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1 Introduction

Fractional differential equations (FDEs) have attracted considerable attention in
recent years due to their ability to model certain processes which can not be
adequately described by usual partial differential equations. Two main difficulties
for dealing with FDEs are (i) fractional derivatives are non-local operators; (ii)
fractional derivatives involve singular kernel/weight functions, and the solutions of
FDEs are usually weakly singular near the boundaries and at initial time. Hence, a
straightforward extension of usual polynomial based numerical methods for FDEs
are not effective as it usually involves dense matrices even for the simplest FDEs
and suffers from low convergence rate due to the weak singularity. Thus, one
needs to develop non-standard and non-polynomial based numerical methods to
effectively deal with the difficulties associated with FDEs.
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In this paper, we shall focus on some recently developed spectral methods
using the generalized Jacobi functions (GJFs) for solving FDEs. Some pioneer work
on using spectral methods for solving FDEs are carried out [17, 18]. However, the
methods in these papers use the usual polynomial approximations which do not
particularly address the two difficulties mentioned above. A breakthrough is made
in [32] in which the authors introduced the so called poly-fractonomials, which are
eigenfunctions of some fractional Sturm-Liouville operator. So using them as basis
functions greatly simplifies the computation of fractional derivatives and leads to
sparse matrices for some simple model equations. Furthermore, one can choose
suitable parameters in poly-fractonomials so that its leading term is in fact the
leading singular term of the corresponding FDE. Thus, the spectral method using
poly-fractonomials can also resolve the leading singularity in a FDE. It turns out
that the poly-fractonomials introduced in [32] coincide, within certain parameter
range, with the generalized Jacobi functions introduced in [10]. In [5], the authors
reexamined the generalized Jacobi functions in the context of FDEs and derived
optimal approximation results with norms suitable for fractional derivatives. In
particular, it is shown in [5] that well constructed spectral methods using GJFs for
some typical FDEs can lead to exponential convergence despite the fact that their
solutions are weakly singular.

Thanks to the aforementioned remarkable properties of the poly-fractonomials/GJFs
with regards to fractional derivatives and fractional differential equations, there is
now a significant number of recent work on using the poly-fractonomials/GJFs for
different kind of FDEs and singular integral equations, including, for examples,
spectral-Galerkin or spectral Petrov-Galerkin methods [31, 11, 36, 23, 21, 28, 15];
spectral collocation methods [35, 36, 15, 12, 14, 34, 13]; DG spectral-element
methods [33, 16].

The aim of this paper is not to provide an exhaustive review of all developments
with regards to spectral methods for FDEs, rather, it aims to present essential
properties of the GJFs, including relations to the fractional derivatives and their
approximation results in properly weighted Sobolev spaces, and how one can use
them to construct efficient and accurate spectral methods for FDEs.

In order to illustrate the idea and advantage of spectral methods using GJFs,
we shall consider the following FDE:⎧⎪⎨⎪⎩

𝛾𝐶𝐷𝛼
𝑡 𝑢(𝑥, 𝑡)− 𝑝𝑅𝐷

𝛽
𝑥𝑢(𝑥, 𝑡)− (1− 𝑝) 𝑅

𝑥𝐷
𝛽
𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡),

𝑢(𝑥, 𝑡)|𝜕Λ = 0, ∀𝑡 ∈ 𝐼 := (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥), ∀𝑥 ∈ Λ = (𝑎, 𝑏),

(1.1)

where 0 < 𝛼 < 1, 1 < 𝛽 < 2, 𝑝 ∈ [0, 1]; 𝐶𝐷𝛼
𝑡 ,

𝑅𝐷
𝛽
𝑥 and 𝑅

𝑥𝐷
𝛽

are the Caputo, left-
and right- Riemann Liouville fractional derivative operator, respectively. More
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precisely, we shall consider, successively, the following four cases: (i) 𝛾 = 0, 𝑝 = 1:
an initial-value problem and a boundary-value problem with one-sided fractional
derivative; (ii) 𝛾 = 0, 𝑝 = 1/2: Riesz FDE; (iii) 𝛾 = 0, 𝑝 ̸= 0, 1/2, 1: a boundary-
value problem with general two-sided fractional derivatives; and (iv) 𝛾 ̸= 0 and
𝑝 = 1/2: a space-time fractional diffusion equation.

The rest of the paper is organized as follows. In the next section, we introduce
the GJFs corresponding to the one-sided fractional derivative, Riesz derivative
and two-sided fractional derivatives with different coefficients, summarize their
special properties, particularly with regards to fractional derivatives, and present
approximation results using these GJFs. In Section 3, we construct successively
efficient spectral methods using GJFs for the four cases above, and derive their
error estimates. We provide some concluding remarks in the last section.

Due to the space constraint, we shall not present numerical results in this
paper. However, theoretical results presented in this paper have been validated by
ample numerical experiments in the correspondingly cited papers.

2 Generalized Jacobi functions and their
approximation properties

In this section, we collect some basic relations and approximation properties of
GJFs with respect to fractional derivatives from [21, 23, 22]. These results will
play essential roles in developing efficient algorithms for FDEs and in deriving the
corresponding error estimates in the next section.

2.1 Fractional integrals/derivatives

We inotrduce below the definitions of fractional integrals/derivatives. Let 𝑎 < 𝑏

and denote Λ = (𝑎, 𝑏).

Definition 2.1 (One-sided fractional integrals and derivatives [24, 7]). For 𝜌 ∈
R+, the left and right fractional integrals are respectively defined as

𝐼𝜌𝑥𝑣(𝑥) =
1

Γ(𝜌)

𝑥∫︁
𝑎

𝑣(𝑦)

(𝑥− 𝑦)1−𝜌
𝑑𝑦, 𝑥 ∈ Λ,

𝑥𝐼
𝜌𝑣(𝑥) =

1

Γ(𝜌)

𝑏∫︁
𝑥

𝑣(𝑦)

(𝑦 − 𝑥)1−𝜌
𝑑𝑦, 𝑥 ∈ Λ,

(2.1)
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where Γ(·) is the usual Gamma function.
For 𝑠 ∈ [𝑘 − 1, 𝑘) with 𝑘 ∈ N, the left-sided Riemann-Liouville fractional

derivative of order 𝑠 is defined by

𝑅𝐷𝑠
𝑥 𝑣(𝑥) =

1

Γ(𝑘 − 𝑠)

𝑑𝑘

𝑑𝑥𝑘

𝑥∫︁
𝑎

𝑣(𝑦)

(𝑥− 𝑦)𝑠−𝑘+1
𝑑𝑦, 𝑥 ∈ Λ, (2.2)

and the right-sided Riemann-Liouville fractional derivative of order 𝑠 is defined by

𝑅
𝑥𝐷

𝑠𝑣(𝑥) =
(−1)𝑘

Γ(𝑘 − 𝑠)

𝑑𝑘

𝑑𝑥𝑘

𝑏∫︁
𝑥

𝑣(𝑦)

(𝑦 − 𝑥)𝑠−𝑘+1
𝑑𝑦, 𝑥 ∈ Λ. (2.3)

For 𝑠 ∈ [𝑘 − 1, 𝑘) with 𝑘 ∈ N, the left-sided Caputo fractional derivatives of
order 𝑠 is defined by

𝐶𝐷𝑠
𝑥 𝑣(𝑥) :=

1

Γ(𝑘 − 𝑠)

𝑥∫︁
𝑎

𝑣(𝑘)(𝑦)

(𝑥− 𝑦)𝑠−𝑘+1
𝑑𝑦, 𝑥 ∈ Λ, (2.4)

and the right-sided Caputo fractional derivatives of order 𝑠 is defined by

𝐶
𝑥𝐷

𝑠𝑣(𝑥) :=
(−1)𝑘

Γ(𝑘 − 𝑠)

𝑏∫︁
𝑥

𝑣(𝑘)(𝑦)

(𝑦 − 𝑥)𝑠−𝑘+1
𝑑𝑦, 𝑥 ∈ Λ. (2.5)

According to [7, Thm. 2.14], we have that for any absolutely integrable function
𝑣, and real 𝑠 ≥ 0;

𝑅𝐷𝑠
𝑥 𝐼

𝑠
𝑥𝑣(𝑥) = 𝑣(𝑥), 𝑅

𝑥𝐷
𝑠
𝑥𝐼

𝑠𝑣(𝑥) = 𝑣(𝑥), 𝑎.𝑒. 𝑖𝑛 Λ. (2.6)

The following lemma shows the relationship between the Riemann-Liouville
and Caputo fractional derivatives (see, e.g., [7, 24]).

Lemma 2.1. For 𝑠 ∈ [𝑘 − 1, 𝑘) with 𝑘 ∈ N, we have

𝑅𝐷𝑠
𝑡 𝑢(𝑡) =

𝐶𝐷𝑠
𝑡 𝑢(𝑡) +

𝑘−1∑︁
𝑗=0

𝑢(𝑗)(𝑎)

Γ(1 + 𝑗 − 𝑠)
(𝑡− 𝑎)𝑗−𝑠. (2.7)

Definition 2.2. (Riesz fractional integrals and derivatives [25]) For 𝜌 ∈ [0, 1), the
Riesz fractional integral of order 𝜌 is defined as

𝐼𝜌𝑣(𝑥) :=
1

2 cos(𝜋𝜌/2)
(𝐼𝜌𝑥 + 𝑥𝐼

𝜌)𝑣(𝑥), 𝑥 ∈ Λ. (2.8)

For 𝜌 ∈ [2𝑘− 1, 2𝑘) with 𝑘 ∈ N, the Riesz fractional derivative (RFD) of order
𝜌 is defined by:

𝐷𝜌𝑣(𝑥) := 𝐷2𝑘𝐼2𝑘−𝜌𝑣(𝑥). (2.9)
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The following results [8, 17] play fundamental roles in the analysis of FDEs.

Lemma 2.2. For all 0 < 𝛼 < 2 and 𝛼 ̸= 1, we have

(𝑅𝐷𝛼
𝑡 𝑣, 𝑤)Λ =

(︀𝑅𝐷 𝛼
2
𝑡 𝑣,

𝑅
𝑡 𝐷

𝛼
2 𝑤

)︀
Λ
, ∀𝑣, 𝑤 ∈ 𝐻

𝛼/2
0 (Λ); (2.10)

Lemma 2.3. For all 𝛼 > 0 and that 𝛼− 1/2 is not an integer, we have(︀𝑅𝐷 𝛼
2
𝑡 𝑣,

𝑅
𝑡 𝐷

𝛼
2 𝑣

)︀
Λ
∼= ‖𝑣‖2

𝐻
𝛼/2
0 (Λ)

, ∀𝑣 ∈ 𝐻
𝛼/2
0 (Λ). (2.11)

In the sequel, we use 𝑐 to denote a generic constant.

2.2 GJFs for one-sided fractional derivatives

We start by considering the one-sided fractional derivatives. Unless otherwise
specified, we set Λ = (−1, 1).

2.2.1 Jacobi polynomials and Bateman’s fractional integral formula

According to [30, (4.21.2)], the classical Jacobi polynomials with parameters 𝛼, 𝛽 ∈
R can be defined by

𝑃
(𝛼,𝛽)
𝑛 (𝑥) =

(𝛼+ 1)𝑛
𝑛!

2𝐹1

(︁
− 𝑛, 𝑛+ 𝛼+ 𝛽 + 1;𝛼+ 1;

1− 𝑥

2

)︁
(2.12)

where 2𝐹1(𝑎, 𝑏; 𝑐;𝑥) is the hypergeometric function, and the rising factorial in the
Pochhammer symbol, for 𝑎 ∈ R and 𝑗 ∈ N0, is defined by

(𝑎)0 = 1; (𝑎)𝑗 := 𝑎(𝑎+ 1) · · · (𝑎+ 𝑗 − 1) =
Γ(𝑎+ 𝑗)

Γ(𝑎)
, for 𝑗 ≥ 1. (2.13)

For 𝛼, 𝛽 > −1, the classical Jacobi polynomials are orthogonal with respect to
the Jacobi weight function: 𝜔(𝛼,𝛽)(𝑥) = (1− 𝑥)𝛼(1 + 𝑥)𝛽 , namely,

1∫︁
−1

𝑃
(𝛼,𝛽)
𝑛 (𝑥)𝑃

(𝛼,𝛽)
𝑛′ (𝑥)𝜔(𝛼,𝛽)(𝑥)𝑑𝑥 = 𝛾

(𝛼,𝛽)
𝑛 𝛿𝑛𝑛′ , (2.14)

where 𝛿𝑛𝑛′ is the Dirac Delta symbol, and the normalization constant is given by

𝛾
(𝛼,𝛽)
𝑛 =

2𝛼+𝛽+1Γ(𝑛+ 𝛼+ 1)Γ(𝑛+ 𝛽 + 1)

(2𝑛+ 𝛼+ 𝛽 + 1)𝑛!Γ(𝑛+ 𝛼+ 𝛽 + 1)
. (2.15)
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The following fractional integral formula of hypergeometric functions due to
Bateman [3] (also see [2, P. 313]) plays an important role in the computation of
fractional integrals/derivatives: for real 𝑐, 𝜌 ≥ 0,

2𝐹1(𝑎, 𝑏; 𝑐+ 𝜌;𝑥) =
Γ(𝑐+ 𝜌)

Γ(𝑐)Γ(𝜌)
𝑥1−(𝑐+𝜌)

𝑥∫︁
0

𝑡𝑐−1(𝑥− 𝑡)𝜌−1
2𝐹1(𝑎, 𝑏; 𝑐; 𝑡) 𝑑𝑡, |𝑥| < 1.

(2.16)
One derives easily from (2.12) and (2.16) the following results (cf. [30, P. 96]):

Lemma 2.4. Let 𝜌 ∈ R+, 𝑛 ∈ N0 and 𝑥 ∈ Λ.

(i) For 𝛼 > −1 and 𝛽 ∈ R,

(1− 𝑥)𝛼+𝜌𝑃
(𝛼+𝜌,𝛽−𝜌)
𝑛 (𝑥)

𝑃
(𝛼+𝜌,𝛽−𝜌)
𝑛 (1)

=
Γ(𝛼+ 𝜌+ 1)

Γ(𝛼+ 1)Γ(𝜌)

1∫︁
𝑥

(1− 𝑦)𝛼

(𝑦 − 𝑥)1−𝜌

𝑃
(𝛼,𝛽)
𝑛 (𝑦)

𝑃
(𝛼,𝛽)
𝑛 (1)

𝑑𝑦.

(2.17)
(ii) For 𝛼 ∈ R and 𝛽 > −1,

(1 + 𝑥)𝛽+𝜌𝑃
(𝛼−𝜌,𝛽+𝜌)
𝑛 (𝑥)

𝑃
(𝛽+𝜌,𝛼−𝜌)
𝑛 (1)

=
Γ(𝛽 + 𝜌+ 1)

Γ(𝛽 + 1)Γ(𝜌)

𝑥∫︁
−1

(1 + 𝑦)𝛽

(𝑥− 𝑦)1−𝜌

𝑃
(𝛼,𝛽)
𝑛 (𝑦)

𝑃
(𝛽,𝛼)
𝑛 (1)

𝑑𝑦.

(2.18)

Using the notation in Definition 2.1, we can rewrite the formulas in Lemma 2.4 as
follows.

Lemma 2.5. Let 𝜌 ∈ R+, 𝑛 ∈ N0 and 𝑥 ∈ Λ.

– For 𝛼 > −1 and 𝛽 ∈ R,

𝑥𝐼
𝜌{︀(1− 𝑥)𝛼𝑃

(𝛼,𝛽)
𝑛 (𝑥)

}︀
=

Γ(𝑛+ 𝛼+ 1)

Γ(𝑛+ 𝛼+ 𝜌+ 1)
(1− 𝑥)𝛼+𝜌𝑃

(𝛼+𝜌,𝛽−𝜌)
𝑛 (𝑥).

(2.19)
– For 𝛼 ∈ R and 𝛽 > −1,

𝐼𝜌𝑥
{︀
(1+𝑥)𝛽𝑃

(𝛼,𝛽)
𝑛 (𝑥)

}︀
=

Γ(𝑛+ 𝛽 + 1)

Γ(𝑛+ 𝛽 + 𝜌+ 1)
(1+𝑥)𝛽+𝜌𝑃

(𝛼−𝜌,𝛽+𝜌)
𝑛 (𝑥). (2.20)

Thanks to (2.6), we obtain from Lemma 2.5 the following useful “inverse” rules.

Lemma 2.6. Let 𝑠 ∈ R+, 𝑛 ∈ N0 and 𝑥 ∈ Λ.

– For 𝛼 > −1 and 𝛽 ∈ R,

𝑅
𝑥𝐷

𝑠{︀(1− 𝑥)𝛼+𝑠𝑃
(𝛼+𝑠,𝛽−𝑠)
𝑛 (𝑥)

}︀
=

Γ(𝑛+ 𝛼+ 𝑠+ 1)

Γ(𝑛+ 𝛼+ 1)
(1− 𝑥)𝛼𝑃

(𝛼,𝛽)
𝑛 (𝑥).

(2.21)
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– For 𝛼 ∈ R and 𝛽 > −1,

𝑅𝐷𝑠
𝑥

{︀
(1 + 𝑥)𝛽+𝑠𝑃

(𝛼−𝑠,𝛽+𝑠)
𝑛 (𝑥)

}︀
=

Γ(𝑛+ 𝛽 + 𝑠+ 1)

Γ(𝑛+ 𝛽 + 1)
(1 + 𝑥)𝛽𝑃

(𝛼,𝛽)
𝑛 (𝑥).

(2.22)

The above lemmas are remarkable in the sense that fractional integrals/derivatives
of functions in the form of (1 ± 𝑥)𝛼𝑃

(𝛼,𝛽)
𝑛 can be expressed in the same form

with a set of different parameters (𝛼, 𝛽). In other words, the global fractional
integral/derivative operators become local operators in suitable "spectral" spaces.
In particular, if 𝛼 = 0 in (2.21), the fractional derivative operator 𝑅

𝑥𝐷
𝑠 takes

(1 − 𝑥)𝑠𝑃
(𝑠,𝛽−𝑠)
𝑛 (𝑥) to the polynomial 𝑃 (0,𝛽)

𝑛 (𝑥); conversely, if 𝛼 + 𝑠 = 𝑘 ∈ N0,
𝑅
𝑥𝐷

𝑠 takes the polynomial (1 − 𝑥)𝑘𝑃
(𝑘,𝛽−𝑠)
𝑛 (𝑥) to (1 − 𝑥)𝑘−𝑠𝑃

(𝑘−𝑠,𝛽)
𝑛 (𝑥). Such

remarkable properties are essential for constructing efficient spectral algorithms for
FDEs.

Definition 2.3 (One-sided generalized Jacobi functions [5]). Define

+𝐽
(−𝛼,𝛽)
𝑛 (𝑥) := (1− 𝑥)𝛼𝑃

(𝛼,𝛽)
𝑛 (𝑥), for 𝛼 > −1, 𝛽 ∈ R, (2.23)

and
−𝐽

(𝛼,−𝛽)
𝑛 (𝑥) := (1 + 𝑥)𝛽𝑃

(𝛼,𝛽)
𝑛 (𝑥), for 𝛼 ∈ R, 𝛽 > −1, (2.24)

for all 𝑥 ∈ Λ and 𝑛 ∈ N0.

2.2.2 Some important properties of GJFs

It follows straightforwardly from (2.14) and Definition 2.3 that for 𝛼, 𝛽 > −1,

1∫︁
−1

+𝐽
(−𝛼,𝛽)
𝑛 (𝑥)+𝐽

(−𝛼,𝛽)
𝑛′ (𝑥)𝜔(−𝛼,𝛽)(𝑥) 𝑑𝑥

=

1∫︁
−1

−𝐽
(𝛼,−𝛽)
𝑛 (𝑥)−𝐽

(𝛼,−𝛽)
𝑛′ (𝑥)𝜔(𝛼,−𝛽)(𝑥) 𝑑𝑥 = 𝛾

(𝛼,𝛽)
𝑛 𝛿𝑛𝑛′ ,

(2.25)

Similarly, we have that for 𝛼 > −1 and 𝑘 ∈ N, and 𝑛, 𝑛′ ≥ 𝑘,,

1∫︁
−1

+𝐽
(−𝛼,−𝑘)
𝑛 (𝑥)+𝐽

(−𝛼,−𝑘)
𝑛′ (𝑥)𝜔(−𝛼,−𝑘)(𝑥) 𝑑𝑥

=

1∫︁
−1

−𝐽
(−𝑘,−𝛼)
𝑛 (𝑥)−𝐽

(−𝑘,−𝛼)
𝑛′ (𝑥)𝜔(−𝑘,−𝛼)(𝑥) 𝑑𝑥 = 𝛾

(𝛼,−𝑘)
𝑛 𝛿𝑛𝑛′ ,

(2.26)
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where 𝛾(𝛼,𝛽)𝑛 and 𝛾(𝛼,−𝑘)
𝑛 are some constants which can be found in [5].

With the above definitions, we can rewrite Lemma 2.6 as

Theorem 2.1. Let 𝑠 ∈ R+, 𝑛 ∈ N0 and 𝑥 ∈ Λ.

– For 𝛼 > 𝑠− 1 and 𝛽 ∈ R,

𝑅
𝑥𝐷

𝑠{︀+𝐽(−𝛼,𝛽)
𝑛 (𝑥)

}︀
=

Γ(𝑛+ 𝛼+ 1)

Γ(𝑛+ 𝛼− 𝑠+ 1)
+𝐽

(−𝛼+𝑠,𝛽+𝑠)
𝑛 (𝑥). (2.27)

– For 𝛼 ∈ R and 𝛽 > 𝑠− 1,

𝑅𝐷𝑠
𝑥

{︀−𝐽(𝛼,−𝛽)
𝑛 (𝑥)

}︀
=

Γ(𝑛+ 𝛽 + 1)

Γ(𝑛+ 𝛽 − 𝑠+ 1)
−𝐽

(𝛼+𝑠,−𝛽+𝑠)
𝑛 (𝑥). (2.28)

The analysis of GJFs essentially relies on the orthogonality of fractional derivatives
of GJFs. Recall the derivative formula of the classical Jacobi polynomials (see, e.g.,
[29, P. 72]): for 𝛼, 𝛽 > −1 and 𝑛 ≥ 𝑙,

𝐷𝑙𝑃
(𝛼,𝛽)
𝑛 (𝑥) = 𝜅

(𝛼,𝛽)
𝑛,𝑙 𝑃

(𝛼+𝑙,𝛽+𝑙)
𝑛−𝑙 (𝑥), (2.29)

where 𝜅(𝛼,𝛽)𝑛,𝑙 is some constant. Noting that 𝑅
𝑥𝐷

𝑠+𝑙 = (−1)𝑙𝐷𝑙𝑅
𝑥𝐷

𝑠 and 𝑅𝐷𝑠+𝑙
𝑥 =

𝐷𝑙𝑅𝐷𝑠
𝑥 for 𝑠 ∈ R+ and 𝑙 ∈ N, we derive from (2.14) and (2.27)-(2.29) the following

orthogonality relations:
– For 𝛼 > 0, 𝛼+ 𝛽 > −1, and 𝑛, 𝑛′ ≥ 𝑙 ≥ 0,

1∫︁
−1

𝑅
𝑥𝐷

𝛼+𝑙 +𝐽
(−𝛼,𝛽)
𝑛 (𝑥) 𝑅

𝑥𝐷
𝛼+𝑙 +𝐽

(−𝛼,𝛽)
𝑛′ (𝑥)𝜔(𝑙,𝛼+𝛽+𝑙)(𝑥) 𝑑𝑥 = ℎ

(𝛼,𝛽)
𝑛,𝑙 𝛿𝑛𝑛′ ,

(2.30)
where

ℎ𝛼,𝛽𝑛,𝑙 :=
2𝛼+𝛽+1Γ2(𝑛+ 𝛼+ 1)Γ(𝑛+ 𝛼+ 𝛽 + 𝑙 + 1)

(2𝑛+ 𝛼+ 𝛽 + 1)𝑛!(𝑛− 𝑙)!Γ(𝑛+ 𝛼+ 𝛽 + 1)
. (2.31)

– For 𝛼+ 𝛽 > −1, 𝛽 > 0, and 𝑛, 𝑛′ ≥ 𝑙 ≥ 0,

1∫︁
−1

𝑅𝐷𝛽+𝑙
𝑥

−𝐽
(𝛼,−𝛽)
𝑛 (𝑥) 𝑅𝐷𝛽+𝑙

𝑥
−𝐽

(𝛼,−𝛽)
𝑛′ (𝑥)𝜔(𝛼+𝛽+𝑙,𝑙)(𝑥) 𝑑𝑥 = ℎ

(𝛽,𝛼)
𝑛,𝑙 𝛿𝑛𝑛′ .

(2.32)

2.2.3 Approximation by the one-sided GJFs

We show below that approximation by GJFs can lead to truly spectral convergence
for functions in properly weighted Sobolev spaces involving fractional derivatives.
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For simplicity of presentation, we only provide the results
{︀−𝐽(𝛼,−𝛽)

𝑛

}︀
. Similar

results can be established for
{︀
+𝐽

(−𝛼,𝛽)
𝑛

}︀
[5].

Let 𝒫𝑁 be the set of all algebraic (real-valued) polynomials of degree at most
𝑁. Let 𝜛(𝑥) > 0, 𝑥 ∈ Λ, be a generic weight function. The weighted space 𝐿2

𝜛(Λ)

is defined as in Adams [1] with the inner product and norm

(𝑢, 𝑣)𝜛 =

∫︁
Λ

𝑢(𝑥)𝑣(𝑥)𝜛(𝑥)𝑑𝑥, ‖𝑢‖𝜛 = (𝑢, 𝑢)
1/2
𝜛 .

If 𝜛 ≡ 1, we omit the weight function in the notation.
We define the finite-dimensional fractional-polynomial space:

−ℱ(𝛼,−𝛽)
𝑁 (Λ) = {𝜑 = (1 + 𝑥)𝛽𝜓 : 𝜓 ∈ 𝒫𝑁} = span{−𝐽(𝛼,−𝛽)

𝑛 : 0 ≤ 𝑛 ≤ 𝑁},

By the orthogonality (2.25), we can expand any 𝑢 ∈ 𝐿2
𝜔(𝛼,−𝛽)as

𝑢(𝑥) =

∞∑︁
𝑛=0

𝑢̂
(𝛼,−𝛽)
𝑛

−𝐽
(𝛼,−𝛽)
𝑛 (𝑥), (2.33)

where

𝑢̂
(𝛼,−𝛽)
𝑛 =

1

𝛾
(𝛼,𝛽)
𝑛

1∫︁
−1

𝑢−𝐽
(𝛼,−𝛽)
𝑛 𝜔(𝛼,−𝛽)𝑑𝑥,

and there holds the Parseval identity:

‖𝑢‖2𝜔(𝛼,−𝛽) =

∞∑︁
𝑛=0

𝛾
(𝛼,𝛽)
𝑛 |𝑢̂(𝛼,−𝛽)

𝑛 |2. (2.34)

Consider the 𝐿2
𝜔(𝛼,−𝛽) -orthogonal projection onto −ℱ(𝛼,−𝛽)

𝑁 (Λ):(︁
−𝜋

(𝛼,−𝛽)
𝑁 𝑢− 𝑢, 𝑣𝑁

)︁
𝜔(𝛼,−𝛽)

= 0, ∀𝑣𝑁 ∈ −ℱ(𝛼,−𝛽)
𝑁 (Λ). (2.35)

Then, it is easy to derive from (2.28) that for any 𝑙 ∈ N0, we have(︁
𝑅𝐷𝛽+𝑙

𝑥 (−𝜋
(𝛼,−𝛽)
𝑁 𝑢− 𝑢), 𝐷𝑙𝑤𝑁

)︁
𝜔(𝛼+𝛽+𝑙,𝑙)

= 0, ∀𝑤𝑁 ∈ 𝒫𝑁 (Λ). (2.36)

To describe the projection error, we define

−ℬ𝑚
𝛼,𝛽(Λ) :=

{︀
𝑢 ∈ 𝐿2

𝜔(𝛼,−𝛽)(Λ) : 𝑅𝐷𝛽+𝑙
𝑥 𝑢 ∈ 𝐿2

𝜔(𝛼+𝛽+𝑙,𝑙)(Λ) for 0 ≤ 𝑙 ≤ 𝑚
}︀
.

(2.37)
By (2.32) and (2.33), we have that for (𝛼, 𝛽) ∈ −Σ𝛼,𝛽 :=

{︀
(𝛼, 𝛽) : 𝛽 > 0, 𝛼 >

−1
}︀

and 𝑙 ∈ N0

‖𝑅𝐷𝛽+𝑙
𝑥 𝑢‖2𝜔(𝛼+𝛽+𝑙,𝑙) =

∞∑︁
𝑛=𝑙

ℎ
(𝛽,𝛼)
𝑛,𝑙 |𝑢̂(𝛼,−𝛽)

𝑛 |2. (2.38)
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Theorem 2.2. Let (𝛼, 𝛽) ∈ −Σ𝛼,𝛽 , and 𝑢 ∈ −ℬ𝑚
𝛼,𝛽(Λ).

– For 0 ≤ 𝑙 ≤ 𝑚, we have⃦⃦
𝑅𝐷𝛽+𝑙

𝑥 (−𝜋
(𝛼,−𝛽)
𝑁 𝑢− 𝑢)

⃦⃦
𝜔(𝛼+𝛽+𝑙,𝑙) ≤ 𝑐𝑁 𝑙−𝑚

⃦⃦
𝑅𝐷𝛽+𝑚

𝑥 𝑢
⃦⃦
𝜔(𝛼+𝛽+𝑚,𝑚) .

(2.39)
– For 0 ≤ 𝑚, we also have the 𝐿2

𝜔(𝛼,−𝛽) -estimate:⃦⃦−𝜋(𝛼,−𝛽)
𝑁 𝑢− 𝑢

⃦⃦
𝜔(𝛼,−𝛽) ≤ 𝑐𝑁−(𝛽+𝑚)

⃦⃦
𝑅𝐷𝛽+𝑚

𝑥 𝑢
⃦⃦
𝜔(𝛼+𝛽+𝑚,𝑚) . (2.40)

Proof. By (2.33), (2.35) and (2.38), we have⃦⃦
𝑅𝐷𝛽+𝑙

𝑥 (−𝜋
(𝛼,−𝛽)
𝑁 𝑢− 𝑢)

⃦⃦2
𝜔(𝛼+𝛽+𝑙,𝑙) =

∞∑︁
𝑛=𝑁+1

ℎ
(𝛽,𝛼)
𝑛,𝑙 |𝑢̂(𝛼,−𝛽)

𝑛 |2

=

∞∑︁
𝑛=𝑁+1

ℎ
(𝛽,𝛼)
𝑛,𝑙

ℎ
(𝛽,𝛼)
𝑛,𝑚

ℎ
(𝛽,𝛼)
𝑛,𝑚 |𝑢̂(𝛼,−𝛽)

𝑛 |2 ≤
ℎ
(𝛽,𝛼)
𝑁+1,𝑙

ℎ
(𝛽,𝛼)
𝑁+1,𝑚

⃦⃦
𝑅𝐷𝛽+𝑚

𝑥 𝑢
⃦⃦2
𝜔(𝛼+𝛽+𝑚,𝑚) .

(2.41)

We now estimate the constant factor. By (2.13), (2.31) and a direct calculation, we
find that for 0 ≤ 𝑙 ≤ 𝑚 ≤ 𝑁,

ℎ
(𝛽,𝛼)
𝑁+1,𝑙

ℎ
(𝛽,𝛼)
𝑁+1,𝑚

=
Γ(𝑁 + 𝛼+ 𝛽 + 𝑙 + 2)(𝑁 −𝑚+ 1)!

Γ(𝑁 + 𝛼+ 𝛽 +𝑚+ 2)(𝑁 − 𝑙 + 1)!

=
1

(𝑁 + 𝛼+ 𝛽 + 2 + 𝑙) · · · (𝑁 + 𝛼+ 𝛽 + 1 +𝑚)

(𝑁 −𝑚+ 1)!

(𝑁 − 𝑙 + 1)!

≤ 𝑁 𝑙−𝑚 (𝑁 −𝑚+ 1)!

(𝑁 − 𝑙 + 1)!
,

(2.42)

where we used the fact: 𝛼 + 𝛽 > −1. Thus, we obtain (2.39) from (2.41), (2.42)
and the property of the Gamma function.

The 𝐿2
𝜔(𝛼,−𝛽) -estimates can be obtained by using the same argument. We

sketch the derivation below. By (2.34) and (2.38),⃦⃦−𝜋(𝛼,−𝛽)
𝑁 𝑢− 𝑢

⃦⃦2
𝜔(𝛼,−𝛽) =

∞∑︁
𝑛=𝑁+1

𝛾
(𝛼,𝛽)
𝑛 |𝑢̂(𝛼,−𝛽)

𝑛 |2

=

∞∑︁
𝑛=𝑁+1

𝛾
(𝛼,𝛽)
𝑛

ℎ
(𝛽,𝛼)
𝑛,𝑚

ℎ
(𝛽,𝛼)
𝑛,𝑚 |𝑢̂(𝛼,−𝛽)

𝑛 |2 ≤
𝛾
(𝛼,𝛽)
𝑁+1

ℎ
(𝛽,𝛼)
𝑁+1,𝑚

⃦⃦
𝑅𝐷𝛽+𝑚

𝑥 𝑢
⃦⃦2
𝜔(𝛼+𝛽+𝑚,𝑚) .

(2.43)

Working out the constants by (2.15) and (2.31), we use the property of the Gamma
function again to get that

𝛾
(𝛼,𝛽)
𝑁+1

ℎ
(𝛽,𝛼)
𝑁+1,𝑚

=
Γ(𝑁 + 𝛼+ 2)Γ(𝑁 +𝑚+ 2)(𝑁 −𝑚+ 1)!

Γ(𝑁 + 𝛽 + 2)Γ(𝑁 + 𝛼+ 𝛽 +𝑚+ 2)(𝑁 +𝑚+ 1)!
≤ 𝑐𝑁−2(𝛽+𝑚).

(2.44)
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Remark 2.1. Note that the error estimates, in the above theorem and in subse-
quent theorems, depend on the smoothness of fractional derivatives of the function,
instead of the usual smoothness. To better understand the above results, we consider
a typical solution of a one-sided fractional differential equation

𝑢(𝑥) = (1− 𝑥)𝛽𝑔(𝑥), 𝛽 ∈ R+, 𝑥 ∈ Λ, (2.45)

where 𝑔 is a smooth function, and compare the GJF approximation with the
Legendre approximation. Recall the best 𝐿2-approximation of 𝑢 by its orthogonal
projection 𝜋𝐿𝑁𝑢 (see, e.g., [29, Ch. 3]):

‖𝜋𝐿𝑁𝑢− 𝑢‖ ≤ 𝑐𝑁1−𝑚‖𝐷𝑚𝑢‖𝜔(𝑚,𝑚) .

If 𝛽 is not an integer, a direct calculation shows that the righthand side is only
bounded for 𝑚 < 1 + 2𝛽 − 𝜖. On the other hand, using the explicit formulas for
fractional integral/derivative of (1 + 𝑥)𝛽 and the Leibniz’ formula (see [7, Ch. 2]),
we find that 𝑅𝐷𝛽+𝑚

𝑥 𝑢 is integrable for any 𝑚 ∈ N0, so the convergence by GJF
approximation is faster than any algebraic rate.

Remark 2.2. The results in Theorem 2.2 can be extended to some other (𝛼, 𝛽) /∈
−Σ𝛼,𝛽 , we refer to [5] for more detail.

2.3 GJFs for Riesz derivatives

The Riesz derivatives include both the left- and right-sided fractional derivatives so
the one-sided GJFs defined above are not suitable. Instead, we define a new class
of GJFs:

𝒥−𝜇,−𝜈
𝑛 (𝑥) = (1− 𝑥)𝜇(1 + 𝑥)𝜈𝑃

(𝜇,𝜈)
𝑛 (𝑥), 𝜇, 𝜈 > −1. (2.46)

It can be derived from (2.14) that the general Jacobi functions 𝒥−𝜇,−𝜈
𝑛 (𝑥) are

mutually orthogonal:

1∫︁
−1

𝒥−𝜇,−𝜈
𝑛 (𝑥)𝒥−𝜇,−𝜈

𝑚 (𝑥)𝜔(−𝜇,−𝜈)(𝑥) = 𝛾
(𝜇,𝜈)
𝑛 𝛿𝑚𝑛, (2.47)

and
F−𝜇,−𝜈
𝑁 (Λ) :=

{︀
𝒥−𝜇,−𝜈
𝑛 (𝑥) : 𝑛 = 0, 1, · · · , 𝑁

}︀
. (2.48)

For Riesz derivatives, we shall use 𝒥−𝛼,−𝛼
𝑛 (𝑥) which satisfied the following:

Theorem 2.3. If 𝑠 ∈ (2𝑘 − 1, 2𝑘) with 𝑘 ∈ N, then

𝐼2𝑘−𝑠𝒥− 𝑠
2 ,−

𝑠
2

𝑚 (𝑥) = (−1)𝑘
Γ(𝑚+ 𝑠+ 1− 2𝑘)

2−2𝑘𝑚!
𝑃

( 𝑠
2−2𝑘, 𝑠2−2𝑘)

𝑚+2𝑘 (𝑥), (2.49)
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and for 𝑗 = 0, 1, · · · , 2𝑘 − 1,

𝐷𝑠−𝑗𝒥− 𝑠
2 ,−

𝑠
2

𝑚 (𝑥) = 2𝑗(−1)𝑘
Γ(𝑚− 𝑗 + 1 + 𝑠)

𝑚!
𝑃

( 𝑠
2−𝑗, 𝑠2−𝑗)

𝑚+𝑗 (𝑥). (2.50)

We point out in particular that with 𝑗 = 0 in (2.50), we have

Corollary 2.1. If 𝑠 ∈ (2𝑘 − 1, 2𝑘) with 𝑘 ∈ N, then

𝐷𝑠𝒥− 𝑠
2 ,−

𝑠
2

𝑚 (𝑥) = (−1)𝑘
Γ(𝑚+ 1 + 𝑠)

𝑚!
𝑃

( 𝑠
2 ,

𝑠
2 )

𝑚 (𝑥). (2.51)

Let 𝑠 ∈ (2𝑘 − 1, 2𝑘) with 𝑘 ∈ N, and 𝑙 ∈ N0, we denote for any 𝑚 ∈ N0

ℬ𝑚
𝑠 (Λ) := {𝑢 ∈ 𝐿2

𝜔(− 𝑠
2
,− 𝑠

2
)(Λ) : 𝐷

𝑠−𝑘+𝑙𝑢 ∈ 𝐿2

𝜔( 𝑠
2
−𝑘+𝑙, 𝑠

2
−𝑘+𝑙)(Λ), for 0 ≤ 𝑙 ≤ 𝑚}.

(2.52)
By the orthogonality (2.47), we can expand any 𝑢 ∈ 𝐿2

𝜔(−𝛼,−𝛼)(Λ) as

𝑢(𝑥) =

∞∑︁
𝑛=0

𝑢̂
(−𝛼,−𝛼)
𝑛 𝒥−𝛼,−𝛼

𝑛 (𝑥), (2.53)

and there holds the Parseval identity:

‖𝑢‖2𝜔(−𝛼,−𝛼) =

∞∑︁
𝑛=0

𝛾
(𝛼,𝛼)
𝑛 |𝑢̂(−𝛼,−𝛼)

𝑛 |2. (2.54)

Moreover, for any 2𝛼 ∈ (2𝑘 − 1, 2𝑘) with 𝑘 ∈ N, we have

‖𝐷2𝛼−𝑘+𝑙𝑢‖2𝜔(𝛼−𝑘+𝑙,𝛼−𝑘+𝑙) =

∞∑︁
𝑛=𝑙

ℎ
(𝛼,𝛼)
𝑛,𝑙 |𝑢̂(−𝛼,−𝛼)

𝑛 |2. (2.55)

Theorem 2.4. Assume 2𝛼 ∈ (2𝑘 − 1, 2𝑘) and 𝑘 ∈ N. Let 𝑢 ∈ ℬ𝑚
2𝛼(Λ). We have

‖𝐷2𝛼−𝑘+𝑙(𝜋
(−𝛼,−𝛼)
𝑁 𝑢−𝑢)‖𝜔(𝛼−𝑘+𝑙,𝛼−𝑘+𝑙) ≤ 𝑐𝑁 𝑙−𝑚‖𝐷2𝛼−𝑘+𝑚𝑢‖𝜔(𝛼−𝑘+𝑚,𝛼−𝑘+𝑚) ,

(2.56)
and

‖𝜋(−𝛼,−𝛼)
𝑁 𝑢− 𝑢‖𝜔(−𝛼,−𝛼) ≤ 𝑐𝑁𝑘−(2𝛼+𝑚)‖𝐷2𝛼−𝑘+𝑚𝑢‖𝜔(𝛼−𝑘+𝑚,𝛼−𝑘+𝑚) . (2.57)

Proof. By (2.68) (with 𝜇 = 𝜈 = 𝛼) and (2.55), we have

⃦⃦
𝐷2𝛼−𝑘+𝑙(𝜋

(−𝛼,−𝛼)
𝑁 𝑢− 𝑢)

⃦⃦2
𝜔(𝛼−𝑘+𝑙,𝛼−𝑘+𝑙) =

∞∑︁
𝑛=𝑁+1

ℎ
(𝛼,𝛼)
𝑛,𝑙 |𝑢̂(−𝛼,−𝛼)

𝑛 |2

=

∞∑︁
𝑛=𝑁+1

ℎ
(𝛼,𝛼)
𝑛,𝑙

ℎ
(𝛼,𝛼)
𝑛,𝑚

ℎ
(𝛼,𝛼)
𝑛,𝑚 |𝑢̂(−𝛼,−𝛼)

𝑛 |2 ≤
ℎ
(𝛼,𝛼)
𝑁+1,𝑙

ℎ
(𝛼,𝛼)
𝑁+1,𝑚

⃦⃦
𝐷2𝛼−𝑘+𝑚𝑢

⃦⃦
𝜔(𝛼−𝑘+𝑚,𝛼−𝑘+𝑚) .

(2.58)
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We now estimate the constant factor. Similar to the proof in Theorem 2.2, we find
that for 0 ≤ 𝑙 ≤ 𝑚 ≤ 𝑁,

ℎ
(𝛼,𝛼)
𝑁+1,𝑙

ℎ
(𝛼,𝛼)
𝑁+1,𝑚

≤ 𝑁 𝑙−𝑚 (𝑁 + 𝑘 −𝑚+ 1)!

(𝑁 + 𝑘 − 𝑙 + 1)!
. (2.59)

Thus, we obtain (2.56) from (2.58), (2.59) and the property of the Gamma function.
The 𝐿2

𝜔(−𝛼,−𝛼) -estimates can be obtained by using the same argument. We
sketch the derivation below. By (2.54) and (2.55),

⃦⃦
𝜋
(−𝛼,−𝛼)
𝑁 𝑢− 𝑢

⃦⃦2
𝜔(−𝛼,−𝛼) =

∞∑︁
𝑛=𝑁+1

𝛾
(𝛼,𝛼)
𝑛 |𝑢̂(−𝛼,−𝛼)

𝑛 |2

=

∞∑︁
𝑛=𝑁+1

𝛾
(𝛼,𝛼)
𝑛

ℎ
(𝛼,𝛼)
𝑛,𝑚

ℎ
(𝛼,𝛼)
𝑛,𝑚 |𝑢̂(𝛼,𝛼)𝑛 |2 ≤

𝛾
(𝛼,𝛼)
𝑁+1

ℎ
(𝛼,𝛼)
𝑁+1,𝑚

⃦⃦
𝐷2𝛼−𝑘+𝑚𝑢

⃦⃦
𝜔(𝛼−𝑘+𝑚,𝛼−𝑘+𝑚) .

Similarly, by (2.15) and (2.31), we obtain that

𝛾
(𝛼,𝛼)
𝑁+1

ℎ
(𝛼,𝛼)
𝑁+1,𝑚

=
(𝑁 + 1)!(𝑁 + 𝑘 +𝑚+ 1)!(𝑁 + 𝑘 −𝑚+ 1)!

Γ(𝑁 + 2𝛼+ 2)Γ(𝑁 + 2𝛼− 𝑘 +𝑚+ 2)(𝑁 + 𝑘 +𝑚+ 1)!

≤ 𝑁2𝑘−(4𝛼+2𝑚).

This completes the proof.

2.4 GJFs for two-sided fractional derivatives with different
coefficients

For 1 < 𝛽 < 2, 0 < 𝜇, 𝜈 < 𝛽, 𝜇 + 𝜈 = 𝛽, 0 ≤ 𝑝 ≤ 1 and 𝑝 ̸= 1/2, we define the
two-sided fractional integral operator

ℐ𝜇,𝜈,𝜌
𝑝 := 𝐶𝛽,𝑝(𝑝𝐼

𝜌
𝑥 + (1− 𝑝)𝑥𝐼

𝜌), (2.60)

where
𝐶𝛽,𝑝 := 𝐶(𝛽, 𝜇, 𝜈) =

sin(𝜋𝜇) + sin(𝜋𝜈)

sin(𝜋𝛽)
.

Then for 𝑠 ∈ (𝑘 − 1, 𝑘), we define the two-sided fractional derivative operator

𝒟𝜇,𝜈,𝑠
𝑝 :=

𝑑𝑘

𝑑𝑥𝑘
ℐ𝜇,𝜈,𝑘−𝑠
𝑝 . (2.61)

It turns out that suitable basis functions for dealing with two-sided FDEs with
different coefficients are of the form 𝒥−𝜇,−𝜈

𝑛 (𝑥) where (𝜇, 𝜈) are determined as
follows ([9, 22]):
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Theorem 2.5. Given (𝑝, 𝛽) such that 0 ≤ 𝑝 ≤ 1 and 1 < 𝛽 < 2, let (𝜇, 𝜈) be
determined from

𝜇+ 𝜈 = 𝛽, 𝑝 sin(𝜋𝜇) = (1− 𝑝) sin(𝜋𝜈), (2.62)

then for 𝑛 = 0, 1, 2, · · · , it holds that

ℐ𝜇,𝜈,2−𝛽
𝑝 𝒥−𝜇,−𝜈

𝑛 (𝑥) = 4
Γ(𝑛+ 𝛽 − 1)

𝑛!
𝑃

(𝜈−2,𝜇−2)
𝑛+2 (𝑥), (2.63)

and for 𝑘 = 1, 2, · · · , 𝑛+ 2,

𝒟𝜇,𝜈,𝑘+𝛽−2
𝑝 𝒥−𝜇,−𝜈

𝑛 (𝑥) =
Γ(𝑛+ 𝑘 + 𝛽 − 1)

2𝑘−2𝑛!
𝑃

(𝜈−2+𝑘,𝜇−2+𝑘)
𝑛+2−𝑘 (𝑥). (2.64)

In particular, for 𝑘 = 2,

𝒟𝜇,𝜈,𝛽
𝑝 𝒥−𝜇,−𝜈

𝑛 (𝑥) =
Γ(𝑛+ 𝛽 + 1)

𝑛!
𝑃

(𝜈,𝜇)
𝑛 (𝑥). (2.65)

For the sake of simplicity, we shall denote ℐ𝜇,𝜈,𝜌
𝑝 and 𝒟𝜇,𝜈,𝜌

𝑝 by ℐ𝜌
𝑝 and 𝒟𝜌

𝑝,
respectively.

By virtue of (2.14), a consequent result of equation (2.64) is the orthogonality
of 𝒟𝛽+𝑙

𝑝 for 𝑙 = −1, 0, 1, · · · ,min{𝑚,𝑛}. If (𝜇, 𝜈) and (𝑝, 𝛽) satisfy the conditions
of Theorem 2.5, then

1∫︁
−1

𝒟𝛽+𝑙
𝑝 𝒥−𝜇,−𝜈

𝑚 (𝑥)𝒟𝛽+𝑙
𝑝 𝒥−𝜇,−𝜈

𝑛 (𝑥)𝜔(𝜈+𝑙,𝜇+𝑙)(𝑥)𝑑𝑥 = 0, ∀𝑛 ̸= 𝑚, (2.66)

1∫︁
−1

𝒟𝛽+𝑙
1−𝑝𝒥

−𝜇,−𝜈
𝑚 (𝑥)𝒟𝛽+𝑙

1−𝑝𝒥
−𝜇,−𝜈
𝑛 (𝑥)𝜔(𝜈+𝑙,𝜇+𝑙)(𝑥)𝑑𝑥 = 0, ∀𝑛 ̸= 𝑚. (2.67)

We define(︁
𝜋
(−𝜇,−𝜈)
𝑁 𝑢− 𝑢, 𝑣𝑁

)︁
𝜔(−𝜇,−𝜈)

= 0, ∀𝑣𝑁 ∈ F−𝜇,−𝜈
𝑁 (Λ), (2.68)

and for 𝜇, 𝜈 satisfying (2.62), we denote

ℬ̃𝑚
𝛽,𝑝(Λ) := {𝑢 ∈ 𝐿2

𝜔(−𝜇,−𝜈)(Λ) : 𝒟𝛽+𝑙
𝑝 𝑢 ∈ 𝐿2

𝜔(𝜈+𝑙,𝜇+𝑙)(Λ), for − 1 ≤ 𝑙 ≤ 𝑚}.
(2.69)

Then, we have the approximation results for the projection errors.
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Theorem 2.6. Assume 1 < 𝛽 < 2 and let 𝑢 ∈ ℬ̃𝑚
𝛽,𝑝(Λ) with 𝑚 ∈ N. Then for a

given 𝑝, 0 ≤ 𝑝 ≤ 1, if 0 < 𝜇, 𝜈 < 𝛽, and 𝜇, 𝜈 satisfying (2.62), we have that, for
−1 ≤ 𝑙 ≤ 𝑚 ≤ 𝑁 ,

‖𝒟𝛽+𝑙
𝑝 (𝜋

(−𝜇,−𝜈)
𝑁 𝑢− 𝑢)‖𝜔(𝜈+𝑙,𝜇+𝑙) ≤ 𝑐𝑁 𝑙−𝑚‖𝒟𝛽+𝑚

𝑝 𝑢‖𝜔(𝜈+𝑚,𝜇+𝑚) , (2.70)

and

‖𝜋(−𝜇,−𝜈)
𝑁 𝑢− 𝑢‖𝜔(−𝜇,−𝜈) ≤ 𝑐𝑁−(𝛽+𝑚)‖𝒟𝛽+𝑚

𝑝 𝑢‖𝜔(𝜈+𝑚,𝜇+𝑚) . (2.71)

Proof. The proof is similar to that of Theorem 2.4.

3 Spectral methods for FDEs based on
generalized Jacobi functions

In this section, we present spectral methods using the GJFs defined in the last
section to solve several typical fractional differential equations.

3.1 Fractional differential equations with one-sided
fractional derivative

We consider first a fractional initial value problem, followed by a fractional boundary
value problem with one-sided fractional derivative.

3.1.1 A fractional initial value problem (FIVP)

As the first example, we consider the fractional initial value problem of order
𝑠 ∈ (0, 1):

𝐶𝐷𝑠
𝑡 𝑢(𝑡) = 𝑓(𝑡), 𝑡 ∈ 𝐼 := (0, 𝑇 ); 𝑢(0) = 𝑢0. (3.1)

For the non-homogeneous initial conditions 𝑢(0) = 𝑢0, we first decompose the
solution 𝑢(𝑡) into two parts as

𝑢(𝑡) = 𝑢ℎ(𝑡) + 𝑢0, (3.2)

with 𝑢ℎ(0) = 0. By definition, 𝐶𝐷𝑠
𝑡 𝑢0 = 0, we then derive from (2.7) that the

equation (3.1) is equivalent to the following equation with Riemann-Liouville
fractional derivative:

𝑅𝐷𝑠
𝑡 𝑢

ℎ(𝑡) = 𝑓(𝑡), 𝑡 ∈ 𝐼 := (0, 𝑇 ); 𝑢ℎ(0) = 0. (3.3)
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A Petrov-Galerkin scheme for (3.3) is: find 𝑢ℎ𝑁 ∈ −ℱ(−𝑠,−𝑠)
𝑁 (𝐼) (defined in

(2.2.3)) such that

(𝑅𝐷𝑠
𝑡 𝑢

ℎ
𝑁 , 𝑣𝑁 ) = (𝑓, 𝑣𝑁 ), ∀ 𝑣𝑁 ∈ 𝒫𝑁 (𝐼). (3.4)

We expand 𝑓(𝑡) as

𝑓(𝑡) =

∞∑︁
𝑛=0

𝑓𝑛 𝑃𝑛(𝑡), (3.5)

where 𝑃𝑛(𝑡) := 𝑃
(0,0)
𝑛 (𝑥(𝑡)), 𝑥(𝑡) = (2𝑡− 𝑇 )/𝑇 is the shifted Legendre polynomial

of degree 𝑛 on 𝐼, and write

𝑢ℎ𝑁 (𝑡) =

𝑁∑︁
𝑛=0

𝑢̃
(𝑠)
𝑛

−𝐽
(−𝑠,−𝑠)
𝑛 (𝑡) ∈ −ℱ(−𝑠,−𝑠)

𝑁 (𝐼). (3.6)

Taking 𝑣𝑁 = 𝑃𝑙(𝑡) in (3.4), we obtain from (2.28) and the orthogonality of Legendre
polynomials that

𝑢̃
(𝑠)
𝑛 =

𝑛!

Γ(𝑛+ 𝑠+ 1)
𝑓𝑛, 0 ≤ 𝑛 ≤ 𝑁. (3.7)

Therefore, we obtain the numerical solution 𝑢ℎ𝑁 without solving any algebraic
equation. Hence, the method is very efficient. As for the error estimate, we have
the following result [5]:

Theorem 3.7. Let 𝑢ℎ and 𝑢ℎ𝑁 be the solution of (3.3) and (3.4), respectively.
Then

‖𝑅𝐷𝑠
𝑡 (𝑢

ℎ − 𝑢ℎ𝑁 )‖ ≤ 𝑐𝑁−𝑚‖𝑓 (𝑚)‖𝜔(𝑚−1,𝑚−1) . (3.8)

Proof. Let −𝜋
(−𝑠,−𝑠)
𝑁 𝑢ℎ be as defined in (2.35) for 0 < 𝑠 < 1. By (2.28), we have(︀𝑅𝐷𝑠

𝑡 (
−𝜋

(−𝑠,−𝑠)
𝑁 𝑢ℎ − 𝑢ℎ), 𝜓

)︀
= 0, ∀𝜓 ∈ 𝒫𝑁 .

Then by (3.3),(︀
𝑓 − 𝑅𝐷𝑠

𝑡
−𝜋

(−𝑠,−𝑠)
𝑁 𝑢ℎ, 𝜓

)︀
=

(︀𝑅𝐷𝑠
𝑡 𝑢

ℎ − 𝑅𝐷𝑠
𝑡

−𝜋
(−𝑠,−𝑠)
𝑁 𝑢ℎ, 𝜓

)︀
= 0, ∀𝜓 ∈ 𝒫𝑁 .

Let 𝜋𝑁𝑓 be the 𝐿2-orthogonal projection of 𝑓 upon 𝒫𝑁 . We infer from the above
that 𝑅𝐷𝑠

𝑡
−𝜋

(−𝑠,−𝑠)
𝑁 𝑢ℎ = 𝜋𝑁𝑓 = 𝑅𝐷𝑠

𝑡 𝑢
ℎ
𝑁 . Therefore,

‖𝑅𝐷𝑠
𝑡 (𝑢

ℎ − 𝑢ℎ𝑁 )‖ =
⃦⃦
𝑅𝐷𝑠

𝑡 (𝑢
ℎ − −𝜋

(−𝑠,−𝑠)
𝑁 𝑢ℎ)

⃦⃦
≤

⃦⃦
𝑅𝐷𝑠

𝑡 (𝑢
ℎ − −𝜋

(−𝑠,−𝑠)
𝑁 𝑢ℎ)

⃦⃦
+ ‖𝜋𝑁𝑓 − 𝑓‖.

(3.9)

It follows from Theorem 2.2 (with 𝛼 = −𝛽 = 𝑠 and 0 < 𝑠 < 1), and the Legendre
approximation results (see, e.g., [29, Ch. 3]) that

‖𝑅𝐷𝑠
𝑡 (𝑢

ℎ − 𝑢ℎ𝑁 )‖ ≤ 𝑐𝑁−𝑚(︀
‖𝑅𝐷𝑠+𝑚

𝑡 𝑢ℎ
⃦⃦
𝜔(𝑚,𝑚) + ‖𝑓 (𝑚)‖𝜔(𝑚−1,𝑚−1)

)︀
. (3.10)
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We deduce from (3.1) that⃦⃦
𝑅𝐷𝑠+𝑚

𝑡 𝑢ℎ
⃦⃦
𝜔(𝑚,𝑚) ≤ 𝑐

⃦⃦
𝑓 (𝑚)

⃦⃦
𝜔(𝑚−1,𝑚−1) .

3.1.2 One sided fractional boundary value problems

Now we consider an one-sided fractional boundary value problem

𝑅
𝑥𝐷

𝜈 𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ Λ = (−1, 1); 𝑢(±1) = 0, (3.11)

where 𝜈 ∈ (1, 2).
Let 𝑠 = 𝜈 − 1 and introduce the solution and test function spaces:

𝑈 :=
{︀
𝑢 ∈ 𝐿2

𝜔(−𝑠,−1)(Λ) : 𝑅
𝑥𝐷

𝑠 𝑢 ∈ 𝐿2
𝜔(0,𝑠−1)(Λ)

}︀
;

𝑉 :=
{︀
𝑣 ∈ 𝐿2

𝜔(−1,−𝑠)(Λ) : 𝐷𝑣 ∈ 𝐿2
𝜔(0,1−𝑠)(Λ)

}︀
,

(3.12)

equipped with the norms

‖𝑢‖𝑈 =
(︀
‖𝑢‖2𝜔(−𝑠,−1) + ‖𝑅𝑥𝐷𝑠𝑢‖2𝜔(0,𝑠−1)

)︀1/2
;

‖𝑣‖𝑉 =
(︀
‖𝑣‖2𝜔(−1,−𝑠) + ‖𝐷𝑣‖2𝜔(0,1−𝑠)

)︀1/2
.

(3.13)

For 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , we write

𝑢(𝑥) =

∞∑︁
𝑛=1

𝑢̂𝑛
+𝐽

(−𝑠,−1)
𝑛 (𝑥) = (1− 𝑥)𝑠(1 + 𝑥)

∞∑︁
𝑛=1

𝑢̃𝑛𝑃
(𝑠,1)
𝑛−1 (𝑥),

𝑣(𝑥) =

∞∑︁
𝑛=1

𝑣𝑛
−𝐽

(−1,−𝑠)
𝑛 (𝑥) = (1− 𝑥)(1 + 𝑥)𝑠

∞∑︁
𝑛=1

𝑣𝑛𝑃
(1,𝑠)
𝑛−1 (𝑥).

(3.14)

With the above setup, we can build in the homogenous boundary conditions
and also perform fractional integration by parts. Hence, a weak form of (3.11) is
to find 𝑢 ∈ 𝑈 such that

𝑎(𝑢, 𝑣) := (𝑅𝑥𝐷
𝑠𝑢, 𝐷𝑣) = (𝑓, 𝑣), ∀ 𝑣 ∈ 𝑉. (3.15)

Let +ℱ(−𝑠,−1)
𝑁 (Λ) and −ℱ(−1,−𝑠)

𝑁 (Λ) be the finite-dimensional spaces as defined
in the previous section. Then the GJF-Petrov-Galerkin scheme for (3.15) is to find
𝑢𝑁 ∈ +ℱ(−𝑠,−1)

𝑁 (Λ) such that

𝑎(𝑢𝑁 , 𝑣𝑁 ) = (𝑅𝑥𝐷
𝑠𝑢𝑁 , 𝐷𝑣𝑁 ) = (𝑓, 𝑣𝑁 ), ∀ 𝑣𝑁 ∈ −ℱ(−1,−𝑠)

𝑁 (Λ). (3.16)
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We derive from (2.27) and 𝑅𝐷1
𝑥 = 𝑑

𝑑𝑥 that

𝑎(+𝐽
(−𝑠,−1)
𝑛 (𝑥),−𝐽

(−1,−𝑠)
𝑚 (𝑥)) = 𝐶𝑠

𝑛,𝑚(+𝐽
(0,𝑠−1)
𝑛 (𝑥),−𝐽

(0,1−𝑠)
𝑚 (𝑥)) = 0 ∀𝑛 ̸= 𝑚.

(3.17)
Hence, we can obtain 𝑢𝑁 directly without solving any algebraic equation.

To characterise the regularity of 𝑢, we define for any 𝑚 ∈ N0,

+ℬ𝑚
𝛼,𝛽(Λ) :=

{︀
𝑢 ∈ 𝐿2

𝜔(−𝛼,𝛽)(Λ) : 𝑅
𝑥𝐷

𝛼+𝑙𝑢 ∈ 𝐿2
𝜔(𝑙,𝛼+𝛽+𝑙)(Λ) for 0 ≤ 𝑙 ≤ 𝑚

}︀
.

(3.18)

Theorem 3.8. Let 𝑠 ∈ (0, 1), and let 𝑢 and 𝑢𝑁 be the solutions of (3.15) and
(3.16), respectively. If 𝑢 ∈ 𝑈 ∩+ℬ𝑚

𝑠,−1(Λ) with 0 ≤ 𝑚 ≤ 𝑁, then we have the error
estimates:

‖𝑢− 𝑢𝑁‖𝑈 ≤ 𝑐𝑁−𝑚
⃦⃦
𝑅
𝑥𝐷

𝑠+𝑚𝑢
⃦⃦
𝜔(𝑚,𝑠−1+𝑚) . (3.19)

In particular, if 𝑓 (𝑚−1) ∈ 𝐿2
𝜔(𝑚,𝑠−1+𝑚)(Λ) for 𝑚 ≥ 1, we have

‖𝑢− 𝑢𝑁‖𝑈 ≤ 𝑐𝑁−𝑚
⃦⃦
𝑓 (𝑚−1)

⃦⃦
𝜔(𝑚,𝑠−1+𝑚) . (3.20)

Here, 𝑐 is a positive constant independent 𝑢,𝑁 and 𝑚.

Proof. We derive from (3.15) and (3.16) that

𝑎(𝑢− 𝑢𝑁 , 𝑣𝑁 ) = 0 ∀ 𝑣𝑁 ∈ −ℱ(−1,−𝑠)
𝑁 (Λ),

which, along with (3.17), implies immediately that 𝑢𝑁 = +𝜋
(−𝑠,−1)
𝑁 𝑢. Hence, the

desired results follow from Theorem 4.1 in [5] and the fact 𝑅
𝑥𝐷

𝜈𝑢 = 𝑅
𝑥𝐷

𝑠+1𝑢 = 𝑓 .

3.2 Fractional boundary value problems with Riesz
derivatives

We consider first the so called Riesz fractional differential equations, followed by a
more general case with a zeroth-order term.

3.2.1 Riesz fractional differential equations

We consider the Riesz fractional equation of order 2𝛼 ∈ (2𝑘 − 1, 2𝑘) with 𝑘 ∈ N:

(−1)𝑘𝐷2𝛼𝑢(𝑥) =𝑓(𝑥), 𝑥 ∈ Λ,

𝑢(𝑙)(±1) =0, 𝑙 = 0, 1, · · · , 𝑘 − 1.
(3.21)
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A Petrov-Galerkin spectral method for (3.21) is: Find 𝑢𝑁 ∈ F−𝛼,−𝛼
𝑁 such that

(−1)𝑘(𝐷2𝛼𝑢𝑁 , 𝑣𝑁 )𝜔(𝛼,𝛼) = (𝑓, 𝑣𝑁 )𝜔(𝛼,𝛼) , ∀𝑣𝑁 ∈ 𝑃𝑁 . (3.22)

The solution to this discrete problem can be found directly as follows. Given

𝑓(𝑥) =

∞∑︁
𝑚=0

𝑓𝑚𝑃
(𝛼,𝛼)
𝑚 (𝑥), (3.23)

and write

𝑢𝑁 (𝑥) =

𝑁∑︁
𝑛=0

𝑢̂𝑛𝒥−𝛼,−𝛼
𝑛 (𝑥). (3.24)

Plugging the above in (3.22), using (2.51) and the orthogonality of {𝑃 (𝛼,𝛼)
𝑚 } in

𝐿2
𝜔(𝛼,𝛼)(Λ), we find

𝑢̂𝑛 = 𝑓𝑛

⧸︁(︁
2 cos(𝜋𝛼)

Γ(𝑛+ 1 + 2𝛼)

𝑛!

)︁
, ∀ 0 ≤ 𝑛 ≤ 𝑁. (3.25)

As for the error estimate, we have

Theorem 3.9. Assuming 𝑓 (𝑗) ∈ 𝐿2
𝜔𝛼+𝑗,𝛼+𝑗 (Λ) for 0 ≤ 𝑗 ≤ 𝑚, we have

‖𝑢− 𝑢𝑁‖𝜔(−𝛼,−𝛼) ≤ 𝑐𝑁−2𝛼−𝑚‖𝑓 (𝑚)‖𝜔(𝛼+𝑚,𝛼+𝑚) . (3.26)

‖𝐷2𝛼(𝑢− 𝑢𝑁 )‖𝜔(𝛼,𝛼) ≤ 𝑐𝑁−𝑚‖𝑓 (𝑚)‖𝜔(𝛼+𝑚,𝛼+𝑚) . (3.27)

Proof. It is clear from (3.25) that 𝑢𝑁 = 𝜋
(−𝛼,−𝛼)
𝑁 𝑢. Hence, by (2.57), we have

‖𝑢−𝑢𝑁‖𝜔(−𝛼,−𝛼) = ‖𝑢−𝜋(−𝛼,−𝛼)
𝑁 𝑢‖𝜔(−𝛼,−𝛼) ≤ 𝑐𝑁−2𝛼−𝑚‖𝐷2𝛼+𝑚𝑢‖𝜔(𝛼+𝑚,𝛼+𝑚) .

On the other hand, we derive from (2.56) with 𝑘 = 𝑙 = 0 that

‖𝐷2𝛼𝑢−𝑢𝑁‖𝜔(𝛼,𝛼) = ‖𝐷2𝛼(𝑢−𝜋(−𝛼,−𝛼)
𝑁 𝑢)‖𝜔(𝛼,𝛼) ≤ 𝑐𝑁−𝑚‖𝐷2𝛼+𝑚𝑢‖𝜔(𝛼+𝑚,𝛼+𝑚) .

Since𝐷2𝛼+𝑚𝑢 = 𝑓 (𝑚), we obtain the desired results from the above two inequalities.

3.2.2 A more general case

In the previous examples, we have developed optimal spectral methods using GJFs
in the sense that (i) the numerical solution can be determined directly without
solving any algebraic equation; and (ii) the error converges faster than any algebraic
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rate as long as the righthand side function 𝑓 is smooth, despite the fact that the
solution is weakly singular at the endpoint(s).

However, it is not possible to construct such optimal spectral methods for
more general FDEs. Nevertheless, using proper GJFs still allows us to (i) deal with
fractional derivatives efficiently, and (ii) resolve the leading singular term in the
solution. Consider for example

𝜌𝑢(𝑥)−𝐷2𝛼𝑢(𝑥) = 𝑓, 𝑥 ∈ Λ = (−1, 1),

𝑢(±1) = 0,
(3.28)

where 𝜌 > 0 and 2𝛼 ∈ (1, 2). A GJF spectral Galerkin approximation to (3.28) is:
find 𝑢𝑁 ∈ F−𝛼,−𝛼

𝑁 (Λ) such that

𝑎(𝑢𝑁 , 𝑣𝑁 ) := 𝜌(𝑢𝑁 , 𝑣𝑁 )− (𝐷2𝛼𝑢𝑁 , 𝑣𝑁 ) = (𝑓, 𝑣𝑁 ), ∀𝑣𝑁 ∈ F−𝛼,−𝛼
𝑁 (Λ).

(3.29)
Setting

𝑢𝑁 (𝑥) =

𝑁∑︁
𝑛=0

𝑢̃𝑛𝒥−𝛼,−𝛼
𝑛 (𝑥). (3.30)

Setting

𝑢𝑁 (𝑥) =

𝑁∑︁
𝑛=0

𝑢̃𝑛𝒥−𝛼,−𝛼
𝑛 (𝑥), 𝑈 = (𝑢̃0, 𝑢̃1, · · · , 𝑢̃𝑁 ),

𝑚𝑗𝑘 = (𝒥−𝛼,−𝛼
𝑘 (𝑥),𝒥−𝛼,−𝛼

𝑗 (𝑥)), 𝑠𝑗𝑘 = −(𝐷2𝛼𝒥−𝛼,−𝛼
𝑘 (𝑥),𝒥−𝛼,−𝛼

𝑗 (𝑥)),

𝑀 = (𝑚𝑗𝑘), 𝑆 = (𝑠𝑗𝑘), 𝑓𝑗 = (𝑓,𝒥−𝛼,−𝛼
𝑗 (𝑥)), 𝐹 = (𝑓0, 𝑓1, · · · , 𝑓𝑁 )𝑇 .

(3.31)
Then, (3.29) reduces to the following matrix system:

(𝜌𝑀 + 𝑆)𝑈 = 𝐹.

We recall from (2.50), (2.14) that 𝑆 is a diagonal matrix

𝑠𝑗𝑘 =
22𝛼+1Γ(𝑘 + 𝛼+ 1)2

(𝑘!)2(2𝑘 + 2𝛼+ 1)
𝛿𝑗𝑘. (3.32)

The mass matrix 𝑀 is full but its entries can be evaluated exactly (cf. [4]):

𝑚𝑗𝑘 =

1∫︁
−1

(1− 𝑥2)𝛼𝑃
(𝛼,𝛼)
𝑗 (𝑥)(1− 𝑥2)𝛼𝑃

(𝛼,𝛼)
𝑘 (𝑥)𝑑𝑥

=
(−1)

𝑗−𝑘
2 (𝑗 + 𝑘)!

2𝑗+𝑘𝑗!𝑘!

(−𝑗 − 𝛼) 𝑗+𝑘
2

(−𝑘 − 𝛼) 𝑗+𝑘
2

(2𝛼+ 3
2 ) 𝑗+𝑘

2

𝑗+𝑘
2 !

√
𝜋Γ(2𝛼+ 1)

Γ(2𝛼+ 3
2 )

, (3.33)

where the Pochhammer symbol (𝑎)𝜈 =
Γ(𝑎+𝜈)
Γ(𝑎)

.
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Lemma 3.7. For all 𝑢 ∈ {𝑢 ∈ 𝐿2
𝜔−𝛼,−𝛼(Λ) : 𝐷

2𝛼𝑢 ∈ 𝐿2(Λ)}, we have

‖𝑢‖2𝜔(−𝛼,−𝛼) ≤ −(𝐷2𝛼𝑢, 𝑢). (3.34)

Proof. We write 𝑢 =
∑︀∞

𝑖=0 𝑢̃𝑖𝒥
−𝛼,−𝛼
𝑖 (𝑥), so that

‖𝑢‖2𝜔(−𝛼,−𝛼) =

∞∑︁
𝑖=0

𝑢̃2𝑖 𝛾
(𝛼,𝛼)
𝑖 .

By Theorem 2.3 and (2.14), we have

−(𝐷2𝛼𝑢, 𝑢) = (−
∞∑︁
𝑖=0

𝑢̃𝑖𝐷
2𝛼𝒥−𝛼,−𝛼

𝑖 ,

∞∑︁
𝑗=0

𝑢̃𝑗𝒥−𝛼,−𝛼
𝑗 )

= (

∞∑︁
𝑖=0

𝑢̃𝑖
Γ(𝑖+ 2𝛼+ 1)

𝑖!
𝑃

(𝛼,𝛼)
𝑖 ,

∞∑︁
𝑗=0

𝑢̃𝑗𝑃
(𝛼,𝛼)
𝑗 )𝜔(𝛼,𝛼)

=

∞∑︁
𝑖=0

Γ(𝑖+ 2𝛼+ 1)

𝑖!
𝑢̃2𝑖 𝛾

(𝛼,𝛼)
𝑖 .

We can easily to get the desired result (3.34) by comparing the above results.

We define the energy norm associated with (3.28) by

‖𝑢‖2𝐵𝛼 = 𝜌(𝑢, 𝑢)− (𝐷2𝛼𝑢, 𝑢). (3.35)

Theorem 3.10. Assume 2𝛼 ∈ (1, 2). Let 𝑢 and 𝑢𝑁 be the solution of (3.28) and
(3.29), then we have

‖𝑢− 𝑢𝑁‖𝐵𝛼 ≤ 𝑁1−𝑚‖𝐷2𝛼−1+𝑚𝑢‖𝜔(𝛼−1+𝑚,𝛼−1+𝑚) . (3.36)

Proof. Let us denote ̃︀𝑢𝑁 := 𝜋
(−𝛼,−𝛼)
𝑁 𝑢 and 𝑒𝑁 := ̃︀𝑢𝑁 −𝑢𝑁 . We derive from (3.28)

and (3.29) that

𝑎(𝑒𝑁 , 𝑣𝑁 ) = 𝜌(𝑒𝑁 , 𝑣𝑁 )− (𝐷2𝛼𝑒𝑁 , 𝑣𝑁 )

= 𝜌(̃︀𝑢𝑁 − 𝑢, 𝑣𝑁 )− (𝐷2𝛼(̃︀𝑢𝑁 − 𝑢), 𝑣𝑁 ), ∀𝑣 ∈ F−𝛼,−𝛼
𝑁 (Λ).

Taking 𝑣𝑁 = 𝑒𝑁 in the above, we derive from (3.35) and Cauchy-Schwarz inequality
that

‖𝑒𝑁‖2𝐵𝛼 := 𝜌(𝑒𝑁 , 𝑒𝑁 )− (𝐷2𝛼𝑒𝑁 , 𝑒𝑁 ) ≤ 𝜌‖𝜋(−𝛼,−𝛼)
𝑁 𝑢− 𝑢‖𝜔(𝛼,𝛼)‖𝑒𝑁‖𝜔(−𝛼,−𝛼)

+ ‖𝐷2𝛼(𝜋
(−𝛼,−𝛼)
𝑁 𝑢− 𝑢)‖𝜔(𝛼,𝛼)‖𝑒𝑁‖𝜔(−𝛼,−𝛼) .

The above and Lemma 3.7 lead to

‖𝑒𝑁‖𝐵𝛼 ≤ 𝜌‖𝜋(−𝛼,−𝛼)
𝑁 𝑢− 𝑢‖𝜔(−𝛼,−𝛼) + ‖𝐷2𝛼(𝜋

(−𝛼,−𝛼)
𝑁 𝑢− 𝑢)‖𝜔(𝛼,𝛼) .
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Then, by Theorem 2.4, the right hand side terms of (3.39) can be estimate as

‖𝜋(−𝛼,−𝛼)
𝑁 𝑢− 𝑢‖𝜔(−𝛼,−𝛼) ≤ 𝑐𝑁1−(2𝛼+𝑚)‖𝐷2𝛼−1+𝑚𝑢‖𝜔(𝛼−1+𝑚,𝛼−1+𝑚) , (3.37)

and

‖𝐷2𝛼(𝜋
(−𝛼,−𝛼)
𝑁 𝑢− 𝑢)‖𝜔(𝛼,𝛼) ≤ 𝑐𝑁1−𝑚‖𝐷2𝛼−1+𝑚𝑢‖𝜔(𝛼−1+𝑚,𝛼−1+𝑚) , (3.38)

which implied that

‖𝑒𝑁‖𝐵𝛼 ≤ 𝑐𝑁1−𝑚‖𝐷2𝛼−1+𝑚𝑢‖𝜔(𝛼−1+𝑚,𝛼−1+𝑚) . (3.39)

On the other hand,

− (𝐷2𝛼(𝑢− 𝜋
(−𝛼,−𝛼)
𝑁 𝑢), 𝑢− 𝜋

(−𝛼,−𝛼)
𝑁 𝑢)

≤ ‖𝐷2𝛼(𝜋
(−𝛼,−𝛼)
𝑁 𝑢− 𝑢)‖𝜔(𝛼,𝛼)‖𝑢− 𝜋

(−𝛼,−𝛼)
𝑁 𝑢‖𝜔(−𝛼,−𝛼) .

Since

‖𝑢− 𝜋
(−𝛼,−𝛼)
𝑁 𝑢‖ ≤ ‖𝑢− 𝜋

(−𝛼,−𝛼)
𝑁 𝑢‖𝜔(−𝛼,−𝛼) .

We find from the above that

‖𝑢− 𝜋(−𝛼,−𝛼)𝑢‖𝐵𝛼 ≤ 𝜌‖𝑢− 𝜋
(−𝛼,−𝛼)
𝑁 𝑢‖𝜔(−𝛼,−𝛼) + ‖𝐷2𝛼(𝜋

(−𝛼,−𝛼)
𝑁 𝑢− 𝑢)‖𝜔(𝛼,𝛼) .

Finally, since 𝑢− 𝑢𝑁 = 𝑢− 𝑢̃𝑁 + 𝑒𝑁 , combining the above with (3.39), (3.37) and
(3.38), we obtain the desired result.

Remark 3.1. We emphasize that unlike in previous examples, here we can not
easily bound the errors in terms of 𝑓 . In particular, the smoothness of 𝑓 does
not imply that the righthand side of (3.45) is bounded for any 𝑚. Hence, only an
algebraic convergence rate can be achieved in this case.

3.3 Two-sided fractional differential equations with
different coefficients

We consider the two-sided fractional differential equation

𝒟𝛽
𝑝𝑢(𝑥) := 𝐶𝛽,𝑝(𝑝

𝑅𝐷𝛽
𝑥 𝑢(𝑥) + (1− 𝑝)𝑅𝑥𝐷

𝛽𝑢(𝑥)) = 𝑓(𝑥), 𝑥 ∈ Λ,

𝑢(±1) = 0,
(3.40)

where 1 < 𝛽 < 2, 0 ≤ 𝑝 ≤ 1, 𝐶𝛽,𝑝 defined in (2.4), and 𝑓(𝑥) is a given function.
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Let 𝜇, 𝜈 satisfy (2.62) and 0 < 𝜇, 𝜈 < 𝛽. A Petrov-Galerkin spectral method
for (3.40) is: Find 𝑢𝑁 ∈ F−𝜇,−𝜈

𝑁 such that

(𝒟𝛽
𝑝𝑢𝑁 , 𝑣𝑁 )𝜔(𝜈,𝜇) = (𝑓, 𝑣𝑁 )𝜔(𝜈,𝜇) , ∀𝑣𝑁 ∈ 𝒫𝑁 . (3.41)

The solution to this discrete problem can be found directly as follows. We expand
𝑓(𝑥) as

𝑓(𝑥) =

∞∑︁
𝑚=0

𝑓𝑚𝑃
(𝜈,𝜇)
𝑚 (𝑥), (3.42)

and write

𝑢𝑁 (𝑥) =

𝑁∑︁
𝑛=0

𝑢̂𝑛𝒥−𝜇,−𝜈
𝑛 (𝑥). (3.43)

Plugging (3.43) and (3.42) in (3.41), using (2.65) and the orthogonality of {𝑃 (𝜈,𝜇)
𝑚 }

in 𝐿2
𝜔(𝜈,𝜇)(Λ), we find

𝑢̂𝑛 = 𝑓𝑛

⧸︁(︁
Γ(𝑛+ 1 + 𝛽)

𝑛!

)︁
, ∀ 0 ≤ 𝑛 ≤ 𝑁. (3.44)

As for the error estimate, we have

Theorem 3.11. Assuming 𝑓 (𝑗) ∈ 𝐿2
𝜔(𝜈+𝑗,𝜇+𝑗)(Λ) for 0 ≤ 𝑗 ≤ 𝑚, let 𝑢 and 𝑢𝑁 be

the solution of (3.40) and (3.41), then we have

‖𝑢− 𝑢𝑁‖𝜔(−𝜇,−𝜈) ≤ 𝑐𝑁−𝛽−𝑚‖𝑓 (𝑚)‖𝜔(𝜈+𝑚,𝜇+𝑚) . (3.45)

‖𝒟𝛽
𝑝 (𝑢− 𝑢𝑁 )‖𝜔(𝜈,𝜇) ≤ 𝑐𝑁−𝑚‖𝑓 (𝑚)‖𝜔(𝜈+𝑚,𝜇+𝑚) . (3.46)

Proof. It is clear from (3.44) that 𝑢𝑁 = 𝜋
(−𝜇,−𝜈)
𝑁 𝑢. Hence, by (2.71), we have

‖𝑢− 𝑢𝑁‖𝜔(−𝜇,−𝜈) = ‖𝑢− 𝜋
(−𝜇,−𝜈)
𝑁 𝑢‖𝜔(−𝜇,−𝜈) ≤ 𝑐𝑁−𝛽−𝑚‖𝒟𝛽+𝑚

𝑝 𝑢‖𝜔(𝜈+𝑚,𝜇+𝑚) .

On the other hand, we derive from (2.70) with 𝑙 = 0 that

‖𝒟𝛽
𝑝 (𝑢− 𝑢𝑁 )‖𝜔(𝜈,𝜇) = ‖𝒟𝛽

𝑝 (𝑢− 𝜋
(−𝜇,−𝜈)
𝑁 𝑢)‖𝜔(𝜈,𝜇) ≤ 𝑐𝑁−𝑚‖𝒟𝛽+𝑚

𝑝 𝑢‖𝜔(𝜈+𝑚,𝜇+𝑚) .

Since 𝒟𝛽+𝑚
𝑝 𝑢 = 𝑓 (𝑚), we obtain the desired results from the above.

3.4 Space-time fractional differential equations

As the last example, we consider

𝐶𝐷𝛼
𝑡 𝑢(𝑥, 𝑡)−𝐷2𝛽𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), ∀(𝑥, 𝑡) ∈ 𝑄 = Λ× 𝐼,

𝑢(𝑥, 𝑡)|𝜕Λ = 0, ∀𝑡 ∈ 𝐼 := (0 < 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥) ∀𝑥 ∈ Λ,

(3.47)
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where 𝛼 ∈ (0, 1), 2𝛽 ∈ (1, 2). To deal with the non-homogeneous initial condition,
we first decompose the solution 𝑢(𝑥, 𝑡) into two parts as

𝑢(𝑥, 𝑡) = 𝑢ℎ(𝑥, 𝑡) + 𝑢0(𝑥), (3.48)

with 𝑢ℎ(𝑥, 0) = 0. Hence, the equation (3.47) is equivalent to the following with
Riemann-Liouville fractional derivative:

𝑅𝐷𝛼
𝑡 𝑢

ℎ(𝑥, 𝑡)−𝐷2𝛽𝑢ℎ(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), ∀(𝑥, 𝑡) ∈ 𝑄,

𝑢ℎ(𝑥, 0) = 0, ∀𝑥 ∈ Λ,

𝑢ℎ(𝑥, 𝑡)|𝜕Λ = 0, ∀𝑡 ∈ 𝐼,

(3.49)

where
𝑔(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) +𝐷2𝛽𝑢0(𝑥).

We consider the following weak formulation of (3.49): find 𝑢 ∈ 𝑋, such that

𝒜(𝑢ℎ, 𝑣) := (𝑅𝐷𝛼
𝑡 𝑢

ℎ, 𝑣)𝑄 − (𝐷2𝛽𝑢ℎ, 𝑣)𝑄 = (𝑔, 𝑣)𝑄, ∀𝑣 ∈ 𝑌, (3.50)

and describe a space-time spectral method for solving the above equation.
For the time variable, we shall use the shifted fractional polynomial space.

Let 𝑥(𝑡) = 2𝑡/𝑇 − 1. We denote 𝑃
(𝛼,𝛽)
𝑛 (𝑡) = 𝑃

(𝛼,𝛽)
𝑛 (𝑥(𝑡)), −𝐽

(−𝛼,−𝛼)
𝑛 (𝑡) :=

𝑡𝛼𝑃
(−𝛼,𝛼)
𝑛 (𝑡), and

−ℱ(−𝛼,−𝛼)
𝑁 (𝐼) = span{−𝐽(−𝛼,−𝛼)

𝑛 (𝑡) : 0 ≤ 𝑛 ≤ 𝑁}. (3.51)

For the space variable, we shall use F−𝛽,−𝛽
𝑀 defined in (2.48). Then, the Petrov-

Galerkin method for (3.49) is: find 𝑢ℎ𝐿(𝑥, 𝑡) := 𝑢ℎ𝑀𝑁 ∈ F−𝛽,−𝛽
𝑀 ⊗ −ℱ(−𝛼,−𝛼)

𝑁 such
that

𝒜(𝑢ℎ𝐿, 𝑣) := (𝑅𝐷𝛼
𝑡 𝑢

ℎ
𝐿, 𝑣)𝑄− (𝐷2𝛽𝑢ℎ𝐿, 𝑣)𝑄 = (𝑔, 𝑣)𝑄, ∀𝑣 ∈ F−𝛽,−𝛽

𝑀 ⊗𝒫𝑁 . (3.52)

We first describe an efficient algorithm for solving (3.52) similar to the one
used in [23]. We write

𝑢ℎ𝐿(𝑥, 𝑡) =

𝑀∑︁
𝑚=0

𝑁∑︁
𝑛=0

̃︀𝑢ℎ𝑚𝑛𝒥−𝛽,−𝛽
𝑚 (𝑥)−𝐽

(−𝛼,−𝛼)
𝑛 (𝑡). (3.53)

For the test function, we take 𝑣𝐿 = 𝒥−𝛽,−𝛽
𝑝 (𝑥)𝐿

(𝛼)
𝑞 (𝑡) where 𝐿

(𝛼)
𝑞 (𝑡) :=

𝜅𝑞,𝛼𝑃
(0,0)
𝑞 (𝑡) with 𝜅𝑞,𝛼 =

𝑞!(2𝑞 + 1)

𝑇 · Γ(𝑞 + 𝛼+ 1)
. Substituting the above in into (3.52),

we obtain
𝑀∑︁

𝑚=0

𝑁∑︁
𝑛=0

̃︀𝑢ℎ𝑚𝑛

{︁
(𝒥−𝛽,−𝛽

𝑚 ,𝒥−𝛽,−𝛽
𝑝 ) (𝑅𝐷𝛼

𝑡
−𝐽

(−𝛼,−𝛼)
𝑛 , 𝐿

(𝛼)
𝑞 )

− (𝐷2𝛽𝒥−𝛽,−𝛽
𝑚 ,𝒥−𝛽,−𝛽

𝑝 ) (−𝐽
(−𝛼,−𝛼)
𝑛 , 𝐿

(𝛼)
𝑞 )

}︁
= (𝑔,𝒥−𝛽,−𝛽

𝑝 𝐿
(𝛼)
𝑞 )𝑄.

(3.54)
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Denote

𝑔𝑝𝑞 = (𝑔,𝒥−𝛽,−𝛽
𝑝 (𝑥)𝐿

(𝛼)
𝑞 (𝑡))𝑄, 𝐺 = (𝑔𝑝𝑞)0≤𝑝≤𝑀,0≤𝑞≤𝑁 ,

𝑠𝑡𝑝𝑞 =

∫︁
𝐼

𝑅𝐷𝛼
𝑡
−𝐽

(−𝛼,−𝛼)
𝑞 (𝑡)𝐿

(𝛼)
𝑝 (𝑡)𝑑𝑡, 𝑚𝑡

𝑝𝑞 =

∫︁
𝐼

−𝐽
(−𝛼,−𝛼)
𝑞 (𝑡)𝐿

(𝛼)
𝑝 (𝑡)𝑑𝑡,

𝑈 = (̃︀𝑢ℎ𝑚𝑛)0≤𝑚≤𝑀,0≤𝑛≤𝑁 , 𝑆𝑡 = (𝑠𝑡𝑝𝑞)0≤𝑝,𝑞≤𝑁 , 𝑀 𝑡 = (𝑚𝑡
𝑝𝑞)0≤𝑝,𝑞≤𝑁 .

Note that 𝑆𝑡 is a diagonal matrix, 𝑀 𝑡 is not sparse but its entries can be accurately
computed by Jacobi-Gauss quadrature with index (0, 𝛼).

Then, from (3.4), we find that (3.52) is equivalent to the following linear
system:

𝑀𝑥𝑈(𝑆𝑡)𝑇 + 𝑆𝑥𝑈(𝑀 𝑡)𝑇 = 𝐺, (3.55)

where 𝑀𝑥 and 𝑆𝑥 are the mass and stiffness matrix in the 𝑥-direction defined in
(3.31). 𝑆𝑥 is a diagonal matrix and 𝑀𝑥 is full but symmetric. The linear system
(3.55) can be solved efficiently by using the matrix diagonalization method [26].
Indeed, let 𝐸 := (𝑒0, · · · , 𝑒𝑁 ) = (𝑒𝑝𝑞)𝑝,𝑞=0,··· ,𝑁 be the matrix formed by the
orthonormal eigenvectors of the generalized eigenvalue problem 𝑀𝑥𝑒𝑗 = 𝜆𝑗𝑆

𝑥𝑒𝑗

and Λ = diag(𝜆0, · · · , 𝜆𝑁 ), i.e.,

𝑀𝑥𝐸 = 𝑆𝑥 𝐸Λ. (3.56)

Setting 𝑈 = 𝐸𝑉 , and multiplying both sides of (3.55) by (𝑆𝑥𝐸)−1 = 𝐸𝑇𝑆𝑥, we
arrive at

Λ𝑉 (𝑆𝑡)𝑇 + 𝑉 (𝑀 𝑡)𝑇 = 𝐻 := 𝐸𝑇𝑆𝑥𝐺. (3.57)

Hence, let v𝑚 and h𝑚 be the 𝑚-th row of 𝑉 and 𝐻, respectively, the above matrix
equation becomes:

(𝜆𝑚𝑆𝑡 +𝑀 𝑡)v𝑚 = h𝑚, 0 ≤ 𝑚 ≤𝑀, (3.58)

which we solve directly with 𝐿𝑈 decomposition. Once we obtain 𝑉 , we set 𝑈 = 𝐸𝑉 .
Finally, we obtain the numerical solutions of (3.47) by 𝑢𝐿 = 𝑢ℎ𝐿 + 𝑢0.

We now turn to the error estimate. Thanks to (3.34), we can define the following
norm:

‖𝑣‖𝑋𝛼,𝛽(𝑄) :=
(︁
‖𝑅𝐷𝛼

𝑡 𝑣‖2𝑄 − (𝐷2𝛽𝑣, 𝑣)𝑄

)︁1/2
.
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Theorem 3.12. Let 𝑢ℎ and 𝑢ℎ𝐿 be the solutions of (3.50) and (3.52), respectively.
Then we have the following error estimates:

‖𝑢− 𝑢𝐿‖𝑋𝛼,𝛽(𝑄)

≲𝑀1−(2𝛽+𝑚)‖𝐷2𝛽−1+𝑚(𝑅𝐷𝛼
𝑡 𝑢)‖𝐿2

𝜔(𝛽−1+𝑚,𝛽−1+𝑚)
(Λ;𝐿2(𝐼))

+𝑁−(𝛼+𝑛)
⃦⃦
𝑅𝐷𝛼+𝑛

𝑡 (𝐷2𝛽𝑢)
⃦⃦
𝐿2(Λ;𝐿2

𝜔(𝑛,𝑛)
(𝐼))

+𝑀1−𝑚‖𝐷2𝛽−1+𝑚𝑢‖𝐿2

𝜔(𝛽−1+𝑚,𝛽−1+𝑚)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

+𝑁−𝑛
⃦⃦
𝑅𝐷𝛼+𝑛

𝑡 𝑢
⃦⃦
𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2

𝜔(𝑛,𝑛)
(𝐼))

.

Proof. Let us denote 𝑢̃ℎ𝐿 := −𝜋
(−𝛼,−𝛼)
𝑁 𝜋

(−𝛽,−𝛽)
𝑀 𝑢ℎ = 𝜋

(−𝛽,−𝛽)
𝑀

−𝜋
(−𝛼,−𝛼)
𝑁 𝑢ℎ and

𝑒𝐿 := 𝑢̃ℎ𝐿 − 𝑢ℎ𝐿. We derive from (3.49) and (3.52) that for all ∀𝑣𝐿 ∈ F−𝛽,−𝛽
𝑀 ⊗𝒫𝑁 ,

we have

𝑏(𝑒𝐿, 𝑣𝐿) : = (𝑅𝐷𝛼
𝑡 𝑒𝐿, 𝑣)𝑄 − (𝐷2𝛽𝑒𝐿, 𝑣𝐿)𝑄

= (𝑅𝐷𝛼
𝑡 (̃︀𝑢ℎ𝐿 − 𝑢ℎ), 𝑣𝐿)𝑄 − (𝐷2𝛽(̃︀𝑢ℎ𝐿 − 𝑢ℎ), 𝑣𝐿)𝑄

=
(︀𝑅𝐷𝛼

𝑡 (𝜋
(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ), 𝑣𝐿

)︀
𝑄
− (𝐷2𝛽(−𝜋

(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ), 𝑣𝐿)𝑄.

Taking 𝑣𝐿 = 𝑅𝐷𝛼
𝑡 𝑒𝐿 (∈ F−𝛽,−𝛽

𝑀 ⊗ 𝒫𝑁 ) in the above equation, we obtain that

(𝑅𝐷𝛼
𝑡 𝑒𝐿,

𝑅𝐷𝛼
𝑡 𝑒𝐿)𝑄 − (𝐷2𝛽𝑒𝐿,

𝑅𝐷𝛼
𝑡 𝑒𝐿)𝑄

= (𝑅𝐷𝛼
𝑡 (𝜋

(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ),𝑅𝐷𝛼

𝑡 𝑒𝐿)𝑄 − (𝐷2𝛽(−𝜋
(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ),𝑅𝐷𝛼

𝑡 𝑒𝐿)𝑄.

(3.59)

Thanks to the generalized Poincaŕe inequality [8]:

‖𝑢‖𝐿2(𝐼) ≤ 𝑐‖𝑅𝐷𝛼
𝑡 𝑢‖𝐿2(𝐼),

we derive from Lemmas 2.2-2.3, (3.59) that

(𝐷2𝛽𝑒𝐿, 𝑒𝐿)𝑄 ≲ (𝐷2𝛽(𝑅𝐷
𝛼
2
𝑡 𝑒𝐿),

𝑅𝐷
𝛼
2
𝑡 𝑒𝐿

)︀
𝑄

∼= (𝐷2𝛽(𝑅𝑡 𝐷
𝛼
2 𝑒𝐿),

𝑅𝐷
𝛼
2
𝑡 𝑒𝐿

)︀
𝑄

= (𝐷2𝛽𝑒𝐿,
𝑅𝐷𝛼

𝑡 𝑒𝐿)𝑄, (3.60)

This, along with equation (3.59), yields

‖𝑅𝐷𝛼
𝑡 𝑒𝐿‖2𝑄 + (𝐷2𝛽𝑒𝐿, 𝑒𝐿)𝑄 ≤ ‖𝑅𝐷𝛼

𝑡 (𝜋
(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖𝑄 ‖𝑅𝐷𝛼

𝑡 𝑒𝐿
⃦⃦
𝑄

+‖𝐷2𝛽(−𝜋
(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖𝑄 ‖𝑅𝐷𝛼

𝑡 𝑒𝐿‖𝑄,

which implies

‖𝑒𝐿‖2𝑋𝛼,𝛽(𝑄) := ‖𝑅𝐷𝛼
𝑡 𝑒𝐿‖2𝑄 + (𝐷2𝛽𝑒𝐿, 𝑒𝐿)𝑄

≲ ‖𝑅𝐷𝛼
𝑡 (𝜋

(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖2𝑄 + ‖𝐷2𝛽(−𝜋

(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖2𝑄.
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The two terms at the right-hand side can be bounded by using Lemma 2.2 and
Lemma 2.4 as follows:

‖𝑅𝐷𝛼
𝑡 (𝜋

(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖𝑄 ≲ ‖𝑅𝐷𝛼

𝑡 (𝜋
(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2(𝐼))

≲𝑀1−(2𝛽+𝑚)‖𝐷2𝛽−1+𝑚(𝑅𝐷𝛼
𝑡 𝑢)‖𝐿2

𝜔(𝛽−1+𝑚,𝛽−1+𝑚)
(Λ;𝐿2(𝐼)),

and

‖𝐷2𝛽(−𝜋
(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖𝑄 ≲ ‖𝐷2𝛽(−𝜋

(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖𝐿2(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

≲ 𝑁−(𝛼+𝑛)
⃦⃦
𝑅𝐷𝛼+𝑛

𝑡 (𝐷2𝛽𝑢)
⃦⃦
𝐿2(Λ;𝐿2

𝜔(𝑛,𝑛)
(𝐼))

.

Combining the above estimates, we arrive at

‖𝑒𝐿‖𝑋𝛼,𝛽(𝑄) ≲𝑀
1−(2𝛽+𝑚)‖𝐷2𝛽−1+𝑚(𝑅𝐷𝛼

𝑡 𝑢)‖𝐿2

𝜔(𝛽−1+𝑚,𝛽−1+𝑚)
(Λ;𝐿2(𝐼))

+𝑁−(𝛼+𝑛)
⃦⃦
𝑅𝐷𝛼+𝑛

𝑡 (𝐷2𝛽𝑢)
⃦⃦
𝐿2(Λ;𝐿2

𝜔(𝑛,𝑛)
(𝐼))

. (3.61)

On the other hand, we have 𝑢ℎ − 𝑢ℎ𝐿 = 𝑢− 𝑢̃ℎ𝐿 + 𝑒𝐿. Then, using Lemma 2.2 and
Lemma 2.4 again yields

(𝐷2𝛽(𝑢̃ℎ − 𝑢ℎ), 𝑢̃ℎ − 𝑢ℎ)𝑄

≤ ‖𝐷2𝛽(𝑢̃ℎ − 𝑢ℎ)‖𝐿2

𝜔(𝛽,𝛽)
(Λ;𝐿2

𝜔(𝛼,𝛼)
(𝐼))‖𝑢̃

ℎ − 𝑢ℎ‖𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

≤ ‖𝐷2𝛽(𝑢̃ℎ − 𝑢ℎ)‖2𝐿2

𝜔(𝛽,𝛽)
(Λ;𝐿2

𝜔(𝛼,𝛼)
(𝐼)) + ‖𝑢̃ℎ − 𝑢ℎ‖2𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

:= 𝐼1 + 𝐼2.

Similarly, these two terms can be estimated as follows:

𝐼1 ≤ ‖𝐷2𝛽𝜋
(−𝛽,−𝛽)
𝑀 (−𝜋

(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖2𝐿2

𝜔(𝛽,𝛽)
(Λ;𝐿2

𝜔(𝛼,𝛼)
(𝐼))

+‖𝐷2𝛽(𝜋
(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖2𝐿2

𝜔(𝛽,𝛽)
(Λ;𝐿2

𝜔(𝛼,𝛼)
(𝐼))

≤ ‖𝐷2𝛽(−𝜋
(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖2𝐿2

𝜔(𝛽,𝛽)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

+‖𝐷2𝛽(𝜋
(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖2𝐿2

𝜔(𝛽,𝛽)
(Λ;𝐿2

𝜔(𝛼,𝛼)
(𝐼))

≤ 𝑐𝑁−2(𝛼+𝑛)
⃦⃦
𝑅𝐷𝛼+𝑛

𝑡 (𝐷2𝛽𝑢)
⃦⃦2
𝐿2(Λ;𝐿2

𝜔(𝑛,𝑛)
(𝐼))

+𝑀2−2𝑚‖𝐷2𝛽−1+𝑚𝑢‖2𝐿2

𝜔(𝛽−1+𝑚,𝛽−1+𝑚)
(Λ;𝐿2(𝐼)).

and

𝐼2 ≤ ‖−𝜋(−𝛼,−𝛼)
𝑁 (𝜋

(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖2𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

+‖−𝜋(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ‖2𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

≤ ‖𝜋(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ‖2𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

+‖−𝜋(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ‖2𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

≤ 𝑐𝑀2−2(2𝛽+𝑚)‖𝐷2𝛽−1+𝑚𝑢‖2𝐿2

𝜔(𝛽−1+𝑚,𝛽−1+𝑚)
(Λ;𝐿2

𝜔(−𝛼,−𝛼)
(𝐼))

+𝑐𝑁−2(𝛼+𝑛)
⃦⃦
𝑅𝐷𝛼+𝑛

𝑡 𝑢
⃦⃦2
𝐿2

𝜔(−𝛽,−𝛽)
(Λ;𝐿2

𝜔(𝑛,𝑛)
(𝐼))

.
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Moreover, we have

‖𝑅𝐷𝛼
𝑡 (𝜋

(−𝛽,−𝛽)
𝑀

−𝜋
(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖𝑄

≤ ‖𝑅𝐷𝛼
𝑡
−𝜋

(−𝛼,−𝛼)
𝑁 (𝜋

(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖𝑄 + ‖𝑅𝐷𝛼

𝑡 (
−𝜋

(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖𝑄

≤ ‖𝑅𝐷𝛼
𝑡 (𝜋

(−𝛽,−𝛽)
𝑀 𝑢ℎ − 𝑢ℎ)‖𝑄 + ‖𝑅𝐷𝛼

𝑡 (
−𝜋

(−𝛼,−𝛼)
𝑁 𝑢ℎ − 𝑢ℎ)‖𝑄

≲ 𝑐𝑀1−(2𝛽+𝑚)‖𝐷2𝛽−1+𝑚(𝑅𝐷𝛼
𝑡 𝑢)‖𝐿2

𝜔(𝛽−1+𝑚,𝛽−1+𝑚)
(Λ;𝐿2(𝐼))

+𝑐𝑁−𝑛
⃦⃦
𝑅𝐷𝛼+𝑛

𝑡 𝑢
⃦⃦
𝐿2(Λ;𝐿2

𝜔(𝑛,𝑛)
(𝐼))

.

Consequently, the desired result follows from the above estimates and the triangle
inequality.

Remark 3.2. Note that the error estimate in the above theorem can not be
easily expressed in terms of the data (𝑓, 𝑢0). In particular, the space-time Petrov-
Galerkin method (3.52) will not lead to high-order convergence, even if 𝑓 and
𝑢0 are sufficiently smooth, due to the singularities of the solution at 𝑡 = 0 and
𝑥 = ±1. However, the leading singular term in time and in space is included in our
approximation space so our method will lead to better convergence rate than those
based on the polynomial approximations.

4 Concluding remarks

We presented in this article essential properties of the GJFs and their application to
a class of fractional differential equations. In particular, we showed that (i) by using
suitable GJFs, the non-local fractional operators become local operators in the
space spanned by GJFs; (ii) for simple FDEs, the spectral methods using GJFs can
lead to exponential convergence rate despite the non-smoothness of the solution in
usual Sobolev spaces; and (iii) for more general FDEs, a suitable spectral method
using GJFs is still very efficient as the non-local fractional stiffness matrices can
be easily computed, and furthermore, it is also more accurate than using a usual
polynomial based method as the GJFs include the leading singular term of the
underlying FDEs.

We only consider one dimensional FDEs in this paper. For multi-dimensional
fractional PDEs with only fractional derivative in time, one can couple the GJF
spectral method in time with a usual spatial approximation to construct a space-
time Petrov-Galerkin method. It can still be efficiently solved by using the matrix
diagonalization method as in the last subsection, we refer to [27] for more detail.
As for FDEs with multi-dimensional fractional operators in space, one has to
construct appropriate numerical methods with respect to the specific definitions of
fractional operator. In particular, the GJFs for Riesz equation in one-dimension can
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be extended to deal with fractional Laplacian by the integral definition on the multi-
dimensional balls [20]. On the other hand, for fractional Laplacian defined through
the spectral decomposition of the Laplacian operator, one can use the Caffarelli-
Silvestre extension to cast the fractional Laplacian equation in 𝑑-dimension into
an extended problem in 𝑑 + 1-dimension with regular derivatives and a weakly
singular weight in the extended direction. Then, one can construct efficient and
accurate spectral method in the extended direction to couple with any consistent
approximation in space, for more detail, we refer to [6]. For other types of multi-
dimensional fractional PDEs, we refer to a recent review paper [19] for a nice
presentation on different definitions of fractional Laplacian and their numerical
treatments.
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