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1 Introduction

In this paper we consider the error analysis of fully discretized schemes for the
Gross—Pitaevskii equation (GPE). The GPE, which is a nonlinear Schrodinger equa-
tion, describes Bose—Einstein condensates (BECs) in the low temperature regime
(ctf. [9, 19]):

h2
iho(x, 1) = —%Aw(x, D+ VY, 1)+ NUp|¥(x, z)]zw(x, 1, (L.1)

where 1 is the condensate wave function, m is the atomic mass, 7 is the Planck con-
stant, N is the number of atoms in the condensate, and V (x) is an external trapping
potential. When a harmonic trap potential is considered, V (x) = ﬂ(a))%xz + w% y2 +

a)gzz), where w,, wy, and w; are the trap frequencies in the x-, y-, and z-directions,
respectively. In most current experiments, the traps are cylindrically symmetric, i.e.,
wy = wy. Up = MZJ describes the interaction between atoms in the condensate
with the s-wave scattering length a; (positive for repulsive interaction and negative
for attractive interaction). Using the normalization

f [y x, 0 dx =1, (1.2)
R3
and denoting
_l 2.2 2.2 2.2 _ @a _
V) =S (ix + 7" +1:7), va=— a=xy.2
Wm
in | 5 drags N
Wy = min a)x,a)y,a)z s Z\/:,
h/mawy,

we arrive at the following dimensionless GPE:

10,9 (X, 1) = =3 AV (X, 1) + VO U (X, 1) + Bl (x, DY (x, 1),
¥ (x,0) = Yo(x), limjyj oo ¥ (x,0) =0, =0,

(1.3)

which is in fact a nonlinear Schrodinger equation.

Much attention has been devoted to numerical approximation of the time-
dependent GPE (1.3). For instance, Bao, Jaksch and Markowich [2] and Bao and
Shen [1] proposed several versions of time-splitting spectral methods, Ruprecht et
al. [20] used the Crank—Nicolson finite difference method, and Cerimele et al. [5]
proposed a particle-inspired scheme. However, the convergence analysis of semidis-
cretized Strang-type splitting schemes for linear and nonlinear Schrédinger equations
only became available recently. Jahnke and Lubich [16] first presented an error bound
for linear Schrodinger equations; then Lubich [18] gave an error bound for nonlinear
Schrodinger equations. For related analyses in this direction, we refer to [6, 13, 17,
22]. However, to the authors’ best knowledge, not much is available for the fully
discretized time-splitting schemes for nonlinear Schrodinger equations. The main
reason is that, unlike the error analysis for fully discrete non-splitting schemes (e.g.,
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backward Euler or Crank—Nicolson schemes), the error analysis for fully discrete
time-splitting schemes is much more difficult than that for their semidiscrete coun-
terparts. Recently, Gauckler [8] performed an error analysis for a Hermite collocation
Strang splitting method for the d-dimensional GPE. The aim of this paper is to carry
out an error analysis for the Hermite—Laguerre collocation Strang splitting method for
the three-dimensional GPE with cylindrical symmetry, and for the Hermite spectral
Strang splitting method for the d-dimensional GPE.

Our main contributions are twofold: (i) our error analysis for the Hermite—
Laguerre collocation method, which was actually implemented in [1], is new; (ii)
our results for the Hermite collocation Strang splitting method for the d-dimensional
GPE significantly improve the error estimates presented in [8]. Moreover, while our
analysis for the semidiscretization in time is similar to those in [8, 18], our analysis
for the full discretization has some essentially different components from those in
[8], and leads to improved error estimates. Nevertheless, the techniques developed in
[8, 18] have been very useful for our analysis.

More precisely, we first focus on the special case of (1.3) with cylindrical symme-
try, i.e., ¥x =¥y = ¥» and ¥o(x, y, z) = Yo (r, 2). Then the equation becomes:

0y (r.z,0) = [~ 20 o, ¥ (r, 2. D) + 3y ¥ (r. 2, )]
+ =502y (r 2, ) + 3122 (r 2, 1)]
F B P ) = Ay + By + Ny, D

r>0,zeR,

W(n Z70)=1//0(raz)a limr‘|z\~>oo w('ﬁz,f):O, tzo

We present a full discretization scheme for (1.4) by using a Strang splitting scheme
in time and a Laguerre-Hermite collocation method in space. The main results for
(1.4) are summarized in Theorem 5.1 and Corollary 5.1. Note that the analysis for the
axisymmetric case is much more difficult than the usual d-dimensional case due in
part to the involvement of the Laguerre functions.

We then consider the full discretization of the d-dimensional GPE directly by us-
ing the Strang splitting in time and a Hermite collocation method in space. The main
results for the d-dimensional GPE are summarized in Theorem 6.3 and Corollary 6.1.

The paper is organized as follows. In the next section, we derive some basic re-
sults for the Laguerre and Hermite approximations which will be used for the error
analysis. In Sect. 3, we describe the semidiscrete Strang splitting scheme and the
fully discrete Strang splitting Laguerre-Hermite collocation scheme for (1.4). The
error analysis for the semidiscrete Strang splitting scheme for (1.4) is performed in
Sect. 4, while that for the fully discrete Strang splitting Laguerre-Hermite collocation
scheme is presented in Sect. 5. We consider the error analysis of the Strang splitting
Hermite collocation scheme for the d-dimensional GPE in the last section.

2 Scaled Laguerre—-Hermite—Gauss Interpolation

In this section, we describe scaled Laguerre—Hermite—Gauss interpolation and derive
some basic results which will be used later.
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2.1 Scaled Laguerre Functions

Let I = (0, 0o0) and let L,, (7) be the Laguerre polynomial of degree m satisfying

FL! (F)+ (1 —=F)L, (F) + mL,,(F) =0, Fel,m>0,

/ Ln)Ln (e &7 = 8y, mm = 0,
1

where §,,,, is the Kronecker delta function.
For any positive integer N, we denote by Py the set of all algebraic polynomials
of degree at most N. Let {;, c?); }j'vzo be the Laguerre—Gauss points and weights, and

f]rv : C(I) — Py be the corresponding interpolation operator in the r-direction such
that

InvE) =v(F), 0<j<N.

For any integer r > 0, we define the weighted Sobolev space H)’((I ) with the

weight function x in the usual way. In particular, L3 (1) = HY(I). For any r > 0, we
define the space H, (/) by space interpolation as in [4]. According to Theorem 3.4 of

[11], for any v € H} (1) and ;v € L2, (I) with wo(F) =e™" and w| (F) = fe ™", we
have

~ 1 1
|’I;VU||LZ)0(1)§CN 2||afv||Lg)O(1)+C(1nN)2(||U||L(ZUO(1)+||3fv||Lg)1(1))~ 2.1

In order to determine the eigenfunctions of the linear operators 4,, Bao and

Shen [1] introduced the change of variable r = \/% and the scaled Laguerre function

I () = ,/%e—”%m(ﬂ =,/§e‘”’2/2Lm(yrr2), rel, 2.2)

which satisfies

.__i l 2.2 _r
Apln (r) := > O (rorlm(r)) + Svr L (r) = pobn (r), 2.3

Wy = yr(2m 4 1),m >0,

2 / Ln(MHL,(ryrdr =6, m,n>0. 2.4)
I

We also denote
ri=.-1, w’-:—é);e;j, Xy =span{l,(r):0<m < N},
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where r; and ', are the scaled Laguerre-Gauss points and weights, respectively. We
recall that [1]:

N
D Dl (rj) =8um, YO<n+m <2N+1. (2.5)
Jj=0
Next, we define 7, : C(I) — X}, the corresponding interpolation operator, by
Tyu(rj)=u(rj), 0<j<N.

For any u(r) = e_V"’z/zv(yrrz), we have
2 2 ~
P Thu(r) =" Pur)) =v(#)) =Iyv(F;), 0<j<N.

Furthermore, due to (2.2), errz/zIZ’Vu(r)I — € Py and f,’\,v(f) € Py. Hence,
r=,/ =
Yr

e”’rz/ZI,rvu(r) |r:\/z = j,rvv(f).
Yr

This with (2.1) leads to

/\I,r\,u|2rdr < cN_1</|u(r)|2rdr+/|8,u(r)|2r_1dr>
1 1 1
+clnN</|u(r)|2(r+r3)dr+/’8ru(r)|2rdr)
I I

5cN_I/‘Bru(r)yzr_ldr+clnN</’u(r)’2(r+r3)dr
I I

+/|a,u(r)|2r dr>. (2.6)
1

2.2 Scaled Hermite Functions

Let H(z) be the standard Hermite polynomials satisfying

H/'(z) —2zH/(z) + 2lH;(z) =0, z€R,1>0,

/ H;(z)H, (z)efZ2 dz = /72 1181,, 1,n>0.
R
We consider the scaled Hermite function (cf. [1])
hi@) = (rz/m) e 7 P V2L zeR, @7

which satisfies

1 1 2041
B:hi(z) == —Ehﬁ/(z) + Eyzzzzhz(z) =uhi(@), p= TVZ,I =0, (298
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/ hi()h,(z)dz =6;,, [,n>0. 2.9
R

Next let {Z, d)k},i\’:o be the Hermite—Gauss points and weights. Denote by

é)i 22

a)i: ek7

Nz

the scaled Hermite—Gauss points and weights, respectively. According to [1],

N
> Wi (@ (@) = 8y, YO <n+m <2N + 1. (2.10)
k=0

Let X 1Zv =span{h;(z) : 0 <! < N}. We define the scaled Hermite—Gauss interpolation
operator Zy, : C(R) — X3, by

Tyv(z) =v(zx), 0<k<N.

The following result is established in [10]:
_1
IZ50] oy = c(vl2ey + N 5 olig). veH'®), @11

where | - | 1wy denotes the seminorm of H L(R).

We now introduce some properties about the scaled Hermite functions in R3. Let
hi(x) and hy(y) be the Hermite functions defined in (2.7) with y, and y, instead
of y,, respectively. The corresponding operators in (2.8) are denoted by By and By,
respectively, i.e.,

2k +1

— ¥ (212

1 1
Behi(x) 1= =2 h{(x) + Ey,?xzhk(x) = uihe (), ==

2m + 1

1 1 ,
By () = =y () + Eyfyzhm(y) = Wnhm (), tim = vy (2.13)

We denote by L2(R3) and H*(R3) (s > 0) the usual Sobolev spaces with the
usual notation for their seminorms and norms. It can be easily shown that the linear
differential operator B, + B, + B; is positive definite and self-adjoint. Indeed, for
any # and v in the domain of B, + B, 4 B, applying integration by parts leads to

((By + By + B)u, v) gy = (u, (B + By + B)v)gs =a(u, v), o1
((B_x—‘f_By +Bz)u,u)R3 =a(u,u) >0, ifuz#0, '
where

1 1
a(u,v) = 2 (Vi Vo)gs + 5(()/3)62 Yy + VU, v)ps.

From (2.8), (2.9), (2.12), and (2.13), we have
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a(hi (O hm (Wi (@), h () hyy (0 (2))
= ((Bx + By + B)hi () ()11 (2), hye () ()1 (2)) s
= (15 + 1+ 147) S S S11 - (2.15)

Since By + By + B; is a positive definite and self-adjoint operator in L%*(R?), the
fractional power (B, + By + B.)'/? is well defined, and the associated norms can be
characterized by (see, e.g., [21, 23]):

| By + By + B) ' Pu| 12y = alu. ), (2.16)

” (Bx + By + Bz)m+1/2u ”12(]]@3) = a((Bx + By +B)"u, (By + By + Bz)mu)v

Vm € N.
2.17)

For any u € L2(R3), we write (cf. [8])

o0

w(x.y. )= Y pmthi()hn(hi ().
k,m,[=0

We introduce the following three Sobolev spaces equipped with the norms:

1

e e} 2
||u||H;<Rs>=< > (uiw%u;)ﬂukmz) :

k,m,[=0

el g ey = [ (Be + By + B 2| 2 s

1

s—k—m—l

s 2
lleell . 3y = ( o+ +2+1) 3)53;'13;““%2(]1@3)) :
k+m+1=0

With a slight modification of Lemma 2.1 in [25], we can prove the following.
Lemma 2.1 The previous three norms are equivalent, i.e.,
el prs 3y = Nl g w3y ~ Nl s, w3y -

Proof Let integer r > 0. According to (2.8), (2.9), (2.12), and (2.13), we have that
for s =2r,

iy sy = (B + By + Bo) ", (Be + By + Be) ) s

o0
= ( Z (1 + pm + Mf)rukmlhkhmhz,
k,m,[=0
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o0
.
E (i + ), + 1) uk’m/l/hk/hm’hl/)
K m 1'=0 B3

o0
y 2
= 20 (gt 1) s = Nl -
k,m,[=0

Next, by (2.15) and (2.17), we deduce that for s =2r + 1,

Il ray = @ (B + By + Bo) . (By + By + B:)'u)

o0
= a( Z (14 + mm + 145) wmthichmhy,
k,m,l=0

o0
Z (M;(C/ + an/ + /‘L;/)ruk’m’l’hk’hm’hl/>
k' m’ ,lI'=0
o0
= > (gt w) (e +u)
k,m, k' ,m’,l'=0

X Wiemithi 'y @ (hichim by, By R hyr)
o0

2r+1 2 2
= Z (Mi+ll«2)n+,u[z) [tgmi|” = ”u”Hi(RS)'
k,m,[=0

The above two estimates, together with function space interpolation as in [4], lead to
the desired result ||u|| H5(R3) = lul| H(R3): Furthermore, following [25] we can verify
readily that

”””Hj;(]l@) ~ ”u”Hé(R})'

This completes the proof. d
Remark 2.1 We note that Helffer [14] proved the following equivalence result:
luell 2@y + || (Be +By)7”||L2(R3) + ||BZ§M||L2(R3)
~ Nl s @y + [ (02 4 5%) 20 gy + 1250 o -
The above result, although very similar to Lemma 2.1, is nevertheless different. Fur-
thermore, Abdallah, Castella, and Méhats [3] extended the above result to the more
general case with nonharmonic oscillator.

Lemma 2.2 We have the following inequalities:

||MUw||L2(R3) = c||u||H1(R3)||v||H1(R3)||w||H|(R3), (2.18)

||’4Uw||L2(R3) = c||u||Lz(R3)||v||Hz(R3)||w||Hz(R3), (2.19)
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||uvw||H1(R3) = C||M||H1(R3) ||U||H2(]R3) ||w||Hz(]R3), (2.20)

||MUH)||H1<(R3) < C”M”Hk(R}) ”v”Hk(]R3) ”w”Hk(R3)’ A4 integer k>2. (221)

Proof The results (2.18)—(2.20) and (2.21) with k = 2 are established in [18]. By
induction, we can obtain the result (2.21) with integer k£ > 3. O

The previous results can be extended to the corresponding ones in Hj (R3), as
stated below.

Lemma 2.3 The following inequalities hold:

luvw ||L2(R3) <cllu ||H,411(R3) l U”HA(RB) lw ”H}x(ﬂ@)- (2.22)
luvwl sy < el sy 10l 1012 (223)
luvw| HL(R3) <cllu ”H}‘(R3) l v”]—[i (R3) lw]] H2(R3) (2.24)

luvw ”Hﬁ(ﬂ@) <cllu ”H};(R»z) I U”[-[[’;(R}) lw ”Hﬁ(ﬂ@)’ Vinteger k > 2. (2.25)

Proof Cases 1 and 2. Since ||u||H/§(R3) ~ ||“||H5(R3)’ we have |[lullgsg3s) <

cllu ||Hj, ®3)> § > 0. Hence by (2.18) and (2.19) we get the results (2.22) and (2.23).
Case 3. According to the equivalence of the norms, we derive readily that

luvwll 1 g3y = C||Mvw||HC1(R3) < cluvw| g1 g3 +c| (P +y 2+ 1)%uvw”L2(R3)‘
From (2.20) we have
|uvw|H1(R3) = C||M||H1(R3)||U||H2(R3)||w||H2(R3) = C||u||H/§(]R3)||U||H%(R3)||w||yi(ﬂg3)o
By (2.19),

H ()c2 + y2 +22+ 1)%”vaL2(R3)

1
< (P32 + 22+ 1)2u o g 0l 2@ 1wl 2 )
<cllu ”HCI,(R3) lv ||H3(R3) lw] HZ(R3)

= C”“”H}\(R3) ”U“Hﬁ(ﬂ@) ”w”Hﬁ(R‘)' (2.26)

A combination of the previous three inequalities leads to the desired result (2.24).
Case 4. Obviously,

||uvw||H/2‘(R3) < cluvw| g2 g3

+e Z |;(x2+y2+z2+1)%a§a;’a§(uvw)||Lz(R3)
k+m-+I=1

+cf (x2 +y 2+ 1)MUwHL2(]R3)‘

@ Springer



Found Comput Math

From (2.21),
|”Uw|H2(R3) = C||”||H2(R3) ||U||H2(R3) ||w||H2(R3) = C||M||H/§(R3) HUHH%(R% ”w||Hi(R3)'

1
Since || ()c2 + y2 +22+ 1)20,u ||L2(R3) < ||”||H3(R3)’ we can use an argument similar
to (2.26) to derive that

1
2 162y 427 4+ 1)2 0500l vw) | o
k+m+I1=1
<cllu ”Hﬁ(R3) l v”Hi(R3) lw ”Hi(RSy
Furthermore, by (2.19),
” (x2 + y2 +22+ l)uvaLz(R3)
<c| (P 47+ 2+ Du o Il sy lwll 2o
<cllull H3(R3) vl H2(R3) lwll H3 (R3)

Therefore, a combination of the previous four inequalities leads to (2.25) with k = 2.
We can obtain the desired results for integer k£ > 3 by using an argument as in the
proof of (6.14) of this paper. g

2.3 Approximation by the Mixed Laguerre—Hermite Functions

Set £2 =1 x R. In order to present the convergence of the three-dimensional
GPE with cylindrical symmetry, we need some approximation results on the mixed
Laguerre—Hermite functions. To this end, we define the inner product and norm of
L?(£2) with complex-valued functions by

1
u,v)o = 271/ u(r, 2)v(r, z)r drdz, vl 20y = (v, V).
22

We notice that the inner product introduced here is not the usual inner product on
L*(I x R), but on L*(R?) using cylindrical coordinates. For any u(r,z) € L?(£2),
we write

w(r2) =Y umiln()hi(z).

m,[=0

Obviously, the linear differential operator A, + B3, is positive definite and self-

adjoint. Thus for any u and v in the domain of A, + B;,
((-Ar"‘Bz)”aU)_Q :(uv(AF+BZ)U)_Q :b(u,v), (2 27)
((Ar + B, u) , =b(u,u) >0, ifu#0, '

where the bilinear form

1 1
blu, v) = 5 (Vu, Vo)g + E((ygrz +y22)u,v) .
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Moreover, for any functions [, (r)h;(z) and 1, (r)hy (2),
b(lmhy, Ly hy) = ((Ar + B)lnhi, lm/h[/)g = (Mf,, + uf)émm/ézl/. (2.28)

The fractional power (A, + B;) 1/2 is also well defined, and the associated norms can
be characterized by

| (A + B)"2u| % = b, w), (2.29)

| A + BV 2u|), = b((A, + B)"u, (A, + B)"u), YmeN.  (2.30)
We next introduce two Sobolev spaces equipped with the norms:

o] 2
lull 5 ) = ( > (e, +Mlz)slum1|2> ,

m,[=0
lull g2y = | (A + B 2u] 2 -

It is also easy to verify that ”l/l”Hi(Q) = ”MHHE(Q).

Let Xy := Xy (yr, ¥z) = spanf{l,, (r)h;(2) : 0 <m,l < N}. According to (2.3) and
(2.8), {ln(r)h;(z)} are the eigenfunctions of the operator A, + BB, with the eigenval-
ues (), + (.

Lemma 2.4 Forany ¢ € X and s > 0,
Pllhs 2) < cN2 M@l L2(0)-
Proof Given ¢ € X, we write

N
=Y Gmiln ().

m,l=0
For any integer s > 0,

N
191732y = (A +B°.9) g = D (s + 1) 9l

m,[=0

<cN* Z lbmi* = cNI$11735 -

m, =0

This with a standard space interpolation technique [4] yields the desired result. [

We now consider the orthogonal projection. For any u € L?(§2), the orthogonal
projection operator Py : L%(£2) — Xy is defined by

(u— Pyu,p)o =0, VoeXy. 2.31)
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In particular, if u € H g (£2) with integer s > 0, we have
((Ar +B)Z(u — Pyu), (A + B,)2¢)
= (u— Pyu, (A +B)°¢), =0, VopeXy, (2.32)

which means that the L?(£2)-orthogonal projection operator Py is also the H % (£2)-
orthogonal projection operator.

Theorem 2.1 Ifu € H}(£2), then forany 0 < i1 <3,

u
lu — Pyull gy < N2 lullby 2)-

Proof For any integers p and s with 0 < u <'s,

00 N 00

lu = Praeln gy = D (o +15) Tt P4 D D (s + 115) Lt
4 m,I=N+1 m=0I=N+1

00 N
+ > ()
m=N+1[=0
oo
< eNT Y (g + ) Tt P = eNP7 s ). (233)
m,[=0

This with a standard space interpolation technique leads to the desired result. g

We are now in position to study the interpolation operator. The scaled Laguerre—
Hermite—Gauss interpolant Zy : C(§2) — Xy is determined by

Inu(rj,zk) =u(rj,zx), 0=<jk=<N.

Clearly, Zyu = I]’VIIZVu. Hence by (2.6), (2.11), and the equivalence of the norms, a
direct calculation shows that

||INu||§2(m5cN—l<[ |a,u|2r—1drdz+N—%/ |8Z8ru|2r_ldrdz)
2 2
+clnN</ |u|2(r+r3)drdz+N_%/ 19, (r +r%)drdz
2 2

+/ |a,u|2rdrdz+N*%/ |aza,u|2rdrdz>
2 2

-1 2 —In2
= N7 (Il oy + N3 lull o o)

e N(lul, o+ N5l s)
HE(RY) ST HE R
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<cInN([u|? N=3 ul? 234
< N () + N F i ) (2.34)

Theorem 2.2 Ifu € H}(2), then forany 0 < u < s and s > 2,
1 §+u
lu = Inull @y < cAnN)INST 2 ||ull g3 @)
Proof From Theorem 2.1 and Lemma 2.4, forany 0 < u <,
flu _INUHHA“(Q) < lu-— PNM”HX'(Q) + HIN(M - PNU)H H($2)
nos I
<cN?2 ”u”Hz(.Q) +cN? HIN(u - PN”) ||L2(.Q)
Moreover, by (2.34) and Theorem 2.1, for any s > 2,
1 I—s S5_s
|Zw (u — PNM)HLz(Q) <c(InN)2(N 2 lell s 2y + N6~ 2 ||M||H;‘(9))
L5 s
<c(InN)2N&"2lull ps(@)-
Therefore,

T < 1N% PR O
lu —Znullgr @) = c(nN)2N lleell 115 (2)-

3 A Time-Splitting Laguerre—-Hermite Collocation Method

We now describe the time-splitting spectral method in [1] for the three-dimensional
(3D) Gross—Pitaevskii equation (GPE) with cylindrical symmetry (1.4). For simplic-
ity, we shall only consider the second-order Strang splitting scheme. It is expected
that the technique presented in this paper will eventually enable us to prove error
estimates for the fourth-order splitting scheme used in [1].

3.1 Strang Splitting in Time

For the semidiscretization in time, we split the 3D GPE with cylindrical symmetry
(1.4) into its linear and nonlinear parts:

0,9 (r,z,1) = (A + By = —% [%a,(ra,w) + agw} + %(y}ﬂ +y22) Y, (3.1)

. 2

By, z,0) =By, 2.0 v z,1). (3.2)
Equations (3.1) and (3.2) are exactly solvable since || is invariant in time along the
solution of (3.2). For a given time step T > 0, letf, =nt,n =0, 1, ..., and let " be

the approximation of v (#,). Then, the second-order Strang splitting in time for (1.4)
is as follows:

P = et () = e—ig(Ar+BZ)e—irﬁ\e*%“"*g‘*)w"\2e—i%(Ar+Bz>¢", (3.3)
where 0 = .
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3.2 Full Discretization

Before we present the full discretization of (1.4), let us describe the semidiscretization
in space using the Laguerre—Hermite collocation method. Find ¥y (r, z,t) € Xy, i.€.,

N

YN 2= Y Yt (Ol (i (2), (3.4)

m, =0

such that

0N (rj, 2k, 1) = (Ar + BIYN(rj, 2k, 1) + BlYn (. 2, t)|2'(//N(Vja 2k, 1),

(3.5)
VO<j,k=N,
where Yy (7, 2k, 0) = Yo(rj, zk).
The system (3.5) can also be rewritten as
:iazxﬁN(n 2, 0) = (Ar + BOYn (r, 2, 1) + BIN (Y (r, 2, ) PP (r, 2, 1)), 36
U (r, 2,0) = In o (r, 2). '

We now combine the semidiscretization in time in Sect. 3.1 with the semidis-
cretization in space to obtain a full discretization of (1.4). To do this, we split the
space-discretized equation (3.6) into its linear and nonlinear parts:

10N (rz, 1) = (Ar + B)Yn (r, 2, 1), (3.7

YN (r,z,0) =BIn (YN, 2, t)|2¢1v(h z,1). (3-8)

Clearly, |Y¥n(rj,zk,t)| is conserved in time. Thus, the fully discrete Laguerre—
Hermite Strang time-splitting scheme is as follows:

Y (r.2) = Invo(r, 2);
. : —i5(Ar+B2)  n iz
w[’i]—H — @X/ (w;}) = eflj(Ar+Bz)IN(e*ITﬁle A ‘//N|ze*‘§(Ar+Bz)¢;\l/)’ 3.9)
n=>0.

Define the discrete inner product

N
vy =Y ofwiulry, )0, ).
Jj k=0

According to (2.4), (2.5), (2.9), and (2.10), we have

(D, VIN=(D, V)2, Yo € Xony1. (3.10)
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Then, we can rewrite (3.9) in a more computationally friendly algorithm: Given
{¥y (rj, xk)}, compute

N
U iz = Y e 2D T )Ry (2,
m,[=0
. M. 2
1/,1(\3)(,,].’ %) = e ItBlYN (rj zi)l wl(\fl)(rj’ ), (3.11)
N .
Y gz =) e DY, () (),
m,[=0

where

N
Ui = (Vi Lnhi)y = D &Gaf ¥y (2l (i (20),
j k=0

N
Vit = (U Inht)y = D i (7. 2l ()i 2i).
7. k=0

4 Error Analysis for the Semidiscrete Strang Splitting Scheme

In this section, we shall derive error bounds for the semidiscretization scheme (3.3).
We follow the basic procedure in [18], and generalize the error estimates to the
H’g(.Q)-norms.

We start by establishing a lemma which is needed for dealing with nonlinear terms.

Lemma 4.1 The following inequalities hold:

||uvw||L2(Q) = C”””H}‘(Q)”v”HA(Q)”w”HA(Q)v 4.1
”uvw”LZ(Q) =< C”””LZ(Q) ”v”H/%(Q) ”w”Hﬁ(Q)’ 4.2)
”“UWHH}\(Q) =< c”u”[-[/lx(g)”U“Hi(g)”w”[{i(g)v (4.3)

”Mvw”[-[lﬁ(g) = C”””Hﬁ(.{))”v”Hﬁ(Q)”w”Hﬁ(Q)’ V integer k > 2. 4.4)
Proof For any function #(x,y,z) in R® with cylindrical symmetry, we denote
u(r,z) :=u(x,y,z), (r,z) € 2. Clearly, in this case, y, = ¥y = ¥r. Thereby,

~ 1 ~
(Bx +By(x, y, 2) = 5(—33 — 0y +yixt + y )y, v, 2) = Anu(r, 2),

and

a(, ) =b(u,u).
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Accordingly, we have

121 £, 3y = ol g (2)»

which implies

11 a5, 3y = el 5 2) -

‘We can then obtain the desired results from the above and Lemma 2.3. O
Lemma 4.2 (Stability) If ¢, ¢ € Hﬁ )N Hﬁ (82) with integer k > 0, then

. . TR, o+l
|27 =" @ oy <e ™ S e

where j = max(k, 2).

Proof We first consider the cases with 0 < k < 2. It is clear that the operator
e . .
e 13 (A+B:) preserves the norm || - || HS(2) for any integer s > 0, since

e 2 AFBIL (rhy(z) = e 2D L, (R iy (2).

Thereby, we only need to compare e 174 w2 ¢ and e 7178 “qu), which are the solutions
at time 7 of the linear initial value problems:

0,0 = B|v|°0, 6(0) =y, (4.5)

o =pBlel’n, 1) =g. (4.6)
We first establish a bound for ||6(7)]| H2(Q)" By (4.5) we have

(A + B0, (A + B2)0) , = B((Ar + B)(1¥1%6). (Ar + B)6) .
Taking the imaginary part in the above, we obtain
2
O ||9(t)||H§(.Q) = 25HW|29(¢)||H§<9) ||9(t)||H§(.Q)’
which implies that

000 20y < BIW PO 2 -

On the other hand, by (4.4) we obtain
[V P0O] 32y = €MV I520) 10O 12 )

A combination of the previous two inequalities leads to

t
160 ey = 1 nian ¢ | 1615 010660 | .
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Applying the usual Gronwall inequality, we obtain

ctlly)?
10O 20y se H MW 20 @.7)

Next, by (4.5) and (4.6), we have
19,(0 — 1) =B — @)V + Bo(Y — )0 + Blol*(© — n). 4.8)

We now proceed to treat different cases separately.
(i) £k = 0. By taking the inner product in (4.8) with 6 — n, and then taking the
imaginary part, we get

3116 — 1l 20 < B (W — 0)F0 + (T ~ 96 120
The above with (4.2) yields
0110 — 77||L2(.Q) <cll¥ — (p”L?(Q)”9”1{%(9)(“1#”1-13‘(9) + ||§0||H§(Q))-
Integrating the above from O to 7 and using (4.7), we obtain

0@ =) o) = 1V —@l20)
ety

H3(®2)

+etly = pllz (W1 o) + 1012 )0

ctllyl?,
= (L er(1V 2 g, + 10152 DIV = @ll2e 4

cr(lyl?
<e

210,

|y _ oll120)-
(i1) k =1, 2. By (4.8) we have
i(A, +B) 20,0 — 1) = BCA + B (¥ — 9)T0) + BA, +B.)* (0(F — 9)0)
+B(A + B2 (19120 — ). 4.9)

Take the inner product in (4.9) with (A, + BZ)'% (6 — n). From (4.3) and (4.4), and
using an argument similar to the case k = 0, we get

01160 — 77||H//§(Q) <clly — (p”H/’;(Q)”9”[-1%(9)(”1#”[-[%(9) + ||<P||H§(_Q))
+C”(p”H2(.Q)”0 _77”[-[11&(9)-

Therefore, by (4.7) and the Gronwall inequality, we obtain the desired result.
(iii) k > 2. By a similar argument as before, we can establish the bound on

16(2) ||H//§(Q)’ namely,

ety
100 i@y e BN g2y k=2, (4.10)
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Thus by (4.10), (4.4), and the Gronwall inequality, we obtain the result with integer
k> 2. O

We are now in position to estimate the local error. To this end, we denote

TW)=—i(A +B)y, V) =—iply[*y. (4.11)

Their Lie commutator (cf. [12, 15]) is as follows:

(T, Vi) =T' V) = V' )T W)
= —B(A +B) (¥ 1*¥) — BV (A, + B)Y
+2B81Y 12 (A + B (4.12)

Lemma 4.3 Forany ¢ € H§+2(Q) with integer k > 0, we have
~ o~ 3
7. P10ty = MV ez g (4.13)

If, in addition, € HX™(82), then

I[717. V) ) < IV s ) (4.14)
Proof Using (4.12) and (4.2)—(4.4), we obtain that
[T, VI 5 ) < el PV | giva g + [0 CAr + BV | it )
+ el P A+ BV i g
= ¥ e g (4.15)

Next, we derive a bound for the following commutator (cf. [12, 15]):
[T.1T. V1) =T(IT, Vi) = [T. VI )T ().
By (4.11) and (4.15) we have
IT(7. VIO gt ) = [T VIO iz < c||w||i,§+4(9)-
A direct calculation shows that
[T, VI T () = —B(Ar + BH(W2T (W) + 2w PT (1))
— BYH(A, + BT (W) +28Y T (W) (A, + B)Y

28T W) (A, + By + TV (A, + By
+ YA A+ BT (W)).
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Furthermore, by (4.4) and (4.11),
[CA-+ BT D) o) = 1V T W) gy = MV Iin ) IT W g
= clV 0 1V sy

By using (4.2)—(4.4) and (4.11), the same results can be derived for the estimates of
the other terms in [T, V' ()T (¥). Therefore, we have

[, VYTt ) = M i ) 1 s -
A combination of the previous statements leads to the desired result. O
Lemma 4.4 (Local errors) Let integer k > 0. If the exact solution v (t) of (1.4) is in
Hﬁ )N Hﬁ (82) forall0 <t <7t,and Yy € H§+2(.{2), then the local error of the
method (3.3) is bounded by
[0 =@yt ) s 7. (4.16)

where ¢ depends only on ||| HE(2) and maxo</<¢ ||V |

If, in addition, ¥y € H§+4(.Q), then

H;{(-Q) with j = max(k, 2).

1 3
[v! =@ gt o) =7’ 4.17)
where ¢ depends only on HI/IOHHf‘*“(.Q) and maxo<;<z |||

Hi(2)

The proof of Lemma 4.4 is given in Appendix. The following lemma shall be used
for the error analysis.

Lemma 4.5 (Regularity of the numerical solution) If the exact solution of (1.4)
Y() e Hﬁ”(ﬁ) with integer k > 2 and t € [0, T], then for small enough t and
anylfnSNo:%,wehave

max [ (27)" (v (jn))| oy =T+ oax, [v®] HA (@)

0<j<No—n <t<
Proof Let
. —1 .
Bu=, max (@) (G0) = (@) G+ D) | ygar n= 1
Fn = 05].“5“;‘;(‘)_”” (@) (vl Wiy 1zl Fo= max lv®| HE @)

Then, by (4.16), we deduce that

E <cot?,
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where co depends only on maxo<;<7 || ¥ (?)|| H2(Q) Moreover,
F1 = ok j ‘
1= <N o7 (vGD)| HA ()

T . . .
< max [T (D) =¥ (U + D)o+ _max [ (G +DD)] )
< E{+ Fp.

Next, due to Lemma 4.2, we have that for k > 2,

_ 20004 ; T(FG+F})
155 —Osjng;g;_zﬂ (@7) (VD) -2 (v(U + l)r))”Hﬁ(Q) < By,

and

= oijnsl%,zu ((Dr)z(‘/’(jf)) H H}(£2)

= Ex+ OS].HS‘%‘)_z”qu(w((j + Dt))“H/’;(.Q)
< E)+ F.
Finally by induction, we deduce that for k > 2,

E, < En_leCT(Fnz—l"‘Fnz—z), n>?2,
Fy,<E,+ Fy1, n>1.
Thereby,

. 2 2
Fp<F1+ Enfle”(F"_l+F"_2) =

. 2 2 2 2
< Fyy + E ST Fa 2F 542 4 Fy)

—F, 1+ CO,L,Zecr(Fn{I+2F,1272+---+2F12+F02)7 n>1

Now let T be small enough such that

core TR +4eT? < . (4.18)
Then by induction, we derive that

F,<F,_1+r.
Therefore,
F,<Fy+nt<Fyp+T, 1<n<Njp.

Thus we obtain the desired result. g

Remark 4.1 The condition (4.18) for t is sufficient but not necessary.
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We now present the main result for the Strang splitting scheme (3.3).

Theorem 4.1 Suppose that integer k > 0, T is small enough, and the exact solution
Y (1) of (1.4)is in HY(2) N HXT2(2) for all 0 < t < T. Then the numerical solution
Y given by the splitting scheme (3.3) with step size T > 0 has the following error
bound:

||1/[n - I/f(tn)”Hf‘(Q) S CT? tn =nt S T:
where ¢ depends only on T and maXg<;<t ||1/f(t)||Hk+2(Q). If, in addition, ¥ (t) €
- A
HYY4(2) forall 0 <t < T, then

||1/[n - I/f(tﬂ)” Hﬁ(.Q) =< CTZ, tn =nt < T,

where ¢ depends only on T and maxo<;<7 [|W (&) || k4, o -
<< HE @)

Proof According to Lemma 4.5, if ¥ € H¥(2) N HX™(£2) with k > 0, then for
m = max(k, 2),

T\ .
omax (@) (GO upia) ST + max Wl

Therefore, by Lemma 4.2, (4.16), and the previous inequality, and using the standard
argument of Lady Windermere’s fan (cf. [12]), we obtain that

n—1
[v" = 00| gt ) = DoN(@)" T (@7 (W ()
Jj=0
— (@) WG+ D) i)
<nett max |07 (v (/1) =¥ (G D7)t o)
<cyTe' 't

where ¢ depends only on 7 and maxo<;<7 |[¥ (¢)]| HY($2)> and ¢, depends only on

maxo<i<1 | (1) yrs2 - If, in addition, ¥ (1) € HYM(82) forall 0 <t < T, then
- A

we obtain from (4.17) that

n __ < T Cl T_2
|w ‘ﬁ(”f)”HQ(Q) zale 1
where ¢3 depends only on maxo<;<7 [ ()| yr+4 @) This completes the proof. [
- A
5 Error Analysis of the Fully Discrete Strang Splitting Laguerre—Hermite
Collocation Scheme

In this section, we present error bounds for the full-discretization scheme (3.9).
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Lemma 5.1 We are given € X . Then for ¢ € Hj (§2) with integer s > 2,

2
<exp(ctl¥ll g2 (o lloll 2 0y exp(ctllel? o o)) IV — Prolls
= Hy ()W H ($2) H3($2) L2(2)

2

2ar3— 4
+ct°N2 S”(P”Hi(g)nﬁl)”f]z(g)

x exp(etlleliys @) + TV 22 102 o) xP(eTlgl e ))):

Proof We consider the errors in its linear and nonlinear parts, respectively. We first
consider the errors of the linear parts:

0,0 = (A, +B)o,  6(0)=, 5.1)

io;n = (A + Bn, n0) =g, (5.2)

where 0 and 5 correspond to the solutions of the linear parts of the full discretization
and the semidiscretization in time, respectively. From (5.2) and (2.32) we further
obtain

10, Pnn, $)2 =@, d)2 = ((Ar + B)n. ¢) o = ((Ar + B) Pyn. @) .
Vo e Xy.

Therefore,
(3,0 — Py, ) o = ((Ar + B)(O — Pyn).¢) 5. Ve Xy. (5.3)

Taking ¢ = (A, + Bz)k (6 — Pyn) (€ Xy) in the above, we obtain from its imaginary
part that

2 _
0110 — PN'7||H//§(Q) =0,
whence

Next let ¥ € X and consider the errors of the nonlinear parts:

10,0 = BIn(161%0),  0(0) =1, (5.5)

9 =Bm*n,  n0)=¢. (5.6)

From (5.5) and (5.6), one verifies readily that [0(r;, zk, )| = [¥ (rj, zo)|, In(r, 2, 1) =
l(r, z)| and

10,0 — Pyn) = BIn((101* + |PynI*) (@ — Pyn) + 6 Pyn(@ — Pyn)
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+1Pyn|*Pyn) — BPy(In*n).
Thus
i(8,(0 — Pym). ¢)
= B((101> + | Pxnl*) (6 — Pym). ¢)
+ BOPN1(©6 — Pyn), @)y

+B(IPvn*Pyn. @)y, — B(Inl*n.¢) . Yo € Xn. (5.7)

Next let M = [%]. To deal with the cubic term, we need to consider a special

orthogonal projection, similar to (2.31), but with % and % in place of y, and y;. For

clarity, we denote it by Puy: L*(2) — Xm(yr/3, y./3). More specifically,
(u—Pyu,d)o =0, V¢ eXyu(y/3.7:/3). (5.8)
In particular, we have the following attractive property:
| Py Pun € Xy (v, y:) and
<|ﬁM1/~f|2ﬁM77» 6 — Pyn)y = (IﬁMI}IZﬁMU, 6 — Pyn),.

Moreover, the same estimate in Theorem 2.1 holds for this variation. Hence, taking
¢ =060 — Pyn (e Xy) in (5.7), we obtain from its imaginary part that

0,116 — Pnnll} 2o < 28|(0 Pwn(@ — Pym), 0 — Pyn)y + (| Pxnl* Pyn, 6 — Pyn)y

— (Inl*n.6 = Pyn),|
3
<28 1G,l. (5.9)
j=1

where
G1=(0Pvn® — Pyn).60 — Pyn)y.
Ga = (|Pxul*Pyn — | Pynl* Pun. 0 — Pyn),,.
G3 = (|1Pynl* Pun — 1n1*n. 0 — Pyn) .

We derive from (5.9) that

3
16 — Pnlla 16 — Punll < BD_IG,I. (5.10)
j=1
We now estimate |G|, j = 1,2, 3. For any function u(r, z), (v, z) € £2, we denote

u(x,y,z):=u(,z),(x,y,2) € R3. Then, by using a Sobolev inequality (cf., for in-
stance, [7]) and the equivalence of norms (cf. Lemma 2.1), we obtain that for any
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u € H}'(£2) with integer m > %,

3
2m

lull 2oy = Wil ooy < ] 207] 2% w52

3 3 3 3

<l 3 3, 7l 225, = cllul Z";;«m”“”mm (5.11)

which implies in particular that
lullzoo@) < Cllull g2 o)- (5.12)
Due to |0(r;, 2k, 1) = ¥ (rj, z&)|, we have
Gl < 1l 1Py nlloe(2) 16 = Pyllzs g

< ¥l Il 2216 = Pallza g (5.13)

Moreover,
G2l = |(IPvnI*(Pyn — Pun) + PynPyun(Pyn — Pyn)

+ PynPyn(Pyn — Pun) — Pyn|Pyn — Pynl?,0 — Pyn)y|

< (IPnnll(2) + I Punlloe@) 1Py = Punll o)l Pyl 20
x 16 — PN77||L2(_Q)
+ 1Py = Punlif oo o) IZn Prnll 202 160 — Pyl 20)-

By (5.11) and Theorem 2.1 we obtain that for s > %,

| Pnn — PunllLe )
5o 5 oied
= cllPvn — Punlls o) IPN1 = Puill 20

- 3
c(IlPyn — nllas @)+ lln— PM77||H2(.Q))2'V

~ -2
x (I Pvn — iz +lIn— PM’I”LZ(_Q)) »
3_s
<cNa7 2|l ms(s)- (5.14)
Therefore, by the above and (2.34), we can derive
3_s
(G2l < N33 Il g2 g I3 10 = Prtll 2y (5.15)
It is also verified readily that
|G3| <cN™2 ||77||3_1§(Q)”77”H2(S2)”9 — PnnllL2()- (5.16)
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i5 (A +B:)

Since the operator e~ preserves the norms || - || H,(2)> We have

1113 2) = 1V 15 2) 191155 2) = el a3 (@2)-
IV — Pn@lli2@) = 1Y — Pyoll 2y, Vs =0.
Furthermore, by (4.10), we find

2 2
ct CcT
Il Ioss

|7 132y < Dllelas @) <e Il ars (2

0<rtr<rt, Vintegers > 2.

Hence, a combination of (5.10), (5.13)—(5.16), and (5.4) yields

ctlol?

2
0010 — Pyl gy < gy lelz e 210 = Punll 2o

2
crlell
Hy(@)

3_s 2
+cN4 2”(/7”[-]%(9)”(0” };(_Q)e
Finally, by using the Gronwall inequality and (5.4), we obtain the desired result. [

Theorem 5.1 We assume ¥ (t) € H/i+2(52) (0 <t <T) with integer s > 4. Then for
N sufficiently large and t sufficiently small (cf. (5.21) below), we have for integer
s—2<k<s,

3, ks T
[V =¥ @) gy <eN#HT ter T<n<— (5.17)
and for integer 0 <k <s — 2,
3, k—s T
n_ it <cNitT 2 1<n<—. 5.18
[vh =¥ | ) < terh, Tsnso (5.18)

Proof Due to ¥ (t) € H 2+2(.Q) with integer s > 4, we have from Lemma 4.5 that
T

there exists a constant My > 0, such that forall 1 <n < =

My

Hwn ”Hj\(_Q) = B (5.19)

provided that 7 is small enough. Without loss of generality, we also assume that
1Yol s+2 @ = % Next, according to Theorem 2.2, we have
A

L5 s
Y0 = Involl 2 (@) = c(InN)2Ne™2 ”WO”HXH-
Hence, we obtain that for large N,
”INwO”H/%(_Q) = ||1//0||H§(_Q) + Yo — INI/IOHH%(_Q) < Mp. (5.20)
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Now let N be large enough and t be small enough such that

lc?:Mz 1 u:M
Aln NN~ 8 ezeTMed ™0 T 2T M TM G+t ™0 < (5.21)

We proceed by induction on 7.
(i) n=1. By Lemma 5.1, (5.19), (5.20), and Theorems 2.1 and 2.2, we get that

”%1\/ - P/\”/’1 Hiz(m

ctllygll?

H2(2)
et Znoll 2 o 1¥0ll 2 A
e H3(2) HA(Q)

IZnvo — Pnvoll7ag,

2 73— 2 4
+cTt°N2 Y”1;[’0”[,[%2‘(_(2)||1/f0||]-1}§(9)

nwoqu(m
cf %o ”Hr @ TetiiZnvoll e l¥oll m2@°

1 2 Lerm? 1 2 ch
<e2 ™Mt Ty — Pyvoll7a g, + 64012N2 s MSezeTMy (i)

1 2
2T CTMG 1 3 Jerm3
ezC'L'MOC CT2N2 SM6 C'L'M ( +e )

s—1
< NN Yol ) o
< lcln NN_S_%MSC%”Mgez”Mg + ic7:2N%_SM(?e%”M‘%(%'H:KHMO).
4 64
This with Lemma 2.4 and (5.21) gives
1 12
—P
” Y NV ” HY(2)
2
= CNk”WJ]v — Pyy! ”LZ(Q)

L‘IM2

< LN s M2e Jernel 84— SRRV =5 MG IeTMy(3+ed ™)
4

64
- MG s (5.22)
4
In particular, by (5.19) and (5.22) we get that for integer s > 4,
” WN HHZ(.Q) “ PNw ||H2(.Q) + H‘”N PNW ” H3($2)
= ”1/’ ”Hﬁ(m + ”‘/fN — Pyy! ”Hﬁ(m = Mo. (5.23)
(i1) Next assume that the results (5.22) and (5.23) with n = m hold, namely,
“‘ﬁ% — Pyy™ “11/’;(9)

<cN |y — Puy™ ||22(.(2)
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1
1 1 2 FCcTM,
2 In NN*=573 pReamerMoed ™0

B —

=

1 3 1 2,1, derm?
+ 6_4mC2t2Nk+7—SMgeszTMO(E"rC“L O)

M? 3
< 40 Nk+7—s’

and

” UN ”Hﬁ(.Q) = Mo.

(5.24)

(5.25)

We now verify the results with n = m 4 1. Clearly, by Lemma 5.1, (5.25), and

(5.19), we derive that

2
” Wﬁ“ - PN‘//mH ” L2(R2)
Tl @

Tyl g2 o) IV 2 o€ A 2
<l e % - P )

2735 m |2 m |4
2 .
+er’ N2y HHj(.Q)”W ||H;(.Q)
“”W"iz(g)
2
oIV s o T IV 2 )10 2 )0 A

IA

The above with Lemma 2.4 and (5.24) lead to

” 1/jlrvn+1 _ PNmeH?if,(m
<cN¥|yptt = Pyymt! ”2Lz(.Q)
< cNke%”Mge%”M% lwi — Pyy™ ”iz(-@)

1 3_ 1 2.1 %CTM
_CZ,L,ZNk+2 sMgezchO(z—ﬁ—e 0)

t

1 1 1 2 lc‘tM2
S Zcz ln]Vlvk—.i‘—jMgef(l”l‘l'l)C'L’Moe4 0

1 22 ark+3—s 8 g6 L ontDerM2(L+ }T<:ng)
+6—4(m+1)cr NEF375 pbea tntDerMy(5+e _

Hence by (5.21) and (5.26), for (im + 1)t < T,

M2
||w]rvn+1 — Pyyt! “?—Iﬁ(Q) < TON/VI“%*S.

1 2
1 as2.3¢TM 2 1 3 1221
scTMged™ 0 m _ m 2A75=S Ag0.5cTMI(5+e
e2¢™Mp lvi — Py ||L2(_Q)+64ct N2 MGe2"Mo2

1 2
—chO)

(5.26)
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In particular, for integer s > 4,

” 1/’1';';“ ” H2(2) = H PN‘/”mH ” H(2) + H‘”Ir\fn+1 - PN‘/me H H2(£2)

<[V 2o + 1R = Py 2 ) < Mo. (5.27)

Therefore, we obtain that for integer s > 4,

M? , T
||¢1”v—PNW"||iI§(g) < TON’”%*‘, s (5.28)
and

A ! 5.29
||wN||H§(Q)§M0’ ”5?- (5.29)

Since

”Wz'\'/ - ‘ﬁ(tn)”y/ﬁ(g) = ”szr\l/ — Pyy”" ”Hj(g) + Hwn — Pyy” ”Hf‘(s?)

sl LA O] e (5.30)

we use (5.28), Theorem 2.1, (5.19), and Theorem 4.1 successively to derive the results
(5.17) and (5.18). O

The restriction on N in (5.21) can be removed if we set wg,(r, z) = Pyyo(r, 2)
instead of w](\), (r,z) = INnYo(r, z) in (3.9). More precisely, we have the following

result.

Corollary 5.1 Let ij% (r,z2) = Pnyo(r,z) in (3.9)and Y (¢) € H/§+2(Q) O<t<T)
with integer s > 4. Then for t sufficiently small such that

L2
%6c2rTM3e%"TM§<%+°“ ) <, (5.31)

we have fors —2 <k <s,
n <cNitE 1<n<l. 5.32
HwN_w(fn)HH/k‘(Q)_C +CT7 _n_?a ( )
and for0 <k <s — 2,
(5.33)

H@M{/ - ¢(ln)||H§(Q) < CN%JF% +ct?, 1<n<

The proof of the above result is essentially the same as that of Theorem 5.1 without
using (5.20) and with (5.31) instead of (5.21).

@ Springer



Found Comput Math

6 The d-Dimensional Gross—Pitaevskii Equation

In this section, we shall present error bounds of the Strang splitting Hermite colloca-
tion method for the d-dimensional GPE:

Y (x, 1) = —AY (X, 1) + XY (X, 1) + [ (X, DY (x, 1),
Y(x,0)=Yo(x),  limyoeo¥(x,0)=0, >0,

6.1)

where x = (x, ..., x4) € R? andx2=x12+~-+x§.
6.1 Notation and Some Basic Results

For simplicity, we still denote by /,(z) the one-dimensional Hermite function as de-
finedin 2.7) withy, =1.Forl = (1,...,13) € N¢, the d-dimensional Hermite func-
tion is defined by

hi(x) = hy (x1) -+ hyy (xq),
which satisfies

Lhi(x) = (—A + X)) (x) = whi(x), =201+ +1g) +d.

We denote the spaces L%(RY) and H*(RY), s > 0 with the inner products, semi-
norms, and norms as usual. For any u € L2(]Rd), we write

u(x) =Y urh(x).
=0

As before, the linear differential operator L is positive definite and self-adjoint.
Thus for any u and v in the domain of £,

(Lu, v)ga = (u, LV)pa = aq(u, v),

(6.2)
(Lu,u)ype =aq(m,u) >0, ifus#0,
where the bilinear form
_ 2
aq(u,v) = (Vu, Vo)ga + (x u, U)Rd.
In particular,
aqg(hy, hy) = (Lhy, hy)ge = widyy. (6.3)

The fractional power £!/2 is well defined, and the associated norms can be charac-
terized by

|22 = aate ), 6
|27Vl = a7 7). Vm e, ©5)
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We also introduce the following three Sobolev spaces equipped with the norms:

1

00 2

2 s

||u||H)§(Rd) = (E wp luil ) ) ||u||H)§,(Rd) = ||£2M||L2(Rd),
=0

1
2

s—1

N | ——ly
||u||Hg(Rd)=< Z [+ +xi+1) 7 3)[cﬂ"'3i‘f,”||i2<Rd>>
i 4+-+1a=0

According to [25], we have the following.

Lemma 6.1 The previous three norms are equivalent, i.e.,
Neell s ety = Neell g ety ~ Notll s ety

Remark 6.1 For d =1, we may also refer to [24].

Hereafter, let d = 6« + ko with integers ¥ > 0 and 0 < kg < 5. For convenience,
we assume that

(i) if kg = 0, then s; = 5«, (i) ifkg =1, thens; =5« + 1,
(6.6)
(iii) if kg = 2,3, then sy =5« +2, (iv)if kg =4, 5, then sy = 5« + 4.
Lemma 6.2 We have the following inequalities:
lwvwlgea < cllal g 01 g ol g s (6.7)
luvwlyzgea < cllallzgalvl g o 101,400 Ye>0. 68)
||MUw||Hk(Rd) < cllull gk ga) ||U||HSd(Rd) ”w”HSd(]Rd)a 6.9)
Vintegers 1 <k < sq, .
luvwll grgay < cllull gregay VI gr ey lwll e way,
(R%) (R%) (RY) (R%) (6.10)

V integers k > s4.

Proof We proceed to treat different cases separately.
(i) The first bound follows from the Sobolev embedding H S(RY) LO(R?), and

the second bound comes from the Sobolev embedding H S+e (RY) ¢ L®(RY).
(i1) We now deal with (6.9). For simplicity, we denote

du= Y oll.0lu.
h+Hg=I
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(1) 1<k< %. Since k is an integer number, we use (6.8) and (6.6) to deduce that for
small enough € > 0,

luvwll grray < lullgray 10N e g +G(W)II ||Hk+%+E(Rd)

< lull grway V1 grsa wey W1 grsa ey -
2) % < k < sg. We consider the term ||8,l(u8,’(" va,’(lwlle(Rd). It is clear that [ +m +

n < k. Hence
(a) if max(m, n) <4<, then by (6.8) and (6.6), for small enough € > 0,

[ am_ an
Ha ua v wHLZ(Rd) < ||u||H/(]Rd)||U” ,7,+ +€(Rd)” ||Hn+%+g(]Rd)

< ||“||Hk(]Rd)”v”HSd(]Rd)”w”H“d(R")‘

use (6.7) and (6.6) to obtain that

(b) if % <max(m,n) < 7, then / <k — 5. Since m, n are integer numbers, we

|oudy vagw] Il llwll

< |lu
ety =Wl gy 1M e gy 100 4 g

=< ||u||Hk(Rd)||U||HSd(Rd)||w||H~w(]Rd)~
(c) if max(m,n) > %, for instance, m > %, thenl,n <k — %. Therefore, by (6.8)

we get that, for small enough € > 0,

I am_ an
| 050y vogw] 2 ®d)y = llull 