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In this paper, we present two efficient energy stable schemes to solve a phase field 
model incorporating moving contact line. The model is a coupled system that consists 
of incompressible Navier–Stokes equations with a generalized Navier boundary condition 
and Cahn–Hilliard equation in conserved form. In both schemes the projection method is 
used to deal with the Navier–Stokes equations and stabilization approach is used for the 
non-convex Ginzburg–Landau bulk potential. By some subtle explicit–implicit treatments, 
we obtain a linear coupled energy stable scheme for systems with dynamic contact line 
conditions and a linear decoupled energy stable scheme for systems with static contact 
line conditions. An efficient spectral-Galerkin spatial discretization method is implemented 
to verify the accuracy and efficiency of proposed schemes. Numerical results show that the 
proposed schemes are very efficient and accurate.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Phase-field/diffuse-interface models, whose origin can be traced back to Rayleigh [29] and Waals [41], have become one 
of the major tools to deal with many dynamical processes in material/biological morphology, in particular, the multiphase 
fluid systems that we are interested in this paper. The typical phase field model can be described by either the Allen–Cahn 
equation (see Bray [2]) or the Cahn–Hilliard equation (Cahn and Hilliard, [4]) based on energetic variational approaches. 
The Allen–Cahn equation is a second-order equation, which is easier to solve numerically but does not conserve the volume 
fraction, while the Cahn–Hilliard equation is a fourth-order equation which conserves the volume fraction but is relatively 
harder to solve numerically. A particular advantage of the phase-field approach is that the derived models are usually 
well-posed nonlinear partial differential equations that satisfy thermodynamics-consistent energy dissipation laws, which 
makes it possible to carry out mathematical analysis and further design numerical schemes which satisfy corresponding 
discrete energy dissipation laws. Thus phase field models recently have been the subject of many theoretical and numerical 
investigations (cf., for instance, [5,8,12–14,19,21,24,31,33,35–38,43]).

When the fluid–fluid interface touches a solid wall, it creates a moving contact line (MCL) problem that exists in many 
physical processes, for instance, wetting, coating, painting, etc. In this situation, it is well-known that the no-slip boundary 
condition for the Navier–Stokes equations is no longer applicable, otherwise, a non-physical velocity discontinuity will occur 
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at the MCL (see e.g. [9,10,26]). Simulations by Koplik et al. [22,23], Thompson and Robbins [39], among others, using 
Molecular Dynamics (MD) showed that nearly complete slip happens near the MCL. To investigate the complex behavior 
at MCLs, microscopic-macroscopic hybrid simulations were carried out by Hadjiconstantinou [17], Ren and E [30], etc. This 
approach is powerful but computationally expensive for macroscopic applications. On the other hand, a set of accurate 
boundary conditions for the MCL problem in the context of phase field model was derived by Qian et al. [27], where 
they proposed a general Navier boundary condition (GNBC) and a dynamic contact line condition for a macroscopic model 
consisting of the Navier–Stokes equations and the Cahn–Hilliard equation. An explicit numerical scheme, which dictates a 
very small time step, was used to solve the Cahn–Hilliard equation to compare the results with MD simulations.

Recently, several attempts were made to improve the numerical stability and efficiency of solving the Navier–Stokes and 
Cahn–Hilliard coupled system for MCL problems. In He et al. [18], the authors proposed an operator splitting method with 
a least-squares finite element method for one of the sub-steps. The authors of Dong [6] and Dong and Shen [7] constructed 
some decoupled schemes for systems with variable density, however they did not provide any theoretical proof of discrete 
energy law for the decoupled schemes with dynamic contact line conditions. In Gao and Wang [14,15], Salgado [31] and 
Aland and Chen [1], the authors developed some energy stable schemes for the moving contact line problem with constant 
and/or variable densities. However, their schemes require solving a coupled nonlinear system for the phase function and 
velocity.

In this paper, we consider a phase-field moving contact line model which is a conserved version of the model proposed 
by Qian et al. [27,28]. We construct two energy stable temporal schemes for this model. One is a linear coupled scheme 
for systems with dynamic contact line conditions, the other is a linear decoupled scheme for systems with static contact 
line conditions. We then implement a Fourier–Legendre Galerkin approximation to investigate the efficiency and accuracy 
for the two schemes.

2. A Navier–Stokes Cahn–Hilliard coupled model in conserved form

We consider the moving contact line dynamics of a two-phase incompressible, immiscible fluid in a physical domain 
denoted by Ω with boundary Γ . It is showed in [27,28] that this problem can be modeled by a Navier–Stokes Cahn–Hilliard 
coupled system (NSCH) with a general Navier boundary condition. A non-dimensional, conserved version of the system is 
given below.

Incompressible Navier–Stokes equations for hydrodynamics:

R(ut + u · ∇u) = �u − ∇p − Bφ∇μ, (2.1)

∇ · u = 0, (2.2)

u · n = 0 on Γ, (2.3)

l(φ)(uτ − uw) + ∂nuτ − BL(φ)∇τ φ = 0 on Γ. (2.4)

Cahn–Hilliard equation for the dynamics of phase variable:

φt + ∇ · (uφ) = M�μ, (2.5)

μ = −ε�φ + f (φ), (2.6)

∂nμ = 0 on Γ, (2.7)

φt + uτ · ∇τ φ = −γ L(φ) on Γ. (2.8)

In the above system, the unknowns are: u — the fluid velocity, p — the pressure, φ — the phase-field variable, μ — the 
chemical potential. The function L(φ) in Eq. (2.8) is given by

L(φ) = ε∂nφ + g′(φ), (2.9)

where g(φ) is the boundary interfacial energy; l(φ) ≥ 0 is a given coefficient function; the function f (φ) = F ′(φ), with F (φ)

being the Ginzburg–Landau bulk potential. More precisely, F and g are defined as

F (φ) = 1

4ε

(
φ2 − 1

)2
, g(φ) = −

√
2

3
cos θs sin

(
π

2
φ

)
, (2.10)

where θs is the static contact angle. In Eqs. (2.1)–(2.9), bold face letters denote vector variables, ∇ denotes the gradient 
operator, n is the outward normal direction on boundary Γ , scalar operator ∂n = n · ∇ is the partial derivative along di-
rection n, τ is the boundary tangential direction, and vector operator ∇τ = ∇ − (n · ∇)n is the gradient along tangential 
direction, uw is the boundary wall velocity, uτ is the boundary fluid velocity in tangential direction. From (2.3), we have 
u = uτ on boundary Γ .

There are six non-dimensional parameters in this system. R is the Reynolds number, B denotes the strength of the 
capillary force comparing to the Newtonian fluid stress, M is the mobility coefficient, γ is a boundary relaxation coefficient, 
l(φ) is the ratio of domain size to boundary slip length, ε is the ratio between interface thickness and domain size. Similar 
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parameters are used by He et al. [18] and Gao and Wang [14], with M , γ and l(φ) here denoted by Ld , Vs and Ls(φ)−1 in 
He et al. [18], correspondingly.

The GNBC (2.4) and the dynamic contact line condition (2.8) were introduced in Qian et al. [27]. When γ → +∞, the 
dynamic contact line condition (2.8) is reduced to the static contact line condition

L(φ) = 0 on Γ, (2.11)

and the GNBC is reduced to the Navier boundary condition (NBC)

l(φ)(uτ − uw) + ∂nuτ = 0 on Γ. (2.12)

If one further sets g′(φ) ≡ 0, the system is reduced to a phase-field model without contact line effects. If we take l(φ) →
+∞ in Eq. (2.12), then the NBC is reduced to the traditional no-slip boundary condition.

Note that, in Eq. (2.5), a conserved form ∇ · (uφ) for the phase variable φ is used. Correspondingly, we use capillary 
force −Bφ∇μ in (2.1), which is different from Bμ∇φ used in [27,28]. The difference −B∇(φμ) is absorbed into pressure p. 
By using this formulation, it is more convenient to establish the following energy dissipation law, and to design energy 
stable numerical schemes.

Here and after, for any function f , g ∈ H1(Ω), we use ( f , g) to denote 
∫
Ω

f gdx, ( f , g)Γ to denote 
∫
Γ

f gdx, and let 
‖ f ‖2 = ( f , f ), ‖ f ‖2

Γ = ( f , f )Γ .

Theorem 1. The NSCH system (2.1)–(2.8) is a dissipative system satisfying the following energy dissipation law

d

dt
Etot = −‖∇u‖2 − M B‖∇μ‖2 − Bγ

∥∥L(φ)
∥∥2

Γ
− ∥∥l(φ)1/2us

∥∥2
Γ

− (
l(φ)us, uw

)
Γ

, (2.13)

where us = u − uw is the velocity slip on boundary Γ , Etot = Ek[u] + Eb[φ] + Es[φ], and

Ek[u] = R

2
‖u‖2, Eb[φ] = Bε

2
‖∇φ‖2 + B

(
F (φ),1

)
, Es[φ] = B

(
g(φ),1

)
Γ

. (2.14)

Remark 1. The terms except the last one on the right hand side of (2.13) are diffusion or relaxation terms. The last term is 
a boundary interaction term, its sign is not definite. The energy Es[φ] defined in Eq. (2.14) is not positive definite. However, 
one can make it positive definite by adding a positive constant into function g , since only the derivative of g is involved in 
the governing equations.

Proof. By taking the inner product of Eq. (2.1) with u, using the zero flux boundary condition (2.3) and the incompressible 
condition (2.2), we get

R

2

d

dt
‖u‖2 = (∂nu, u)Γ − ‖∇u‖2 − B(φ∇μ, u). (2.15)

Taking the inner product of Eq. (2.5) with Bμ, and using boundary conditions (2.3) and (2.7), we get

B(φt,μ) − B(uφ,∇μ) = −M B‖∇μ‖2. (2.16)

Taking the inner product of Eq. (2.6) with −Bφt , we have

−B(μ,φt) = Bε(∂nφ,φt)Γ − Bε

2

d

dt
‖∇φ‖2 − B

d

dt

(
F (φ),1

)
. (2.17)

Summing up Eqs. (2.15)–(2.17), we obtain

R

2

d

dt
‖u‖2 + Bε

2

d

dt
‖∇φ‖2 + B

d

dt

(
F (φ),1

) = −‖∇u‖2 − M B‖∇μ‖2 + (∂nu, u)Γ + Bε(∂nφ,φt)Γ . (2.18)

Then, we use boundary condition (2.4) and (2.8)–(2.9) to derive

(∂nu, u)Γ = (∂nuτ , uτ )Γ = (
BL(φ)∇τ φ − l(φ)(uτ − uw), uτ

)
Γ

= B
(
L(φ)∇τ φ, uτ

)
Γ

− (
l(φ)us, us + uw

)
Γ

, (2.19)

Bε(∂nφ,φt)Γ = B
(
L(φ) − g′(φ),φt

)
Γ

= B
(
L(φ),φt

)
Γ

− B
(

g′(φ),φt
)
Γ

= B
(
L(φ),−uτ · ∇τ φ − γ L(φ)

)
Γ

− B
d

dt

(
g(φ),1

)
Γ

= −B
(
L(φ)∇τ φ, uτ

)
Γ

− Bγ
∥∥L(φ)

∥∥2
Γ

− B
d

dt

(
g(φ),1

)
Γ

. (2.20)

Summing up (2.18), (2.19) and (2.20), we get the desired energy estimate (2.13). �
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3. Two energy stable schemes

3.1. A linear coupled energy stable scheme

There are two popular approaches to handle the non-convex Ginzburg–Landau potential F (φ) in Eq. (2.10). One is the 
convex splitting method (cf. Elliott and Stuart [11] and Eyre [12]), another is the stabilization method (cf. [35,42,44]). Here 
we adopt the later one, which does not require solving a nonlinear equation. The unconditional stability of the stabilization 
method requires that the second derivative of F (φ) to be bounded. However, this is not satisfied by the Ginzburg–Landau
potential. Since we are only interested in φ ∈ [−1, 1], and it is proved by Caffarelli and Muler [3] that a truncated F (φ)

with quadratic growth at infinity also guarantees the boundless of φ in Cahn–Hilliard equation. So it is a common practice 
to modify F (φ) to have a quadratic growth rate for |φ| > 1 (see e.g. Shen and Yang [35], Condette et al. [5]). Without loss 
of generality, we introduce the following F̂ (φ) to replace F (φ):

F̂ (φ) = 1

4ε

⎧⎨
⎩

2(φ + 1)2, if φ < −1,

(φ2 − 1)2, if −1 ≤ φ ≤ 1,

2(φ − 1)2, if φ > 1.

(3.1)

Correspondingly, we define f̂ (φ) = F̂ ′(φ) and

L1 = max
φ∈R

∣∣ f̂ ′(φ)
∣∣ = 2

ε
, L2 = max

φ∈R
∣∣g′′(φ)

∣∣ =
√

2π2

12
| cos θs|. (3.2)

Now we are ready to present a linear coupled (LC) scheme for the NSCH system with dynamic contact line conditions. 
We use δt to denote time step size, use a superscript n on u, ũ, p, φ, μ etc. to denote approximations of corresponding 
variables at time nδt . Given un, φn, pn , the LC scheme calculates un+1, φn+1, pn+1 and μn+1 in two steps.

(i) We first solve ũn+1
, φn+1, μn+1 from

R

(
ũn+1 − un

δt
+ un · ∇ ũn+1

)
= �ũn+1 − ∇pn − Bφn∇μn+1, (3.3)

μn+1 = −ε�φn+1 + f̂
(
φn) + s1

(
φn+1 − φn), (3.4)

φn+1 − φn

δt
+ ∇ · (ũn+1

φn) = M�μn+1, (3.5)

with boundary conditions

ũn+1 · n = 0 on Γ, (3.6)

∂nũn+1
τ + l

(
φn)ũn+1

s − BL̃n+1∇τ φn = 0 on Γ, (3.7)

∂nμ
n+1 = 0 on Γ, (3.8)

φn+1 − φn

δt
+ ũn+1

τ · ∇τ φn = −γ L̃n+1 on Γ, (3.9)

where

L̃n+1 = ε∂nφ
n+1 + g′(φn) + s2

(
φn+1 − φn), (3.10)

and s1, s2 are two positive stabilizing coefficients.
(ii) In the second step, we update un+1, pn+1 from

R
un+1 − ũn+1

δt
+ ∇(

pn+1 − pn) = 0, (3.11)

∇ · un+1 = 0, (3.12)

un+1 · n = 0 on Γ. (3.13)

Some remarks are in order.

(i) A pressure-correction scheme (cf., for instance, Guermond et al. [16]) is used to decouple the computation of the 
pressure from that of the velocity.

(ii) We recall that f (φ) = 1
ε φ(φ2 − 1), so the explicit treatment of this term usually leads to a severe restriction on the 

time step δt when ε  1. Thus we introduce in (3.4) a “stabilizing” term to improve the stability while preserving the 
simplicity. It allows us to treat the nonlinear term explicitly without suffering from any time step constraint (Shen and 
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Yang, [34–36]). Note that this stabilizing term introduces an extra consistent error of order O (δt) in a small region 
near the interface, but this error is of the same order as the error introduced by treating f (φ) explicitly, so the overall 
truncation error is essentially of the same order with or without the stabilizing term. A similar approach is applied in 
the contact line boundary condition (3.9), (3.10). These treatments allow us to prove a discrete energy dissipation law.

Theorem 2. Assume uw = 0, s1 ≥ L1/2 and s2 ≥ L2/2. Then, the scheme (3.3)–(3.13) is energy stable in the sense that

En+1
tot − En

tot ≤ 0, n = 0,1,2, . . . , (3.14)

where

En
tot = Ek

[
un] + Êb

[
φn] + Es

[
φn] + δt2

2R

∥∥∇pn
∥∥2

, Êb[φ] = Bε

2
‖∇φ‖2 + B

(
F̂ (φ),1

)
. (3.15)

Proof. (i) Taking inner product of (3.3) with ũn+1, using identities

(a − b,2a) = |a|2 − |b|2 + |a − b|2,
(u · ∇v, v) = 0, ∀u, v ∈ H1(Ω) and u satisfies (2.2)–(2.3),

we have

R

2δt
A
(∥∥ũn+1∥∥2 − ∥∥un

∥∥2 + ∥∥ũn+1 − un
∥∥2) = −∥∥∇ ũn+1∥∥2 + (

∂nũn+1
, ũn+1)

Γ

− (∇pn, ũn+1) − B
(
φn∇μn+1, ũn+1)

. (3.16)

(ii) Taking inner product of (3.5) with Bμn+1, and using (3.6), (3.8), we have

B

(
φn+1 − φn

δt
,μn+1

)
− B

(
ũn+1

φn,∇μn+1) = −BM
∥∥∇μn+1

∥∥2
. (3.17)

(iii) Taking inner product of (3.4) with −B(φn+1 − φn)/δt , we have

−B

(
μn+1,

φn+1 − φn

δt

)
= −B

ε

2δt

(∥∥∇φn+1
∥∥2 − ‖∇φ‖2 + ∥∥∇(

φn+1 − φn)∥∥2)

+ Bε

(
∂nφ

n+1,
φn+1 − φn

δt

)
Γ

− B

(
f̂
(
φn) + s1

(
φn+1 − φn), φn+1 − φn

δt

)
. (3.18)

For the boundary integral terms in (3.18), by using (3.10), we have

ε

(
∂nφ

n+1,
φn+1 − φn

δt

)
Γ

=
(

L̃n+1 − (
g′(φn) + s2

(
φn+1 − φn)), φn+1 − φn

δt

)
Γ

. (3.19)

By Taylor expansions of F̂ (φ) and g(φ), we know there exist ξ, ζ ∈ [−1, 1], such that

f̂
(
φn)(φn+1 − φn) = F̂

(
φn+1) − F̂

(
φn) − f̂ ′(ξ)

2

(
φn+1 − φn)2

, (3.20)

g′(φn)(φn+1 − φn) = g
(
φn+1) − g

(
φn) − g′′(ζ )

2

(
φn+1 − φn)2

. (3.21)

Combining Eqs. (3.18), (3.19), (3.20) and (3.21), we get

−B

(
μn+1,

φn+1 − φn

δt

)
= − Bε

2δt

(∥∥∇φn+1
∥∥2 − ‖∇φ‖2 + ∥∥∇(

φn+1 − φn)∥∥2)

− B

(
F̂ (φn+1) − F̂ (φn)

δt
,1

)
− B

(
s1 − f̂ ′(ξ)

2
,
(φn+1 − φn)2

δt

)

− B

(
g(φn+1) − g(φn)

δt
,1

)
Γ

− B

(
s2 − g′′(ζ )

2
,
(φn+1 − φn)2

δt

)
Γ

+ B

(
L̃n+1,

φn+1 − φn )
. (3.22)
δt Γ
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(iv) For the last boundary term in (3.22) and the boundary term in (3.16), using Eqs. (3.9), (3.7) and noticing that ũn+1
τ −

ũn+1
w = ũn+1

s , ũn+1
w = 0, we obtain

B

(
L̃n+1,

φn+1 − φn

δt

)
Γ

= B
(
L̃n+1,−γ L̃n+1 − ũn+1

τ · ∇τ φn)
Γ

= −Bγ
∥∥L̃n+1

∥∥2
Γ

− B
(
L̃n+1∇τ φn, ũn+1

τ

)
Γ

, (3.23)

and (
∂nũn+1

, ũn+1)
Γ

= −∥∥l1/2(φn)ũn+1
s

∥∥2
Γ

+ B
(
L̃n+1∇τ φn, un+1

τ

)
Γ

. (3.24)

(v) Next, we rewrite Eq. (3.11) as

R

δt
un+1 + ∇pn+1 = R

δt
ũn+1 + ∇pn.

By integrating the square of the both sides of the above equation, and using conditions (3.12) and (3.13), we get
∥∥∥∥ R

δt
un+1

∥∥∥∥
2

+ ∥∥∇pn+1
∥∥2 =

∥∥∥∥ R

δt
ũn+1

∥∥∥∥
2

+ ∥∥∇pn
∥∥2 + 2R

δt

(
ũn+1

,∇pn),
i.e.

R

2δt

(∥∥un+1
∥∥2 − ∥∥ũn+1∥∥2) + δt

2R

(∥∥∇pn+1
∥∥2 − ∥∥∇pn

∥∥2) = (∇pn, ũn+1)
. (3.25)

(vi) Summing up Eqs. (3.16), (3.17), (3.22), (3.23), (3.24) and (3.25), we get

R

2δt

(∥∥un+1
∥∥2 − ∥∥un

∥∥2 + ∥∥ũn+1 − un
∥∥2) + Bε

2δt

(∥∥∇φn+1
∥∥2 − ‖∇φ‖2 + ∥∥∇(

φn+1 − φn)∥∥2)

+ B

δt

(
F̂
(
φn+1) − F̂

(
φn),1

) + B

δt

(
g
(
φn+1) − g

(
φn),1

)
Γ

+ δt

2R

(∥∥∇pn+1
∥∥2 − ∥∥∇pn

∥∥2)

= −∥∥∇ ũn+1∥∥2 − M B
∥∥∇μn+1

∥∥2 − Bγ
∥∥L̃n+1

∥∥2
Γ

− ∥∥l1/2(φn)ũn+1
s

∥∥2
Γ

− B

(
s1 − f̂ ′(ξ)

2
,
(φn+1 − φn)2

δt

)
− B

(
s2 − g′′(ζ )

2
,
(φn+1 − φn)2

δt

)
Γ

,

which implies that

En+1
tot − En

tot = −δt
[∥∥∇ ũn+1∥∥2 + M B

∥∥∇μn+1
∥∥2 + Bγ

∥∥L̃n+1
∥∥2

Γ
+ ∥∥l1/2(φn)ũn+1

s

∥∥2
Γ

]

− R

2
δt2

∥∥∥∥ ũn+1 − un

δt

∥∥∥∥
2

− Bε

2
δt2

∥∥∥∥∇(φn+1 − φn)

δt

∥∥∥∥
2

− Bδt2
(

s1 − f̂ ′(ξ)

2
,

(
φn+1 − φn

δt

)2)
− Bδt2

(
s2 − g′′(ξ)

2
,

(
φn+1 − φn

δt

)2)
Γ

. (3.26)

By the assumption s1 ≥ L1/2 and s2 ≥ L2/2, we get the desired energy estimate. �
Note that there are three types of dissipations in Eq. (3.26). The first one is the real/physical dissipation which is con-

sistent with (2.13). The second part is the dissipation due to implicit Euler discretization for u and φ equation. The third 
part is due to the artificial stabilization. Note that the second and third part are one order (in δt) smaller than the physical 
dissipation.

3.2. A linear and decoupled energy stable scheme

The LC scheme constructed above requires solving, at every time step, a coupled system for ũn+1
, φn+1, μn+1 with 

variable coefficients. In this subsection, we construct a linear and decoupled (LD) scheme, and prove that it is energy stable 
for systems with static contact line condition (2.11). For the system (2.1)–(2.8), our LD scheme calculates un+1, φn+1, pn+1

and μn+1 from un, φn, pn in three steps.

(i) We first solve for φn+1 and μn+1 from

μn+1 = −ε�φn+1 + f̂
(
φn) + s1

(
φn+1 − φn), (3.27)

φn+1 − φn

+ ∇ · (un∗φn) = M�μn+1, (3.28)

δt
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with boundary conditions

∂nμ
n+1 = 0 on Γ, (3.29)

φn+1 − φn

δt
+ un

τ · ∇τ φn = −γ L̃n+1 on Γ, (3.30)

where

un∗ = un − δt
B

R
φn∇μn+1. (3.31)

(ii) Then, we solve ũn+1 from

R

(
ũn+1 − un∗

δt
+ (

un · ∇)
ũn+1

)
− �ũn+1 + ∇pn = 0, (3.32)

with boundary conditions

ũn+1 · n = 0 on Γ, (3.33)

∂nũn+1
τ + l

(
φn)ũn+1

s − BL̃n+1∇τ φn = 0 on Γ. (3.34)

(iii) In the last step, we update un+1 and pn+1 from (3.11)–(3.13), all the same as in the second step of the LC scheme.

The above LD scheme is derived from the LC scheme by replacing ũn+1 with un∗ in Eq. (3.5), and replacing ũn+1
τ with 

un
τ in Eq. (3.9). The introduction of an explicit velocity un∗ in (3.28) follows a similar approach used in Minjeaud [25] (see 

also Shen and Yang [37]). Comparing to the replacement of ũn+1 with un , the replacement of ũn+1 with un∗ in Eq. (3.5)
adds an extra dissipation term δt B/R∇ (̇(φn)2∇μ) to the equation. This allows us to prove a discrete energy dissipation law 
for systems with static contact line conditions. However, it remains open about how to extend this skill to handle ũn+1

τ in 
Eq. (3.9). Thus direct explicit treatment is used. The numerical results in Section 5 show that the above LD scheme has very 
good stability property.

When γ → +∞, the above LD scheme is reduced to a scheme for the system consisting of (2.1)–(2.3), (2.5)–(2.7) with 
NBC (2.12) and static contact line condition (2.11) naturally. For this case, we have a guaranteed energy dissipation.

Theorem 3. Assume s1 ≥ L1/2, s2 ≥ L2/2 and uw = 0. Then, the scheme (3.27)–(3.34), (3.11)–(3.13) is energy stable for the case 
γ → +∞.

Proof. (i) Eq. (3.27) is the same as Eq. (3.4), so the estimate (3.22) holds.

(ii) Taking the inner product of Eq. (3.28) with Bμn+1, noticing un∗ · n = 0 on boundary and using (3.29), we have

B

(
φn+1 − φn

δt
,μn+1

)
− B

(
un∗φn,∇μn+1) = −BM

∥∥∇μn+1
∥∥2

. (3.35)

(iii) Taking the inner product of Eq. (3.32) with ũn+1, we obtain

R

2δt

(∥∥ũ yn+1∥∥2 − ∥∥un∗
∥∥2 + ∥∥ũn+1 − un∗

∥∥2) = −∥∥∇ ũn+1∥∥2 + (
∂nũn+1

, ũn+1)
Γ

− (∇pn, ũn+1)
. (3.36)

Taking the inner product of Eq. (3.31) with Run∗/δt , we have

R

2δt

(∥∥un∗
∥∥2 − ∥∥un

∥∥2 + ∥∥un∗ − un
∥∥2) = −B

(
φn∇μn+1, un∗

)
. (3.37)

(iv) The treatment of pressure term is the same as in the LC scheme, so (3.25) still holds.
(v) For the boundary term in Eq. (3.36), Eq. (3.24) still holds. For the last boundary term in Eq. (3.22), using Eq. (3.30), we 
have the estimate

B

(
L̃n+1,

φn+1 − φn

δt

)
Γ

= B
(
L̃n+1,−γ L̃n+1 − un

τ · ∇τ φn)
Γ

= −Bγ
∥∥L̃n+1

∥∥2
Γ

− B
(
L̃n+1∇τ φn, un

τ

)
Γ

. (3.38)

(vi) Summing up Eqs. (3.22), (3.25), (3.35), (3.36), (3.37) and (3.38), we get
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En+1
tot − En

tot = −δt
[∥∥∇ ũn+1∥∥2 + M B

∥∥∇μn+1
∥∥2 + ∥∥l1/2(φn)ũn+1

s

∥∥2
Γ

]

− R

2
δt2

∥∥∥∥ ũn+1 − un∗
δt

∥∥∥∥
2

− R

2
δt2

∥∥∥∥ un∗ − un

δt

∥∥∥∥
2

− Bε

2
δt2

∥∥∥∥∇(φn+1 − φn)

δt

∥∥∥∥
2

− Bδt2
(

s1 − f̂ ′(ξ)

2
,

(
φn+1 − φn

δt

)2)
− Bδt2

(
s2 − g′′(ξ)

2
,

(
φn+1 − φn

δt

)2)
Γ

− Bγ δt
∥∥L̃n+1

∥∥2
Γ

− Bδt2
(

L̃n+1∇τ φn,
un

τ − ũn+1
τ

δt

)
Γ

. (3.39)

The last term is a splitting error that can not be bounded by the other boundary dissipation terms in Eq. (3.39) for arbitrary 
time step δt and small γ . But when γ → +∞, we have L̃n+1 = 0 from (3.30), thus the last term disappears. Then by the 
assumption s1 ≥ L1/2 and s2 ≥ L2/2, we get the desired energy estimate. �
Remark 2. When γ is finite, we don’t have L̃n+1 = 0. To control the last term in Eq. (3.39), we must have a good estimate 
about ∇τ φn(un

τ − ũn+1
τ ) on Γ , which is not trivial. In fact, the numerical results in Section 5 show that the LD scheme is 

not unconditional stable for any δt if γ is not large enough (see Table 3).

4. Spatial discretization

Since the proofs of energy stability for our schemes are based on weak form and integration by parts, it can be speculated 
that a suitable spatial discretization based on Galerkin approximation of the NSCH coupled system will be able to keep the 
energy dissipation properties of the semi-discretized LC and LD schemes, although such a proof will be by no means trivial, 
especially when aliasing error exists.

In this section, we consider Ω = [0, Lx] × [−1, 1] with the periodic boundary condition in x, and provide some de-
tails for the implementation of a Fourier–Legendre Galerkin method for the spatial discretization to test the approximation 
properties of our time discretization schemes. We take the LD scheme (3.27)–(3.34), (3.11)–(3.13) as an example to de-
scribe the Fourier–Legendre Galerkin approximation. The construction of spectral Galerkin approximation for the LC scheme 
(3.3)–(3.13) is similar.

4.1. Weak formulation

We first rewrite the LD scheme in the weak form.
In the first step, we need to solve (3.27)–(3.30), which are equivalent to

−ε�φn+1 + s1φ
n+1 − μn+1 = s1φ

n − f̂
(
φn), (4.1)

1

δt
φn+1 − δt

B

R
∇ · (β(

φn)∇μn+1) − M�μn+1 = 1

δt
φn − ∇ · (unφn), (4.2)

∂nμ
n+1 = 0 on Γ, (4.3)(

1

γ δt
+ s2

)
φn+1 + ε∂nφ

n+1 = 1

γ

(
1

δt
φn − un

τ · ∇τ φn
)

− (
g′(φn) − s2φ

n) on Γ, (4.4)

where β(φn) = (φn)2. The corresponding weak formulation for the above equations reads:
Find μn+1, φn+1 ∈ H1(Ω), such that for any ω, ϕ ∈ H1(Ω)

ε
(∇φn+1,∇ϕ

) + s1
(
φn+1,ϕ

) + c
(
φn+1,ϕ

)
Γ

− (
μn+1,ϕ

) = (
s1φ

n − f̂
(
φn),ϕ) + (

φn
Γ ,ϕ

)
Γ

, (4.5)

1

δt

(
φn+1,ω

) + δt
B

R

(
β
(
φn)∇μn+1,∇ω

) + M
(∇μn+1,∇ω

) = (
φn

r ,ω
)
. (4.6)

Here c = 1/γ δt + s2, φn
r = φn/δt − ∇ · (unφn), and φn

Γ = (φn/δt − un
τ · ∇τ φn)/γ − g′(φn) + s2φ

n . Note that to handle systems 
with static contact line conditions, we only need to set 1/γ = 0 in the above formulation.

In the second step, we solve Eqs. (3.31)–(3.34). The corresponding weak formulation reads:
Find ũn+1 ∈ V u := H1(Ω) × H1

0(Ω), such that for any v ∈ V u

R

(
ũn+1

δt
+ un · ∇ ũn+1

, v
)

+ (∇ ũn+1
,∇v

) + (
l
(
φn)ũn+1

s , vτ

)
Γ

= (
un

r , v
) + (

un
Γ , vτ

)
Γ

, (4.7)

where un
r = Run∗/δt − ∇pn , un = B L̃n+1∇τ φn .
Γ
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In the last step, we solve (3.11)–(3.13). The corresponding weak form reads:
Find p ∈ H1

c (Ω) := {p : p ∈ H1(Ω), 
∫
Ω

p dx = 0}, such that for any q ∈ H1
c (Ω)

(∇pn+1,∇q
) = (∇pn,∇q

) − R

δt

(∇ · ũn+1
,q

)
. (4.8)

4.2. Fourier–Legendre Galerkin approximation

Since the system is periodic in the x-direction, we use

Fm := span
{

Ek(x) = e2π ikx/Lx , |k| ≤ m
}
, Pk = span

{
ϕ j(y) : 0 ≤ j ≤ k

}
(4.9)

as the basis set for the x-direction and y-direction correspondingly, where

ϕ0(y) = 1 + x

2
, ϕ1(y) = 1 − x

2
, ϕ j(y) = L j(y) − L j−2(y), j = 2,3, . . . , (4.10)

and L j(y) is the Legendre polynomial of degree j. This is a direct extension of nearly orthogonal bases used by Shen [32]. 
For given m, k, we take Fm ⊗ Pk as the approximation space for μn+1 and φn+1. For the Navier–Stokes equation, the 
velocity in x-component satisfies the GNBC, which is a Robin type boundary condition, while the component in y-direction 
satisfies Dirichlet boundary condition. The Robin type boundary condition is treated naturally in the weak form, the Dirichlet 
boundary condition is imposed on the approximation space, i.e. the Galerkin approximation space for V u is V u

m,k := {(u, v) |
u ∈ Fm ⊗ Pk, v ∈ Fm ⊗ P 0

k }, where P 0
k = span{ϕ j(y), j = 2, . . . , k}. The approximation space for pressure is V p

m,k = Fm ⊗
Pk\C := span{El(x)ϕ j(y) : |l| ≤ m, 0 ≤ j ≤ k, l2 + j2 �= 0}.

4.3. Preconditioning

Using the spectral bases defined in (4.9), the constant-coefficient terms in Eqs. (4.5)–(4.8) all lead to sparse matrices and 
time independent. But the variable-coefficient terms in Eqs. (4.6) and (4.7) lead to time-dependent dense matrices. Explic-
itly building those time-dependent dense matrices are expensive (note that, if one use low-order finite element methods, 
the corresponding matrices will be sparse but still time-dependent). So we do not explicitly build them, but use the pre-
conditioned matrix-free BiCGSTAB method proposed by van der Vorst [40]. The system matrices for the left hand sides of 
following equations will be used as preconditioners of (4.5), (4.6), and (4.7) correspondingly.

Find μn+1, φn+1 ∈ Fm ⊗ Pk , such that for any ω, ϕ ∈ Fm ⊗ Pk

ε
(∇φn+1,∇ϕ

) + s1
(
φn+1,ϕ

) + c
(
φn+1,ϕ

)
Γ

− (
μn+1,ϕ

) = r1[ϕ], (4.11)

1

δt

(
φn+1,ω

) + M̃
(∇μn+1,∇ω

) = r2[ω]. (4.12)

Here M̃ = δt B/R + M .
Find ũn+1 ∈ V u

m,k , such that for any v ∈ V u
m,k

R

δt

(
ũn+1

, v
) + (∇ ũn+1

,∇v
) + l̄

(
ũn+1

s , vτ

)
Γ

= r3[v], (4.13)

where l̄ = maxφ |l(φ)|, and r1[ϕ], r2[ω], r3[v] are linear functionals that are not involved in the preconditioning procedure.
Similar procedure is used for the LC scheme. More precisely, we use (4.11), (4.12) with M̃ = M , together with the 

following equation as a preconditioner to the coupled linear system for φn+1, μn+1, ũn+1 in the LC scheme.

R

δt

(
ũn+1

, v
) + (∇ ũn+1

,∇v
) + l̄

(
ũn+1

s , vτ

)
Γ

− B
(
L̃n+1∇τ φn, vτ

)
Γ

+ B
(
φn∇μn+1, v

) = r4[v]. (4.14)

Numerical results in the next section indicate that the preconditioners we choose here are very efficient and nearly 
optimal in the sense that the numbers of BiCGSTAB iterations are almost independent of spatial resolutions.

Remark 3. The energy stability analysis discussed in the last section applies to the full discretizations as long as the Galerkin 
(not pseudo-Galerkin) formulations are used. In the numerical implementation, we use double quadrature points to numer-
ically integrate variable-coefficient and nonlinear terms for simplicity. Since those terms are all explicit in the matrix-free 
BiCGSTAB solver, it is easy to improve the accuracy of numerical integration adaptively.

5. Numerical results

In this section, we present some numerical results using the two schemes constructed above, with double quadrature 
points for integrating variable-coefficient and nonlinear terms. Numerical results show that the aliasing error of double rule 
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Fig. 1. The contours of phase variable φ in two simulations. (Top) The initial configuration of φ given by (5.2); (Middle) Contour of φ at t = 5 for the case: 
θs = 64◦ and uw = ±0.7; (Bottom) Contour of φ at t = 5 for the case: θs(y = ±1) = ±77.6◦ and uw = ±0.2. The results are generated by the LC scheme 
with 257 Fourier modes and 32 Legendre modes with δt = 0.01.

is very small for the spatial resolutions used in this section, and has no significant effect on the stability of the proposed 
schemes.

We consider the flow between two parallel plates which move in opposite directions at a constant speed. We fix the 
domain size to be L y = 2, Lx = 10, and set default values of other dimensionless parameters as:

B = 12, M = 0.0125, γ = 100, l(φ) ≡ 1/0.19, R = 0.6, ε = 0.05. (5.1)

This is similar to the configuration used in He et al. [18] and Gao and Wang [14] after a dimensional rescaling. Particularly, 
this set of parameters corresponds to Lz = 0.4, Lx = 2, B = 12, Ld = 5 × 10−4, Vs = 500, ls = 0.038, R = 3, ε = 0.01 in Gao 
and Wang [14].

We first present numerical results for two cases from Qian et al. [28], He et al. [18] and Gao and Wang [14]. In case 1, 
uw = ±0.7, θs = 64◦ , where uw is the speed of top and bottom plates, θs is the static contact angle; ± sign means the 
values on top boundary and bottom boundary have different signs (directions). In case 2, uw = ±0.2 and θs = ±77.6◦ . 
In both cases, the initial velocity field takes the profile of Couette flow, and the initial value of φ is given by (as shown in 
the top contour of Fig. 1)

φ0(x, y) = tanh

(
1√
2ε

(
0.25Lx − |x − 0.5Lx|

))
. (5.2)

The contours of phase variable φ at t = 5 obtained by the LC scheme with 257 Fourier modes (m = 128) and 32 Legendre 
modes with δt = 0.01 for both cases are presented in Fig. 1. The LD scheme gives similar results, so we only show the 
results of the LC scheme. The results are consistent to Fig. 5 in Qian et al. [28], Fig. 2 in He et al. [18] and Fig. 2(a) in Gao 
and Wang [14].

In Fig. 2, we show the velocity and pressure at t = 10 obtained from the LC scheme with 257 Fourier modes, 32 Legendre 
modes and δt = 0.02 for the case uw = ±0.2, θs = 77.6◦ . Note that, the pressure in this paper is different to the pressure 
in existing literature (cf., for instance, [14,18,27,28], etc.) by a value of Bμφ. The numerical results of the LD scheme are 
similar. Both schemes conserve the volume of φ to machine accuracy.

In Fig. 3, we plot the x-component of velocity at lower boundary y = −1 for two different time steps δt = 0.02 and δt =
0.01 obtained from the LC scheme and LD scheme for the case uw = ±0.2, θs = 77.6◦ . We observe that the differences are 
very small but the convergence of the LC scheme appears to be slightly faster than the convergence of the LD scheme. The 
slower convergence of the LD scheme near the contact points is due to the extra dissipation introduced by un∗ . Particularly, 
in current parameter setting, the constant for the extra dissipation has a coefficient δt B/R = 20δt , which is larger than the 
other error introduced by the first order splitting.
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Fig. 2. The information of φ, p, u, v fields at t = 10 obtained from the LC scheme using 257 Fourier modes, 32 Legendre modes and time step size δt = 0.02
for the case θs = 77.6◦ , uw = ±0.2. Other dimensionless parameters are given in (5.1). In the top picture, two solid curves (red) are the interfaces of two 
phases (where φ = 0), arrows (blue) denote the directions and strength of the velocity at corresponding spatial points. In the bottom picture, color denotes 
the value of pressure. In both pictures, the horizontal axis is x, vertical axis is y. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 3. The x-component velocity at y = −1, t = 10 using the LD scheme (left) and the LC scheme (right) with δt = 0.02 and δt = 0.01 for the case 
θs = 77.6◦, uw = ±0.2.

Table 1
Numerical errors for velocity u at t = 0.8 for different time steps. The numerical results using δt = 0.0005 are taken as reference solutions ue

LC , ue
LD . Spatial 

resolution nx = 2m + 1 = 513, ny = k + 1 = 64 are used for generating all the results.

δt ‖uLC − ue
LC‖2 Order ‖uLD − ue

LD‖2 Order

0.008 0.0261 0.75 0.0185 0.50
0.004 0.0155 1.15 0.0131 0.88
0.002 0.0070 1.49 0.0071 1.29
0.001 0.0025 0.0029

In Table 1, we show the temporal convergence property of the LC and LD schemes. We observe from this table that both 
schemes are first order accuracy in time. We note that the LD scheme is slightly worse than the LC scheme due to the error 
introduced by the extra stabilization term.

In Table 2, we show the convergence of the spectral discretization. Only the results of the LC scheme are presented, 
since results for the LD scheme are similar. We observe from this table that, despite the near singular shape of the solution 
at contact points, our spectral method converges very fast, achieving good accuracy with a reasonably small number of 
unknowns. Note that with the phase field approach, the contact line moves naturally on the solid surface due to a diffusive 
flux across the interface driven by the gradient of the chemical potential (cf. Jacqmin [20], Yue et al. [43]), so there is no 
singularity with a fixed interfacial width.

From Theorems 2 and 3, we know that the LC scheme is unconditionally stable for any value of γ , and the LD scheme 
is unconditionally stable for the case γ → +∞. In Table 3, we show the maximum stable time steps for the LD scheme 
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Table 2
Convergence of spatial discretization. The results on fine grids nx × ny = 240 × 64 and nx × ny = 257 × 48 are taken as the reference solutions ue , φe for 
the left and right parts in the table correspondingly. All the errors are calculated at t = 1 using time step size δt = 0.0005.

nx × ny ‖u − ue‖2 ‖φ − φe‖2 nx × ny ‖u − ue‖2 ‖φ − φe‖2

40×64 1.3E−1 3.6E−1 257×8 2.2E−3 2.9E−3
80×64 2.3E−2 8.9E−2 257×16 3.6E−4 4.7E−4

120×64 6.1E−3 1.7E−2 257×24 1.2E−4 1.6E−4
160×64 1.9E−4 4.1E−3 257×32 4.9E−5 6.5E−5

Table 3
Maximum time steps allowed for different values of γ , B and different spatial resolutions in the LD scheme.

nx × ny 129 × 16 257 × 32 513 × 64

γ 1 10 100 1 10 100 1 10 100

B = 1 2.8E−1 >100 >100 2.3E−1 >100 >100 2.3E−1 >100 >100
B = 12 2.2E−2 2.7E−2 >100 1.8E−2 2.2E−2 >100 1.8E−2 2.2E−2 >100
B = 144 2.5E−3 2.5E−3 3.2E−3 2.0E−3 2.1E−3 2.6E−3 2.0E−3 2.0E−3 2.5E−3

Table 4
Average numbers of inner iterations for BiCGSTAB solvers to converge to 10−9 in the LC and LD schemes. Except explicitly specified in the table, the values 
of nx, ny , δt, γ , B are nx = 257, ny = 32, δt = 0.01, γ = 500 and B = 12. For the LD scheme, only the iteration numbers for the Cahn–Hilliard equation 
are presented. The iteration numbers for the velocity equation are not presented, since they are almost unchanged (about 1–2 inner iterations) in these 
simulations.

nx × ny 129 × 16 257 × 32 513 × 64
LD 5 7 9.5
LC 5 5.5 6

γ 100 10 1
LD 7 7 6.5
LC 6 6.5 6.5

δt 0.001 0.1 10
LD 3.5 12.5 18
LC 2.5 18 82

B 1 12 144
LD 3.5 7 9
LC 2.5 5.5 18

with different values of γ , B and different spatial resolutions. From this table we see that the spatial resolution almost 
has no effect on the stability of the LD scheme, and larger maximum time steps are allowed for larger γ and smaller B . 
In particular, when γ is much larger than B , the LD scheme becomes unconditionally stable.

In Table 4, we show average numbers of the inner iterations of BiCGSTAB for the φ, μ equations in the LD scheme and 
the u, φ, μ equations in the LC scheme. We observe that the iterative solvers for the two schemes have similar performance. 
They all weakly depend on values of δt and B , but are almost independent of spatial resolutions and the values of γ . Note 
that the BiCGSTAB solvers for the two velocity equations in the LD scheme converge in just 1–2 iterations. Considering 
that the computational cost of one inner iteration in LC scheme is almost three times the computational cost of one inner 
iteration for φ, μ solver in the LD schemes, so the overall computational cost of the LD scheme is about 1/3 the cost of the 
LC scheme.

Before ending this section, we present some numerical results of the dewetting and spreading process in Fig. 4. On the 
left part, seven snapshots show the dewetting process of a droplet with static contact angle θs = 30◦; on the right part, 
seven snapshots show us the spreading process of a droplet with static contact angle θs = 150◦ .

6. Concluding remarks

In this paper, we constructed two efficient temporal discretization schemes for a phase-field model incorporating MCLs. 
The model couples incompressible Navier–Stokes equations with GNBC and Cahn–Hilliard equation with static/dynamic 
contact line boundary conditions. The LC scheme and LD scheme are shown to obey a discrete energy dissipation law, thus 
allow for large time steps. The LC scheme is found to be slightly more robust and accurate than the LD scheme, but it needs 
a relatively larger computational cost, while the LD scheme is more computational efficient but less robust for small γ cases 
(when dynamical effect of contact line is significant) and relatively less accurate for the large B/R case (large capillary force 
case).

Comparing to other methods using convex splitting (cf. He et al. [18], Gao and Wang [14], etc.), the two energy stable 
schemes proposed in this paper only need to solve linear systems in each time step. Using the Fourier–Legendre Galerkin 
method as an example, we show that these linear systems can be solved efficiently by using a preconditioned BiCGSTAB 
solver. Since the schemes are discretized in a conserved form for the phase field variable, the volume fraction is conserved 
up to machine accuracy. We also verified that the spectral Galerkin approximation in space has very good convergence 
property despite the large gradient of x-component velocity near the contact points on boundaries.

The 2-dimensional numerical experiments in this paper show that the LC scheme and the LD scheme have similar 
efficiency–accuracy balance. But we expect the LD scheme to have better accuracy–efficiency balance for problems in com-
plex 3-dimensional domains.



J. Shen et al. / Journal of Computational Physics 284 (2015) 617–630 629
Fig. 4. Spreading and dewetting of a droplet. (Left) θs = 30◦; (Right) θs = 150◦ . We set uw = 0 in both cases. The other model parameters are defined in 
(5.1). The computational domain is [0, 6] × [−1, 1] as shown in the figures. The LC scheme with resolution nx = 257, ny = 128, δ = 0.01 is used to generate 
these results.
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