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Abstract
We construct three efficient and accurate numerical methods for solving the Klein–Gordon–
Schrödinger (KGS) equations with/without damping terms. The first one is based on the
original SAV approach, it preserves a modified Hamiltonian but does not preserve the wave
energy. The second one is based on the Lagrange multiplier SAV approach, it preserves both
the original Hamiltonian and wave energy, but requires solving a nonlinear algebraic system
which may require smaller time steps to have real solutions. The third one is also based
on the Lagrange multiplier approach and preserves the Hamiltonian and wave energy in a
slightly different form, but it leads to a nonlinear quadratic system for the Lagrangemultiplier
which can always be explicitly solved. We present ample numerical tests to validate the three
schemes, and provide a comparison on the efficiency and accuracy of the three schemes for
the KGS equations.

Keywords Klein–Gordon–Schrödinger equations · Structure preserving · Stability ·
Lagrange multiplier approach
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1 Introduction

We consider in this paper numerical approximation of the following Klein–Gordon–
Schrödinger (KGS) equations,
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⎧
⎪⎨

⎪⎩

i∂tψ + �ψ + φψ + iνψ = 0, x ∈ �, t > 0,

ε2∂t tφ + γ ε∂tφ − �φ + φ − |ψ |2 = 0, x ∈ �, t > 0,

ψ(x, 0) = ψ(0)(x), φ(x, 0) = φ(0)(x), ∂tφ(x, 0) = φ(1)(x), x ∈ �,

(1.1)

where � is a bounded domain in R
d (d = 1, 2, 3), and ψ and φ are prescribed with either

homogeneous Dirichlet or periodic boundary conditions. In the absence of the interaction
terms, the first equation of (1.1) is a Schrödinger equation, and the second one is a Klein–
Gordon equation.

The KGS equations (1.1) describe the dynamic of the interaction of scalar nucleons
interactingwith neutral scalarmesons throughYukawa interaction. In the above, the complex-
valued unknown function ψ = ψ(x, t) represents a scalar nucleon field, the real-valued
unknown function φ = φ(x, t) represents a scalar meson field, ε > 0 is a parameter inversely
proportional to the speed of light, and γ and ν are two nonnegative parameters. In fact, when
ε = 1, γ = 0 and ν = 0, it reduces to the standard KGS equations. The system (1.1) is
dispersive with ν = γ = 0, and dissipative when ν > 0 and/or γ > 0.

The KGS equations have been extensively studied in the literature. We refer to [13–19,28]
(resp. [5,6,27]) and the references therein for the mathematical analysis of the conservative
(i.e. ν = γ = 0) KGS equations (resp. the dissipative KGS equations).

The standard KGS equations have also been extensively studied numerically. For exam-
ples, Xiang [36] constructed a conservative spectral scheme for the periodic initial-value
problem and provided its error analysis; Zhang [38] developed a conservative difference
scheme in one dimension; Kong et al. [23,24] and Hong et al. [21] considered multi-
symplectic schemes; Hong et al. [20] compared the classical conservative properties of five
difference schemes and investigated their numerical behaviors; Liang [26] constructed three
linearly implicit Fourier pseudospectral algorithms; Chen et al. [8] developed a conserva-
tive and linearly implicit finite difference scheme with second order temporal accuracy and
eighth order spatial accuracy by means of the Richardson extrapolation method; Li et al.
[25] proposed a conservative linearized Galerkin finite element method; Wang [34] pro-
posed a conservative high-order compact finite difference scheme for the KGS equation with
Dirichlet boundary condition; Yang [37] developed methods involving a Crank–Nicholson
time discretization for the Schrödinger equation part, a Crank–Nicholson leap frog method
in time for the Klein–Gordon equation part, and local discontinuous Galerkin methods in
space. For the KGS equations in the “nonrelativistic” regime, we refer to [2,4]. For some
recent work on the fractional KGS equations, we refer to [7,12,30,35].

Numericalmethods and sumilations for theKGSequationswith dampingmechanism (1.1)
has received less attention. Bao and Yang [3] constructed efficient and accurate schemes with
the time-splitting Fourier spectral technique for the Schrödinger-type operator, the Fourier
pseudo-spectral method for the Klein–Gordon part, and the adoption of solving the ordinary
differential equations (ODEs) in phase space analytically. Their numerical methods possess
some nice discrete properties, e.g., time reversible, time transverse invariant, and it is shown
through a formal Von Neumann analysis that the numerical solutions remain bounded but
without proof for discrete energy dissipation. Ji and Zhang [22] developed a decoupled
time-stepping method, based on the finite difference approximation in time and Fourier
pseudo-spectral discretization in space, and the scheme is proved to preserve/dissipate the
discrete wave energy for ν ≥ 0 and dissipate the energy when ν = 0 and γ ≥ 0. However, a
nonlinear systemneeds to be solved in each time step. Thus, it is of great interests to develop an
efficient, accurate numerical scheme that can preserve the conservation/dissipation properties
of wave energy and Hamiltonian at the discrete level. The main difficulty is to avoid solving
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complicatednonlinear systemsat each time stepwhile preserving the conservation/dissipation
properties.

The aim of this paper is to construct a class of efficient and accurate schemes for the
KGS equations (1.1) based on the original SAV approach [31] and the SAV approach with
Lagrange multipliers [9,10]. These approaches were proposed for dissipative gradient flows,
and recently they have been successfully applied to dispersive equations such as nonlinear
Schrödinger and Zakharov equations [1,11,29,32]. However, there are new challenges in
application of these approaches to KGS equations (1.1). First, the Hamiltonian of KGS
equations involves a non-quadratic term which is not necessarily bounded from below so
the original SAV approach can not be directly applied. Second, the original SAV approach is
designed to dissipate amodified total energyorHamiltonian, but does not have amechanism to
preserve the wave energy. We employ a SAV approach with Lagrange multipliers to preserve
the wave energy as well as to preserve/dissipate the original Hamiltonian. Combined with
a Crank–Nicolson/Leap-Frog scheme in time, the proposed schemes enjoy the following
distinct advantages:

• The schemes are second-order accurate in time and can be combined with any Galerkin-
type spatial discretization;

• At each time step, they require solving only a sequence of linear decoupled systems with
constant coefficients, and in the case of the schemes with Lagrange multipliers, an addi-
tional nonlinear algebraic system which can be solved with a negligible computational
cost.

We carry out a series of numerical simulation to validate these schemes and to compare them
under conservative and dissipative regimes.

The rest of paper is organized as follows. In Sect. 2, we reformulate the KGS equations
with SAV, develop a SAV scheme based on Crank–Nicolson-leap-frog, and prove that it
preserves/dissipates a modified Hamiltonian. In Sect. 3, we construct two schemes using
the Lagrange multiplier approach and show that Scheme LM1 preserve the wave energy,
as well as preserve/dissipate the original Hamiltonian, while Scheme LM2 preserves the
Hamiltonian and wave energy in a slightly different form. In Sect. 4, we present various
numerical simulations to compare and validate the proposed schemes for KGS equations,
and apply our newapproach to simulate soliton-soliton collisions in 1Dwith/without damping
terms, as well as dynamics of a 2D problems in KGS equations. Some concluding remarks
are presented in Sect. 5.

2 KGS System and Its SAV Reformulation

Throughout the paper, we shall use (·, ·) and ‖ · ‖ to denote the inner product and norm in
L2(�), respectively, and we denote norms in Hs(�) by ‖ · ‖s .

For the sake of clarity, we first rewrite the KGS equations (1.1) as follows. Let ψ(x, t) =
p(x, t) + iq(x, t), where both p(x, t) and q(x, t) are real-valued functions, and introduce
a new variable u(x, t) = ε∂tφ(x, t) to reformulate (1.1) as a first-order-in-time differential
system. Then the problem (1.1) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t q + νq = �p + φ p, x ∈ �, t > 0,

∂t p + ν p = −(�q + φq), x ∈ �, t > 0,

ε∂t u = �φ − φ + (
p2 + q2

) − γ u, x ∈ �, t > 0,

ε∂tφ = u, x ∈ �, t > 0.

(2.1)
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Similarly, p, q, u and φ are prescribed with either homogeneous Dirichlet or periodic bound-
ary conditions. We denote the unknowns of the above system by v = (p, q, u, φ)T .

Theorem 2.1 The system (2.1) with homogeneous Dirichlet or periodic boundary conditions
satisfies the following conservation laws:

d

dt
(‖p‖2 + ‖q‖2) = −2ν(‖p‖2 + ‖q‖2), (2.2)

where ‖p‖2 + ‖q‖2 is the wave energy, and
dH

dt
= −γ

ε
‖u‖2 − 2ν(‖∇ p‖2 + ‖∇q‖2) + 2ν(φ, |p|2 + |q|2), (2.3)

where H(t; v) is the Hamiltonian defined by

H(t; v) = {‖∇ p‖2 + ‖∇q‖2 + 1

2
(‖∇φ‖2 + ‖u‖2 + ‖φ‖2)} − (φ, |p|2 + |q|2). (2.4)

Proof Taking the inner products of the first two equations in (2.1)with 2q and 2p respectively,
and summing up the results, we obtain immediately (2.2).

Taking the inner products of the first two equations in (2.1) with −2(∂t p + ν p) and
2(∂t q + νq) respectively, and summing up the results, we obtain

d

dt
{‖∇ p‖2 + ‖∇q‖2} − (φ, ∂t (|p|2 + |q|2))

= −2ν(‖∇ p‖2 + ‖∇q‖2) + 2ν(φ, |p|2 + |q|2). (2.5)

On the other hand, taking the inner products of the first two equations in (2.1) with u/ε and
− (

�φ − φ + (
p2 + q2

))
/ε respectively, and summing up the results, we obtain

1

2

d

dt
{‖∇φ‖2 + ‖u‖2 + ‖φ‖2} − (∂tφ, |p|2 + |q|2) = −γ

ε
‖u‖2. (2.6)

Summing up the above two relations, we obtain (2.3). ��
Remark 2.1 We observe from the above that

• When ν = 0, we have

d

dt
D(t; p, q) = 0, t ≥ 0, (2.7)

where D(t; p, q) := ‖p(x, t)‖2 + ‖q(x, t)‖2, and
d

dt
H(t; v) = −γ

ε
‖u‖2, t ≥ 0. (2.8)

• When ν > 0, we derive from (2.2) that the wave energy decays exponentially, more
precisely

D(t; p, q) := e−2νt D(0; p, q), t ≥ 0, (2.9)

but the Hamiltonian H(t; v) is not necessarily decreasing. However, it can be shown (cf.
[14,33]) that the Hamiltonian is bounded.

Since theHamiltonian in the continuous case is notmonotonically decreasingwhen ν > 0,
one can not expect to construct schemes which dissipate the Hamiltonian when ν > 0.
Therefore, we shall restrict ourselves to the case with ν = 0, and concentrate on constructing
numerical schemes which can preserve the conservation or dissipation properties (2.7) and
(2.8). Note that all the schemes constructed below can be directly extended to deal with the
case ν > 0 by treating the linear term ν p and νq in (2.1) implicitly.
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2.1 The SAV Reformulation

When ν = 0, one can see that (2.1) can be cast as a gradient system so one can in principle
apply the original SAV approach introduced in [31], which also requires a suitable splitting
of the Hamiltonian H(t; v) = H0(t; v) + H1(t; v) such that (i) δH0

δv is linear and positive
definite; and (ii) H1(t; v) is bounded from below.

While the non quadratic term (φ, |p|2 + |q|2) in the Hamiltonian is not bounded from
below for arbitrary functions (φ, p, q), it can be shown (cf. [14,33]) that there exists C0 > 0
such that |(φ, |p|2 + |q|2)| < C0 if (φ, p, q) is a solution of (2.1). Hence, we split H(t; v)
as follows:

H(t; v) = {‖∇ p‖2 + ‖∇q‖2 + 1

2
(‖∇φ‖2 + ‖u‖2 + ‖φ‖2) − C0} + {C0 − (φ, |p|2 + |q|2)}

:= H0(t; v) + H1(t; v).
(2.10)

Since H1(t, v) > 0, we can define a SAV R(t) = √
H1(t) := √

H1(t, v), and expand (2.1)
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t q = �p + R(t)√
H1(t)

φ p, x ∈ �, t > 0,

∂t p = −
(

�q + R(t)√
H1(t)

φq

)

, x ∈ �, t > 0,

ε∂t u = �φ − φ + R(t)√
H1(t)

(
p2 + q2

) − γ u, x ∈ �, t > 0,

ε∂tφ = u, x ∈ �, t > 0,

Rt = − 1

2
√
H1(t)

[
(2ppt + 2qqt , φ) + (

p2 + q2, φt
)]

.

(2.11)

With R(0) = √
H1(0), it is clear that the above system is equivalent to (2.1) with R(t) =√

H1(t).

2.2 Time Discretizations Using the SAV Approach

We construct a semi-discrete scheme based on Crank–Nicolson-leap-frog scheme using the
SAV approach for the system (2.11).

Scheme SAV:
Initialization: Given q0, p0, u0, φ0, determine q1, p1, u1, φ1 by

q1 − q0

2δt
= �p1 + �p0

2
+ R1 + R0

2
√

H0
1

φ0 p0, (2.1)

p1 − p0

2δt
= −

⎛

⎝
�q1 + �q0

2
+ R1 + R0

2
√

H0
1

φ0q0

⎞

⎠ , (2.2)

ε
u1 − u0

2δt
= �φ1 + �φ0

2
− φ1 + φ0

2
+ R1 + R0

2
√

H0
1

((
p0

)2 + (
q0

)2
)

− γ
u1 + u0

2
, (2.3)
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ε
φ1 − φ0

2δt
= u1 + u0

2
, (2.4)

R1 − R0

2δt
= − 1

2
√

H0
1

[(

2p0
p1 − p0

2δt
+ 2q0

q1 − q0

2δt
, φ0

)

+
(
(
p0

)2 + (
q0

)2
,
φ1 − φ0

2δt

)]

.

(2.5)

Then, for n = 1, 2, . . ., we solve qn+1, pn+1, un+1, φn+1 from the following second-order
Crank–Nicolson-leap-frog scheme:

qn+1 − qn−1

2δt
= �pn+1 + �pn−1

2
+ Rn+1 + Rn−1

2
√
Hn
1

φn pn, (2.6)

pn+1 − pn−1

2δt
= −

(
�qn+1 + �qn−1

2
+ Rn+1 + Rn−1

2
√
Hn
1

φnqn
)

, (2.7)

ε
un+1 − un−1

2δt
= �φn+1 + �φn−1

2
− φn+1 + φn−1

2
+ Rn+1 + Rn−1

2
√
Hn
1

((
pn

)2 + (
qn

)2
)

−γ
un+1 + un−1

2
, (2.8)

ε
φn+1 − φn−1

2δt
= un+1 + un−1

2
, (2.9)

Rn+1 − Rn−1

2δt
= − 1

2
√
Hn
1

[(

2pn
pn+1 − pn−1

2δt
+ 2qn

qn+1 − qn−1

2δt
, φn

)

+
(
(
pn

)2 + (
qn

)2
,
φn+1 − φn−1

2δt

)]

. (2.10)

Note that the initialization step is of first-order but the local truncation error is of second-
order. So the combined scheme is still of second-order.

Theorem 2.2 Let Hn
1 = C0 − (φn, |pn |2 + |qn |2). There exists C0 > 0 such that if Hn

1 > 0,
we have Hn+1

1 > 0 for all n ≥ 0.
The scheme (2.6)–(2.10) satisfies discrete energy laws:

H1
SAV − H0

SAV = −δt
γ

2ε

∥
∥u1 + u0

∥
∥2 , (2.11)

and

Hn+1
SAV − Hn−1

SAV = −δt
γ

2ε

∥
∥un+1 + un−1

∥
∥2 , ∀n ≥ 1, (2.12)

where

Hn+1
SAV = 1

2

(∥
∥φn+1

∥
∥2 + ∥

∥un+1
∥
∥2 + ∥

∥∇φn+1
∥
∥2

)

+
(∥
∥∇ pn+1

∥
∥2 + ∥

∥∇qn+1
∥
∥2

)
+ ∣

∣Rn+1
∣
∣2 , ∀n ≥ 0.

(2.13)

123



Journal of Scientific Computing            (2021) 89:47 Page 7 of 26    47 

Proof Taking the inner products of the equations in (2.1)–(2.4) with −2 p1−p0

2δt , 2 q1−q0

2δt ,

u1+u0
2ε and −

(

�φ1+�φ0

2 − φ1+φ0

2 + R1+R0

2
√

H0
1

((
p0

)2 + (
q0

)2
)
)

/ε, respectively, and multi-

plying (2.5) by R1 + R0, summing up the results, we obtain (2.11).
Assuming Hn

1 > 0, then (2.6)–(2.10) is well defined. Taking inner product of (2.6)–(2.9)

with −2 pn+1−pn−1

2δt , 2 qn+1−qn−1

2δt , un+1+un−1

2ε and −
(

�φn+1+�φn−1

2

− φn+1+φn−1

2 + Rn+1+Rn−1

2
√

Hn
1

(
(pn)2 + (qn)2

) )
/ε, respectively, and multiplying (2.10) by

Rn+1 + Rn−1, summing up the results, we obtain (2.12).
It remains to show Hn+1

1 > 0.
From (2.12), we derive in particular that

∥
∥pn+1

∥
∥2 + ∥

∥qn+1
∥
∥2 ≤ C1H

n+1
SAV ≤ C1H(0, v) := C2. (2.14)

On the other hand, we derive from the Sobolev inequality

‖ f ‖L4 ≤ C‖ f ‖1/4‖∇ f ‖3/4 ∀ f ∈ H1
0 (�) or H1

p(�), (2.15)

and the Hölder inequality that

|(φ, |p|2)| ≤ C‖φ‖L4‖p‖L4‖p‖
≤ C‖φ‖1/4‖∇φ‖3/4‖p‖5/4‖∇ p‖3/4

≤ 1

8
(‖φ‖2 + ‖∇φ‖2 + ‖∇ p‖2) + C3‖p‖10.

(2.16)

Similarly we have

|(φ, |q|2)| ≤ 1

8
(‖φ‖2 + ‖∇φ‖2 + ‖∇q‖2) + C3‖q‖10. (2.17)

Therefore, we derive from the above and (2.14) that

|(φn+1, |pn+1|2 + |qn+1|2)| ≤ Hn+1
SAV + C3(‖pn+1‖10 + ‖qn+1‖10)

≤ H(0, v) + 2C3C
5
2 . (2.18)

Hence, setting C0 = H(0, v) + 2C3C5
2 + 1, we have Hn+1

1 ≥ 1. ��
The scheme (2.6)–(2.10) can be efficiently implemented as follows.
Setting

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qn+1 = qn+1
1 + Rn+1qn+1

2 ,

pn+1 = pn+1
1 + Rn+1 pn+1

2 ,

un+1 = un+1
1 + Rn+1un+1

2 ,

φn+1 = φn+1
1 + Rn+1φn+1

2 ,

(2.19)

in (2.6)–(2.9), and collecting all terms without or with Rn+1, we obtain the following decou-
pled systems:

Avn+1
1 = gn1, (2.20)

Avn+1
2 = gn2, (2.21)
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where

A =

⎡

⎢
⎢
⎢
⎢
⎣

1
2δt − 1

2� 0 0
1
2�

1
2δt 0 0

0 0 ε
2δt + γ

2
1
2 − 1

2�

0 0 − 1
2 I

ε
2δt

⎤

⎥
⎥
⎥
⎥
⎦

, (2.22)

vn+1
1 =

⎡

⎢
⎢
⎣

qn+1
1
pn+1
1

un+1
1

φn+1
1

⎤

⎥
⎥
⎦ , vn+1

2 =

⎡

⎢
⎢
⎣

qn+1
2
pn+1
2

un+1
2

φn+1
2

⎤

⎥
⎥
⎦ ,

gn1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2δt q

n−1 + 1
2�pn−1 + Rn−1

2
√

Hn
1
φn pn

1
2δt p

n−1 − 1
2�qn−1 − Rn−1

2
√

Hn
1
φnqn

(
ε
2δt − γ

2

)
un−1 + ( 1

2� − 1
2

)
φn−1 + Rn−1

2
√

Hn
1
((pn)2 + (qn)2)

ε
2δt φ

n−1 + 1
2u

n−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, gn2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φn pn

2
√

Hn
1

− φnqn

2
√

Hn
1

(pn )2+(qn )2

2
√

Hn
1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.23)

After solving vn+1
1 and vn+1

2 from (2.20) and (2.21), we plug (2.19) into equation (2.10) to
obtain the following linear algebraic equation for Rn+1:

(

1 + 1

2
√
Hn
1

(2pn pn+1
2 + 2qnqn+1

2 , φn) + ((pn)2 + (qn)2, φn+1
2 )

)

Rn+1

= Rn−1 − 1

2
√
Hn
1

[
2(pnφn, pn+1

1 − pn−1) + 2(qnφn, qn+1
1 − qn−1) + ((pn)2 + (qn)2, φn+1

1 − φn−1)
]
,

(2.24)

from which Rn+1 can be obtained explicitly.
To summarize, Scheme SAV (2.6)–(2.10) can be implemented as follows:

1. Compute right-hand term gn1 and gn2 by (2.23);
2. Solve for qn+1

i , pn+1
i , un+1

i , φn+1
i , i = 1, 2 from (2.20)–(2.21);

3. Find Rn+1 by solving (2.24);
4. Update qn+1, pn+1, un+1, φn+1 by (2.19).

The first step (2.1)–(2.5) can be implemented similarly.
Scheme SAV enjoys the following advantages:

• It is second-order accurate, conserves the modified Hamiltonian when γ = 0, and is
unconditionally energy stable when γ > 0;

• It only requires solving decoupled, linear systems with constant coefficients at each time
step.
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3 SAV Approach with LagrangeMultipliers

TheSchemeSAV conserves/dissipates amodifiedHamiltonian, not the original Hamiltonian,
and it does not preserve the wave energy. Below, we adopt the Lagrange multiplier approach
[9,10] to construct efficient schemes which can conserve/dissipate the original Hamiltonian
as well as conserve the wave energy.

3.1 The First LagrangeMultiplier Approach

We introduce two Lagrange multipliers η (t), λ (t) to reformulate the KGS equations (2.1)
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t q = �p + η (t) φ p + λ (t) p, x ∈ �, t > 0,

∂t p = − (�q + η (t) φq + λ (t) q) , x ∈ �, t > 0,

ε∂t u = �φ − φ + η (t)
(
p2 + q2

)
− γ u, x ∈ �, t > 0,

ε∂tφ = u, x ∈ �, t > 0,

− d

dt

(
p2 + q2, φ

)
= −η (t)

[
(2ppt + 2qqt , φ) +

(
p2 + q2, φt

)]

− λ(t) [(2p, pt ) + (2q, qt )] ,

d

dt

(
p2 + q2, 1

)
= 0,

(3.1)

with η(0) = 1 and λ(0) = 0. Comparing with the original KGS equations (2.1), we find
that the exact solutions for η(t) and λ(t) are η(t) ≡ 1 and λ(t) ≡ 0. In the above λ(t) is
introduced to enforce the conservation of the wave energy, while η(t) is introduced to enforce
the rate of change of (φ, |p|2 + |q)2), which is nonlinear part of the Hamiltonian. Note that
we added an extra zero term −λ

∫

�
2ppt + 2qqtdx at the end of the second last equation.

This term is essential in the design of unconditionally energy stable schemes below.

Scheme LM1:
Initialization: Given q0, p0, u0, φ0, determine q1, p1, u1, φ1 by

q1 − q0

2δt
= �p1 + �p0

2
+ η1 + η0

2
φ0 p0 + λ1 + λ0

2
p0, (3.2)

p1 − p0

2δt
= −

(
�q1 + �q0

2
+ η1 + η0

2
φ0q0 + λ1 + λ0

2
q0

)

, (3.3)

ε
u1 − u0

2δt
= �φ1 + �φ0

2
− φ1 + φ0

2
+ η1 + η0

2

((
p0

)2 + (
q0

)2
)

− γ
u1 + u0

2
, (3.4)

ε
φ1 − φ0

2δt
= u1 + u0

2
, (3.5)

−
((

p1
)2 + (

q1
)2

, φ1
)

−
((

p0
)2 + (

q0
)2

, φ0
)

2δt

= −η1 + η0

2

[(

2p0
p1 − p0

2δt
+ 2q0

q1 − q0

2δt
, φ0

)

+
(
(
p0

)2 + (
q0

)2
,
φ1 − φ0

2δt

)]
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−λ1 + λ0

2

[(

2p0,
p1 − p0

2δt

)

+
(

2q0,
q1 − q0

2δt

)]

, (3.6)

((
p1

)2 + (
q1

)2
, 1

)
=

((
p0

)2 + (
q0

)2
, 1

)
, (3.7)

Then, for n = 1, 2, . . ., we solve qn+1, pn+1, un+1, φn+1 as follows:

qn+1 − qn−1

2δt
= �pn+1 + �pn−1

2
+ ηn+1 + ηn−1

2
φn pn + λn+1 + λn−1

2
pn, (3.8)

pn+1 − pn−1

2δt
= −

(
�qn+1 + �qn−1

2
+ ηn+1 + ηn−1

2
φnqn + λn+1 + λn−1

2
qn

)

, (3.9)

ε
un+1 − un−1

2δt
= �φn+1 + �φn−1

2
− φn+1 + φn−1

2
+ ηn+1 + ηn−1

2

((
pn

)2 + (
qn

)2
)

−γ
un+1 + un−1

2
, (3.10)

ε
φn+1 − φn−1

2δt
= un+1 + un−1

2
, (3.11)

−
((

pn+1
)2 + (

qn+1
)2

, φn+1
)

−
((

pn−1
)2 + (

qn−1
)2

, φn−1
)

2δt
= −ηn+1 + ηn−1

2
[(

2pn
pn+1 − pn−1

2δt
+ 2qn

qn+1 − qn−1

2δt
, φn

)

+
(
(
pn

)2 + (
qn

)2
,
φn+1 − φn−1

2δt

)]

−λn+1 + λn−1

2

[(

2pn,
pn+1 − pn−1

2δt

)

+
(

2qn,
qn+1 − qn−1

2δt

)]

, (3.12)

((
pn+1)2 + (

qn+1)2 , 1
)

=
((

p0
)2 + (

q0
)2

, 1
)

, (3.13)

Theorem 3.1 The scheme (3.8)–(3.13) preserves the wave energy, and conserves/dissipates
the original Hamiltonian in the sense that

H1 − H0 = −δt
γ

2ε

∥
∥u1 + u0

∥
∥2 , (3.14)

and

Hn+1 − Hn−1 = −δt
γ

2ε

∥
∥un+1 + un

∥
∥2 , ∀n ≥ 1, (3.15)

where

Hn+1 = 1

2

(∥
∥φn+1

∥
∥2 + ∥

∥un+1
∥
∥2 + ∥

∥∇φn+1
∥
∥2

)

+
(∥
∥∇ pn+1

∥
∥2 + ∥

∥∇qn+1
∥
∥2

)
−

((
pn+1)2 + (

qn+1)2 , φn+1
)

, ∀n ≥ 0.
(3.16)

Proof Taking the inner products of the equations in (3.2)–(3.5) with −2 p1−p0

2δt , 2 q1−q0

2δt ,
u1+u0
2ε and −

(
�φ1+�φ0

2 − φ1+φ0

2 + η1+η0

2

((
p0

)2 + (
q0

)2
))

/ε, respectively, summing up

the results, we obtain (3.14).

Taking inner product of (3.8)–(3.11) with −2 pn+1−pn−1

2δt , 2 qn+1−qn−1

2δt , un+1+un−1

2ε and

−
(
�

φn+1+φn−1

2 − φn+1+φn−1

2 + ηn+1+ηn−1

2

(
(pn)2 + (qn)2

))
/ε, respectively, we obtain

(3.15). ��
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Scheme LM1 can be efficiently implemented similarly as Scheme SAV. More precisely,
setting

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pn+1 = pn+1
1 + ηn+1 pn+1

2 + λn+1 pn+1
3 ,

qn+1 = qn+1
1 + ηn+1qn+1

2 + λn+1qn+1
3 ,

φn+1 = φn+1
1 + ηn+1φn+1

2 + λn+1φn+1
3 ,

un+1 = un+1
1 + ηn+1un+1

2 + λn+1un+1
3 ,

(3.17)

in (3.8)–(3.11), we find that

Avn+1
1 = gn1, (3.18)

Avn+1
2 = gn2, (3.19)

Avn+1
3 = gn3, (3.20)

where A are defined by (2.22) and

vn+1
1 =

⎡

⎢
⎢
⎣

qn+1
1
pn+1
1

un+1
1

φn+1
1

⎤

⎥
⎥
⎦ , vn+1

2 =

⎡

⎢
⎢
⎣

qn+1
2
pn+1
2

un+1
2

φn+1
2

⎤

⎥
⎥
⎦ , vn+1

3 =

⎡

⎢
⎢
⎣

qn+1
3
pn+1
3

un+1
3

φn+1
3

⎤

⎥
⎥
⎦ , (3.21)

and

gn1 =

⎡

⎢
⎢
⎢
⎣

1
2δt q

n−1 + 1
2�pn−1 + ηn−1

2 φn pn + λn−1

2 pn

1
2δt p

n−1 − 1
2�qn−1 − ηn−1

2 φnqn − λn−1

2 qn
(

ε
2δt − γ

2

)
un−1 + ( 1

2� − 1
2

)
φn−1 + ηn−1

2 ((pn)2 + (qn)2)
ε
2δt φ

n−1 + 1
2u

n−1

⎤

⎥
⎥
⎥
⎦

,

gn2 =

⎡

⎢
⎢
⎢
⎣

φn pn

2
−φnqn

2
(pn)2+(qn)2

2
0

⎤

⎥
⎥
⎥
⎦

, gn3 =

⎡

⎢
⎢
⎣

pn

2
− qn

2
0
0

⎤

⎥
⎥
⎦ .

(3.22)

After finding vn+1
1 , vn+1

2 and vn+1
3 from (3.18)–(3.20), we plug (3.17) into (3.12) and (3.13)

to obtain a system of two nonlinear algebraic equations for (ηn+1, λn+1),
{
F1(η

n+1, λn+1) = 0,

F2(η
n+1, λn+1) = 0.

(3.23)

For the readers’ convenience, the exact form of F1, F2 is provided in the Appendix. We can
then find ηn+1 and λn+1 by solving this nonlinear system with a iterative method. Finally,
we can obtain qn+1, pn+1, un+1, φn+1 by (3.17).

To summarize, Scheme LM1 can be implemented as follows:

1. Compute right-hand term gn1 , g
n
2 and gn3 by (3.22);

2. Find qn+1
i , pn+1

i , un+1
i , φn+1

i , i = 1, 2, 3 by solving (3.18)–(3.20);
3. Determineηn+1 andλn+1 by solving (3.23) using an iterativemethod, such as theNewton

iteration method or the steepest descent method;
4. Update qn+1, pn+1, un+1, φn+1 by (3.17).
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The first step (3.2)–(3.7) can be implemented similarly.
Scheme LM1 enjoys the following advantages:

• It is second-order accurate, conserves the wave energy when ν = 0, and conserves (resp.
dissipates) the original Hamiltonian when γ = 0 (resp. γ > 0 and ν = 0);

• It only requires solving decoupled, linear systems with constant coefficients at each time
step plus a nonlinear algebraic system.

3.2 An Alternative LagrangeMultiplier Scheme

In practice, when the time step is not sufficiently small, the nonlinear algebraic system
(3.23) may not have real solutions or the iteration may not converge. Hence, we present an
alternative schemewhich possesses essentially the same properties of SchemeLM1, but only
require solving two decoupled nonlinear quadratic algebraic equations for ηn+1 and λn+1,
respectively.

Scheme LM2:
Initialization: Given q0, p0, u0, φ0, determine q1, p1, u1, φ1 by

q1 − q0

2δt
= �p1 + �p0

2
+ η1 + η0

2
φ0 p0 + λ1 + λ0

2
p0, (3.24)

p1 − p0

2δt
= −

(
�q1 + �q0

2
+ η1 + η0

2
φ0q0 + λ1 + λ0

2
q0

)

, (3.25)

ε
u1 − u0

2δt
= �φ1 + �φ0

2
− φ1 + φ0

2
+ η1 + η0

2

((
p0

)2 + (
q0

)2
)

− γ
u1 + u0

2
,

(3.26)

ε
φ1 − φ0

2δt
= u1 + u0

2
, (3.27)

−
((

p̄1
)2 + (

q̄1
)2

, φ̄1
)

−
((

p̄0
)2 + (

q̄0
)2

, φ̄0
)

2δt
= −η1 + η0

2
[(

2p0
p1 − p0

2δt
+ 2q0

q1 − q0

2δt
, φ0

)

+
(
(
p0

)2 + (
q0

)2
,
φ1 − φ0

2δt

)]

,

−λ1 + λ0

2

[(

2p0,
p1 − p0

2δt

)

+
(

2q0,
q1 − q0

2δt

)]

, (3.28)

((
p̄1

)2 + (
q̄1

)2
, 1

)
=

((
p0

)2 + (
q0

)2
, 1

)
(3.29)

Then, for n = 1, 2, . . ., we solve qn+1, pn+1, un+1, φn+1 as follows: qn+1, pn+1, un+1,

φn+1 as follows:

qn+1 − qn−1

2δt
= �pn+1 + �pn−1

2
+ ηn+1 + ηn−1

2
φn pn + λn+1 + λn−1

2
pn, (3.30)

pn+1 − pn−1

2δt
= −

(
�qn+1 + �qn−1

2
+ ηn+1 + ηn−1

2
φnqn + λn+1 + λn−1

2
qn

)

,(3.31)

ε
un+1 − un−1

2δt
= �φn+1 + �φn−1

2
− φn+1 + φn−1

2
+ ηn+1 + ηn−1

2

((
pn

)2 + (
qn

)2
)

−γ
un+1 + un−1

2
, (3.32)
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ε
φn+1 − φn−1

2δt
= un+1 + un−1

2
, (3.33)

−
((

p̄n+1
)2 + (

q̄n+1
)2

, φ̄n+1
)

−
((

p̄n−1
)2 + (

q̄n−1
)2

, φ̄n−1
)

2δt
= −ηn+1 + ηn−1

2
[(

2pn
pn+1 − pn−1

2δt
+ 2qn

qn+1 − qn−1

2δt
, φn

)

+
(
(
pn

)2 + (
qn

)2
,
φn+1 − φn−1

2δt

)]

,

−λn+1 + λn−1

2

[(

2pn,
pn+1 − pn−1

2δt

)

+
(

2qn,
qn+1 − qn−1

2δt

)]

, (3.34)

((
p̄n+1)2 + (

q̄n+1)2 , 1
)

=
((

p0
)2 + (

q0
)2

, 1
)

(3.35)

where p̄n+1 = pn+1
1 + pn+1

2 + λn+1 pn+1
3 and q̄n+1 = qn+1

1 + qn+1
2 + λn+1qn+1

3 .
By following the same procedure as in the proof of Theorem 3.1, we can prove the

following result:

Theorem 3.2 Scheme (3.30)–(3.35) preserves the wave energy

Dn
LM2 :=

((
p̄n

)2 + (
q̄n

)2
, 1

)
=

((
p0

)2 + (
q0

)2
, 1

)
, (3.36)

and satisfies discrete energy law:

H1
LM2 − H0

LM2 = −δt
γ

2ε

∥
∥u1 + u0

∥
∥ , (3.37)

and

Hn+1
LM2 − Hn−1

LM2 = −δt
γ

2ε

∥
∥un+1 + un−1

∥
∥ , ∀n ≥ 1, (3.38)

where

Hn+1
LM2 = 1

2

(∥
∥φn+1

∥
∥2 + ∥

∥un+1
∥
∥2 + ∥

∥∇φn+1
∥
∥2

)

+
(∥
∥∇ pn+1

∥
∥2 + ∥

∥∇qn+1
∥
∥2

)
−

((
p̄n+1)2 + (

q̄n+1)2 , φ̄n+1
)

, ∀n ≥ 0.
(3.39)

Scheme LM2 can be efficiently implemented as follows:
Set

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pn+1 = pn+1
1 + ηn+1 pn+1

2 + λn+1 pn+1
3 ,

qn+1 = qn+1
1 + ηn+1qn+1

2 + λn+1qn+1
3 ,

φn+1 = φn+1
1 + ηn+1φn+1

2 + λn+1φn+1
3 ,

un+1 = un+1
1 + ηn+1un+1

2 + λn+1un+1
3 ,

(3.40)

in (3.30)–(3.33), which is similar to the Scheme LM1. After finding vn+1
1 , vn+1

2 and vn+1
3

defined in (3.21), we plug
{
p̄n+1 = pn+1

1 + pn+1
2 + λn+1 pn+1

3

q̄n+1 = qn+1
1 + qn+1

2 + λn+1qn+1
3

(3.41)

into (3.35) to find λn+1 by solving the quadratic equation

F1(λ
n+1) = 0 (3.42)
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with

F1
(
λn+1

)
=

(
λn+1

)2
((

pn+1
3

)2 +
(
qn+1
3

)2
, 1

)

+ 2λn+1
[(

pn+1
3 , pn+1

1 + pn+1
2

)
+

(
qn+1
3 , qn+1

1 + qn+1
2

)]

+
((

pn+1
1

)2 +
(
pn+1
2

)2
, 1

)

+
((

qn+1
1

)2 +
(
qn+1
2 , 1

)2
)

−
((

p0
)2 +

(
q0

)2
, 1

)

.

Once we obtain λn+1, we plug (3.40) into (3.34) to find ηn+1 by soling another quadratic
equation

F2(η
n+1) = 0 (3.43)

with

F2
(
ηn+1) = (

ηn+1)2
{(

pn pn+1
2 + qnqn+1

2 , φn
)

+ 1

2

((
pn

)2 + (
qn

)2
, φn+1

2

)}

+ ηn+1
{(

pnφn, pn+1
1 + λn+1 pn+1

3 − pn−1
)

+
(
qnφn, qn+1

1 + λn+1qn+1
3 − qn−1

)

+1

2

((
pn

)2 + (
qn

)2
, φn+1

1 + λn+1φn+1
3 − φn−1

)

+ (
λn+1 + λn−1)

[(
pn, pn+1

2

)
+

(
qn, qn+1

2

)]

+ηn−1
(
pn pn+1

2 + qnqn+1
2 , φn

)
+ 1

2

((
pn

)2 + (
qn

)2
, φn+1

2

)}

+ηn−1
(
pnφn, pn+1

1 +λn+1 pn+1
3 − pn−1

)
+
(
qnφn, qn+1

1 +λn+1qn+1
3 −qn−1

)

+ 1

2

((
pn

)2 + (
qn

)2
, φn+1

1 + λn+1φn+1
3 − φn−1

)

+ (
λn+1 + λn−1)

[(
pn, pn+1

1 + λn+1 pn+1
3 − pn−1

)

+
(
qn, qn+1

1 + λn+1qn+1
3 − qn−1

)]
−

((
p̄n+1)2 + (

q̄n+1)2 , φ̄n+1
)

+
((

p̄n−1)2 + (
q̄n−1)2 , φ̄n−1

)
.

Unlike Scheme LM1, here we can find ηn+1 and λn+1 by standard quadratic-root formula
instead of iterative method. Finally, we can obtain qn+1, pn+1, un+1, φn+1 by (3.40).

To summarize, Scheme LM2 can be implemented as follows:

1. Compute right-hand term gn1 , g
n
2 and gn3 by (3.22);

2. Find qn+1
i , pn+1

i , un+1
i , φn+1

i , i = 1, 2, 3 by solving (3.18)–(3.20);
3. Solve (3.42) by quadratic-root formula to determine λn+1;
4. Solve (3.43) by quadratic-root formula to determine ηn+1;
5. Update qn+1, pn+1, un+1, φn+1 by (3.40).

The first step (3.24)–(3.29) can be implemented similarly.

Scheme LM2 enjoys the following advantages:

• It is second-order accurate, conserves the wave energy when ν = 0 in the sense of (3.36),
and conserves (resp. dissipates) the Hamiltonian when γ = 0 (resp. γ > 0 and ν = 0)
in the sense of (3.38);
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• It only requires solving decoupled, linear systems with constant coefficients at each
time step and solving two nonlinear quadratic algebraic equations for λn+1 and ηn+1,
respectively.

4 Numerical Results

We now present various numerical simulations to demonstrate the efficiency, energy sta-
bility and accuracy of the proposed numerical schemes. In all computations, we use the
Fourier-spectral method for spatial discretization so that all the linear systems in our time
discretization schemes can be solved very efficiently by using the fast Fourier transform. All
numerical tests are performed using Matlab on a MacBook Pro with 2.4 GHz Intel Core i5.

Scheme LM1 requires solving a nonlinear algebraic system, which can be solved by, for
examples, the Newton iteration method or the steepest descent method. The Newton iteration
method has a faster convergence rate, but requires a “good” initial value. The steepest descent
method is only linearly convergent, but it can converge with any initial value. For the sake
of robustness, we use the steepest descent method.

We define the following numerical errors on the solution, Hamiltonian and wave energy

eq (tn) = ‖q (·, tn) − qn‖2 , ep (tn) = ‖ p (·, tn) − pn‖2 , eφ (tn) = ∥
∥φn − φ0

∥
∥

2
,

eH (tn) =
∣
∣
∣H(qn, pn, φn) − H(q0, p0, φ

0
)

∣
∣
∣ , eD (tn) = ∣

∣D(qn, pn) − D(q0, p0)
∣
∣ .

4.1 Accuracy Test in 1D

We first examine the temporal convergence rates with an exact solution of KGS equations.
Solitary-wave solution.When d = 1, γ = 0 and ν = 0 in (1.1), the KGS equations admit

the solitary-wave solution

ψ±(x, t) = 3B sech2 (Bx + c±t) exp
[
i
(
d±x + (

4B2 − d2±
)
t
)]

, (4.1)

φ±(x, t) = 6B2 sech2 (Bx + c±t) , x ∈ R, t ≥ 0, (4.2)

where B ≥ 0 and

c± = ±
√
4B2 − 1

2ε
= O

(
1

ε

)

, d± = ∓
√
4B2 − 1

4Bε
= − c±

2B
= O

(
1

ε

)

.

The initial data is chosen as

ψ(0)(x) = ψ+(x, 0), φ(0)(x) = φ+(x, 0), φ(1)(x) = ∂tφ+(x, 0). (4.3)

In our computation, we take B = 1, ε = 10 and solve the problem on the interval [−32, 32].
We choose 1024 Fourier modes (i.e. spatial step h = 1/16) so that the spatial error is
negligible compared with time discretization error. The errors based on discrete L2-norm of
Scheme SAV, Scheme LM1 and Scheme LM2 are shown in Fig. 1, which indicate that all
three schemes are indeed second-order in time.
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Fig. 1 Errors of Scheme SAV (first), Scheme LM1 (second) and Scheme LM2 (third) at T = 0.1 with initial
condition (4.3)

4.2 Comparison of the Three Schemes

In this subsection, we make a detailed comparison for the three proposed schemes. In Table
1, we list the errors of q, p, φ, Hamiltonian and wave energy as well as CPU time at different
time with initial condition (4.3) and δt = 1e−4, h = 1/16, where H̃ represents the modified
Hamiltonian HSAV for Scheme SAV and themodified Hamiltonian HLM2 for SchemeLM2;
D̃ represents the modified wave energy DLM2 for Scheme LM2. We also plot in Fig. 2 the
time evolution of Lagrange multipliers (η, λ).

We observe from Table 1 that the errors of the three schemes are close for T ≤ 1; and
the errors of Scheme SAV is smaller than that of Scheme LM1 as later times T = 10, 50.
Scheme LM2 failed to produce correct answer for T ≥ 10 due to the appearance of complex
roots for the nonlinear algebraic system.

Therefore, Scheme SAV is the most robust while Scheme LM2 is the least robust, but
Scheme SAV can only conserve a modified wave energy, while Scheme LM1 preserves
the original Hamiltonian and wave energy exactly. On the other hand, we observe that the
CPU time for Scheme SAV and Scheme LM2 are essentially the same while Scheme LM1
consumes is a little more expense as an iterative process is needed to solve the nonlinear
algebraic system, cf. Fig. 3 for the number of iterations needed by Scheme LM1.

Since Scheme SAV and Scheme LM2 do not conserve the Hamiltonian and wave energy
exactly, we plot the errors of the original Hamiltonian H and original wave energy D by
Scheme SAV and Scheme LM2 in Fig. 4. We observe that they converge with a third-order
rate in time.

We plot in Fig. 2 evolutions of | Rn+1+Rn−1

2
√

Hn
1

− 1| for Scheme SAV, |η − 1| and |λ| for
Scheme LM1 and Scheme LM2, and observe that they are all very small as expected.

4.3 “Nonrelativistic” Limit (0 < " << 1)

We use again the initial condition (4.3) and choose h = 1/16, δt = 1e − 4. We show the
errors with different ε at time T = 1 based on Scheme SAV and Scheme LM1 in table 2.
We observe that the errors are lager when ε is smaller, and that the errors of Scheme SAV
and Scheme LM1 are almost the same.

Figure5 shows the orbit of (Re (ψ) , Im (ψ)) with different ε. As we can see, there are
more knots with smaller ε.
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Fig. 4 Errors of the original Hamiltonian H and original wave energy D of Scheme SAV and Scheme LM2
at T = 0.1 with initial condition (4.3)

Table 2 Error of different ε with δt = 1e − 4 and h = 1/16 at time T = 1

ε 1/22 1/23 1/24 1/25

SAV

eq 2.64E−06 3.29E−05 1.14E−03 6.12E−02

ep 2.56E−06 3.29E−05 1.14E−03 6.12E−02

eφ 5.35E−06 7.42E−05 1.94E−03 6.40E−02

CPU time(s) 4.10 4.20 4.07 4.03

LM1

eq 2.18E−06 3.29E−05 1.14E−03 6.12E−02

ep 2.40E−06 3.29E−05 1.14E−03 6.12E−02

eφ 5.23E−06 7.42E−05 1.94E−03 6.40E−02

CPU time (s) 5.76 5.42 5.40 5.37

4.4 Head-on Collisions of Solitary-Wave Solutions in 1D

In this and the following subsections, we simulate the interaction between solitary-wave in
1D and dynamic process in 2D [3], which are also the focus of research and have great
significance for KGS equations. We first simulate the interaction of solitary-wave solutions
in 1D using the standard KGS with ε = 1, ν = 0 and γ = 0 in (1.1). The initial condition is
chosen as

ψ(x, 0) = ψ+(B, x − p, 0) + ψ−(B, x + p, 0), (4.4)

φ(x, 0) = φ+(B, x − p, 0) + φ−(B, x + p, 0), (4.5)

∂tφ(x, 0) = ∂tφ+(B, x − p, 0) + ∂tφ−(B, x + p, 0), (4.6)
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Fig. 5 The orbit of (Re(ψ), Im(ψ)) with different ε

where ψ± and φ± are defined as in (4.1)–(4.2), and x = ±p are initial locations of the two
solitons. We set p = 8, B = 1, and solve the problem in the interval [−40, 40] with mesh
size h = 5/128, time step δt = 1e − 3.

We plot in Fig. 6 evolution of |ψ(x, t)| at different times using Scheme SAV. We observe
that the two solitons are in the same position at time t = 9.2, then separate, and waves are
emitted during the collision.

Next, we simulate soliton-soliton collision using KGS with a damping term. We plot in
Fig. 7 the time evolution of |ψ(x, t)| for different values of γ , and plot in Fig. 8 the time
evolution of theHamiltonian H(t) andwave energy D(t) for different values of γ .We observe
that, with γ = 0, the collision between the two solitons appears to be elastic, although some
waves are emitted (cf. Fig. 7, first). With γ > 0 but very small, the damping effect can be
observed in the collision, and the emission of waves is not obvious (Fig. 7, second). When
γ > 0 but not too large, the two solitons no longer separate, and emit some waves after the
collision (Fig. 7, third).With γ > 0 relatively large, the amplitude of the wave is significantly
reduced before the collision. In addition, two solitons no longer separates and no wave is
emitted after the collision (Fig. 7).

We plot in Fig. 8 evolution of the Hamiltonian and wave energy with different parameters
ν, γ . We observe that the KGS equations preserve the energy conservation law when ν =
0, γ = 0 and dissipate the energy when ν = 0, γ > 0 (cf. Fig. 8, left). We also observe that,
when γ = 0, the wave energy decays to 0 exponentially (cf. Fig. 8, right) which is consistent
with (2.9).
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Fig. 6 Head-on collisions of two symmetric solitary waves without damping: Nucleon density |ψ(x, t)|

Fig. 7 Head-on collisions of two symmetric solitary waves with damping: Nucleon density |ψ(x, t)|
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line is e−2νt D(0) (Color figure online)

4.5 Dynamics of KGS in 2D

As a final example, we simulate a dynamic process of KGS in 2D with ν = 0, γ = 0 and
ε = 1. The initial condition is taken as

ψ(x, y, 0) = 2

ex2+2y2 + e−(x2+2y2)
ei5/ cosh(

√
4x2+y2), (4.7)

φ(x, y, 0) = e−(
x2+y2

)

, φt (x, y, 0) = e−(
x2+y2

)

2
. (4.8)

We solve this problem on the rectangle domain [−64, 64]2 with mesh size h = 1
8 and time

step δt = 5e−4 by Scheme SAV. Figure 9 shows the surface plots of |ψ |2 and φ at different
times. We observe that the nucleon density |ψ |2 gradually split into two waves from one
wave in two directions along the x-axis (cf. Fig. 9, left); the meson field φ becomes squat,
and the wave crest is concave downward (cf. Fig. 9, right).

5 Conclusion

We developed in this paper three efficient and accurate schemes for the KGS equations
with/without damping terms based on the SAV approach and the Lagrange multiplier
approach. All three schemes are second-order accurate in time and can be combined with any
consistent Galerkin type spatial discretization. Scheme SAV is the most efficient as it only
requires solving two sets of linear systems with constant coefficients, but it only preserves a
modified Hamiltonian and approximates the original Hamiltonian and wave energy to third
order. On the other hand, both Scheme LM1 and Scheme LM2 require solving three sets of
linear systems with constant coefficients plus a nonlinear algebraic system. Scheme LM1 is
theoretically most attractive as it preserves the original Hamiltonian andwave energy exactly,
but it requires solving a nonlinear algebraic system for the Lagrange multipliers which may
require smaller time steps to have a sensible solution. Scheme LM2 is an alternative as the
nonlinear algebraic system is quadratic so it can be solved explicitly for any time step while
still preserves the Hamiltonian and wave energy, but it may lead to nonphysical solutions
when complex roots appear for the quadratic equation if the time step is not sufficiently small.
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Fig. 9 Surface plots of nucleon density |ψ |2 (left column) and the meson field φ (x, y, t) (right column) with
ν = 0, γ = 0 at different times
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We presented ample numerical tests using a Fourier-spectral method in space to validate and
compare the three schemes.
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Appendix A: F1 and F2 in (3.23)

The exact forms of nonlinear functions F1 and F2 in (3.23) are
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