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1 Introduction

In this paper we consider the error analysis of fully discretized schemes for the
Gross–Pitaevskii equation (GPE). The GPE, which is a nonlinear Schrödinger equa-
tion, describes Bose–Einstein condensates (BECs) in the low temperature regime
(cf. [9, 19]):

i�∂tψ(x, t) = − �
2

2m
�ψ(x, t) + V (x)ψ(x, t) + NU0

∣
∣ψ(x, t)

∣
∣2ψ(x, t), (1.1)

where ψ is the condensate wave function, m is the atomic mass, � is the Planck con-
stant, N is the number of atoms in the condensate, and V (x) is an external trapping
potential. When a harmonic trap potential is considered, V (x) = m

2 (ω2
xx

2 + ω2
yy

2 +
ω2

zz
2), where ωx , ωy , and ωz are the trap frequencies in the x-, y-, and z-directions,

respectively. In most current experiments, the traps are cylindrically symmetric, i.e.,

ωx = ωy . U0 = 4π�
2as

m
describes the interaction between atoms in the condensate

with the s-wave scattering length as (positive for repulsive interaction and negative
for attractive interaction). Using the normalization

∫

R3

∣
∣ψ(x, t)

∣
∣2 dx = 1, (1.2)

and denoting

V (x) = 1

2

(

γ 2
x x2 + γ 2

y y2 + γ 2
z z2), γα = ωα

ωm

, α = x, y, z,

ωm = min{ωx,ωy,ωz}, β = 4πasN√
�/mωm

,

we arrive at the following dimensionless GPE:

{

i∂tψ(x, t) = − 1
2�ψ(x, t) + V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t),

ψ(x,0) = ψ0(x), lim|x|→∞ ψ(x, t) = 0, t ≥ 0,
(1.3)

which is in fact a nonlinear Schrödinger equation.
Much attention has been devoted to numerical approximation of the time-

dependent GPE (1.3). For instance, Bao, Jaksch and Markowich [2] and Bao and
Shen [1] proposed several versions of time-splitting spectral methods, Ruprecht et
al. [20] used the Crank–Nicolson finite difference method, and Cerimele et al. [5]
proposed a particle-inspired scheme. However, the convergence analysis of semidis-
cretized Strang-type splitting schemes for linear and nonlinear Schrödinger equations
only became available recently. Jahnke and Lubich [16] first presented an error bound
for linear Schrödinger equations; then Lubich [18] gave an error bound for nonlinear
Schrödinger equations. For related analyses in this direction, we refer to [6, 13, 17,
22]. However, to the authors’ best knowledge, not much is available for the fully
discretized time-splitting schemes for nonlinear Schrödinger equations. The main
reason is that, unlike the error analysis for fully discrete non-splitting schemes (e.g.,
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backward Euler or Crank–Nicolson schemes), the error analysis for fully discrete
time-splitting schemes is much more difficult than that for their semidiscrete coun-
terparts. Recently, Gauckler [8] performed an error analysis for a Hermite collocation
Strang splitting method for the d-dimensional GPE. The aim of this paper is to carry
out an error analysis for the Hermite–Laguerre collocation Strang splitting method for
the three-dimensional GPE with cylindrical symmetry, and for the Hermite spectral
Strang splitting method for the d-dimensional GPE.

Our main contributions are twofold: (i) our error analysis for the Hermite–
Laguerre collocation method, which was actually implemented in [1], is new; (ii)
our results for the Hermite collocation Strang splitting method for the d-dimensional
GPE significantly improve the error estimates presented in [8]. Moreover, while our
analysis for the semidiscretization in time is similar to those in [8, 18], our analysis
for the full discretization has some essentially different components from those in
[8], and leads to improved error estimates. Nevertheless, the techniques developed in
[8, 18] have been very useful for our analysis.

More precisely, we first focus on the special case of (1.3) with cylindrical symme-
try, i.e., γx = γy = γr and ψ0(x, y, z) = ψ0(r, z). Then the equation becomes:

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i∂tψ(r, z, t) = [− 1
2r

∂r (r∂rψ(r, z, t)) + 1
2γ 2

r r2ψ(r, z, t)]
+ [− 1

2∂2
z ψ(r, z, t) + 1

2γ 2
z z2ψ(r, z, t)]

+ β|ψ(r, z, t)|2ψ(r, z, t) =: Arψ + Bzψ + N (ψ),

r ≥ 0, z ∈ R,

ψ(r, z,0) = ψ0(r, z), limr,|z|→∞ ψ(r, z, t) = 0, t ≥ 0.

(1.4)

We present a full discretization scheme for (1.4) by using a Strang splitting scheme
in time and a Laguerre–Hermite collocation method in space. The main results for
(1.4) are summarized in Theorem 5.1 and Corollary 5.1. Note that the analysis for the
axisymmetric case is much more difficult than the usual d-dimensional case due in
part to the involvement of the Laguerre functions.

We then consider the full discretization of the d-dimensional GPE directly by us-
ing the Strang splitting in time and a Hermite collocation method in space. The main
results for the d-dimensional GPE are summarized in Theorem 6.3 and Corollary 6.1.

The paper is organized as follows. In the next section, we derive some basic re-
sults for the Laguerre and Hermite approximations which will be used for the error
analysis. In Sect. 3, we describe the semidiscrete Strang splitting scheme and the
fully discrete Strang splitting Laguerre–Hermite collocation scheme for (1.4). The
error analysis for the semidiscrete Strang splitting scheme for (1.4) is performed in
Sect. 4, while that for the fully discrete Strang splitting Laguerre–Hermite collocation
scheme is presented in Sect. 5. We consider the error analysis of the Strang splitting
Hermite collocation scheme for the d-dimensional GPE in the last section.

2 Scaled Laguerre–Hermite–Gauss Interpolation

In this section, we describe scaled Laguerre–Hermite–Gauss interpolation and derive
some basic results which will be used later.



Found Comput Math

2.1 Scaled Laguerre Functions

Let I = (0,∞) and let Lm(r̂) be the Laguerre polynomial of degree m satisfying

r̂L′′
m(r̂) + (1 − r̂)L′

m(r̂) + mLm(r̂) = 0, r̂ ∈ I,m ≥ 0,

∫

I

Lm(r̂)Ln(r̂)e
−r̂ dr̂ = δmn, m,n ≥ 0,

where δmn is the Kronecker delta function.
For any positive integer N , we denote by PN the set of all algebraic polynomials

of degree at most N . Let {r̂j , ω̂r
j }Nj=0 be the Laguerre–Gauss points and weights, and

Î r
N : C(I) → PN be the corresponding interpolation operator in the r-direction such

that

Î r
Nv(r̂j ) = v(r̂j ), 0 ≤ j ≤ N.

For any integer r ≥ 0, we define the weighted Sobolev space Hr
χ(I ) with the

weight function χ in the usual way. In particular, L2
χ (I ) = H 0

χ (I ). For any r > 0, we
define the space Hr

χ(I ) by space interpolation as in [4]. According to Theorem 3.4 of

[11], for any v ∈ H 1
ω0

(I ) and ∂r̂v ∈ L2
ω1

(I ) with ω0(r̂) = e−r̂ and ω1(r̂) = r̂e−r̂ , we
have

∥
∥Î r

Nv
∥
∥

L2
ω0

(I )
≤ cN− 1

2 ‖∂r̂v‖L2
ω0

(I ) + c(lnN)
1
2
(‖v‖L2

ω0
(I ) + ‖∂r̂v‖L2

ω1
(I )

)

. (2.1)

In order to determine the eigenfunctions of the linear operators Ar , Bao and

Shen [1] introduced the change of variable r =
√

r̂
γr

and the scaled Laguerre function

lm(r) =
√

γr

π
e−r̂/2Lm(r̂) =

√
γr

π
e−γr r

2/2Lm

(

γrr
2), r ∈ I, (2.2)

which satisfies

Ar lm(r) := − 1

2r
∂r

(

r∂r lm(r)
)+ 1

2
γ 2
r r2lm(r) = μr

mlm(r),

μr
m = γr(2m + 1),m ≥ 0,

(2.3)

2π

∫

I

lm(r)ln(r)r dr = δmn, m,n ≥ 0. (2.4)

We also denote

rj =
√

r̂j

γr

, ωr
j = π

γr

ω̂r
j er̂j , Xr

N = span
{

lm(r) : 0 ≤ m ≤ N
}

,
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where rj and ωr
j are the scaled Laguerre–Gauss points and weights, respectively. We

recall that [1]:

N
∑

j=0

ωr
j lm(rj )ln(rj ) = δnm, ∀0 ≤ n + m ≤ 2N + 1. (2.5)

Next, we define I r
N : C(I) → Xr

N , the corresponding interpolation operator, by

I r
Nu(rj ) = u(rj ), 0 ≤ j ≤ N.

For any u(r) = e−γr r
2/2v(γrr

2), we have

eγr r
2
j /2 I r

Nu(rj ) = eγr r
2
j /2

u(rj ) = v(r̂j ) = Î r
Nv(r̂j ), 0 ≤ j ≤ N.

Furthermore, due to (2.2), eγr r
2/2 I r

Nu(r)|
r=

√
r̂
γr

∈ PN and Î r
Nv(r̂) ∈ PN . Hence,

eγr r
2/2 I r

Nu(r)
∣
∣

r=
√

r̂
γr

= Î r
Nv(r̂).

This with (2.1) leads to
∫

I

∣
∣I r

Nu
∣
∣
2
r dr ≤ cN−1

(∫

I

∣
∣u(r)

∣
∣2r dr +

∫

I

∣
∣∂ru(r)

∣
∣
2
r−1 dr

)

+ c lnN

(∫

I

∣
∣u(r)

∣
∣2
(

r + r3)dr +
∫

I

∣
∣∂ru(r)

∣
∣
2
r dr

)

≤ cN−1
∫

I

∣
∣∂ru(r)

∣
∣
2
r−1 dr + c lnN

(∫

I

∣
∣u(r)

∣
∣
2(

r + r3)dr

+
∫

I

∣
∣∂ru(r)

∣
∣2r dr

)

. (2.6)

2.2 Scaled Hermite Functions

Let Hl(z) be the standard Hermite polynomials satisfying

H ′′
l (z) − 2zH ′

l (z) + 2lHl(z) = 0, z ∈ R, l ≥ 0,

∫

R

Hl(z)Hn(z)e
−z2

dz = √
π2l l!δln, l, n ≥ 0.

We consider the scaled Hermite function (cf. [1])

hl(z) = (γz/π)
1
4 e−γzz

2/2Hl(
√

γzz)/
√

2l l!, z ∈ R, (2.7)

which satisfies

Bzhl(z) := −1

2
h′′

l (z) + 1

2
γ 2
z z2hl(z) = μz

l hl(z), μz
l = 2l + 1

2
γz, l ≥ 0, (2.8)
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∫

R

hl(z)hn(z)dz = δln, l, n ≥ 0. (2.9)

Next let {ẑk, ω̂
z
k}Nk=0 be the Hermite–Gauss points and weights. Denote by

zk = ẑk√
γz

, ωz
k = ω̂z

k√
γz

eẑ2
k ,

the scaled Hermite–Gauss points and weights, respectively. According to [1],

N
∑

k=0

ωz
khm(zk)hn(zk) = δnm, ∀0 ≤ n + m ≤ 2N + 1. (2.10)

Let Xz
N = span{hl(z) : 0 ≤ l ≤ N}. We define the scaled Hermite–Gauss interpolation

operator I z
N : C(R) → Xz

N by

I z
Nv(zk) = v(zk), 0 ≤ k ≤ N.

The following result is established in [10]:

∥
∥I z

Nv
∥
∥

L2(R)
≤ c

(‖v‖L2(R) + N− 1
6 |v|H 1(R)

)

, v ∈ H 1(R), (2.11)

where | · |H 1(R) denotes the seminorm of H 1(R).
We now introduce some properties about the scaled Hermite functions in R

3. Let
hk(x) and hm(y) be the Hermite functions defined in (2.7) with γx and γy instead
of γz, respectively. The corresponding operators in (2.8) are denoted by Bx and By ,
respectively, i.e.,

Bxhk(x) := −1

2
h′′

k(x) + 1

2
γ 2
x x2hk(x) = μx

khk(x), μx
k = 2k + 1

2
γx, (2.12)

Byhm(y) := −1

2
h′′

m(y) + 1

2
γ 2
y y2hm(y) = μ

y
mhm(y), μ

y
m = 2m + 1

2
γy. (2.13)

We denote by L2(R3) and Hs(R3) (s > 0) the usual Sobolev spaces with the
usual notation for their seminorms and norms. It can be easily shown that the linear
differential operator Bx + By + Bz is positive definite and self-adjoint. Indeed, for
any u and v in the domain of Bx + By + Bz, applying integration by parts leads to

(

(Bx + By + Bz)u, v
)

R3 = (

u, (Bx + By + Bz)v
)

R3 = a(u, v),

(

(Bx + By + Bz)u,u
)

R3 = a(u,u) > 0, if u �= 0,
(2.14)

where

a(u, v) = 1

2
(∇u,∇v)R3 + 1

2

((

γ 2
x x2 + γ 2

y y2 + γ 2
z z2)u,v

)

R3 .

From (2.8), (2.9), (2.12), and (2.13), we have
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a
(

hk(x)hm(y)hl(z), hk′(x)hm′(y)hl′(z)
)

= (

(Bx + By + Bz)hk(x)hm(y)hl(z), hk′(x)hm′(y)hl′(z)
)

R3

= (

μx
k + μ

y
m + μz

l

)

δkk′δmm′δll′ . (2.15)

Since Bx + By + Bz is a positive definite and self-adjoint operator in L2(R3), the
fractional power (Bx + By + Bz)

1/2 is well defined, and the associated norms can be
characterized by (see, e.g., [21, 23]):

∥
∥(Bx + By + Bz)

1/2u
∥
∥

2
L2(R3)

= a(u,u), (2.16)

∥
∥(Bx + By + Bz)

m+1/2u
∥
∥2

L2(R3)
= a

(

(Bx + By + Bz)
mu, (Bx + By + Bz)

mu
)

,

∀m ∈ N.

(2.17)

For any u ∈ L2(R3), we write (cf. [8])

u(x, y, z) =
∞
∑

k,m,l=0

ukmlhk(x)hm(y)hl(z).

We introduce the following three Sobolev spaces equipped with the norms:

‖u‖Hs
A(R3) =

( ∞
∑

k,m,l=0

(

μx
k + μ

y
m + μz

l

)s |ukml |2
) 1

2

,

‖u‖Hs
B(R3) = ∥

∥(Bx + By + Bz)
s
2 u
∥
∥

L2(R3)
,

‖u‖Hs
C(R3) =

(
s
∑

k+m+l=0

∥
∥
(

x2 + y2 + z2 + 1
) s−k−m−l

2 ∂k
x ∂m

y ∂l
zu
∥
∥

2
L2(R3)

) 1
2

.

With a slight modification of Lemma 2.1 in [25], we can prove the following.

Lemma 2.1 The previous three norms are equivalent, i.e.,

‖u‖Hs
A(R3) = ‖u‖Hs

B(R3) ∼ ‖u‖Hs
C(R3).

Proof Let integer r ≥ 0. According to (2.8), (2.9), (2.12), and (2.13), we have that
for s = 2r ,

‖u‖2
Hs

B(R3)
= (

(Bx + By + Bz)
ru, (Bx + By + Bz)

ru
)

R3

=
( ∞

∑

k,m,l=0

(

μx
k + μ

y
m + μz

l

)r
ukmlhkhmhl,
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∞
∑

k′,m′,l′=0

(

μx
k′ + μ

y

m′ + μz
l′
)r

uk′m′l′hk′hm′hl′

)

R3

=
∞
∑

k,m,l=0

(

μx
k + μ

y
m + μz

l

)2r |ukml |2 = ‖u‖2
Hs

A(R3)
.

Next, by (2.15) and (2.17), we deduce that for s = 2r + 1,

‖u‖2
Hs

B(R3)
= a

(

(Bx + By + Bz)
ru, (Bx + By + Bz)

ru
)

= a

( ∞
∑

k,m,l=0

(

μx
k + μ

y
m + μz

l

)r
ukmlhkhmhl,

∞
∑

k′,m′,l′=0

(

μx
k′ + μ

y

m′ + μz
l′
)r

uk′m′l′hk′hm′hl′

)

=
∞
∑

k,m,l,k′,m′,l′=0

(

μx
k + μ

y
m + μz

l

)r(
μx

k′ + μ
y

m′ + μz
l′
)r

× ukmluk′m′l′a(hkhmhl, hk′hm′hl′)

=
∞
∑

k,m,l=0

(

μx
k + μ

y
m + μz

l

)2r+1|ukml |2 = ‖u‖2
Hs

A(R3)
.

The above two estimates, together with function space interpolation as in [4], lead to
the desired result ‖u‖Hs

A(R3) = ‖u‖Hs
B(R3). Furthermore, following [25] we can verify

readily that

‖u‖Hs
A(R3) ∼ ‖u‖Hs

C(R3).

This completes the proof. �

Remark 2.1 We note that Helffer [14] proved the following equivalence result:

‖u‖L2(R3) + ∥
∥(Bx + By)

s
2 u
∥
∥

L2(R3)
+ ∥
∥B

s
2
z u

∥
∥

L2(R3)

∼ ‖u‖Hs(R3) + ∥
∥
(

x2 + y2)
s
2 u
∥
∥

L2(R3)
+ ∥
∥zsu

∥
∥

L2(R3)
.

The above result, although very similar to Lemma 2.1, is nevertheless different. Fur-
thermore, Abdallah, Castella, and Méhats [3] extended the above result to the more
general case with nonharmonic oscillator.

Lemma 2.2 We have the following inequalities:

‖uvw‖L2(R3) ≤ c‖u‖H 1(R3)‖v‖H 1(R3)‖w‖H 1(R3), (2.18)

‖uvw‖L2(R3) ≤ c‖u‖L2(R3)‖v‖H 2(R3)‖w‖H 2(R3), (2.19)
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‖uvw‖H 1(R3) ≤ c‖u‖H 1(R3)‖v‖H 2(R3)‖w‖H 2(R3), (2.20)

‖uvw‖Hk(R3) ≤ c‖u‖Hk(R3)‖v‖Hk(R3)‖w‖Hk(R3), ∀ integer k ≥ 2. (2.21)

Proof The results (2.18)–(2.20) and (2.21) with k = 2 are established in [18]. By
induction, we can obtain the result (2.21) with integer k ≥ 3. �

The previous results can be extended to the corresponding ones in Hs
A(R3), as

stated below.

Lemma 2.3 The following inequalities hold:

‖uvw‖L2(R3) ≤ c‖u‖H 1
A(R3)‖v‖H 1

A(R3)‖w‖H 1
A(R3). (2.22)

‖uvw‖L2(R3) ≤ c‖u‖L2(R3)‖v‖H 2
A(R3)‖w‖H 2

A(R3). (2.23)

‖uvw‖H 1
A(R3) ≤ c‖u‖H 1

A(R3)‖v‖H 2
A(R3)‖w‖H 2

A(R3). (2.24)

‖uvw‖Hk
A(R3) ≤ c‖u‖Hk

A(R3)‖v‖Hk
A(R3)‖w‖Hk

A(R3), ∀ integer k ≥ 2. (2.25)

Proof Cases 1 and 2. Since ‖u‖Hs
A(R3) ∼ ‖u‖Hs

C(R3), we have ‖u‖Hs(R3) ≤
c‖u‖Hs

A(R3), s ≥ 0. Hence by (2.18) and (2.19) we get the results (2.22) and (2.23).
Case 3. According to the equivalence of the norms, we derive readily that

‖uvw‖H 1
A(R3) ≤ c‖uvw‖H 1

C(R3) ≤ c|uvw|H 1(R3)+c
∥
∥
(

x2 +y2 +z2 +1
) 1

2 uvw
∥
∥

L2(R3)
.

From (2.20) we have

|uvw|H 1(R3) ≤ c‖u‖H 1(R3)‖v‖H 2(R3)‖w‖H 2(R3) ≤ c‖u‖H 1
A(R3)‖v‖H 2

A(R3)‖w‖H 2
A(R3).

By (2.19),

∥
∥
(

x2 + y2 + z2 + 1
) 1

2 uvw
∥
∥

L2(R3)

≤ c
∥
∥
(

x2 + y2 + z2 + 1
) 1

2 u
∥
∥

L2(R3)
‖v‖H 2(R3)‖w‖H 2(R3)

≤ c‖u‖H 1
C(R3)‖v‖H 2

C(R3)‖w‖H 2
C(R3)

≤ c‖u‖H 1
A(R3)‖v‖H 2

A(R3)‖w‖H 2
A(R3). (2.26)

A combination of the previous three inequalities leads to the desired result (2.24).
Case 4. Obviously,

‖uvw‖H 2
A(R3) ≤ c|uvw|H 2(R3)

+ c
∑

k+m+l=1

∥
∥
(

x2 + y2 + z2 + 1
) 1

2 ∂k
x ∂m

y ∂l
z(uvw)

∥
∥

L2(R3)

+ c
∥
∥
(

x2 + y2 + z2 + 1
)

uvw
∥
∥

L2(R3)
.
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From (2.21),

|uvw|H 2(R3) ≤ c‖u‖H 2(R3)‖v‖H 2(R3)‖w‖H 2(R3) ≤ c‖u‖H 2
A(R3)‖v‖H 2

A(R3)‖w‖H 2
A(R3).

Since ‖(x2 + y2 + z2 + 1)
1
2 ∂xu‖L2(R3) ≤ ‖u‖H 2

C(R3), we can use an argument similar
to (2.26) to derive that

∑

k+m+l=1

∥
∥
(

x2 + y2 + z2 + 1
) 1

2 ∂k
x ∂m

y ∂l
z(uvw)

∥
∥

L2(R3)

≤ c‖u‖H 2
A(R3)‖v‖H 2

A(R3)‖w‖H 2
A(R3).

Furthermore, by (2.19),
∥
∥
(

x2 + y2 + z2 + 1
)

uvw
∥
∥

L2(R3)

≤ c
∥
∥
(

x2 + y2 + z2 + 1
)

u
∥
∥

L2(R3)
‖v‖H 2(R3)‖w‖H 2(R3)

≤ c‖u‖H 2
A(R3)‖v‖H 2

A(R3)‖w‖H 2
A(R3).

Therefore, a combination of the previous four inequalities leads to (2.25) with k = 2.
We can obtain the desired results for integer k ≥ 3 by using an argument as in the
proof of (6.14) of this paper. �

2.3 Approximation by the Mixed Laguerre–Hermite Functions

Set Ω = I × R. In order to present the convergence of the three-dimensional
GPE with cylindrical symmetry, we need some approximation results on the mixed
Laguerre–Hermite functions. To this end, we define the inner product and norm of
L2(Ω) with complex-valued functions by

(u, v)Ω = 2π

∫

Ω

u(r, z)v(r, z)r dr dz, ‖v‖L2(Ω) = (v, v)
1
2
Ω.

We notice that the inner product introduced here is not the usual inner product on
L2(I × R), but on L2(R3) using cylindrical coordinates. For any u(r, z) ∈ L2(Ω),
we write

u(r, z) =
∞
∑

m,l=0

umllm(r)hl(z).

Obviously, the linear differential operator Ar + Bz is positive definite and self-
adjoint. Thus for any u and v in the domain of Ar + Bz,

(

(Ar + Bz)u, v
)

Ω
= (

u, (Ar + Bz)v
)

Ω
= b(u, v),

(

(Ar + Bz)u,u
)

Ω
= b(u,u) > 0, if u �= 0,

(2.27)

where the bilinear form

b(u, v) = 1

2
(∇u,∇v)Ω + 1

2

((

γ 2
r r2 + γ 2

z z2)u,v
)

Ω
.
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Moreover, for any functions lm(r)hl(z) and lm′(r)hl′(z),

b(lmhl, lm′hl′) = (

(Ar + Bz)lmhl, lm′hl′
)

Ω
= (

μr
m + μz

l

)

δmm′δll′ . (2.28)

The fractional power (Ar + Bz)
1/2 is also well defined, and the associated norms can

be characterized by
∥
∥(Ar + Bz)

1/2u
∥
∥

2
Ω

= b(u,u), (2.29)

∥
∥(Ar + Bz)

m+1/2u
∥
∥2

Ω
= b

(

(Ar + Bz)
mu, (Ar + Bz)

mu
)

, ∀m ∈ N. (2.30)

We next introduce two Sobolev spaces equipped with the norms:

‖u‖Hs
A(Ω) =

( ∞
∑

m,l=0

(

μr
m + μz

l

)s |uml |2
) 1

2

,

‖u‖Hs
B(Ω) = ∥

∥(Ar + Bz)
s
2 u
∥
∥

L2(Ω)
.

It is also easy to verify that ‖u‖Hs
A(Ω) = ‖u‖Hs

B(Ω).
Let XN := XN(γr , γz) = span{lm(r)hl(z) : 0 ≤ m, l ≤ N}. According to (2.3) and

(2.8), {lm(r)hl(z)} are the eigenfunctions of the operator Ar + Bz with the eigenval-
ues μr

m + μz
l .

Lemma 2.4 For any φ ∈ XN and s ≥ 0,

‖φ‖Hs
A(Ω) ≤ cN

s
2 ‖φ‖L2(Ω).

Proof Given φ ∈ XN , we write

φ(r, z) =
N
∑

m,l=0

φmllm(r)hl(z).

For any integer s ≥ 0,

‖φ‖2
Hs

A(Ω) = (

(Ar + Bz)
sφ,φ

)

Ω
=

N
∑

m,l=0

(

μr
m + μz

l

)s |φml |2

≤ cNs
N
∑

m,l=0

|φml |2 = cNs‖φ‖2
L2(Ω)

.

This with a standard space interpolation technique [4] yields the desired result. �

We now consider the orthogonal projection. For any u ∈ L2(Ω), the orthogonal
projection operator PN : L2(Ω) → XN is defined by

(u − PNu,φ)Ω = 0, ∀φ ∈ XN. (2.31)
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In particular, if u ∈ Hs
B(Ω) with integer s ≥ 0, we have

(

(Ar + Bz)
s
2 (u − PNu), (Ar + Bz)

s
2 φ

)

Ω

= (

u − PNu, (Ar + Bz)
sφ
)

Ω
= 0, ∀φ ∈ XN, (2.32)

which means that the L2(Ω)-orthogonal projection operator PN is also the Hs
B(Ω)-

orthogonal projection operator.

Theorem 2.1 If u ∈ Hs
A(Ω), then for any 0 ≤ μ ≤ s,

‖u − PNu‖H
μ
A (Ω) ≤ cN

μ−s
2 ‖u‖Hs

A(Ω).

Proof For any integers μ and s with 0 ≤ μ ≤ s,

‖u − PNu‖2
H

μ
A (Ω)

=
∞
∑

m,l=N+1

(

μr
m + μz

l

)μ|uml |2 +
N
∑

m=0

∞
∑

l=N+1

(

μr
m + μz

l

)μ|uml |2

+
∞
∑

m=N+1

N
∑

l=0

(

μr
m + μz

l

)μ|uml |2

≤ cNμ−s
∞
∑

m,l=0

(

μr
m + μz

l

)s |uml |2 = cNμ−s‖u‖2
Hs

A(Ω). (2.33)

This with a standard space interpolation technique leads to the desired result. �

We are now in position to study the interpolation operator. The scaled Laguerre–
Hermite–Gauss interpolant IN : C(Ω) → XN is determined by

INu(rj , zk) = u(rj , zk), 0 ≤ j, k ≤ N.

Clearly, INu = I r
N I z

Nu. Hence by (2.6), (2.11), and the equivalence of the norms, a
direct calculation shows that

‖INu‖2
L2(Ω)

≤ cN−1
(∫

Ω

|∂ru|2r−1 dr dz + N− 1
3

∫

Ω

|∂z∂ru|2r−1 dr dz

)

+ c lnN

(∫

Ω

|u|2(r + r3)dr dz + N− 1
3

∫

Ω

|∂zu|2(r + r3)dr dz

+
∫

Ω

|∂ru|2r dr dz + N− 1
3

∫

Ω

|∂z∂ru|2r dr dz

)

≤ cN−1(‖u‖2
H 1

C(R3)
+ N− 1

3 ‖u‖2
H 2

C(R3)

)

+ c lnN
(‖u‖2

H 1
C(R3)

+ N− 1
3 ‖u‖2

H 2
C(R3)

)
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≤ c lnN
(‖u‖2

H 1
A(Ω)

+ N− 1
3 ‖u‖2

H 2
A(Ω)

)

. (2.34)

Theorem 2.2 If u ∈ Hs
A(Ω), then for any 0 ≤ μ ≤ s and s ≥ 2,

‖u − INu‖H
μ
A (Ω) ≤ c(lnN)

1
2 N

5
6 + μ−s

2 ‖u‖Hs
A(Ω).

Proof From Theorem 2.1 and Lemma 2.4, for any 0 ≤ μ ≤ s,

‖u − INu‖H
μ
A (Ω) ≤ ‖u − PNu‖H

μ
A (Ω) + ∥

∥IN(u − PNu)
∥
∥

H
μ
A (Ω)

≤ cN
μ−s

2 ‖u‖Hs
A(Ω) + cN

μ
2
∥
∥IN(u − PNu)

∥
∥

L2(Ω)
.

Moreover, by (2.34) and Theorem 2.1, for any s ≥ 2,

∥
∥IN(u − PNu)

∥
∥

L2(Ω)
≤ c(lnN)

1
2
(

N
1−s

2 ‖u‖Hs
A(Ω) + N

5
6 − s

2 ‖u‖Hs
A(Ω)

)

≤ c(lnN)
1
2 N

5
6 − s

2 ‖u‖Hs
A(Ω).

Therefore,

‖u − INu‖H
μ
A (Ω) ≤ c(lnN)

1
2 N

5
6 + μ−s

2 ‖u‖Hs
A(Ω). �

3 A Time-Splitting Laguerre–Hermite Collocation Method

We now describe the time-splitting spectral method in [1] for the three-dimensional
(3D) Gross–Pitaevskii equation (GPE) with cylindrical symmetry (1.4). For simplic-
ity, we shall only consider the second-order Strang splitting scheme. It is expected
that the technique presented in this paper will eventually enable us to prove error
estimates for the fourth-order splitting scheme used in [1].

3.1 Strang Splitting in Time

For the semidiscretization in time, we split the 3D GPE with cylindrical symmetry
(1.4) into its linear and nonlinear parts:

i∂tψ(r, z, t) = (Ar + Bz)ψ = −1

2

[
1

r
∂r (r∂rψ) + ∂2

z ψ

]

+ 1

2

(

γ 2
r r2 + γ 2

z z2)ψ, (3.1)

i∂tψ(r, z, t) = β
∣
∣ψ(r, z, t)

∣
∣2ψ(r, z, t). (3.2)

Equations (3.1) and (3.2) are exactly solvable since |ψ | is invariant in time along the
solution of (3.2). For a given time step τ > 0, let tn = nτ , n = 0,1, . . . , and let ψn be
the approximation of ψ(tn). Then, the second-order Strang splitting in time for (1.4)
is as follows:

ψn+1 = Φτ
(

ψn
) := e−i τ

2 (Ar+Bz)e−iτβ|e−i τ
2 (Ar+Bz)

ψn|2 e−i τ
2 (Ar+Bz)ψn, (3.3)

where ψ0 = ψ0.
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3.2 Full Discretization

Before we present the full discretization of (1.4), let us describe the semidiscretization
in space using the Laguerre–Hermite collocation method. Find ψN(r, z, t) ∈ XN , i.e.,

ψN(r, z, t) =
N
∑

m,l=0

ψml(t)lm(r)hl(z), (3.4)

such that

i∂tψN(rj , zk, t) = (Ar + Bz)ψN(rj , zk, t) + β
∣
∣ψN(rj , zk, t)

∣
∣
2
ψN(rj , zk, t),

∀0 ≤ j, k ≤ N,
(3.5)

where ψN(rj , zk,0) = ψ0(rj , zk).
The system (3.5) can also be rewritten as

{
i∂tψN(r, z, t) = (Ar + Bz)ψN(r, z, t) + βIN(|ψN(r, z, t)|2ψN(r, z, t)),

ψN(r, z,0) = INψ0(r, z).
(3.6)

We now combine the semidiscretization in time in Sect. 3.1 with the semidis-
cretization in space to obtain a full discretization of (1.4). To do this, we split the
space-discretized equation (3.6) into its linear and nonlinear parts:

i∂tψN(r, z, t) = (Ar + Bz)ψN(r, z, t), (3.7)

i∂tψN(r, z, t) = βIN

(∣
∣ψN(r, z, t)

∣
∣
2
ψN(r, z, t)

)

. (3.8)

Clearly, |ψN(rj , zk, t)| is conserved in time. Thus, the fully discrete Laguerre–
Hermite Strang time-splitting scheme is as follows:

ψ0
N(r, z) = INψ0(r, z);

ψn+1
N = Φτ

N

(

ψn
N

) := e−i τ
2 (Ar+Bz)IN

(

e−iτβ|e−i τ
2 (Ar+Bz)

ψn
N |2e−i τ

2 (Ar+Bz)ψn
N

)

,

n ≥ 0.

(3.9)

Define the discrete inner product

〈u,v〉N =
N
∑

j,k=0

ωr
jω

z
ku(rj , zk)v(rj , zk).

According to (2.4), (2.5), (2.9), and (2.10), we have

〈φ,ψ〉N = (φ,ψ)Ω, ∀φψ ∈ X2N+1. (3.10)



Found Comput Math

Then, we can rewrite (3.9) in a more computationally friendly algorithm: Given
{ψn

N(rj , xk)}, compute

ψ
(1)
N (rj , zk) =

N
∑

m,l=0

e−i τ
2 (μr

m+μz
l )Ûmllm(rj )hl(zk),

ψ
(2)
N (rj , zk) = e−iτβ|ψ(1)

N (rj ,zk)|2ψ(1)
N (rj , zk), (3.11)

ψn+1
N (rj , zk) =

N
∑

m,l=0

e−i τ
2 (μr

m+μz
l )V̂mllm(rj )hl(zk),

where

Ûml = 〈

ψn
N, lmhl

〉

N
=

N
∑

j,k=0

ωr
jω

z
kψ

n
N(rj , zk)lm(rj )hl(zk),

V̂ml = 〈

ψ
(2)
N , lmhl

〉

N
=

N
∑

j,k=0

ωr
jω

z
kψ

(2)
N (rj , zk)lm(rj )hl(zk).

4 Error Analysis for the Semidiscrete Strang Splitting Scheme

In this section, we shall derive error bounds for the semidiscretization scheme (3.3).
We follow the basic procedure in [18], and generalize the error estimates to the
Hk

A(Ω)-norms.
We start by establishing a lemma which is needed for dealing with nonlinear terms.

Lemma 4.1 The following inequalities hold:

‖uvw‖L2(Ω) ≤ c‖u‖H 1
A(Ω)‖v‖H 1

A(Ω)‖w‖H 1
A(Ω), (4.1)

‖uvw‖L2(Ω) ≤ c‖u‖L2(Ω)‖v‖H 2
A(Ω)‖w‖H 2

A(Ω), (4.2)

‖uvw‖H 1
A(Ω) ≤ c‖u‖H 1

A(Ω)‖v‖H 2
A(Ω)‖w‖H 2

A(Ω), (4.3)

‖uvw‖Hk
A(Ω) ≤ c‖u‖Hk

A(Ω)‖v‖Hk
A(Ω)‖w‖Hk

A(Ω), ∀ integer k ≥ 2. (4.4)

Proof For any function ũ(x, y, z) in R
3 with cylindrical symmetry, we denote

u(r, z) := ũ(x, y, z), (r, z) ∈ Ω . Clearly, in this case, γx = γy = γr . Thereby,

(Bx + By )̃u(x, y, z) = 1

2

(−∂2
x − ∂2

y + γ 2
x x2 + γ 2

y y2)ũ(x, y, z) = Aru(r, z),

and

a(̃u, ũ) = b(u,u).
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Accordingly, we have

‖ũ‖Hs
B(R3) = ‖u‖Hs

B(Ω),

which implies

‖ũ‖Hs
A(R3) = ‖u‖Hs

A(Ω).

We can then obtain the desired results from the above and Lemma 2.3. �

Lemma 4.2 (Stability) If ψ , ϕ ∈ H 2
A(Ω) ∩ Hk

A(Ω) with integer k ≥ 0, then

∥
∥Φτ (ψ) − Φτ (ϕ)

∥
∥

Hk
A(Ω)

≤ e
cτ(‖ψ‖2

H
j
A

(Ω)
+‖ϕ‖2

H
j
A

(Ω)
)

‖ψ − ϕ‖Hk
A(Ω),

where j = max(k,2).

Proof We first consider the cases with 0 ≤ k ≤ 2. It is clear that the operator
e−i τ

2 (Ar+Bz) preserves the norm ‖ · ‖Hs
A(Ω) for any integer s ≥ 0, since

e−i τ
2 (Ar+Bz)lm(r)hl(z) = e−i τ

2 (μr
m+μz

l )lm(r)hl(z).

Thereby, we only need to compare e−iτβ|ψ |2ψ and e−iτβ|ϕ|2ϕ, which are the solutions
at time τ of the linear initial value problems:

i∂t θ = β|ψ |2θ, θ(0) = ψ, (4.5)

i∂tη = β|ϕ|2η, η(0) = ϕ. (4.6)

We first establish a bound for ‖θ(t)‖H 2
A(Ω). By (4.5) we have

i
(

(Ar + Bz)∂t θ, (Ar + Bz)θ
)

Ω
= β

(

(Ar + Bz)
(|ψ |2θ), (Ar + Bz)θ

)

Ω
.

Taking the imaginary part in the above, we obtain

∂t

∥
∥θ(t)

∥
∥2

H 2
A(Ω)

≤ 2β
∥
∥|ψ |2θ(t)

∥
∥

H 2
A(Ω)

∥
∥θ(t)

∥
∥

H 2
A(Ω)

,

which implies that

∂t

∥
∥θ(t)

∥
∥

H 2
A(Ω)

≤ β
∥
∥|ψ |2θ(t)

∥
∥

H 2
A(Ω)

.

On the other hand, by (4.4) we obtain

∥
∥|ψ |2θ(t)

∥
∥

H 2
A(Ω)

≤ c‖ψ‖2
H 2

A(Ω)

∥
∥θ(t)

∥
∥

H 2
A(Ω)

.

A combination of the previous two inequalities leads to

∥
∥θ(t)

∥
∥

H 2
A(Ω)

≤ ‖ψ‖H 2
A(Ω) + c

∫ t

0
‖ψ‖2

H 2
A(Ω)

∥
∥θ(ξ)

∥
∥

H 2
A(Ω)

dξ.
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Applying the usual Gronwall inequality, we obtain

∥
∥θ(t)

∥
∥

H 2
A(Ω)

≤ e
ct‖ψ‖2

H2
A

(Ω)‖ψ‖H 2
A(Ω). (4.7)

Next, by (4.5) and (4.6), we have

i∂t (θ − η) = β(ψ − ϕ)ψθ + βϕ(ψ − ϕ)θ + β|ϕ|2(θ − η). (4.8)

We now proceed to treat different cases separately.
(i) k = 0. By taking the inner product in (4.8) with θ − η, and then taking the

imaginary part, we get

∂t‖θ − η‖L2(Ω) ≤ β
∥
∥(ψ − ϕ)ψθ + ϕ(ψ − ϕ)θ

∥
∥

L2(Ω)
.

The above with (4.2) yields

∂t‖θ − η‖L2(Ω) ≤ c‖ψ − ϕ‖L2(Ω)‖θ‖H 2
A(Ω)

(‖ψ‖H 2
A(Ω) + ‖ϕ‖H 2

A(Ω)

)

.

Integrating the above from 0 to τ and using (4.7), we obtain
∥
∥θ(τ ) − η(τ)

∥
∥

L2(Ω)
≤ ‖ψ − ϕ‖L2(Ω)

+ cτ‖ψ − ϕ‖L2(Ω)

(‖ψ‖2
H 2

A(Ω)
+ ‖ϕ‖2

H 2
A(Ω)

)

e
cτ‖ψ‖2

H2
A

(Ω)

≤ (

1 + cτ
(‖ψ‖2

H 2
A(Ω)

+ ‖ϕ‖2
H 2

A(Ω)

))‖ψ − ϕ‖L2(Ω)e
cτ‖ψ‖2

H2
A

(Ω)

≤ e
cτ(‖ψ‖2

H2
A

(Ω)
+‖ϕ‖2

H2
A

(Ω)
)‖ψ − ϕ‖L2(Ω).

(ii) k = 1,2. By (4.8) we have

i(Ar + Bz)
k
2 ∂t (θ − η) = β(Ar + Bz)

k
2
(

(ψ − ϕ)ψθ
)+ β(Ar + Bz)

k
2
(

ϕ(ψ − ϕ)θ
)

+ β(Ar + Bz)
k
2
(|ϕ|2(θ − η)

)

. (4.9)

Take the inner product in (4.9) with (Ar + Bz)
k
2 (θ − η). From (4.3) and (4.4), and

using an argument similar to the case k = 0, we get

∂t‖θ − η‖Hk
A(Ω) ≤ c‖ψ − ϕ‖Hk

A(Ω)‖θ‖H 2
A(Ω)

(‖ψ‖H 2
A(Ω) + ‖ϕ‖H 2

A(Ω)

)

+ c‖ϕ‖2
H 2

A(Ω)
‖θ − η‖Hk

A(Ω).

Therefore, by (4.7) and the Gronwall inequality, we obtain the desired result.
(iii) k > 2. By a similar argument as before, we can establish the bound on

‖θ(t)‖Hk
A(Ω), namely,

∥
∥θ(t)

∥
∥

Hk
A(Ω)

≤ e
ct‖ψ‖2

Hk
A

(Ω)‖ψ‖Hk
A(Ω), k ≥ 2. (4.10)
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Thus by (4.10), (4.4), and the Gronwall inequality, we obtain the result with integer
k > 2. �

We are now in position to estimate the local error. To this end, we denote

T̂ (ψ) = −i(Ar + Bz)ψ, V̂ (ψ) = −iβ|ψ |2ψ. (4.11)

Their Lie commutator (cf. [12, 15]) is as follows:

[T̂ , V̂ ](ψ) = T̂ ′(ψ)V̂ (ψ) − V̂ ′(ψ)T̂ (ψ)

= −β(Ar + Bz)
(|ψ |2ψ)− βψ2(Ar + Bz)ψ

+ 2β|ψ |2(Ar + Bz)ψ. (4.12)

Lemma 4.3 For any ψ ∈ Hk+2
A (Ω) with integer k ≥ 0, we have

∥
∥[T̂ , V̂ ](ψ)

∥
∥

Hk
A(Ω)

≤ c‖ψ‖3
Hk+2

A (Ω)
. (4.13)

If, in addition, ψ ∈ Hk+4
A (Ω), then

∥
∥
[

T̂ , [T̂ , V̂ ]](ψ)
∥
∥

Hk
A(Ω)

≤ c‖ψ‖3
Hk+4

A (Ω)
. (4.14)

Proof Using (4.12) and (4.2)–(4.4), we obtain that

∥
∥[T̂ , V̂ ](ψ)

∥
∥

Hk
A(Ω)

≤ c
∥
∥|ψ |2ψ∥

∥
Hk+2

A (Ω)
+ c

∥
∥ψ2(Ar + Bz)ψ

∥
∥

Hk
A(Ω)

+ c
∥
∥|ψ |2(Ar + Bz)ψ

∥
∥

Hk
A(Ω)

≤ c‖ψ‖3
Hk+2

A (Ω)
. (4.15)

Next, we derive a bound for the following commutator (cf. [12, 15]):

[

T̂ , [T̂ , V̂ ]](ψ) = T̂
([T̂ , V̂ ](ψ)

)− [T̂ , V̂ ]′(ψ)T̂ (ψ).

By (4.11) and (4.15) we have

∥
∥T̂

([T̂ , V̂ ](ψ)
)∥
∥

Hk
A(Ω)

= ∥
∥[T̂ , V̂ ](ψ)

∥
∥

Hk+2
A (Ω)

≤ c‖ψ‖3
Hk+4

A (Ω)
.

A direct calculation shows that

[T̂ , V̂ ]′(ψ)T̂ (ψ) = −β(Ar + Bz)
(

ψ2T̂ (ψ) + 2|ψ |2T̂ (ψ)
)

− βψ2(Ar + Bz)T̂ (ψ) + 2βψT̂ (ψ)(Ar + Bz)ψ

+ 2β
(

ψT̂ (ψ)(Ar + Bz)ψ + T̂ (ψ)ψ(Ar + Bz)ψ

+ |ψ |2(Ar + Bz)T̂ (ψ)
)

.
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Furthermore, by (4.4) and (4.11),

∥
∥(Ar + Bz)

(

ψ2T̂ (ψ)
)∥
∥

Hk
A(Ω)

= ∥
∥ψ2T̂ (ψ)

∥
∥

Hk+2
A (Ω)

≤ c‖ψ‖2
Hk+2

A (Ω)

∥
∥T̂ (ψ)

∥
∥

Hk+2
A (Ω)

= c‖ψ‖2
Hk+2

A (Ω)
‖ψ‖

Hk+4
A (Ω)

.

By using (4.2)–(4.4) and (4.11), the same results can be derived for the estimates of
the other terms in [T̂ , V̂ ]′(ψ)T̂ (ψ). Therefore, we have

∥
∥[T̂ , V̂ ]′(ψ)T̂ (ψ)

∥
∥

Hk
A(Ω)

≤ c‖ψ‖2
Hk+2

A (Ω)
‖ψ‖

Hk+4
A (Ω)

.

A combination of the previous statements leads to the desired result. �

Lemma 4.4 (Local errors) Let integer k ≥ 0. If the exact solution ψ(t) of (1.4) is in
H 2

A(Ω) ∩ Hk
A(Ω) for all 0 ≤ t ≤ τ , and ψ0 ∈ Hk+2

A (Ω), then the local error of the
method (3.3) is bounded by

∥
∥ψ1 − ψ(τ)

∥
∥

Hk
A(Ω)

≤ cτ 2, (4.16)

where c depends only on ‖ψ0‖Hk+2
A (Ω)

and max0≤t≤τ ‖ψ‖
H

j
A(Ω)

with j = max(k,2).

If, in addition, ψ0 ∈ Hk+4
A (Ω), then

∥
∥ψ1 − ψ(τ)

∥
∥

Hk
A(Ω)

≤ cτ 3, (4.17)

where c depends only on ‖ψ0‖Hk+4
A (Ω)

and max0≤t≤τ ‖ψ‖
H

j
A(Ω)

.

The proof of Lemma 4.4 is given in Appendix. The following lemma shall be used
for the error analysis.

Lemma 4.5 (Regularity of the numerical solution) If the exact solution of (1.4)
ψ(t) ∈ Hk+2

A (Ω) with integer k ≥ 2 and t ∈ [0, T ], then for small enough τ and
any 1 ≤ n ≤ N0 = T

τ
, we have

max
0≤j≤N0−n

∥
∥
(

Φτ
)n(

ψ(jτ)
)∥
∥

Hk
A(Ω)

≤ T + max
0≤t≤T

∥
∥ψ(t)

∥
∥

Hk
A(Ω)

.

Proof Let

En = max
0≤j≤N0−n

∥
∥
(

Φτ
)n(

ψ(jτ)
)− (

Φτ
)n−1(

ψ
(

(j + 1)τ
))∥
∥

Hk
A(Ω)

, n ≥ 1,

Fn = max
0≤j≤N0−n

∥
∥
(

Φτ
)n(

ψ(jτ)
)∥
∥

Hk
A(Ω)

, n ≥ 1, F0 = max
0≤t≤T

∥
∥ψ(t)

∥
∥

Hk
A(Ω)

.

Then, by (4.16), we deduce that

E1 ≤ c0τ
2,
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where c0 depends only on max0≤t≤T ‖ψ(t)‖
Hk+2

A (Ω)
. Moreover,

F1 = max
0≤j≤N0−1

∥
∥Φτ

(

ψ(jτ)
)∥
∥

Hk
A(Ω)

≤ max
0≤j≤N0−1

∥
∥Φτ

(

ψ(jτ)
)− ψ

(

(j + 1)τ
)∥
∥

Hk
A(Ω)

+ max
0≤j≤N0−1

∥
∥ψ

(

(j + 1)τ
)∥
∥

Hk
A(Ω)

≤ E1 + F0.

Next, due to Lemma 4.2, we have that for k ≥ 2,

E2 = max
0≤j≤N0−2

∥
∥
(

Φτ
)2(

ψ(jτ)
)− Φτ

(

ψ
(

(j + 1)τ
))∥
∥

Hk
A(Ω)

≤ E1ecτ(F 2
0 +F 2

1 ),

and

F2 = max
0≤j≤N0−2

∥
∥
(

Φτ
)2(

ψ(jτ)
)∥
∥

Hk
A(Ω)

≤ E2 + max
0≤j≤N0−2

∥
∥Φτ

(

ψ
(

(j + 1)τ
))∥
∥

Hk
A(Ω)

≤ E2 + F1.

Finally by induction, we deduce that for k ≥ 2,
⎧

⎨

⎩

En ≤ En−1ecτ(F 2
n−1+F 2

n−2), n ≥ 2,

Fn ≤ En + Fn−1, n ≥ 1.

Thereby,

Fn ≤ Fn−1 + En−1ecτ(F 2
n−1+F 2

n−2) ≤ · · ·
≤ Fn−1 + E1ecτ(F 2

n−1+2F 2
n−2+···+2F 2

1 +F 2
0 )

= Fn−1 + c0τ
2ecτ(F 2

n−1+2F 2
n−2+···+2F 2

1 +F 2
0 ), n ≥ 1.

Now let τ be small enough such that

c0τe4cT F 2
0 +4cT 3 ≤ 1. (4.18)

Then by induction, we derive that

Fn ≤ Fn−1 + τ.

Therefore,

Fn ≤ F0 + nτ ≤ F0 + T , 1 ≤ n ≤ N0.

Thus we obtain the desired result. �

Remark 4.1 The condition (4.18) for τ is sufficient but not necessary.
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We now present the main result for the Strang splitting scheme (3.3).

Theorem 4.1 Suppose that integer k ≥ 0, τ is small enough, and the exact solution
ψ(t) of (1.4) is in H 4

A(Ω)∩Hk+2
A (Ω) for all 0 ≤ t ≤ T . Then the numerical solution

ψn given by the splitting scheme (3.3) with step size τ > 0 has the following error
bound:

∥
∥ψn − ψ(tn)

∥
∥

Hk
A(Ω)

≤ cτ, tn = nτ ≤ T ,

where c depends only on T and max0≤t≤T ‖ψ(t)‖
Hk+2

A (Ω)
. If, in addition, ψ(t) ∈

Hk+4
A (Ω) for all 0 ≤ t ≤ T , then

∥
∥ψn − ψ(tn)

∥
∥

Hk
A(Ω)

≤ cτ 2, tn = nτ ≤ T ,

where c depends only on T and max0≤t≤T ‖ψ(t)‖
Hk+4

A (Ω)
.

Proof According to Lemma 4.5, if ψ ∈ H 4
A(Ω) ∩ Hk+2

A (Ω) with k ≥ 0, then for
m = max(k,2),

max
0≤j≤N0−n

∥
∥
(

Φτ
)n(

ψ(jτ)
)∥
∥

Hm
A (Ω)

≤ T + max
0≤t≤T

‖ψ‖Hm
A (Ω).

Therefore, by Lemma 4.2, (4.16), and the previous inequality, and using the standard
argument of Lady Windermere’s fan (cf. [12]), we obtain that

∥
∥ψn − ψ(nτ)

∥
∥

Hk
A(Ω)

≤
n−1
∑

j=0

∥
∥
(

Φτ
)n−j−1(

Φτ
(

ψ(jτ)
))

− (

Φτ
)n−j−1(

ψ
(

(j + 1)τ
))∥
∥

Hk
A(Ω)

≤ nec1T max
0≤j≤n−1

∥
∥Φτ

(

ψ(jτ)
)− ψ

(

(j + 1)τ
)∥
∥

Hk
A(Ω)

≤ c2T ec1T τ,

where c1 depends only on T and max0≤t≤T ‖ψ(t)‖Hm
A (Ω), and c2 depends only on

max0≤t≤T ‖ψ(t)‖
Hk+2

A (Ω)
. If, in addition, ψ(t) ∈ Hk+4

A (Ω) for all 0 ≤ t ≤ T , then

we obtain from (4.17) that
∥
∥ψn − ψ(nτ)

∥
∥

Hk
A(Ω)

≤ c3T ec1T τ 2,

where c3 depends only on max0≤t≤T ‖ψ(t)‖
Hk+4

A (Ω)
. This completes the proof. �

5 Error Analysis of the Fully Discrete Strang Splitting Laguerre–Hermite
Collocation Scheme

In this section, we present error bounds for the full-discretization scheme (3.9).
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Lemma 5.1 We are given ψ ∈ XN . Then for ϕ ∈ Hs
A(Ω) with integer s ≥ 2,

∥
∥Φτ

N(ψ) − PNΦτ (ϕ)
∥
∥2

L2(Ω)

≤ exp
(

cτ‖ψ‖H 2
A(Ω)‖ϕ‖H 2

A(Ω) exp
(

cτ‖ϕ‖2
H 2

A(Ω)

))‖ψ − PNϕ‖2
L2(Ω)

+ cτ 2N
3
2 −s‖ϕ‖2

H 2
A(Ω)

‖ϕ‖4
Hs

A(Ω)

× exp
(

cτ‖ϕ‖2
Hs

A(Ω) + cτ‖ψ‖H 2
A(Ω)‖ϕ‖H 2

A(Ω) exp
(

cτ‖ϕ‖2
H 2

A(Ω)

))

.

Proof We consider the errors in its linear and nonlinear parts, respectively. We first
consider the errors of the linear parts:

i∂t θ = (Ar + Bz)θ, θ(0) = ψ, (5.1)

i∂tη = (Ar + Bz)η, η(0) = ϕ, (5.2)

where θ and η correspond to the solutions of the linear parts of the full discretization
and the semidiscretization in time, respectively. From (5.2) and (2.32) we further
obtain

i(∂tPNη,φ)Ω = i(∂tη,φ)Ω = (

(Ar + Bz)η,φ
)

Ω
= (

(Ar + Bz)PNη,φ
)

Ω
,

∀φ ∈ XN.

Therefore,

i
(

∂t (θ − PNη),φ
)

Ω
= (

(Ar + Bz)(θ − PNη),φ
)

Ω
, ∀φ ∈ XN. (5.3)

Taking φ = (Ar + Bz)
k(θ −PNη) (∈ XN) in the above, we obtain from its imaginary

part that

∂t‖θ − PNη‖2
Hk

A(Ω)
= 0,

whence
∥
∥θ(·, t) − (PNη)(·, t)∥∥

Hk
A(Ω)

= ‖ψ − PNϕ‖Hk
A(Ω), 0 ≤ t ≤ τ. (5.4)

Next let ψ̃ ∈ XN and consider the errors of the nonlinear parts:

i∂t θ = βIN

(|θ |2θ), θ(0) = ψ̃, (5.5)

i∂tη = β|η|2η, η(0) = ϕ̃. (5.6)

From (5.5) and (5.6), one verifies readily that |θ(rj , zk, t)| = |ψ̃(rj , zk)|, |η(r, z, t)| =
|ϕ̃(r, z)| and

i∂t (θ − PNη) = βIN

((|θ |2 + |PNη|2)(θ − PNη) + θPNη(θ − PNη)
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+ |PNη|2PNη
)− βPN

(|η|2η).
Thus

i
(

∂t (θ − PNη),φ
)

Ω

= β
〈(|θ |2 + |PNη|2)(θ − PNη),φ

〉

N

+ β
〈

θPNη(θ − PNη),φ
〉

N

+ β
〈|PNη|2PNη,φ

〉

N
− β

(|η|2η,φ
)

Ω
, ∀φ ∈ XN. (5.7)

Next let M = [N
3 ]. To deal with the cubic term, we need to consider a special

orthogonal projection, similar to (2.31), but with γr

3 and γz

3 in place of γr and γz. For
clarity, we denote it by P̃M : L2(Ω) → XM(γr/3, γz/3). More specifically,

(u − P̃Mu,φ)Ω = 0, ∀φ ∈ XM(γr/3, γz/3). (5.8)

In particular, we have the following attractive property:

|P̃Mψ̃ |2P̃Mη ∈ XN(γr , γz) and
〈|P̃Mψ̃ |2P̃Mη, θ − PNη

〉

N
= (|P̃Mψ̃ |2P̃Mη, θ − PNη

)

Ω
.

Moreover, the same estimate in Theorem 2.1 holds for this variation. Hence, taking
φ = θ − PNη (∈ XN) in (5.7), we obtain from its imaginary part that

∂t‖θ − PNη‖2
L2(Ω)

≤ 2β
∣
∣
〈

θPNη(θ − PNη), θ − PNη
〉

N
+ 〈|PNη|2PNη, θ − PNη

〉

N

− (|η|2η, θ − PNη
)

Ω

∣
∣

≤ 2β

3
∑

j=1

|Gj |, (5.9)

where

G1 = 〈

θPNη(θ − PNη), θ − PNη
〉

N
,

G2 = 〈|PNη|2PNη − |P̃Mη|2P̃Mη, θ − PNη
〉

N
,

G3 = (|P̃Mη|2P̃Mη − |η|2η, θ − PNη
)

Ω
.

We derive from (5.9) that

‖θ − PNη‖∂t‖θ − PNη‖ ≤ β

3
∑

j=1

|Gj |. (5.10)

We now estimate |Gj |, j = 1,2,3. For any function u(r, z), (r, z) ∈ Ω , we denote
ũ(x, y, z) := u(r, z), (x, y, z) ∈ R

3. Then, by using a Sobolev inequality (cf., for in-
stance, [7]) and the equivalence of norms (cf. Lemma 2.1), we obtain that for any
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u ∈ Hm
A (Ω) with integer m > 3

2 ,

‖u‖L∞(Ω) = ‖ũ‖L∞(R3) ≤ c
∥
∥∂m

x ũ
∥
∥

3
2m

L2(R3)
‖ũ‖1− 3

2m

L2(R3)

≤ c‖ũ‖
3

2m

Hm
A (R3)

‖ũ‖1− 3
2m

L2(R3)
= c‖u‖

3
2m

Hm
A (Ω)

‖u‖1− 3
2m

L2(Ω)
, (5.11)

which implies in particular that

‖u‖L∞(Ω) ≤ C‖u‖H 2
A(Ω). (5.12)

Due to |θ(rj , zk, t)| = |ψ̃(rj , zk)|, we have

|G1| ≤ ‖ψ̃‖L∞(Ω)‖PNη‖L∞(Ω)‖θ − PNη‖2
L2(Ω)

≤ c‖ψ̃‖H 2
A(Ω)‖η‖H 2

A(Ω)‖θ − PNη‖2
L2(Ω)

. (5.13)

Moreover,

|G2| = ∣
∣
〈|PNη|2(PNη − P̃Mη) + PNηP̃Mη(PNη − P̃Mη)

+ PNηP̃Mη(PNη − P̃Mη) − P̃Mη|PNη − P̃Mη|2, θ − PNη
〉

N

∣
∣

≤ (‖PNη‖L∞(Ω) + ‖P̃Mη‖L∞(Ω)

)‖PNη − P̃Mη‖L∞(Ω)‖PNη‖L2(Ω)

× ‖θ − PNη‖L2(Ω)

+ ‖PNη − P̃Mη‖2
L∞(Ω)‖INP̃Mη‖L2(Ω)‖θ − PNη‖L2(Ω).

By (5.11) and Theorem 2.1 we obtain that for s > 3
2 ,

‖PNη − P̃Mη‖L∞(Ω)

≤ c‖PNη − P̃Mη‖
3
2s

H s
A(Ω)

‖PNη − P̃Mη‖1− 3
2s

L2(Ω)

≤ c
(‖PNη − η‖Hs

A(Ω) + ‖η − P̃Mη‖Hs
A(Ω)

) 3
2s

× (‖PNη − η‖L2(Ω) + ‖η − P̃Mη‖L2(Ω)

)1− 3
2s

≤ cN
3
4 − s

2 ‖η‖Hs
A(Ω). (5.14)

Therefore, by the above and (2.34), we can derive

|G2| ≤ cN
3
4 − s

2 ‖η‖H 2
A(Ω)‖η‖2

Hs
A(Ω)‖θ − PNη‖L2(Ω). (5.15)

It is also verified readily that

|G3| ≤ cN− s
2 ‖η‖2

H 2
A(Ω)

‖η‖Hs
A(Ω)‖θ − PNη‖L2(Ω). (5.16)
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Since the operator e−i τ
2 (Ar+Bz) preserves the norms ‖ · ‖Hs

A(Ω), we have

‖ψ̃‖Hs
A(Ω) = ‖ψ‖Hs

A(Ω), ‖ϕ̃‖Hs
A(Ω) = ‖ϕ‖Hs

A(Ω),

‖ψ̃ − PNϕ̃‖L2(Ω) = ‖ψ − PNϕ‖L2(Ω), ∀s ≥ 0.

Furthermore, by (4.10), we find

∥
∥η(t)

∥
∥

Hs
A(Ω)

≤ e
ct‖ϕ‖2

Hs
A

(Ω)‖ϕ‖Hs
A(Ω) ≤ e

cτ‖ϕ‖2
Hs

A
(Ω)‖ϕ‖Hs

A(Ω),

0 ≤ t ≤ τ, ∀ integer s ≥ 2.

Hence, a combination of (5.10), (5.13)–(5.16), and (5.4) yields

∂t‖θ − PNη‖L2(Ω) ≤ c‖ψ‖H 2
A(Ω)‖ϕ‖H 2

A(Ω)e
cτ‖ϕ‖2

H2
A

(Ω)‖θ − PNη‖L2(Ω)

+ cN
3
4 − s

2 ‖ϕ‖H 2
A(Ω)‖ϕ‖2

Hs
A(Ω)e

cτ‖ϕ‖2
Hs

A
(Ω) .

Finally, by using the Gronwall inequality and (5.4), we obtain the desired result. �

Theorem 5.1 We assume ψ(t) ∈ Hs+2
A (Ω) (0 ≤ t ≤ T ) with integer s ≥ 4. Then for

N sufficiently large and τ sufficiently small (cf. (5.21) below), we have for integer
s − 2 < k ≤ s,

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Ω)

≤ cN
3
4 + k−s

2 + cτ, 1 ≤ n ≤ T

τ
; (5.17)

and for integer 0 ≤ k ≤ s − 2,

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Ω)

≤ cN
3
4 + k−s

2 + cτ 2, 1 ≤ n ≤ T

τ
. (5.18)

Proof Due to ψ(t) ∈ Hs+2
A (Ω) with integer s ≥ 4, we have from Lemma 4.5 that

there exists a constant M0 > 0, such that for all 1 ≤ n ≤ T
τ

,

∥
∥ψn

∥
∥

Hs
A(Ω)

≤ M0

2
, (5.19)

provided that τ is small enough. Without loss of generality, we also assume that
‖ψ0‖Hs+2

A (Ω)
≤ M0

2 . Next, according to Theorem 2.2, we have

‖ψ0 − INψ0‖H 2
A(Ω) ≤ c(lnN)

1
2 N

5
6 − s

2 ‖ψ0‖Hs+2
A

.

Hence, we obtain that for large N ,

‖INψ0‖H 2
A(Ω) ≤ ‖ψ0‖H 2

A(Ω) + ‖ψ0 − INψ0‖H 2
A(Ω) ≤ M0. (5.20)
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Now let N be large enough and τ be small enough such that

c2 lnNN− 11
6 e

1
2 cT M2

0 e
1
4 cτM2

0 + 1

16
c2τT M4

0 e
1
2 cT M2

0 ( 1
2 +e

1
4 cτM2

0 ) ≤ 1. (5.21)

We proceed by induction on n.
(i) n = 1. By Lemma 5.1, (5.19), (5.20), and Theorems 2.1 and 2.2, we get that

∥
∥ψ1

N − PNψ1
∥
∥

2
L2(Ω)

≤ e
cτ‖INψ0‖H2

A
(Ω)

‖ψ0‖H2
A

(Ω)
e
cτ‖ψ0‖2

H2
A

(Ω)

‖INψ0 − PNψ0‖2
L2(Ω)

+ cτ 2N
3
2 −s‖ψ0‖2

H 2
A(Ω)

‖ψ0‖4
Hs

A(Ω)

× e
cτ‖ψ0‖2

Hs
A

(Ω)
+cτ‖INψ0‖H2

A
(Ω)

‖ψ0‖H2
A

(Ω)
e
cτ‖ψ0‖2

H2
A

(Ω)

≤ e
1
2 cτM2

0 e
1
4 cτM2

0 ‖INψ0 − PNψ0‖2
L2(Ω)

+ 1

64
cτ 2N

3
2 −sM6

0 e
1
2 cτM2

0 ( 1
2 +e

1
4 cτM2

0 )

≤ c lnNN−s− 1
3 ‖ψ0‖2

Hs+2
A (Ω)

e
1
2 cτM2

0 e
1
4 cτM2

0 + 1

64
cτ 2N

3
2 −sM6

0 e
1
2 cτM2

0 ( 1
2 +e

1
4 cτM2

0 )

≤ 1

4
c lnNN−s− 1

3 M2
0 e

1
2 cτM2

0 e
1
4 cτM2

0 + 1

64
cτ 2N

3
2 −sM6

0 e
1
2 cτM2

0 ( 1
2 +e

1
4 cτM2

0 ).

This with Lemma 2.4 and (5.21) gives

∥
∥ψ1

N − PNψ1
∥
∥2

Hk
A(Ω)

≤ cNk
∥
∥ψ1

N − PNψ1
∥
∥

2
L2(Ω)

≤ 1

4
c2 lnNNk−s− 1

3 M2
0 e

1
2 cτM2

0 e
1
4 cτM2

0 + 1

64
c2τ 2Nk+ 3

2 −sM6
0 e

1
2 cτM2

0 ( 1
2 +e

1
4 cτM2

0 )

≤ M2
0

4
Nk+ 3

2 −s . (5.22)

In particular, by (5.19) and (5.22) we get that for integer s ≥ 4,

∥
∥ψ1

N

∥
∥

H 2
A(Ω)

≤ ∥
∥PNψ1

∥
∥

H 2
A(Ω)

+ ∥
∥ψ1

N − PNψ1
∥
∥

H 2
A(Ω)

≤ ∥
∥ψ1

∥
∥

H 2
A(Ω)

+ ∥
∥ψ1

N − PNψ1
∥
∥

H 2
A(Ω)

≤ M0. (5.23)

(ii) Next assume that the results (5.22) and (5.23) with n = m hold, namely,

∥
∥ψm

N − PNψm
∥
∥

2
Hk

A(Ω)

≤ cNk
∥
∥ψm

N − PNψm
∥
∥

2
L2(Ω)
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≤ 1

4
c2 lnNNk−s− 1

3 M2
0 e

1
2 mcτM2

0 e
1
4 cτM2

0

+ 1

64
mc2τ 2Nk+ 3

2 −sM6
0 e

1
2 mcτM2

0 ( 1
2 +e

1
4 cτM2

0 )

≤ M2
0

4
Nk+ 3

2 −s , (5.24)

and
∥
∥ψm

N

∥
∥

H 2
A(Ω)

≤ M0. (5.25)

We now verify the results with n = m + 1. Clearly, by Lemma 5.1, (5.25), and
(5.19), we derive that

∥
∥ψm+1

N − PNψm+1
∥
∥

2
L2(Ω)

≤ e
cτ‖ψm

N ‖
H2

A
(Ω)

‖ψm‖
H2

A
(Ω)

e
cτ‖ψm‖2

H2
A

(Ω)∥
∥ψm

N − PNψm
∥
∥

2
L2(Ω)

+ cτ 2N
3
2 −s

∥
∥ψm

∥
∥

2
H 2

A(Ω)

∥
∥ψm

∥
∥

4
Hs

A(Ω)

× e
cτ‖ψm‖2

Hs
A

(Ω)
+cτ‖ψm

N ‖
H2

A
(Ω)

‖ψm‖
H2

A
(Ω)

e
cτ‖ψm‖2

H2
A

(Ω)

≤ e
1
2 cτM2

0 e
1
4 cτM2

0
∥
∥ψm

N − PNψm
∥
∥

2
L2(Ω)

+ 1

64
cτ 2N

3
2 −sM6

0 e
1
2 cτM2

0 ( 1
2 +e

1
4 cτM2

0 ).

The above with Lemma 2.4 and (5.24) lead to

∥
∥ψm+1

N − PNψm+1
∥
∥

2
Hk

A(Ω)

≤ cNk
∥
∥ψm+1

N − PNψm+1
∥
∥

2
L2(Ω)

≤ cNke
1
2 cτM2

0 e
1
4 cτM2

0
∥
∥ψm

N − PNψm
∥
∥

2
L2(Ω)

+ 1

64
c2τ 2Nk+ 3

2 −sM6
0 e

1
2 cτM2

0 ( 1
2 +e

1
4 cτM2

0 )

≤ 1

4
c2 lnNNk−s− 1

3 M2
0 e

1
2 (m+1)cτM2

0 e
1
4 cτM2

0

+ 1

64
(m + 1)c2τ 2Nk+ 3

2 −sM6
0 e

1
2 (m+1)cτM2

0 ( 1
2 +e

1
4 cτM2

0 ). (5.26)

Hence by (5.21) and (5.26), for (m + 1)τ ≤ T ,

∥
∥ψm+1

N − PNψm+1
∥
∥

2
Hk

A(Ω)
≤ M2

0

4
Nk+ 3

2 −s .
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In particular, for integer s ≥ 4,

∥
∥ψm+1

N

∥
∥

H 2
A(Ω)

≤ ∥
∥PNψm+1

∥
∥

H 2
A(Ω)

+ ∥
∥ψm+1

N − PNψm+1
∥
∥

H 2
A(Ω)

≤ ∥
∥ψm+1

∥
∥

H 2
A(Ω)

+ ∥
∥ψm+1

N − PNψm+1
∥
∥

H 2
A(Ω)

≤ M0. (5.27)

Therefore, we obtain that for integer s ≥ 4,

∥
∥ψn

N − PNψn
∥
∥

2
Hk

A(Ω)
≤ M2

0

4
Nk+ 3

2 −s , n ≤ T

τ
, (5.28)

and

∥
∥ψn

N

∥
∥

H 2
A(Ω)

≤ M0, n ≤ T

τ
. (5.29)

Since

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Ω)

≤ ∥
∥ψn

N − PNψn
∥
∥

Hk
A(Ω)

+ ∥
∥ψn − PNψn

∥
∥

Hk
A(Ω)

+ ∥
∥ψn − ψ(tn)

∥
∥

Hk
A(Ω)

, (5.30)

we use (5.28), Theorem 2.1, (5.19), and Theorem 4.1 successively to derive the results
(5.17) and (5.18). �

The restriction on N in (5.21) can be removed if we set ψ0
N(r, z) = PNψ0(r, z)

instead of ψ0
N(r, z) = INψ0(r, z) in (3.9). More precisely, we have the following

result.

Corollary 5.1 Let ψ0
N(r, z) = PNψ0(r, z) in (3.9) and ψ(t) ∈ Hs+2

A (Ω) (0 ≤ t ≤ T )

with integer s ≥ 4. Then for τ sufficiently small such that

1

16
c2τT M4

0 e
1
2 cT M2

0 ( 1
2 +e

1
4 cτM2

0 ) ≤ 1, (5.31)

we have for s − 2 < k ≤ s,

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Ω)

≤ cN
3
4 + k−s

2 + cτ, 1 ≤ n ≤ T

τ
; (5.32)

and for 0 ≤ k ≤ s − 2,

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Ω)

≤ cN
3
4 + k−s

2 + cτ 2, 1 ≤ n ≤ T

τ
. (5.33)

The proof of the above result is essentially the same as that of Theorem 5.1 without
using (5.20) and with (5.31) instead of (5.21).
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6 The d-Dimensional Gross–Pitaevskii Equation

In this section, we shall present error bounds of the Strang splitting Hermite colloca-
tion method for the d-dimensional GPE:

{
i∂tψ(x, t) = −�ψ(x, t) + x2ψ(x, t) + |ψ(x, t)|2ψ(x, t),

ψ(x,0) = ψ0(x), lim|x|→∞ ψ(x, t) = 0, t ≥ 0,
(6.1)

where x = (x1, . . . , xd) ∈ R
d and x2 = x2

1 + · · · + x2
d .

6.1 Notation and Some Basic Results

For simplicity, we still denote by hl(z) the one-dimensional Hermite function as de-
fined in (2.7) with γz ≡ 1. For l = (l1, . . . , ld ) ∈ N

d , the d-dimensional Hermite func-
tion is defined by

hl(x) = hl1(x1) · · ·hld (xd),

which satisfies

Lhl(x) := (−� + x2)hl(x) = μlhl(x), μl = 2(l1 + · · · + ld ) + d.

We denote the spaces L2(Rd) and Hs(Rd), s > 0 with the inner products, semi-
norms, and norms as usual. For any u ∈ L2(Rd), we write

u(x) =
∞
∑

l=0

ulhl(x).

As before, the linear differential operator L is positive definite and self-adjoint.
Thus for any u and v in the domain of L,

(Lu,v)Rd = (u, Lv)Rd = ad(u, v),

(Lu,u)Rd = ad(u,u) > 0, if u �= 0,
(6.2)

where the bilinear form

ad(u, v) = (∇u,∇v)Rd + (

x2u,v
)

Rd .

In particular,

ad(hl, hl′) = (Lhl, hl′)Rd = μlδll′ . (6.3)

The fractional power L1/2 is well defined, and the associated norms can be charac-
terized by

∥
∥L1/2u

∥
∥

2
Rd = ad(u,u), (6.4)

∥
∥Lm+1/2u

∥
∥

2
Rd = ad

(

Lmu, Lmu
)

, ∀m ∈ N. (6.5)
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We also introduce the following three Sobolev spaces equipped with the norms:

‖u‖Hs
A(Rd ) =

( ∞
∑

l=0

μs
l |ul |2

) 1
2

, ‖u‖Hs
B(Rd ) = ∥

∥L
s
2 u
∥
∥

L2(Rd )
,

‖u‖Hs
C(Rd ) =

(
s
∑

l1+···+ld=0

∥
∥
(

x2
1 + · · · + x2

d + 1
) s−l1−···−ld

2 ∂l1
x1

· · · ∂ld
xd

u
∥
∥

2
L2(Rd )

) 1
2

.

According to [25], we have the following.

Lemma 6.1 The previous three norms are equivalent, i.e.,

‖u‖Hs
A(Rd ) = ‖u‖Hs

B(Rd ) ∼ ‖u‖Hs
C(Rd ).

Remark 6.1 For d = 1, we may also refer to [24].

Hereafter, let d = 6κ + κ0 with integers κ ≥ 0 and 0 ≤ κ0 ≤ 5. For convenience,
we assume that

(i) if κ0 = 0, then sd = 5κ, (ii) if κ0 = 1, then sd = 5κ + 1,

(iii) if κ0 = 2,3, then sd = 5κ + 2, (iv) if κ0 = 4, 5, then sd = 5κ + 4.
(6.6)

Lemma 6.2 We have the following inequalities:

‖uvw‖L2(Rd ) ≤ c‖u‖
H

d
3 (Rd )

‖v‖
H

d
3 (Rd )

‖w‖
H

d
3 (Rd )

, (6.7)

‖uvw‖L2(Rd ) ≤ c‖u‖L2(Rd )‖v‖
H

d
2 +ε

(Rd )
‖w‖

H
d
2 +ε

(Rd )
, ∀ε > 0, (6.8)

‖uvw‖Hk(Rd ) ≤ c‖u‖Hk(Rd )‖v‖Hsd (Rd )‖w‖Hsd (Rd ),

∀ integers 1 ≤ k < sd,
(6.9)

‖uvw‖Hk(Rd ) ≤ c‖u‖Hk(Rd )‖v‖Hk(Rd )‖w‖Hk(Rd ),

∀ integers k ≥ sd .
(6.10)

Proof We proceed to treat different cases separately.

(i) The first bound follows from the Sobolev embedding H
d
3 (Rd) ⊂ L6(Rd), and

the second bound comes from the Sobolev embedding H
d
2 +ε(Rd) ⊂ L∞(Rd).

(ii) We now deal with (6.9). For simplicity, we denote

∂l
xu =

∑

l1+···+ld=l

∂l1
x1

· · · ∂ld
xd

u.
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(1) 1 ≤ k < d
3 . Since k is an integer number, we use (6.8) and (6.6) to deduce that for

small enough ε > 0,

‖uvw‖Hk(Rd ) ≤ ‖u‖Hk(Rd )‖v‖
H

k+ d
2 +ε

(Rd )
‖w‖

H
k+ d

2 +ε
(Rd )

≤ ‖u‖Hk(Rd )‖v‖Hsd (Rd )‖w‖Hsd (Rd ).

(2) d
3 ≤ k < sd . We consider the term ‖∂l

xu∂m
x v∂n

x w‖L2(Rd ). It is clear that l + m +
n ≤ k. Hence
(a) if max(m,n) < d

3 , then by (6.8) and (6.6), for small enough ε > 0,

∥
∥∂l

xu∂m
x v∂n

x w
∥
∥

L2(Rd )
≤ ‖u‖Hl(Rd )‖v‖

H
m+ d

2 +ε
(Rd )

‖w‖
H

n+ d
2 +ε

(Rd )

≤ ‖u‖Hk(Rd )‖v‖Hsd (Rd )‖w‖Hsd (Rd ).

(b) if d
3 ≤ max(m,n) ≤ d

2 , then l ≤ k − d
3 . Since m, n are integer numbers, we

use (6.7) and (6.6) to obtain that
∥
∥∂l

xu∂m
x v∂n

x w
∥
∥

L2(Rd )
≤ ‖u‖

H
l+ d

3 (Rd )
‖v‖

H
m+ d

3 (Rd )
‖w‖

H
n+ d

3 (Rd )

≤ ‖u‖Hk(Rd )‖v‖Hsd (Rd )‖w‖Hsd (Rd ).

(c) if max(m,n) > d
2 , for instance, m > d

2 , then l, n < k − d
2 . Therefore, by (6.8)

we get that, for small enough ε > 0,
∥
∥∂l

xu∂m
x v∂n

x w
∥
∥

L2(Rd )
≤ ‖u‖

H
l+ d

2 +ε
(Rd )

‖v‖Hm(Rd )‖w‖
H

n+ d
2 +ε

(Rd )

≤ ‖u‖Hk(Rd )‖v‖Hsd (Rd )‖w‖Hsd (Rd ).

A combination of the previous statements leads to the desired result.
(iii) It remains to consider (6.10). Clearly, the result (6.10) with k = sd can be

proved in a similar fashion as before. Hence, by induction we obtain the result (6.10)
with k > sd . �

The previous results can be extended to the corresponding ones in Hk
A(Rd), as

stated below.

Lemma 6.3 The following inequalities hold:

‖uvw‖L2(Rd ) ≤ c‖u‖
H

d
3

A (Rd )

‖v‖
H

d
3

A (Rd )

‖w‖
H

d
3

A (Rd )

, (6.11)

‖uvw‖L2(Rd ) ≤ c‖u‖L2(Rd )‖v‖
H

d
2 +ε

A (Rd )

‖w‖
H

d
2 +ε

A (Rd )

, ∀ε > 0, (6.12)

‖uvw‖Hk
A(Rd ) ≤ c‖u‖Hk

A(Rd )‖v‖
H

sd
A (Rd )

‖w‖
H

sd
A (Rd )

,

∀ integers 1 ≤ k < sd,
(6.13)

‖uvw‖Hk
A(Rd ) ≤ c‖u‖Hk

A(Rd )‖v‖Hk
A(Rd )‖w‖Hk

A(Rd ),

∀ integers k ≥ sd .
(6.14)
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Proof For simplicity, we only check the inequality (6.14). Clearly,

‖uvw‖2
Hk

A(Rd )

≤ c‖uvw‖2
Hk

C(Rd )

= c

k
∑

l1+···+ld=0

∥
∥
(

x2
1 + · · · + x2

d + 1
) k−l1−···−ld

2 ∂l1
x1

· · · ∂ld
xd

(uvw)
∥
∥2

L2(Rd )

= c
∥
∥∂k

x (uvw)
∥
∥2

L2(Rd )

+ c

k−1
∑

l+m+n=0

∥
∥
(

x2
1 + · · · + x2

d + 1
) k−l−m−n

2 ∂l
xu∂m

x v∂n
x w

∥
∥2

L2(Rd )
. (6.15)

We next consider the term ‖(x2
1 + · · · + x2

d + 1)
k−l−m−n

2 ∂l
xu∂m

x v∂n
x w‖2

L2(Rd )
. Without

loss of generality, we assume that l = max(l,m,n). Since l + m + n ≤ k − 1, we
have that m,n ≤ k−1

3 . Therefore, by (6.8) and the definition of the norm ‖ · ‖Hk
C(Rd ),

a direct calculation shows that, for small enough ε > 0,

∥
∥
(

x2
1 + · · · + x2

d + 1
) k−l−m−n

2 ∂l
xu∂m

x v∂n
x w

∥
∥

L2(Rd )

≤ ∥
∥
(

x2
1 + · · · + x2

d + 1
) k−l−m−n

2 ∂l
xu
∥
∥

L2(Rd )

∥
∥∂m

x v
∥
∥

H
d
2 +ε

(Rd )

∥
∥∂n

x w
∥
∥

H
d
2 +ε

(Rd )

≤ ∥
∥
(

x2
1 + · · · + x2

d + 1
) k−l

2 ∂l
xu
∥
∥

L2(Rd )

∥
∥∂m

x v
∥
∥

H
d
2 +ε

(Rd )

∥
∥∂n

x w
∥
∥

H
d
2 +ε

(Rd )

≤ ‖u‖Hk
C(Rd )‖v‖Hk

C(Rd )‖w‖Hk
C(Rd ).

Further, by (6.15), (6.10), the above inequality and the equivalence of the norms, we
derive that

‖uvw‖Hk
A(Rd ) ≤ c‖u‖Hk

A(Rd )‖v‖Hk
A(Rd )‖w‖Hk

A(Rd ). (6.16)

�

Let us denote

XN = span
{

hl1(x1) · · ·hld (xd) : 0 ≤ l1, . . . , ld ≤ N
}

.

For any u ∈ L2(Rd), the orthogonal projection operator PN : L2(Rd) → XN is de-
fined by

(u − PNu,φ)Rd = 0, ∀φ ∈ XN. (6.17)

In particular, if u ∈ Hs
B(Rd) with integer s ≥ 0, then we have

(

L
s
2 (u − PNu), L

s
2 φ

)

Rd = (

u − PNu, Lsφ
)

Rd = 0, ∀φ ∈ XN, (6.18)
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which means that the L2(Rd)-orthogonal projection operator PN is also the Hs
B(Rd)-

orthogonal projection operator.
We recall below an approximation result and an inverse inequality (cf. for in-

stance [25]).

Lemma 6.4 If u ∈ Hs
A(Rd), then for any 0 ≤ μ ≤ s,

‖u − PNu‖H
μ
A (Rd ) ≤ cN

μ−s
2 ‖u‖Hs

A(Rd ).

Lemma 6.5 For any φ ∈ XN and s ≥ 0,

‖φ‖Hs
A(Rd ) ≤ cN

s
2 ‖φ‖L2(Rd ).

We now consider the interpolation operator. The Hermite–Gauss interpolant IN :
C(Rd) → XN is determined by

INu(zl1 , . . . , zld ) = u(zl1 , . . . , zld ), 0 ≤ l1, . . . , ld ≤ N,

where {zj } are the Hermite–Gauss points. According to (2.11), we deduce readily
that

‖INu‖L2(Rd ) ≤ c

d
∑

m=0

N− m
6 |u|Hm(Rd ), (6.19)

where | · |Hm(Rd ) denotes the seminorm of Hm(Rd). Hence, by a similar argument as
in the proof of Theorem 2.2, we can prove the following result:

Theorem 6.1 If u ∈ Hs
A(Rd), then for any 0 ≤ μ ≤ s and s ≥ d ,

‖u − INu‖H
μ
A (Rd ) ≤ cN

d
3 + μ−s

2 ‖u‖Hs
A(Rd ).

Proof From Lemmas 6.4 and 6.5, for any 0 ≤ μ ≤ s,

‖u − INu‖H
μ
A (Rd ) ≤ ‖u − PNu‖H

μ
A (Rd ) + ∥

∥IN(u − PNu)
∥
∥

H
μ
A (Rd )

≤ cN
μ−s

2 ‖u‖Hs
A(Rd ) + cN

μ
2
∥
∥IN(u − PNu)

∥
∥

L2(Rd )
.

Moreover, by (6.19) and Lemma 6.4, for any s ≥ d ,

∥
∥IN(u − PNu)

∥
∥

L2(Rd )
≤ c

d
∑

m=0

N− m
6 ‖u − PNu‖Hm

A (Rd ) ≤ cN
d
3 − s

2 ‖u‖Hs
A(Rd ).

Therefore,

‖u − INu‖H
μ
A (Rd ) ≤ cN

d
3 + μ−s

2 ‖u‖Hs
A(Rd ).

�
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6.2 Error Bounds of the Semidiscretization in Time

In this section, we present error bounds for the semidiscretization in time t under the
Hk

A(Rd)-norms. The second-order Strang splitting in time for (6.1) is as follows:

ψn+1 = Φτ
(

ψn
) := e−i τ

2 Le−iτ |e−i τ
2 L

ψn|2 e−i τ
2 Lψn, ψ0 = ψ0. (6.20)

Since the error analysis for the above scheme is essentially the same as for the scheme
(3.3), we shall present the results below without proof.

Lemma 6.6 (Stability) If ψ,ϕ ∈ H
sd
A (Rd) ∩ Hk

A(Rd) with integer k ≥ 0, then we
have

∥
∥Φτ (ψ) − Φτ (ϕ)

∥
∥

Hk
A(Rd )

≤ e
cτ(‖ψ‖2

H
j
A

(Rd )
+‖ϕ‖2

H
j
A

(Rd )
)

‖ψ − ϕ‖Hk
A(Rd ), (6.21)

where j = max(k, sd).

Next, we denote

T̂ (ψ) = −iLψ, V̂ (ψ) = −i|ψ |2ψ.

Their Lie commutator (cf. [12, 15]) is as follows:

[T̂ , V̂ ](ψ) = T̂ ′(ψ)V̂ (ψ) − V̂ ′(ψ)T̂ (ψ) = −L
(|ψ |2ψ)− ψ2 Lψ + 2|ψ |2 Lψ.

Lemma 6.7 If ψ ∈ Hk+2
A (Rd)∩H

sd
A (Rd) with integer k ≥ 0, then the commutator is

bounded by
∥
∥[T̂ , V̂ ](ψ)

∥
∥

Hk
A(Rd )

≤ c‖ψ‖3
H

j
A(Rd )

, j = max(k + 2, sd).

If, in addition, ψ ∈ Hk+4
A (Rd), then

∥
∥
[

T̂ , [T̂ , V̂ ]](ψ)
∥
∥

Hk
A(Rd )

≤ c‖ψ‖3
H

j
A(Rd )

, j = max(k + 4, sd).

Lemma 6.8 (Local errors) Let integer k ≥ 0. If the exact solution ψ(t) ∈ Hk
A(Rd) ∩

H
sd
A (Rd) for all 0 ≤ t ≤ τ , and ψ0 ∈ Hk+2

A (Rd) ∩ H
sd
A (Rd), then the local errors of

the method (6.20) are bounded by
∥
∥ψ1 − ψ(τ)

∥
∥

Hk
A(Rd )

≤ cτ 2,

where c depends only on ‖ψ0‖Hm
A (Rd ) and max0≤t≤τ ‖ψ‖

H
j
A(Rd )

with m = max(k +
2, sd) and j = max(k, sd). If, in addition, ψ0 ∈ Hk+4

A (Rd), then
∥
∥ψ1 − ψ(τ)

∥
∥

Hk
A(Rd )

≤ cτ 3,

where c depends only on ‖ψ0‖Hn
A(Rd ) and max0≤t≤τ ‖ψ‖

H
j
A(Rd )

with n = max(k +
4, sd).
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Lemma 6.9 (Regularity of the numerical solution) If the exact solution ψ(t) ∈
Hk+2

A (Rd) with integer k ≥ sd and t ∈ [0, T ], then for small enough τ and any
1 ≤ n ≤ N0 = T

τ
, we have

max
0≤j≤N0−n

∥
∥
(

Φτ
)n(

ψ(jτ)
)∥
∥

Hk
A(Rd )

≤ T + max
0≤t≤T

‖ψ‖Hk
A(Rd ).

By using the above results and the same procedure as in the proof of Theorem 4.1,
we can prove the following.

Theorem 6.2 Suppose that integer k ≥ 0, τ is small enough, and the exact solution
ψ ∈ Hk+2

A (Rd) ∩ H
sd+2
A (Rd) for all 0 ≤ t ≤ T . Then, the solution of the scheme

(6.20) satisfies
∥
∥ψn − ψ(tn)

∥
∥

Hk
A(Rd )

≤ cτ, tn = nτ ≤ T ,

where c depends only on T and max0≤t≤T ‖ψ(t)‖
H

j
A(Rd )

with j = max(k + 2, sd). If,

in addition, ψ(t) ∈ Hk+4
A (Rd) for all 0 ≤ t ≤ T , then

∥
∥ψn − ψ(tn)

∥
∥

Hk
A(Rd )

≤ cτ 2, tn = nτ ≤ T ,

where c depends only on T and max0≤t≤T ‖ψ(t)‖Hm
A (Rd ) with m = max(k + 4, sd).

6.3 Error Bounds of the Full Discretization

The fully discrete Strang splitting Hermite collocation scheme for (6.1) is as follows:

ψ0
N = INψ0;

ψn+1
N = Φτ

N

(

ψn
N

) := e−i τ
2 L IN

(

e−iτ |e−i τ
2 L

ψn
N |2 e−i τ

2 Lψn
N

)

, n ≥ 0.

(6.22)

Then, by using a similar procedure as in the proofs of Lemma 5.1 and Theorem 5.1,
we can prove the following.

Lemma 6.10 If ψ ∈ XN and ϕ ∈ Hs
A(Rd) ∩ Hd

A(Rd) with integer s ≥ sd , then

∥
∥Φτ

N(ψ) − PNΦτ (ϕ)
∥
∥2

L2(Rd )

≤ exp
(

cτ‖ψ‖
H

j
A(Rd )

‖ϕ‖
H

sd
A (Rd )

exp
(

cτ‖ϕ‖2
H

sd
A (Rd )

))‖ψ − PNϕ‖2
L2(Rd )

+ cτ 2N
d
2 −s‖ϕ‖2

Hd
A(Rd )

‖ϕ‖4
Hs

A(Rd )

× exp
(

cτ‖ϕ‖2
Hm

A (Rd )
+ cτ‖ψ‖

H
j
A(Rd )

‖ϕ‖
H

sd
A (Rd )

exp
(

cτ‖ϕ‖2
H

sd
A (Rd )

))

,

where j = d
2 + ε and m = max(s, d).

Finally, with the above preparations and by using a similar argument as in the
proof of Theorem 5.1, we can prove the following.
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Theorem 6.3 Let integer s > 7d
6 − 2 and 1 ≤ n ≤ T

τ
. If the exact solution ψ(t) ∈

Hs+2
A (Rd) for all 0 ≤ t ≤ T , then for N sufficiently large and τ sufficiently small, we

have for s − 2 < k ≤ s,

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Rd )

≤
⎧

⎨

⎩

cN
d
4 + k−s

2 + cτ, d < 12, s > d,

cN
d
3 −1+ε+ k−s

2 + cτ, d ≥ 12,∀ε > 0,

(6.23)

and for 0 ≤ k ≤ s − 2,

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Rd )

≤
⎧

⎨

⎩

cN
d
4 + k−s

2 + cτ 2, d < 12, s > d,

cN
d
3 −1+ε+ k−s

2 + cτ 2, d ≥ 12,∀ε > 0.

(6.24)

As in the last section, the restriction on N in the above result can be removed if
we replace ψ0

N = INψ0 in (6.22) by ψ0
N = PNψ0. More precisely, we can prove the

following.

Corollary 6.1 Let ψ0
N = PNψ0 in (6.22). Then for integer s > d , ψ(t) ∈ Hs+2

A (Rd),
0 ≤ t ≤ T , and τ sufficiently small, we have for s − 2 < k ≤ s,

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Rd )

≤ cN
d
4 + k−s

2 + cτ, 1 ≤ n ≤ T

τ
, (6.25)

and for 0 ≤ k ≤ s − 2,

∥
∥ψn

N − ψ(tn)
∥
∥

Hk
A(Rd )

≤ cN
d
4 + k−s

2 + cτ 2, 1 ≤ n ≤ T

τ
. (6.26)

Remark 6.2 In Theorem 3.4 of [8], the author also presents a result under the L2(Rd)-
norm, stated as follows: Let s > [ d+1

2 ] + 2 + 2d
3 be an even integer. If the exact solu-

tion ψ(t) ∈ Hs+2
A (Rd) for 0 ≤ t ≤ T , then for N sufficiently large and τ sufficiently

small,
∥
∥ψn

N − ψ(tn)
∥
∥

L2(Rd )
≤ cN1+ d

3 − s
2 + cτ 2.

It is clear that the estimates in (6.24) are better both with respect to the order
of convergence in space as well as the required regularity. In addition, the order of
convergence and the regularity requirements of our results are further relaxed signif-
icantly if we replace ψ0

N = INψ0 in (6.22) by ψ0
N = PNψ0, as indicated in Corol-

lary 6.1.
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Appendix: The Proof of Lemma 4.4

Proof The proof of Lemma 4.4 is analogous to the corresponding results for the
Schrödinger–Poisson equation in [18]. For simplicity, we only verify (4.17). To this
end, let Ĥ = T̂ + V̂ , and denote by DH , DT , and DV the corresponding Lie deriva-
tives (cf. [18]) of Ĥ , T̂ , and V̂ , respectively. According to Sect. 4.4 of [18],

ψ1 − ψ(τ) = τf

(
1

2
τ

)

−
∫ τ

0
f (s)ds + r2 − r1, (A.1)

where f (s) = exp((τ − s)DT )DV exp(sDT )Id(ψ0), Id is the identity operator, and

r1 =
∫ τ

0

∫ τ−s

0
exp

(

(τ − s − σ)DH

)

DV exp(σDT )DV exp(sDT )Id(ψ0)dσ ds,

r2 = τ 2
∫ 1

0
(1 − θ) exp

(
1

2
τDT

)

exp(θτDV )D2
V exp

(
1

2
τDT

)

Id(ψ0)dθ.

Next we write the principal error term in the second-order Peano form:

τf

(
1

2
τ

)

−
∫ τ

0
f (s)ds = τ 3

∫ 1

0
ν(θ)f ′′(θτ )dθ

with the Peano kernel ν of the midpoint rule. We have (cf. Sect. 5.2 of [18])

f ′′(s) = exp
(

(τ − s)DT

)[

DT , [DT ,DV ]] exp(sDT )Id(ψ0)

= exp
(

(τ − s)DT

)

D[T̂ ,[T̂ ,V̂ ]] exp(sDT )Id(ψ0)

= e−is(Ar+Bz)
[

T̂ , [T̂ , V̂ ]](e−i(τ−s)(Ar+Bz)ψ0),

where [DT ,DV ] = DT DV − DV DT . Hence by (4.14), the quadrature error is
bounded in Hk

A(Ω) by cτ 3‖ψ0‖3
Hk+4

A (Ω)
. Let us denote

g(s, σ ) = exp
(

(τ − s − σ)DT

)

DV exp(σDT )DV exp(sDT )Id(ψ0).

Then the remainder term can be expressed as

r2 − r1 = 1

2
τ 2g

(
1

2
τ,0

)

−
∫ τ

0

∫ τ−s

0
g(s, σ )dσ ds + r̃2 − r̃1,

where

r̃1 = r1 −
∫ τ

0

∫ τ−s

0
g(s, σ )dσ ds, r̃2 = r2 − 1

2
τ 2g

(
1

2
τ,0

)

.

It is clear that (cf. [18])
∥
∥
∥
∥

1

2
τ 2g

(
1

2
τ,0

)

−
∫ τ

0

∫ τ−s

0
g(s, σ )dσ ds

∥
∥
∥
∥

Hk
A(Ω)
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≤ cτ 3
(

max
0≤s≤τ

‖∂sg‖Hk
A(Ω) + max

0≤σ≤τ
‖∂σ g‖Hk

A(Ω)

)

.

By using a similar argument as in Sect. 5.2 of [18], we can obtain
∥
∥
∥
∥

1

2
τ 2g

(
1

2
τ,0

)

−
∫ τ

0

∫ τ−s

0
g(s, σ )dσ ds

∥
∥
∥
∥

Hk
A(Ω)

≤ c1τ
3,

where c1 depends only on ‖ψ0‖Hk+2
A (Ω)

.

Next, we estimate the term ‖̃r2‖Hk
A(Ω). By the Taylor expansion,

exp(θτDV ) = I +
∫ θτ

0
exp(ξDV )DV dξ = I + θτ

∫ 1

0
exp(θτςDV )DV dς,

whence

r̃2 = τ 3
∫ 1

0

∫ 1

0
θ(1 − θ) exp

(
1

2
τDT

)

exp(θτςDV )D3
V exp

(
1

2
τDT

)

Id(ψ0)dς dθ.

Setting φ = e−i τ
2 (Ar+Bz)ψ0 and η = e−iθτςβ|φ|2φ, a direct calculation shows that

exp

(
1

2
τDT

)

exp(θτςDV )D3
V exp

(
1

2
τDT

)

Id(ψ0) = iβ3e−i τ
2 (Ar+Bz)

(|η|6η).

Hence, by (4.2)–(4.4) and (4.10), we find that for j = max(k,2),
∥
∥
∥
∥

exp

(
1

2
τDT

)

exp(θτςDV )D3
V exp

(
1

2
τDT

)

Id(ψ0)

∥
∥
∥
∥

Hk
A(Ω)

≤ c‖η‖7
H

j
A(Ω)

≤ c2‖ψ0‖7
H

j
A(Ω)

,

where c2 depends only on ‖ψ0‖H
j
A(Ω)

. Therefore, ‖̃r2‖Hk
A(Ω) ≤ c2τ

3.

It remains to estimate the term ‖̃r1‖Hk
A(Ω). By using the nonlinear variation-of-

constants formula (cf. [18]), we obtain that

r̃1 =
∫ τ

0

∫ τ−s

0

∫ τ−s−σ

0
exp

(

(τ − s − σ − ξ)DH

)

DV exp(ξDT )DV

× exp(σDT )DV exp(sDT )Id(ψ0)dξ dσ ds.

By (4.2)–(4.4), a direct calculation gives
∥
∥exp((τ − s − σ − ξ)DH )DV exp(ξDT )DV exp(σDT )DV exp(sDT )Id(ψ0)

∥
∥

Hk
A(Ω)

≤ c
∥
∥ψ(τ − s − σ − ξ)

∥
∥7

H
j
A(Ω)

, j = max(k,2).

Therefore, ‖̃r1‖Hk
A(Ω) ≤ c3τ

3, where c3 depends only on max0≤t≤τ ‖ψ‖
H

j
A(Ω)

.

A combination of the previous statements leads to (4.17). �
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