible that f(s) can be continuously extended
to the closed interval \=J .

Now let us write \Delta \rho = \nabla \cdot 
\bigl( 

1
f \prime \prime (\rho )\nabla f

\prime (\rho )
\bigr) 
. Consider the free energy

F [\rho , \phi ] =

\int 
\Omega 

\Bigl( 
\gamma f(\rho ) - \chi \rho \phi +

\mu 

2
| \nabla \phi | 2 + \alpha 

2
\phi 2

\Bigr) 
d\bfitx .(2.5)

Then, (2.1)--(2.2) can be rewritten as

\partial \rho 

\partial t
= D\nabla \cdot 

\biggl( 
1

f \prime \prime (\rho )
\nabla (\gamma f \prime (\rho ) - \chi \phi )

\biggr) 
= D\nabla \cdot 

\biggl( 
1

f \prime \prime (\rho )
\nabla \delta F

\delta \rho 

\biggr) 
,(2.6)

\tau 
\partial \phi 

\partial t
= \mu \Delta \phi  - \alpha \phi + \chi \rho =  - \delta F

\delta \phi 
.(2.7)

Note that in the case of the no-flux boundary conditions, we can rewrite the one on
\rho as

\gamma 
\partial \rho 

\partial \bfitn 
 - \chi \eta (\rho )

\partial \phi 

\partial \bfitn 
= \eta (\rho )

\partial 

\partial \bfitn 
(\gamma f \prime (\rho ) - \chi \phi ) = \eta (\rho )

\partial 

\partial \bfitn 

\biggl( 
\delta F

\delta \rho 

\biggr) 
= 0.

Taking the inner products of (2.6) with \delta F
\delta \rho , and of (2.7) with \partial \phi 

\partial t , and summing up,
we deduce the energy law,

dF [\rho (t), \phi (t)]

dt
=  - 

\int \Biggl[ 
D

1

f \prime \prime (\rho )

\biggl( 
\nabla \delta F

\delta \rho 

\biggr) 2

+ \tau 

\biggl( 
\partial \phi 

\partial t

\biggr) 2
\Biggr] 
d\bfitx .(2.8)
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1678 JIE SHEN AND JIE XU

For the above energy law to be dissipative, it is necessary that \eta (\rho ) = 1/f \prime \prime (\rho ) \geq 0,
which is indeed true if \rho is initially within the interval where \eta (s) \geq 0 thanks to the
bound preserving property.

Let us we write down the function f for the three choices (i)--(iii). Note that
when f \prime \prime (s) is known, f(s) may differ by a linear function as + b. Since we have
mass conservation, the integral of this linear function gives a constant, making no
difference.
(i) In the classical system, f \prime \prime (s) = 1/s, we choose f(s) = s log s - s.
(ii) For f \prime \prime (s) = (1 + \kappa s)/s = 1/s+ \kappa , we choose f(s) = s log s - s+ \kappa s2/2.
(iii) For f \prime \prime (s) = (s(1 - s/M)) - 1, we choose f(s) = s log s+ (M  - s) log(1 - s/M).
For (i) and (ii), the function f is defined in [0,+\infty ), while f \prime and f \prime \prime are defined in
(0,+\infty ). For (iii), the function f is defined in [0,M ], while f \prime and f \prime \prime are defined in
(0,M).

It has been noticed that the lower-boundedness of the free energy is directly
related to whether the solution may blow up. Actually, it has been proved that for
the classical system \eta (\rho ) = \rho , at least for some special cases (see [4]), there exists
a critical mass m\ast such that the free energy is lower-bounded if m < m\ast , and the
solution exists for t \in [0,+\infty ). But m > m\ast leads to inf F =  - \infty . On the other
hand, for \eta (s) satisfying condition (b), we can easily have the estimate

F [\rho , \phi ] \geq 
\int 
\Omega 

(\gamma f(\rho ) - C\rho 2)d\bfitx ,

where the right-hand side is bounded from below by noticing that \rho is bounded in
[0,M ] and that f(s) is strictly convex.

The model (2.1)--(2.2) can be extended to describe multiple organisms. Below, we
write the equations for two organisms that both respond to and generate the chemoat-
tractant with different intensity, mobility, etc., in the gradient flow formulation,

\partial \rho 1
\partial t

= D1\nabla \cdot 
\biggl( 

1

f \prime \prime 1 (\rho 1)
\nabla (\gamma 1f

\prime 
1(\rho 1) - \chi 1\phi )

\biggr) 
,(2.9)

\partial \rho 2
\partial t

= D2\nabla \cdot 
\biggl( 

1

f \prime \prime 2 (\rho )
\nabla (\gamma 2f

\prime 
2(\rho 2) - \chi 2\phi )

\biggr) 
,(2.10)

\tau 
\partial \phi 

\partial t
= \mu \Delta \phi  - \alpha \phi + \chi 1\rho 1 + \chi 2\rho 2.(2.11)

3. Numerical methods. We construct in this section numerical schemes satis-
fying unconditionally the four properties mentioned in the introduction. We discuss
parabolic-elliptic (\tau = 0) and parabolic-parabolic equations (\tau > 0) separately. For
parabolic-parabolic equations, our schemes are coupled between \rho and \phi , but for
parabolic-elliptic equations, we are able to construct decoupled numerical schemes in
which \rho and \phi can be solved sequentially. We recall that the parabolic-elliptic equa-
tions are significant, since they give a good approximation when the chemoattractant
diffuses much faster than organisms.

3.1. Parabolic-elliptic equations.

3.1.1. First-order scheme. We consider first the time discretization. Let
(\rho n, \phi n) be the approximation of (\rho , \phi ) at tn with \rho n \in J . We solve for (\rho n+1, \phi n+1)
from
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\rho n+1  - \rho n

\delta t
= D\nabla \cdot 

\Bigl[ 1

f \prime \prime (\rho n)
\nabla 
\Bigl( 
\gamma f \prime (\rho n+1) - \chi \phi n

\Bigr) \Bigr] 
,(3.1)

0 = \mu \Delta \phi n+1  - \alpha \phi n+1 + \chi \rho n+1.(3.2)

Note that we can solve \rho n+1 first from (3.1); then \phi n+1 can be determined from (3.2).
In the first equation, the mobility is treated explicitly so f \prime \prime (\rho n) is well-defined since
\rho n \in J .

Recall that f \prime (s) is defined only on the interval J , so we treat it implicitly to
constrain \rho n+1 \in J . The price we pay is that (3.1) is a nonlinear equation for \rho n+1,
but as we shall prove below, it is equivalent to a convex minimization problem so that
it is still efficient and easy to implement.

Theorem 3.1. Assume that the initial value \rho 0 \in J . Any solution to the above
scheme satisfies the following:

1. Mass conservation: \int 
\Omega 

\rho n+1d\bfitx =

\int 
\Omega 

\rho nd\bfitx .

2. Bound preserving: \rho n+1(\bfitx ) \in J .
3. Energy dissipation:

En+1  - En \leq  - \delta t
\int 

D

f \prime \prime (\rho n)
| \nabla 

\bigl( 
\gamma f \prime (\rho n+1) - \chi \phi n

\bigr) 
| 2d\bfitx ,

where En =
\int \bigl( 
\gamma f(\rho n) - \chi \rho n\phi n + \mu 

2 | \nabla \phi 
n| 2 + \alpha 

2 (\phi 
n)2

\bigr) 
d\bfitx .

Proof. The mass conservation is obtained by integrating the first equation and
applying the boundary conditions.

Bound preserving is due to the presence of f \prime (\rho n+1) by noticing that f \prime is only
defined in the interval J .

For the energy dissipation, we take the inner product of (3.2) with \phi n+1 and
change the superscript to n to arrive at

\mu \| \nabla \phi n\| 2 + \alpha \| \phi n\| 2 = \chi (\rho n, \phi n).

Using the above identity, we rewrite the energy En as

En =

\int 
\gamma f(\rho n) - \mu 

2
| \nabla \phi n| 2  - \alpha 

2
(\phi n)2d\bfitx .

Now we take the inner product of (3.1) with \nu n+1 = \delta t(\gamma f \prime (\rho n+1) - \chi \phi n), yielding\int 
\Omega 

(\rho n+1  - \rho n)(\gamma f \prime (\rho n+1) - \chi \phi n)d\bfitx =  - \delta t
\int 
\Omega 

D

f \prime \prime (\rho n)
| \nabla \nu n+1| 2d\bfitx .

We handle the left-hand side as follows. Using f \prime \prime (s) > 0 for s \in J , we deduce that

(\rho n+1  - \rho n, f \prime (\rho n+1)) =

\biggl( 
f(\rho n+1) - f(\rho n) +

f \prime \prime (\xi )

2
(\rho n+1  - \rho n)2, 1

\biggr) 
(3.3)

\geq 
\bigl( 
f(\rho n+1) - f(\rho n), 1

\bigr) 
.

On the other hand, using (3.2) and the equality

(3.4) 2a(a - b) = a2  - b2 + (a - b)2,
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1680 JIE SHEN AND JIE XU

we find

(\rho n+1  - \rho n, - \chi \phi n) = ( - \mu \Delta (\phi n+1  - \phi n) + \alpha (\phi n+1  - \phi n), - \phi n)

= \mu (\nabla (\phi n+1  - \phi n), - \nabla \phi n) + \alpha (\phi n+1  - \phi n, - \phi n)

=
\mu 

2

\Bigl( 
 - \| \nabla \phi n+1\| 2 + \| \nabla \phi n\| 2 + \| \nabla \phi n+1  - \nabla \phi n\| 2

\Bigr) 
+
\alpha 

2

\Bigl( 
 - \| \phi n+1\| 2 + \| \phi n\| 2 + \| \phi n+1  - \phi n\| 2

\Bigr) 
.

Combining the above equations, we arrive at the energy dissipation.

It is clear that if \rho n+1 is known, there exists a unique solution \phi n+1 for (3.2). It
remains to examine whether a solution exists for (3.1). We provide below (for time be-
fore blow-up if there will be a blow-up) a formal derivation in the spatially continuous
case by formulating the scheme as the minimizer of a strictly convex functional.

Let the linear operator \scrL n be defined such that for any g(\bfitx ) satisfying
\int 
gd\bfitx = 0,

its image \scrL ng = \psi is the solution to the following elliptic equation under the periodic
or Neumann boundary conditions:

 - \nabla \cdot 
\biggl( 

1

f \prime \prime (\rho n)
\nabla \psi 

\biggr) 
= g,

\int 
\psi d\bfitx = 0.(3.5)

Consider the functional

Fn[\rho ; \rho n, \phi n] =
1

2\delta t

\bigl( 
\rho  - \rho n,\scrL n(\rho  - \rho n)

\bigr) 
+ \gamma (f(\rho ), 1) - \chi (\rho , \phi n).(3.6)

The first two terms on the right-hand side are strictly convex and bounded from below.
The third term is linear and is bounded if we assume that \phi n \in L\infty . In this sense,
the whole functional is strictly convex and lower-bounded. One can check that under
the mass conservation constraint

\int 
\rho d\bfitx =

\int 
\rho nd\bfitx , the Euler--Lagrange equation is

equivalent to (3.1). Since the functional possesses a term with f(\rho ), it is only defined
for \rho taking the value in the closed interval \=J . Furthermore, the minimizer cannot
take the value on the endpoint of \=J because f \prime goes to infinity. Thus, the functional
has a unique minimizer with \rho \in J .

Below, we convert the above formal derivation into a rigorous derivation by con-
sidering a fully discretized scheme with a Galerkin type discretization in space. More
precisely, given a finite set of points Z = \{ \bfitz \in \=\Omega \} , we define a discrete inner product

[u, v] =
\sum 
\bfitz \in Z

\beta \bfitz u(\bfitz )v(\bfitz )

with positive weights \beta \bfitz > 0. The inner product can be based on a finite element,
spectral, or even finite-difference method. In finite element methods, the sum is calcu-
lated first on each element, then throughout all the elements, i.e., as

\sum 
K\subset \scrT 

\sum 
z\in Z(K).

We denote the corresponding finite dimensional approximation space by XN . For each
\bfitz \in Z, we assume that there exists a unique Lagrangian basis function \psi \bfitz in XN such
that \psi \bfitz (\bfitz 

\prime ) = \delta \bfitz \bfitz \prime for any \bfitz \prime \in Z, so they form a basis of XN . Under this assumption,
we can define an interpolation operator IN as

(INg)(\bfitx ) =
\sum 
\bfitz \in Z

g(\bfitz )\psi \bfitz (\bfitx ).

Then, our Galerkin method for the first-order scheme (3.1)--(3.2) is to find
(\rho n+1, \phi n+1) \in XN \times XN such that
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\rho n+1  - \rho n

\delta t
, v

\biggr] 
=  - 

\biggl[ 
D

f \prime \prime (\rho n)
\nabla 
\Bigl( 
IN

\bigl( 
\gamma f \prime (\rho n+1) - \chi \phi n)

\bigr) \Bigr) 
,\nabla v

\biggr] 
, v \in XN ,(3.7)

0 =  - \mu (\nabla \phi n+1,\nabla w) - \alpha (\phi n+1, w) + \chi [\rho n+1, w], w \in XN .(3.8)

Here, the (\cdot , \cdot ) represents the usual L2 inner product, and [\cdot , \cdot ] is the discrete inner
product defined above.

Theorem 3.2. The fully discretized scheme (3.7)--(3.8) satisfies the following
properties:

1. Mass conservation:
[\rho n+1, 1] = [\rho n, 1].

2. Unique solvability: The scheme possesses a unique solution (\rho n+1, \phi n+1) \in 
XN \times XN .

3. Bound preserving: If \rho n(\bfitz ) \in J for all \bfitz \in Z, then \rho n+1(\bfitz ) \in J for all \bfitz \in Z.
4. Energy dissipation:

\~En+1  - \~En \leq  - \delta t
\biggl[ 

D

f \prime \prime (\rho n)
\nabla \nu n+1,\nabla \nu n+1

\biggr] 
,

where \nu n+1 = IN
\bigl( 
\gamma f \prime (\rho n+1) - \chi \phi n

\bigr) 
, and the discrete energy is given by

En = [\gamma f(\rho n), 1] - \chi [\rho n, \phi n] +
\mu 

2
\| \nabla \phi n\| 2 + \alpha 

2
\| \phi n\| 2.

Proof. The mass conservation can be derived by taking v = 1 in (3.7).
Next, we prove the unique solvability for the first equation in the range \rho n+1(\bfitz ) \in 

J for all \bfitz \in Z. Denote by \~\rho n and \~\phi n the two vectors
\bigl( 
\rho n(\bfitz ), \bfitz \in Z

\bigr) 
and

\bigl( 
\phi n(\bfitz ), \bfitz \in 

Z
\bigr) 
. Define two matrices as

(3.9) An =

\biggl[ 
D

f \prime \prime (\rho n)
\nabla \psi \bfitz ,\nabla \psi \bfitz \prime 

\biggr] 
, B = [\psi \bfitz , \psi \bfitz \prime ].

The matrix B is diagonal with positive entries. If \rho n(\bfitz ) \in J for \bfitz \in Z, the matrix An

is symmetric positive semidefinite. Furthermore, An\=x = 0 if and only if each compo-
nent of \=x is equal. Thus, we can write down the pseudoinverse (An)\ast by the eigen-
decomposition. More precisely, assume An = T t\Lambda T where \Lambda = diag(0, \lambda 2, . . . , \lambda N ),
then (An)\ast = T tdiag(0, \lambda  - 1

2 , . . . , \lambda  - 1
N )T . Then, we can write (3.7) in the matrix-vector

form as

1

\delta t
B(\~\rho n+1  - \~\rho n) =  - An

\bigl( 
\gamma f \prime (\~\rho n+1) - \chi \~\phi n

\bigr) 
.(3.10)

Multiplying the above from the left by B(An)\ast , noticing the null space of An, we
obtain

1

\delta t
B(An)\ast B(\~\rho n+1  - \~\rho n) + \gamma Bf \prime (\~\rho n+1) - \chi B \~\phi n = \lambda B1,(3.11)

where 1 represents the vector with each component equal to one. It is easy to see
that the above equation is the Euler--Lagrange equation of the function

G[\~\rho n+1] =
1

2\delta t
(\~\rho n+1  - \~\rho n)tB(An)\ast B(\~\rho n+1  - \~\rho n) + \gamma 1tBf(\~\rho n+1) - \chi (\rho n+1)tB \~\phi n,
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1682 JIE SHEN AND JIE XU

under the mass conservation constraint 1tB\~\rho n+1 = 1tB\~\rho n. Note that the first term on
the right-hand side has a symmetric positive semidefinite coefficient matrix B(An)\ast B.
The second term is strictly convex about \~\rho n+1 because f is strictly convex and B is
diagonal with positive entries. The third term is linear and bounded because of mass
conservation. Thus, the function F [\~\rho n+1] is strictly convex, lower-bounded in the
domain

\{ \~\rho n+1 : \~\rho n+1(\bfitz ) \in \=J, 1tB\~\rho n+1 = 1tB\~\rho n\} .
Hence, there exists a unique minimizer in this domain. It remains to eliminate the
possibility of the minimizer located on the boundary of the domain. In other words,
we need to prove that the minimizer \~\rho 0 cannot have a component \~\rho n+1(\bfitz ) taking the
endpoint of the interval \=J (0 or M). We prove this by contradiction below.

Suppose the minimizer is such that \~\rho 0(\bfitz ) = 0 (for the case J = (0,M), \~\rho 0(\bfitz ) =M
leads to contradiction in the same way) for some \bfitz . This can occur only when f(0)
is defined (finite), which we assume in the following. Let us choose another \bfitz \prime such
that \~\rho 0(\bfitz 

\prime ) > 0. Consider another vector \~\rho 1 = \~\rho 0 + \beta \bfitz \prime \epsilon \bfite \bfitz  - \beta \bfitz \epsilon \bfite \bfitz \prime . Here, we use
\bfite \bfitz to represent the vector with the entry one on the component \bfitz and zero for other
components. We shall show that for \epsilon small enough, we have G[\~\rho 1] < G[\~\rho 0], which is
a contradiction. To this end, we split the function G into two parts,

G1 =
1

2\delta t
(\~\rho n+1  - \~\rho n)tB(An)\ast B(\~\rho n+1  - \~\rho n) - \chi (\rho n+1)tB \~\phi n

and
G2 = \gamma 1tBf(\~\rho n+1).

Since G1 is a quadratic function, there exists a constant A1 such that for sufficiently
small \epsilon ,

| G1[\~\rho 1] - G1[\~\rho 0]| < A1\epsilon .

On the other hand, denoting a = \~\rho 0(\bfitz 
\prime ) > 0, we can compute that

G2[\~\rho 1] - G2[\~\rho 0] =\beta \bfitz 
\bigl( 
f(\beta \bfitz \prime \epsilon ) - f(0)

\bigr) 
+ \beta \bfitz \prime 

\bigl( 
f(a - \beta \bfitz \epsilon ) - f(a)

\bigr) 
.

Since f \prime (a) >  - \infty , we have another constant A2, such that for sufficiently small \epsilon ,

f(a - \beta \bfitz \epsilon ) - f(a) < A2\epsilon .

Now we will make use of lims\rightarrow 0+ f
\prime (s) =  - \infty . It implies that for any A > 0, there

exists sufficiently small \epsilon , such that

f(\beta \bfitz \prime \epsilon ) - f(0) <  - A\epsilon .

Choosing \beta \bfitz A > A1 + \beta \bfitz \prime A2 and \epsilon small enough, we find that G[\~\rho 1] - G[\~\rho 0] < 0.
With the unique solution \rho n+1 from (3.7), we can uniquely determine \phi n+1 from

(3.8) which is the Galerkin discretization of a linear elliptic equation.
It remains to prove the energy dissipation. We take v = \delta t\nu n+1 in (3.7), yielding

 - \delta t
\biggl[ 

D

f \prime \prime (\rho n)
\nabla \nu n+1,\nabla \nu n+1

\biggr] 
= [\rho n+1  - \rho n, IN (\gamma f \prime (\rho n+1) - \chi \phi n)]

= \gamma [\rho n+1  - \rho n, f \prime (\rho n+1)] - [\chi (\rho n+1  - \rho n), \phi n].

(3.12)

Then, taking w = \phi n+1 in (3.8) and changing the superscript to n, we obtain

\chi [\rho n, \phi n] = \mu \| \nabla \phi n\| 2 + \alpha \| \phi n\| 2.
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Taking w = \phi n in (3.7) and combining with the above, we find

2[\chi (\rho n+1  - \rho n), - \phi n]

= - 2\mu 
\bigl( 
\nabla (\phi n+1  - \phi n),\nabla \phi n

\bigr) 
 - 2\alpha 

\bigl( 
(\phi n+1  - \phi n), \phi n

\bigr) 
= \mu ( - \| \nabla \phi n+1\| 2 + \| \nabla \phi n\| 2 + \| \nabla (\phi n+1  - \phi n)\| 2)

 - \alpha ( - \| \phi n+1\| 2 + \| \phi n\| 2 + \| \phi n+1  - \phi n\| 2).

We can then derive the energy dissipation by combining the above with (3.12) and
(3.3).

Remark 3.3. The nonlinear equation (3.7) can be efficiently solved by using a
Newton's iteration, with damping on step size to restrain the search in the interval J .
From its matrix form (3.10), we need to solve, for each Newton's step, a linear system
in the form

(B +An\Lambda )x = b,

where B and \Lambda are diagonal matrices with positive elements, and An is symmetric
nonnegative. We shall rewrite it as

\Lambda  - 1/2(\Lambda 1/2B\Lambda  - 1/2 + \Lambda 1/2An\Lambda 1/2)\Lambda 1/2x = b.

Thus, we can solve two diagonal systems and one symmetric positive definite system.
For the symmetric positive definite linear system, we use the preconditioned conjugate
gradient method. The choice of preconditioner is dependent on particular spatial
discretization. For the Fourier spectral method that we will use in this paper, the
preconditioner can be chosen as discretized from PDE with constant coefficients. In
particular, when using the Fourier spectral method, B is a multiple of the identity
matrix I, and we could substitute \Lambda with a multiple of I. For An, we substitute the
variable coefficients D/f \prime \prime (\rho n) in (3.9) with a constant. In this way, we arrive at a
preconditioner that can be implemented by FFT.

Remark 3.4. In the fully discretized scheme, the mass conservation and bound
preserving together imply that the l1 norm is bounded for the solutions. Thus, even
if there is a blow-up time in PDE, we will not see an actual blow-up in numerical
solutions. Instead, as we will present in numerical examples, the mass accumulates
on a very few discrete points.

Remark 3.5. Although we only discuss the Galerkin type spatial discretization
in the theorem above, the results still hold for finite-difference (finite-volume) dis-
cretizations if the summation by parts is valid. We refer to [28], where a proof is
provided.

3.1.2. Second-order scheme. We can also construct second-order schemes
with similar properties. For example, a fully discretized scheme based on the second-
order BDF is to find \rho n+1, \phi n+1 \in XN , such that for any v, w \in XN ,

\biggl[ 
3\rho n+1  - 4\rho n + \rho n - 1

2\delta t
, v

\biggr] 
=  - 

\Bigl[ 
D\=an+1\nabla IN

\Bigl( 
\gamma f \prime (\rho n+1) - \chi (2\phi n  - \phi n - 1)

\Bigr) 
,\nabla v

\Bigr] 
,

(3.13)

0 =  - \mu (\nabla \phi n+1,\nabla w) - \alpha (\phi n+1, w) + [\chi \rho n+1, w].(3.14)
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In the above, \=an+1 is an O(\delta t2) explicit approximation of 1/f \prime \prime (\rho (tn+1)). To ensure
\=an+1 > 0, we choose

(3.15) \=an+1 =

\Biggl\{ 
1

2f \prime \prime (\rho n) - f \prime \prime (\rho n - 1) if f \prime \prime (\rho n) \geq f \prime \prime (\rho n - 1);
2

f \prime \prime (\rho n)  - 
1

f \prime \prime (\rho n - 1) if f \prime \prime (\rho n) < f \prime \prime (\rho n - 1).

The scheme is also decoupled, i.e., one can solve \rho n+1 first, followed by solving \phi n+1.
We could follow the proof of the last theorem to establish the following.

Theorem 3.6. The scheme (3.13)--(3.14) satisfies the following properties:
1. Mass conservation:

[\rho n+1, 1] = [\rho n, 1].

2. Unique solvability: The scheme possesses a unique solution (\rho n+1, \phi n+1) \in 
XN \times XN .

3. Bound preserving: If \rho n(\bfitz ) \in J for all \bfitz \in Z, then \rho n+1(\bfitz ) \in J for all \bfitz \in Z.

Proof. With \=an+1 > 0 explicitly determined, we could define the symmetric pos-
itive semidefinite matrix An for the second-order scheme as in (3.9), by replacing
D/f \prime \prime (\rho n) with \=an+1. Then, we could similarly write (3.13) in the matrix-vector form
as follows:

(3.16)
3

2\delta t
B(\~\rho n+1  - \~b) = An(\gamma f \prime (\~\rho n+1) - \chi \~c),

where \~b = (4\~\rho n  - \~\rho n - 1)/3 and \~c = 2\~\phi n  - \~\phi n - 1. The rest of the proof is the same as
Theorem 3.2: we just replace \~\rho n with \~b, and \~\phi n with \~c in (3.10), and follow the same
steps afterward. The components of the vector \~b might not fall in the interval J , but
it does not affect the definition of the strictly convex function G[\~\rho n+1] in the domain

\{ \~\rho n+1 : \~\rho n+1(\bfitz ) \in \=J, 1tB\~\rho n+1 = 1tB\~b\} .

Unfortunately, we are unable to prove the energy dissipation due to the lack of
inequality similar to (3.3) for the second-order BDF.

3.1.3. Two species. We can construct similar schemes for the two-species sys-
tem (2.9)--(2.11). For example, a fully discrete first order scheme is to find \rho n+1

1 , \rho n+1
2 ,

\phi n+1 \in XN , such that for any v1, v2, w \in XN ,\biggl[ 
\rho n+1
1  - \rho n1
\delta t

, v1

\biggr] 
=  - 

\biggl[ 
D1

f \prime \prime 1 (\rho 
n
1 )

\nabla IN
\bigl( 
\gamma 1f

\prime 
1(\rho 

n+1
1 ) - \chi 1\phi 

n
\bigr) 
,\nabla v1

\biggr] 
,(3.17) \biggl[ 

\rho n+1
2  - \rho n2
\delta t

, v2

\biggr] 
=  - 

\biggl[ 
D2

f \prime \prime 2 (\rho 
n)

\nabla IN
\bigl( 
\gamma 2f

\prime 
2(\rho 

n+1
2 ) - \chi 2\phi 

n
\bigr) 
,\nabla v2

\biggr] 
,(3.18)

0 =  - \mu (\nabla \phi n+1,\nabla w) - \alpha (\phi n+1, w) + [\chi 1\rho 
n+1
1 + \chi 2\rho 

n+1
2 , w].(3.19)

When applying the scheme to the above equations, we notice three equations are
decoupled. One can solve \rho n+1

1 and \rho n+1
2 separately, then solve \phi n+1.

Theorem 3.7. The above fully discretized scheme satisfies the following:
1. Mass conservation:

[\rho n+1
1 , 1] = [\rho n1 , 1], [\rho n+1

2 , 1] = [\rho n2 , 1].

2. Unique solvability: The scheme possesses a unique solution (\rho n+1
1 , \rho n+1

2 , \phi n+1)
\in XN \times XN \times XN .
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3. Bound preserving: If \rho ni (\bfitz ) \in Ji for all \bfitz \in Z, then \rho n+1
i (\bfitz ) \in Ji for all

\bfitz \in Z.
4. Energy dissipation:

\~En+1  - \~En \leq  - \delta t
\biggl( \biggl[ 

D1

f \prime \prime 1 (\rho 
n
1 )

\nabla \nu n+1
1 ,\nabla \nu n+1

1

\biggr] 
+

\biggl[ 
D2

f \prime \prime 2 (\rho 
n
2 )

\nabla \nu n+1
2 ,\nabla \nu n+1

2

\biggr] \biggr) 
,

where \nu n+1
i = IN

\bigl( 
\gamma if

\prime 
i(\rho 

n+1
i ) - \chi i\phi 

n
\bigr) 
, and the discrete energy is given by

En = [\gamma 1f1(\rho 
n
1 ), 1] - \chi 1[\rho 

n
1 , \phi 

n]+[\gamma 2f2(\rho 
n
2 ), 1] - \chi 2[\rho 

n
2 , \phi 

n]+
\mu 

2
\| \nabla \phi n\| 2+\alpha 

2
\| \phi n\| 2.

The proof follows the same arguments as in the case of one species. The only point to
be noticed is that since the scheme is decoupled, we could prove the unique solvability
in J for \rho n+1

1 and \rho n+1
2 , respectively.

3.2. Parabolic-parabolic equations. The discretization of the parabolic-
parabolic system is slightly different. We write the coupling term in the free energy
as the difference of two squared terms,  - \rho \phi = 1

4 (\phi  - \rho )2  - 1
4 (\phi + \rho )2, and construct

the following first-order scheme using an idea of convex splitting [12]:\biggl[ 
\rho n+1  - \rho n

\delta t
, v

\biggr] 
=  - 

\Biggl[ 
D

f \prime \prime (\rho n)
\nabla IN

\Bigl( 
\gamma f \prime (\rho n+1) +

\chi 

2
(\rho n+1  - \phi n+1)(3.20)

 - \chi 

2
(\rho n + \phi n)

\Bigr) 
,\nabla v

\Biggr] 
,\biggl( 

\tau 
\phi n+1  - \phi n

\delta t
, w

\biggr) 
=  - \mu 

\Bigl( 
\nabla \phi n+1,\nabla w

\Bigr) 
 - \alpha 

\Bigl( 
\phi n+1, w

\Bigr) 
(3.21)

 - 
\Bigl[ \chi 
2
(\phi n+1  - \rho n+1) - \chi 

2
(\rho n + \phi n), w

\Bigr] 
.

Theorem 3.8. The scheme (3.20)--(3.21) for parabolic-parabolic equations satis-
fies the following properties:

1. Mass conservation:
[\rho n+1, 1] = [\rho n, 1].

2. Unique solvability: The scheme possesses a unique solution (\rho n+1, \phi n+1) \in 
XN \times XN .

3. Bound preserving: If \rho n(\bfitz ) \in J for all \bfitz \in Z, then \rho n+1(\bfitz ) \in J for all \bfitz \in Z.
4. Energy dissipation:

\~En+1  - \~En \leq  - \delta t
\biggl[ 

D

f \prime \prime (\rho n)
\nabla \nu n+1,\nabla \nu n+1

\biggr] 
 - \tau 

\delta t
\| \phi n+1  - \phi n\| 2,

where \nu n+1 = IN (\gamma f \prime (\rho n+1)+ \chi 
2 (\rho 

n+1 - \phi n+1) - \chi 
2 (\rho 

n+\phi n)), and the discrete
energy is given by

En = \gamma [f(\rho n), 1] - \chi [\rho n, \phi n] +
\mu 

2
\| \nabla \phi n\| 2 + \alpha 

2
\| \phi n\| 2.

Proof. The proof of the first three properties is essentially the same as in the
proof of Theorem 3.2, so we only describe the strictly convex function related to the
scheme. Define

A0(\bfitz , \bfitz 
\prime ) = (\psi \bfitz , \psi \bfitz ), A1(\bfitz , \bfitz 

\prime ) = (\nabla \psi \bfitz ,\nabla \psi \bfitz ).
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Together with the definition of An and B in (3.9), we can rewrite the scheme as

1

\delta t
B(\~\rho n+1  - \~\rho n) = - An

\Bigl( 
\gamma f \prime (\~\rho n+1) +

\chi 

2
(\~\rho n+1  - \~\phi n+1) - \chi 

2
(\~\rho n + \~\phi n)

\Bigr) 
,

\tau 

\delta t
A0(\~\phi 

n+1  - \~\phi n) = - \mu A1
\~\phi n+1  - \alpha A0

\~\phi n+1  - B
\Bigl( \chi 
2
(\~\phi n+1  - \~\rho n+1) - \chi 

2
(\~\rho n + \~\phi n)

\Bigr) 
.

It can be checked that the above are the Euler--Lagrange equations of the strictly
convex function

G[\~\rho , \~\phi ; \~\rho n, \~\phi n] =
1

2\delta t
(\~\rho  - \~\rho n)tB(An)\ast B(\~\rho  - \~\rho n) +

\tau 

2\delta t
(\~\phi  - \~\phi n)tA0(\~\phi  - \~\phi n)(3.22)

+ \gamma 1tBf(\~\rho ) +
\mu 

2
\~\phi tA1

\~\phi +
\alpha 

2
\~\phi tA0

\~\phi 

+
\chi 

4
(\~\phi  - \~\rho )tB(\~\phi  - \~\rho ) - \chi 

2
(\~\phi + \~\rho )tB(\~\phi n + \~\rho n),

under the mass conservation constraint 1tB\~\rho n+1 = 1tB\~\rho n. Then, we can eliminate
the possibility of the minimizer taking the values 0 or M as in the proof of Theorem
3.2. Thus, the minimizer of the function G is the unique solution of the scheme.

For energy dissipation, we take v = \delta t\nu n+1 = \delta tIN (\gamma f \prime (\rho n+1)+ \chi 
2 (\rho 

n+1 - \phi n+1) - 
\chi 
2 (\rho 

n + \phi n)) in (3.20), and w = \phi n+1  - \phi n in (3.21), summing up the two equations
to obtain \Bigl[ 

\rho n+1  - \rho n, \gamma f \prime (\rho n+1) +
\chi 

2
(\rho n+1  - \phi n+1) - \chi 

2
(\rho n + \phi n)

\Bigr] 
+ \mu 

\Bigl( 
\nabla \phi n+1,\nabla (\phi n+1  - \phi n)

\Bigr) 
+ \alpha 

\Bigl( 
\phi n+1, (\phi n+1  - \phi n)

\Bigr) 
+
\Bigl[ \chi 
2
(\phi n+1  - \rho n+1) - \chi 

2
(\rho n + \phi n), \phi n+1  - \phi n

\Bigr] 
=  - \delta t

\biggl[ 
D

f \prime \prime (\rho n)
\nabla \nu n+1,\nabla \nu n+1

\biggr] 
 - \tau 

\delta t
\| \phi n+1  - \phi n\| 2.

We rewrite the left-hand side as

\chi 

2

\Bigl[ 
(\rho n+1  - \phi n+1) - (\rho n  - \phi n), \rho n+1  - \phi n+1

\Bigr] 
 - \chi 

2

\Bigl[ 
(\rho n+1 + \phi n+1) - (\rho n + \phi n), \rho n + \phi n

\Bigr] 
+ \mu 

\Bigl( 
\nabla \phi n+1,\nabla (\phi n+1  - \phi n)

\Bigr) 
+ \alpha 

\Bigl( 
\phi n+1, (\phi n+1  - \phi n)

\Bigr) 
+ [\rho n+1  - \rho n, \gamma f \prime (\rho n+1)].

Then, we can combine the above with the equalities (3.3) and (3.4) to arrive at the
energy dissipation.

4. Numerical results. We present in this section some numerical examples to
validate our schemes. We will investigate the three choices of mobility (i)--(iii) stated
in section 2. We name the system with the mobility (ii) the bounded-mobility system
and the system with the mobility (iii) the saturation-concentration system. For all
examples, the domain is chosen as [0, L)2 where L = 2\pi , and we adopt the periodic
boundary conditions. The space is discretized using the Fourier spectral method with
N = 64 in each direction. We present several examples for one species, followed by
an example for two species. If not specified separately, we fix the diffusion constant
D = \gamma = \mu = 1, and \alpha = 0.1. The chemotactic sensitivity \chi will be varied.
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Fig. 1. Accuracy of the first-order (left) and second-order (right) schemes. The dashed lines
are reference for first-order and second-order convergence.
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Fig. 2. Efficiency of the scheme: the number of Newton iterations in the spiky solution to the
saturation-concentration system.

4.1. Accuracy and efficiency. First, we check the accuracy of the schemes.
We use the first-order and second-order schemes for the one-species parabolic-elliptic
(\tau = 0) saturation-concentration system. The initial condition is given by

(4.1) \rho (x, y, 0) = 2 exp

\biggl( 
 - (x - L/2)2 + (y  - L/2)2

4

\biggr) 
.

The chemotactic sensitivity is chosen as \chi = 1, and the largest concentration is
M = 100. The error is computed at t = 0.4, with the reference solution computed
using the time step \delta t = 10 - 4. We plot the L2 error in Figure 1, where we can observe
the first-order and second-order accuracy.

Next, we examine the efficiency of the scheme. In Figure 2, we plot the number
of Newton's iteration for a simulation of the saturation-concentration system with the
spiky solution described below. We observe that, for most time steps, we only need
to run at most three Newton's iterations, and the largest number is six. It indicates
that our nonlinear scheme is competitive to linearly implicit schemes in efficiency but
enjoys the many advantages, such as unconditionally bound preserving and energy
dissipative, that a linearly implicit scheme does not possess.
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(a) Classical system

0.6

5
5

0.8

0 0
0 1 2 3 4

t

1

1.5

2

m
ax

0 1 2 3 4

t

-2.74

-2.72

-2.7

-2.68

-2.66

-2.64

-2.62

E
ne

rg
y

(b) Bounded-mobility system
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(c) Saturation-concentration system

Fig. 3. Comparison for the classical and two modified systems: nonaccumulating solutions.

4.2. Comparison of the classical and modified systems. Next, we compare
the classical and two modified parabolic-elliptic systems. We start from a case where
the chemotaxis does not happen. In this case, the solution does not blow up in the
classical system. The initial condition and \chi are chosen as in the previous section. We
use the first-order scheme with the time step \delta t = 10 - 3. For the parameters in the
mobility, in the bounded-mobility system we choose \kappa = 0.01, and in the saturation-
concentration system we choose M = 100. The three systems are evolved till t = 4.
In Figure 3, we draw the concentration \rho at t = 4 and plot the evolution of max \rho and
the energy. The results for three systems are very close.

Then, we keep all the other settings, but consider another initial condition with
larger total mass such that chemotaxis happens,

(4.2) \rho (x, y, 0) = 4 exp

\biggl( 
 - (x - L/2)2 + (y  - L/2)2

4

\biggr) 
.

We calculate until t = 8 so that the three systems reach steady state. The concentra-
tion at t = 8 and the evolution of max \rho and energy are shown in Figure 4, where in
line graphs we plot results from first-order schemes and second-order schemes.
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(a) Classical system

100

5

200

5

300

0 0
0 2 4 6 8

t

100

101

102

103

m
ax

0 2 4 6 8

t

-11

-10

-9

-8

E
ne

rg
y

(b) Bounded-mobility system
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(c) Saturation-concentration system

Fig. 4. Comparison for the classical and two modified systems: chemotaxis solutions. In the
graphs on energy and maximum concentration, we plot results from the first-order scheme (blue)
and the second-order scheme (red).

In the classical system, the mass is concentrated at four grid points, taking about
98.6\% of the total mass. Note that in the classical Keller--Segel equations, the solution
may blow up in finite time. However, since our fully discretized schemes preserve
positivity and conserve mass, instead of blowing up the mass will accumulate at a few
grid points. So we observe indeed a blow-up-like behavior in this case.

On the other hand, in the modified systems we obtain spiky solutions, but the ac-
cumulation still occupies some area, so they are not viewed as blow-up-like behavior.
With the spiky solutions, it can be seen that the energy dissipation is still main-
tained in our scheme. Besides, from the maximum value or \rho , we observe that the
accumulation is slightly slower in the modified systems than in the classical system.

It shall be clarified that the blow-up time could weight heavily on the initial
conditions and possibly the parameters. We would like to provide one example, in
the classical system, with a spiky initial condition,

(4.3) \rho (x, y, 0) = 500 exp
\bigl( 
 - 30

\bigl( 
(x - L/2)2 + (y  - L/2)2

\bigr) \bigr) 
+ 0.1,
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Fig. 5. Blow-up with spiky initial condition (4.3) in the classical system. The curves from the
first-order scheme (blue) and second-order scheme (red) are not distinguishable.
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Fig. 6. Comparison of saturation-concentration system for different M . The second-order
scheme is adopted. The evolution of energy and maximum concentration are given in the first row.
The snapshots at t = 8 are given in the second row, from left to right M = 5, 10, 15, respectively.

without changing the parameters. We plot the evolution of energy and maximum
concentration in Figure 5, where we find that blow-up occurs rapidly in comparison
with the previous example.

From the above results, it can be seen that the modified systems can successfully
describe chemotaxis. Moreover, it does not lead to blow-up that is unrealistic. In
what follows, we will focus on the saturation-concentration system.

Let us first look at the role of different saturation value M . Using the initial con-
dition (4.2) with \rho max = 4, we study three casesM = 5, 10, 15. The energy, maximum
concentration, and steady states are given in Figure 6. The behaviors are different
for three M . For M = 5, the maximum concentration decreases with time, showing
no accumulation. For M = 15, we could identify it as a typical chemotaxis. For
M = 10, the maximum concentration does increase but still far from the saturation,
and \rho is not quite close to zero for the positions away from the center, which can be
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Fig. 7. Saturation-concentration system, with initial value having two bulges. The four snap-
shots are given at t = 1, 2, 4, 16. The curves from the first-order scheme (blue) and second-order
scheme (red) are not distinguishable.

regarded as an intermediate between spreading and chamotaxis. The example implies
that the saturation value might affect whether the chemotaxis will happen and that
a low saturation value can inhibit the chemotaxis.

In the last example for one species parabolic-elliptic saturation-concentration sys-
tem, we consider an initial condition with two bulges, given by

\rho (x, y, 0) = 3 exp

\biggl( 
 - (x - L/4)2 + (y  - L/4)2

4

\biggr) 
(4.4)

+ 3 exp

\biggl( 
 - (x - 3L/4)2 + (y  - 3L/4)2

4

\biggr) 
.

We choose M = 100, and keep the other settings the same. We plot the evolution of
energy, maximum concentration for first- and second-order schemes, and four snap-
shots in Figure 7. Although the total mass is larger than the previous example, we
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Fig. 8. Parabolic-parabolic system with different \tau .

observe slower accumulation. It takes some time before two bulges merge into one,
followed by accumulation. The energy dissipation is observed, slower in the merging
stage and faster in the accumulating stage.

4.3. Parabolic-parabolic system. Next, we consider the parabolic-parabolic
(\tau > 0) saturation-concentration system. The chemotactic sensitivity is chosen as
\chi = 1. The initial condition for \rho and \phi is given by

(4.5) \rho (x, y, 0) = \phi (x, y, 0) = 4 exp

\biggl( 
 - (x - L/2)2 + (y  - L/2)2

4

\biggr) 
,

where ( - \mu \Delta + \alpha )\phi (x, y, 0) \not = \chi \rho (x, y, 0). We use the first-order scheme (3.20)--(3.21)
with the time step \delta t = 10 - 3. We choose three different \tau = 1, 10 - 2, 10 - 4 and compare
the results with the parabolic-elliptic system (\tau = 0). The evolution of energy and
max \rho is plotted in Figure 8. It shows that as \tau goes to zero, the curves are converging
to the curve of \tau = 0, which is consistent with the formal derivation in [23].

4.4. Two species. As the last example, we consider the parabolic-elliptic
saturation-concentration system for two species. The parameters are chosen as D1 =
D2 = \gamma 1 = \gamma 2 = \mu = \chi 1 = 1, and \alpha = 0.1. The initial condition is

(4.6) \rho 1(x, y, 0) = \rho 2(x, y, 0) = 4 exp

\biggl( 
 - (x - L/2)2 + (y  - L/2)2

4

\biggr) 
.

We consider two different chemotactic sensitivities of the second species \chi 2. First, we
set \chi 2 = 0.1. In Figure 9 we plot \rho 1, \rho 2, and \phi at t = 8. We also plot the evolution
of energy and the maximum value of \rho 1, \rho 2, where we find that curves from the first-
and second-order schemes are not distinguishable. At t = 8, \rho 1 shows accumula-
tion, while \rho 2 is to some extent accumulated but does not exhibit typical chemotaxis.
Actually, from the evolution of its maximum values, we can see that \rho 1 keeps accumu-
lating, but \rho 2 diffuses at first, followed by accumulation after \rho 1 has accumulated for
a while.

Then we look at the results with \chi 2 = 0.01 (Figure 10). In this case, \rho 1 still shows
accumulation, and the chemoattractant \phi is similar to the previous case. However,
\rho 2 is not actively responding to the chemoattractant due to the small \chi 2. Actually,
while \rho 1 keeps accumulating, \rho 2 keeps diffusing.D
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Fig. 9. Two species, \chi 2 = 0.1. The curves from the first-order scheme (blue) and second-order
scheme (red) are not distinguishable. The snapshots are at t = 8.

5. Conclusion. We proposed new numerical schemes for a class of Keller--Segel
equations which possess a gradient flow structure. The main difficulties are to keep
several essential properties of the Keller--Segel equations such as bound preserving,
mass conservation, and energy dissipation. By rewriting the dissipative operator into
a form which can implicitly enforce the bound, we are able to construct a class of
numerical schemes which satisfy desired properties. More precisely, our first-order
schemes are mass conservative, bound preserving, uniquely solvable, and energy dissi-
pative, and our second-order schemes satisfy the first three properties but we cannot
prove that they are energy dissipative.

Although the schemes are nonlinear in nature, their solution can be efficiently ob-
tained by Newton's iteration because it is the minimizer of a strictly convex functional.
Furthermore, for parabolic-elliptic equations, the schemes are decoupled.D
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Fig. 10. Two species, \chi 2 = 0.01. The curves from the first-order scheme (blue) and second-
order scheme (red) are not distinguishable. The snapshots are at t = 8.

We presented numerical results to validate the theoretical results, as well as nu-
merical simulations to show that our schemes are able to describe essential features of
chemotaxis organisms such as mass accumulation, which, in the classical Keller--Segel
system, is the numerical version of the blow-up phenomenon.
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