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Abstract. In this paper we construct two classes, based on stabilization and convex splitting, of
decoupled, unconditionally energy stable schemes for Cahn–Hilliard phase-field models of two-phase
incompressible flows. At each time step, these schemes require solving only a sequence of elliptic
equations, including a pressure Poisson equation. Furthermore, all of these elliptic equations are
linear for the schemes based on stabilization, making them the first, to the best of the authors’
knowledge, totally decoupled, linear, unconditionally energy stable schemes for phase-field models of
two-phase incompressible flows. Thus, the schemes constructed in this paper are very efficient and
easy to implement.
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1. Introduction. The phase-field approach, whose origin can be traced back
to [29] and [38], has been used extensively with much successes and has become one
of the major tools to study a variety of interfacial phenomena (cf. [15, 3, 25, 17,
22, 43], the recent review papers [30, 19], and the references therein). A particular
advantage of the phase-field approach is that the governing system can be derived
from an energy-based variational formalism. This usually leads to thermodynamically
consistent energy dissipation laws, which allow us to establish the well posedness (at
least local in time) for the coupled nonlinear system.

A main challenge in the numerical approximation of phase-field models is how to
construct efficient and easy-to-implement numerical schemes which verify a discrete
energy law. It has been observed that numerical schemes which do not respect the
energy dissipation laws may be “overloaded” with an excessive amount of numerical
dissipation near singularities, which in turn lead to large numerical errors, particu-
larly for long time integration [41, 10, 37, 39, 6]. Hence, to accurately simulate the
dynamic coarse-graining (macroscopic) processes described by the Allen–Cahn and
Cahn–Hilliard equations in typical phase-field models that undergo rapid changes at
the interface, it is especially desirable to design numerical schemes that preserve the
energy dissipation law at the discrete level. Another main advantage of energy stable
schemes is that they can be easily combined with an adaptive time stepping strategy.
While it is relatively easy to design energy stable schemes which involve solving cou-
pled nonlinear systems at each time step, it is extremely difficult to construct energy
schemes that only involve solving decoupled, and preferably linear, elliptic equations.
The main difficulties in constructing such schemes include (i) the coupling between
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280 JIE SHEN AND XIAFENG YANG

the velocity and phase function through the convection term in the phase equation
and nonlinear stress in the momentum equation; (ii) the coupling of the velocity
and pressure through the incompressibility constraint; (iii) the stiffness of the phase
equation associated with the interfacial width in the phase equation; and (iv) various
additional difficulties introduced by the variable density including, but not limited to,
how to avoid solving, in the case of large density ratios, an elliptic problem (for the
pressure) with density as the (nonconstant) coefficient.

The difficulty (ii) has been well studied during the last forty years (cf. the review
[12] and the references therein). The difficulty (iii) is also well studied recently: two
classes of methods, one based on stabilization [44, 40, 33, 42] and the other based on
convex splitting [8, 9, 39, 6], have proved to be effective. Various approaches have been
proposed to deal with variable density in the case of Navier–Stokes equations [13, 28,
24, 14] and in the case of phase-field models [34, 32, 2, 27]. Recently, an interesting
approach was proposed in [4, 26] to treat the difficulty (i), where an explicit stabilizing
term is added to the convective velocity in the phase equation. This technique was
used to construct decoupled energy stable schemes for a phase-field model derived
in [23]. However, these schemes require solving complex nonlinear systems at each
time step. Hence, the challenge is how to combine all these approaches together to
construct a decoupled scheme which preserves all the desirable properties.

The main objective of this paper is to construct two classes, one based on the sta-
bilization and the other based on convex splitting, of efficient and easy-to-implement
schemes for the Cahn–Hilliard phase-field models with matched or different densities.
More precisely, we shall combine several approaches mentioned above to construct de-
coupled time discretization schemes which satisfy a discrete energy law and which lead
to, at each time step, an elliptic system for the phase function, a linear elliptic equa-
tion for the velocity, and a Poisson equation for the pressure. Moreover, in the case
of stabilization, the elliptic system for the phase function is also linear. To the best
of our knowledge, the schemes based on stabilization are the first totally decoupled,
linear, unconditionally energy stable schemes for phase-field models of two-phase in-
compressible flows. The techniques developed in this paper can be used to construct
efficient numerical schemes in other situations. For example, we have recently ex-
tended the approach in this paper to a phase-field model for two-phase complex fluids
with matching density [35].

The rest of this paper is organized as follows. In the next section, we describe
the Cahn–Hilliard phase-field models that we consider in this paper. In section 3,
we construct two classes of decoupled numerical schemes for both the constant and
variable density cases, and prove that they are uniquely solvable and unconditionally
energy stable. In section 4, we present some numerical simulations to validate our
schemes. Some concluding remarks are in section 5.

2. Cahn–Hilliard phase-field models. We consider phase-field models for
a mixture of two immiscible, incompressible fluids in a confined domain Ω ⊂ R

d

(d = 2, 3) with densities ρ1, ρ2 and viscosities μ1, μ2, respectively. Without loss of
generality, we assume that ρ1 < ρ2.

We introduce a phase function (macroscopic labeling function) φ such that

φ(x, t) =

{
1 fluid 1,

−1 fluid 2,
(2.1)

with a thin, smooth transition region of width O(η), and consider the following
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Ginzburg–Landau type of Helmholtz free energy functional:

W (φ,∇φ) =

∫
Ω

(
λ

(
1

2
|∇φ|2 + F (φ)

))
dx,(2.2)

where the first term contributes to the hydrophilic type (tendency of mixing) of in-
teractions between the materials and the second part, the double-well bulk energy
F (φ) = 1

4η2 (φ
2 − 1)2, represents the hydrophobic type (tendency of separation) of

interactions. As the consequence of the competition between the two types of inter-
actions, the equilibrium configuration will include a diffusive interface with thickness
proportional to the parameter η (cf., for instance, [43]).

2.1. Case of matched density. In the case of matched density, i.e., ρ1 = ρ2,
the phase-field model has been well studied; cf., for instance, [15, 3, 17, 22]).

The evolution of the phase function is governed by the Cahn–Hilliard phase equa-
tion:

φt +∇ · (uφ) = MΔw,

w :=
δW

δφ
= −λ(Δφ − f(φ)),

(2.3)

where w is the so-called chemical potential and M is a mobility constant related to
the relaxation time scale, and f(φ) = F ′(φ).

The momentum equation (macroscopic force balance) for the whole system takes
the usual form:

ρ(ut + (u · ∇)u) = ∇ · τ,(2.4)

where the total stress τ = μD(u) − pI + τe with D(u) = ∇u + ∇uT and τe is the
extra elastic stress induced by the microscopic internal energy. By using an energetic
variational approach (cf. [22]), one can derive

ρ(ut + (u · ∇)u) = ∇ · (μD(u)− pI − λ∇φ ⊗∇φ),(2.5)

where p includes both the hydrostatic pressure due to the incompressibility and also
the contributions from the induced stress.

The Cahn–Hilliard phase equation (2.3), the momentum equations (2.5), and the
incompressibility constraint

(2.6) ∇ · u = 0,

together with a suitable set of boundary conditions, form a closed system for the
unknown (u, p, φ, w).

By using the identity

∇ · (∇φ⊗∇φ) = (Δφ− f(φ))∇φ +
1

2
∇(|∇φ|2 + F (φ))

= −w∇φ+
1

2
∇(|∇φ|2 + F (φ)) = φ∇w +

1

2
∇(|∇φ|2 + F (φ)− φw)

and denoting the modified pressure as p̃ = p+ 1
2λ|∇φ|2 + λF (φ) + φw (still denoting

it by p for simplicity), the system (2.3)–(2.5) can be rewritten as follows:

φt +∇ · (uφ)−MΔw = 0,(2.7a)

w + λ(Δφ− f(φ)) = 0,(2.7b)

ut + (u · ∇)u −∇μ ·D(u) +∇p− φ∇w = 0,(2.7c)

∇ · u = 0.(2.7d)
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Without lose of generality, we have set in the above ρ ≡ 1. The above system should
be supplemented with a set of suitable boundary conditions, for instance, a periodic
boundary condition for all variables or

u|∂Ω = 0,
∂φ

∂n
|∂Ω = 0,

∂w

∂n
|∂Ω = 0.(2.8)

By taking the inner product of (2.7a) with −w, (2.7b) with φt, of (2.7c) with u,
and adding the three relations, we find that the system (2.7) satisfies the following
energy law:

d

dt

∫
Ω

(
1

2
|u|2 + λ

2
|∇φ|2 + λF (φ)

)
dx = −

∫
Ω

(μ
2
|D(u)|2 +M |∇w|2

)
dx.(2.9)

2.2. Case of nonmatching density. We now consider the case where ρ1 �= ρ2.
First of all, if the density ratio is small (∼ O(1)), one could use the well-known
Boussinesq approximation to model the effect of density difference by a gravitational
force (cf. for instance [22]). When the density ratio is large such that the Boussinesq
approximation is no longer valid, the situation becomes more complicated, and there
exist several phase-field models derived from various considerations (see [25, 34, 1, 2,
36, 23]). In this paper, we consider the following Cahn–Hilliard phase-field model
which is equivalent to the one recently proposed in [2]. The governing equations are
as follows:

φt +∇ · (uφ)−MΔw = 0,(2.10a)

w + λ(Δφ − f(φ)) = 0,(2.10b)

ρ(ut + (u · ∇)u) + J · ∇u−∇ · μD(u) +∇p+ φ∇w = 0,(2.10c)

∇ · u = 0,(2.10d)

and

(2.11) J =
ρ2 − ρ1

2
M∇w, ρ =

ρ1 − ρ2
2

φ+
ρ1 + ρ2

2
, μ =

μ1 − μ2

2
φ+

μ1 + μ2

2
,

where u, p, ρ, and μ are the velocity, pressure, density, and viscosity of the mixture.
We can derive the following conservation property from (2.10a), (2.11), and

(2.10d):

(2.12) ρt +∇ · (ρu) +∇ · J = 0.

By using the above identity, we have

∂t

(
ρ,

|u|2
2

)
= (ρut, u) +

(
ρt,

|u|2
2

)

= (ρut, u)−
(
∇ · (ρu) +∇ · J, |u|

2

2

)
= (ρut + ρu · ∇u+ J · ∇u, u),

(2.13)

where (·, ·) is the inner product in L2(Ω).
The system (2.10) is thermodynamically consistent and satisfies an energy dis-

sipation law. Indeed, taking the inner product of (2.10a) with w, (2.10b) with φt,
(2.10c) with u, and using (2.13), we can obtain the following energy dissipation law:

d

dt

∫
Ω

(
1

2
ρ|u|2 + λ

2
|∇φ|2 + λF (φ)

)
dx = −

∫
Ω

(μ
2
|D(u)|2 +M |∇w|2

)
dx.(2.14)
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3. Decoupled, energy stable numerical schemes. We recall that in a recent
paper [11], the author established rigorous convergence results for a fully discretized,
but nonlinearly coupled, scheme. The aim of this section is to construct decoupled,
energy stable schemes to solve the systems (2.7) and (2.10). It has been shown
that spurious solutions may occur if a numerical scheme does not satisfy the discrete
energy dissipation law when the spatial grid and time step sizes are not carefully
chosen (cf. [20, 16, 21]). Thus the compliance of discrete energy dissipation laws
usually serve as the justification of numerical schemes and results, when no benchmark
solutions are available. In addition, with unconditionally energy stable schemes, one
can use relatively large time steps, the size of which is dictated only by accuracy
considerations, or a suitable adaptive time stepping.

The systems (2.7) and (2.10) are both nonlinearly coupled models. While it is
relatively easy to design some fully implicit schemes with energy stability, it is very
difficult to design energy stable numerical schemes which are decoupled. Some of the
main difficulties that one faces include the following:

• the coupling of the velocity and pressure through the incompressible condi-
tion;

• the stiffness in the phase equation associated with the interfacial width;
• the nonlinear coupling between the fluid equation and the phase equation;
and

• additional difficulties introduced by the variable density in (2.10).
In [23], we constructed decoupled energy stable, but nonlinear, schemes for a ther-
modynamically consistent Cahn–Hilliard phase-field model developed in [1] (and in-
dependently in [23] using a variational derivation). However, the chemical potential
in this model includes a velocity term, which prevents us from constructing linear
decoupled energy stable systems in [23].

We shall construct two sets of numerical schemes (2.7) and (2.10). One is based on
a stabilized approach (see [33, 32]), the other is based on a convex splitting approach
(see [8, 9]).

• For the stabilized approach, we assume that the potential function F (φ) sat-
isfies the following condition: there exists a constant L such that

(3.1) max
|φ|∈R

|F ′′(φ)| ≤ L.

One immediately notes that this condition is not satisfied by the standard
Ginzburg–Landau double-well potential F (φ) = 1

4η2 (φ
2− 1)2. However, since

it is well known that the Allen–Cahn equation satisfies the maximum principle
(for Cahn–Hilliard equation, a similar result is established in [5]), we can
truncate F (φ) to quadratic growth outside of an interval [−H,H ] without
affecting the solution if the maximum norm of the initial condition φ0 is
bounded by M . Therefore, it has been a common practice (cf. [18, 7, 33])
to consider the Allen–Cahn and Cahn–Hilliard equations with a truncated
double-well potential F̃ (φ). It is then obvious that there exists L such that
(3.1) is satisfied with F replaced by F̃ .

• For the convex spitting approach, we assume that the nonlinear potential
F (φ) can be split-up as the difference of two convex functionals. For example,
for the original double-well potential F (φ), we can set F (φ) = Fc(φ)− Fe(φ)

where Fc(φ) =
φ4

4η2 and Fe(φ) = (φ
2

2 − 1)/η2 are convex, and

(3.2) fc(φ) := F ′
c(φ) = φ3/η2, fe(φ) := F ′

e(φ) = φ/η2.
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3.1. Case of matched density. To simplify the presentation, we will assume
that μ1 = μ2 = μ, although this is no essential additional difficulty to treat the
case μ1 �= μ2 (see the next subsection for its treatment). In [32], we constructed the
following numerical scheme for the system (2.7):

Given initial conditions φ0, w0, u0, and p0, we compute (φn+1, wn+1, ũn+1, un+1,
pn+1) for n ≥ 0 by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

δt
(φn+1 − φn) + (ũn+1 · ∇)φn −MΔwn+1 = 0,

wn+1 − λ

η2
(φn+1 − φn) + λ(Δφn+1 − f(φn)) = 0,

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0;

(3.3a)

⎧⎨
⎩

ũn+1 − un

δt
− μΔũn+1 +∇pn + (un · ∇)ũn+1 − wn+1∇φn = 0,

ũn+1|∂Ω = 0;

(3.3b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0,

∇ · un+1 = 0,

n · un+1|∂Ω = 0.

(3.3c)

In (3.3a), the term − λ
η2 (φ

n+1 − φn) is added artificially to balance the explicit

nonlinear term f(φn) so that the time step will not be severely constrained by the
interface thickness η. We have already showed in [32] that the above scheme satisfies
a discrete energy law and is unconditionally stable. However, (φn+1, wn+1) and ũn+1

in the above scheme is weakly coupled by the convection term (u · ∇)φ in the phase
equation. Hence, it is desirable to construct a scheme which decouples the computa-
tion of (φn+1, wn+1) and ũn+1. Following an idea in [4], we introduce a stabilizing
term in the convective velocity and modify the above scheme as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

δt
(φn+1 − φn) +∇ · (un

�φ
n)−MΔwn+1 = 0,

wn+1 − λ

η2
(φn+1 − φn) + λ(Δφn+1 − f(φn)) = 0,

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0,

(3.4a)

with

un
� = un − δtφn∇wn+1;(3.4b)

⎧⎨
⎩

ũn+1 − un

δt
− νΔũn+1 +∇pn + (un · ∇)ũn+1 + φn∇wn+1 = 0,

ũn+1|∂Ω = 0;

(3.4c)
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0,

∇ · un+1 = 0,

n · un+1|∂Ω = 0.

(3.4d)

Remark 3.1.

• Following an idea in [4], a first-order stabilizing term is introduced in the
explicit convective velocity un∗ . This term is crucial for establishing the un-
conditional stability.

• Since un
� · n|∂Ω = 0, we derive from (3.4a) that the scheme still satisfies the

desired conservation property
∫
Ω φn+1 =

∫
Ω φn.

• The last step can be rewritten as⎧⎨
⎩ −Δ(pn+1 − pn) = − 1

δt
∇ · ũn+1,

∂n(p
n+1 − pn)|∂Ω = 0,

un+1 = ũn+1 − δt∇(pn+1 − pn).(3.5)

• In the above scheme, computations of (φn+1, wn+1), ũn+1, un+1, and pn+1

are totally decoupled! Furthermore, each of the steps consists of solving a
linear elliptic equation.

For the above scheme, we can establish the following theorem.
Theorem 3.1. Assuming that the condition (3.1) is satisfied with L = 2/η2,

then the scheme (3.4) is uniquely solvable (with the pressure p determined up to a
constant), unconditionally stable, and satisfies the following discrete energy law:

1

2
‖un+1‖2 + λ

(
1

2
‖∇φn+1‖2 + (F (φn+1), 1)

)

+
δt2

2
‖∇pn+1‖2 + δt(M‖∇wn+1‖2 + μ‖∇ũn+1‖2)

≤ 1

2
‖un‖2 + λ

(
1

2
‖∇φn‖2 + (F (φn), 1)

)
+

δt2

2
‖∇pn‖2,

where ‖ · ‖ denotes the L2-norm in Ω.
Proof. Since each of the steps in the scheme (3.4) consists of a linear elliptic

equation, it is easy to see that the scheme is uniquely solvable for (φ,w) ∈ H1(Ω) ×
H1(Ω), ũn+1 ∈ (H1

0 (Ω))
d, pn+1 ∈ H1(Ω)\R, and un+1 ∈ (L2(Ω))d.

Notice the following:

(3.6)
ũn+1 − un

δt
+ φn∇wn+1 =

ũn+1 − un
∗

δt
.

Taking the inner product of (3.4c) with 2δtũn+1, using the above relation and the
well-known property

(3.7) (u · ∇v, v) = 0 ∀u ∈ H, v ∈ (H1
0 (Ω))

d,

where H = {u ∈ (L2(Ω))d : ∇ · u = 0, u · n|∂Ω = 0}, we derive

‖ũn+1‖2 − ‖un
�‖2 + ‖ũn+1 − un

∗‖2 + 2μδt‖∇ũn+1‖2 + 2δt(∇pn, ũn+1) = 0.(3.8)
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To deal with the last term in the above, we first take the inner product of (3.4d) with
2δt∇pn to obtain

δt2(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇pn+1 −∇pn‖2) = 2δt(ũn+1,∇pn);(3.9)

we also derive from (3.4d) that

δt2‖∇pn+1 −∇pn‖2 = ‖ũn+1 − un+1‖2;(3.10)

we then take the inner product of (3.4d) with un+1 to get

‖un+1‖2 + ‖un+1 − ũn+1‖2 = ‖ũn+1‖2.(3.11)

Combining the above four equalities, we find

‖un+1‖2 − ‖un
�‖2 + ‖ũn+1 − un

�‖2 + 2μδt‖∇ũn+1‖2
+ δt2(‖∇pn+1‖2 − ‖∇pn‖2) = 0.

(3.12)

Next, we use the relation (3.4b) to deal with ‖un
�‖2 in the above. Taking the inner

product of (3.4b) with 2un
� , we obtain

‖un
�‖2 − ‖un‖2 + ‖un

� − un‖2 = −2δt(φn∇wn+1, un
� ).(3.13)

Adding the two relations above, we obtain

‖un+1‖2 − ‖un‖2 + ‖un
� − un‖2 + ‖ũn+1 − un

�‖2 + 2μδt‖∇ũn+1‖2
+ δt2(‖∇pn+1‖2 − ‖∇pn‖2) = −2δt(φn∇wn+1, un

� ).
(3.14)

It now remains to deal with the last term in the above.
Taking the inner product of the first equation of (3.4a) with 2δtwn+1, we get

2(φn+1 − φn, wn+1) + 2δt(∇ · (φnun
� ), w

n+1) + 2Mδt‖∇wn+1‖2 = 0;(3.15)

and taking the inner product of the second equation of (3.4a) with −2(φn+1 − φn),
we obtain

− 2(wn+1, φn+1 − φn) +
2λ

η2
‖φn+1 − φn‖2

+ λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2) + 2λ(f(φn), φn+1 − φn) = 0.

(3.16)

For the last term in (3.16), we use the Taylor expansion

(3.17) F (φn+1)− F (φn) = f(φn)(φn+1 − φn) +
f ′(ξn)

2
(φn+1 − φn)2.

Finally, combining (3.14), (3.15), (3.16), and (3.17), and using the assumption
(3.1) with L = 2/η2, we obtain

‖un+1‖2 − ‖un‖2 + ‖ũn
� − un‖2 + ‖ũn+1 − un‖2 + 2μδt‖∇ũn+1‖2

+ δt2(‖∇pn+1‖2 − ‖∇pn‖2)
+ 2Mδt‖∇wn+1‖2 + 2λ

η2
‖φn+1 − φn‖2

+ λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)
+ 2λ(F (φn+1)− F (φn), 1)

≤ λ(f ′(ξn)(φn+1 − φn), φn+1 − φn) ≤ 2λ

η2
‖φn+1 − φn‖2.

D
ow

nl
oa

de
d 

01
/2

3/
20

 to
 1

28
.2

10
.1

07
.2

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOUPLED, ENERGY STABLE SCHEMES 287

The desired result is then a direct consequence of the above inequality.
Instead of introducing a stabilizing term in the scheme (3.4) to deal with the

explicit treatment of f(φ), we can also use the so-called convex splitting approach.
To this end, we replace (3.4a) by

⎧⎪⎪⎨
⎪⎪⎩

1

δt
(φn+1 − φn) +∇ · (un

∗φ
n)−MΔwn+1 = 0,

wn+1 + λ(Δφn+1 − fc(φ
n+1) + fe(φ

n)) = 0,

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0,

(3.18)

where un
∗ is still given by (3.4b).

For this convex splitting scheme, we have the following result.
Theorem 3.2. The scheme (3.18)–(3.4b)–(3.4c)–(3.4d) is uniquely solvable (with

pressure p determined up to a constant), unconditionally stable, and satisfies the fol-
lowing discrete energy law:

1

2
‖un+1‖2 + λ

(
1

2
‖∇φn+1‖2 + (F (φn+1), 1)

)

+
δt2

2
‖∇pn+1‖2 + δt(M‖∇wn+1‖2 + μ‖∇ũn+1‖2)

≤ 1

2
‖un‖2 + λ

(
1

2
‖∇φn‖2 + (F (φn), 1)

)
+

δt2

2
‖∇pn‖2.

Proof. We show first that the solution of (3.18) is unique. We derive from (3.18)
that (φn+1, wn+1) is the solution of the following system:

1

δt
φ− a(x)w +Δw = g(x), ∂nw|∂Ω = 0;

w + λ(Δφ − fc(φ)) = h(x), ∂nφ|∂Ω = 0,
(3.19)

where a(x) = δt|∇φn|2 ≥ 0, g(x), and h(x) are known functions depending on the
approximate solutions at t = tn. Assuming that (φ,w) and (φ̃, w̃) are two solutions
of (3.19), we find

1

δt
(φ− φ̃)− a(x)(w − w̃) + Δ(w − w̃) = 0, ∂n(w − w̃)|∂Ω = 0;

(w − w̃) + λΔ(φ− φ̃)− λ(fc(φ)− fc(φ̃)) = 0, ∂n(φ− φ̃)|∂Ω = 0.
(3.20)

Taking the inner products of the first equation with −(w − w̃), and of the second
equation with − 1

δt (φ − φ̃), summing up the two relations, and using the fact that

(fc(φ)− fc(φ̃), φ − φ̃) ≥ 0, we obtain

‖
√
a(x)(w − w̃)‖2 + ‖∇(w − w̃)‖2 + 1

δt
‖∇(φ− φ̃)‖2 ≤ 0.

Hence, we have w − w̃ = φ− φ̃ = 0.
The existence of a solution for (3.18) can be established by a standard argument

using the Leray–Schauder fixed point theorem (see, for instance, [23] for details on a
similar problem).

The proof of energy stability is essentially the same as that of Theorem 3.1 with
the following modifications.
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The last term, 2λ(f(φn), φn+1−φn), in (3.16) becomes 2λ(fc(φ
n+1)−fe(φ

n), φn+1−
φn). Then, (3.17) should be replaced by

Fc(φ
n+1)− Fc(φ

n) = fc(φ
n+1)(φn+1 − φn)− f ′

c(ξ
n+1)

2
(φn+1 − φn)2,

Fe(φ
n+1)− Fe(φ

n) = fe(φ
n)(φn+1 − φn) +

f ′
e(η

n)

2
(φn+1 − φn)2,

(3.21)

which implies that

(3.22) (F (φn+1)− F (φn), 1) ≤ (fc(φ
n+1)− fe(φ

n), φn+1 − φn),

since f ′
c(φ) ≥ 0 and f ′

e(φ) ≥ 0 for any φ.

3.2. Case of nonmatching density. We now consider the model (2.10). To
deal with the variable density, we define a cut-off function

(3.23) φ̂ =

{
φ, |φ| ≤ 1,

sign(φ), |φ| > 1.

We construct first a scheme based on the stabilization.
Given initial conditions ρ0, φ0, w0, u0, and p0, we compute (ρn+1, φn+1, wn+1, ũn+1,

un+1, pn+1) for n ≥ 0 by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

δt
(φn+1 − φn) +∇ · (un

�φ
n)−MΔwn+1 = 0,

wn+1 − λ

η2
(φn+1 − φn) + λ(Δφn+1 − f(φn)) = 0,

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0,

(3.24a)

with

un
� = un − δt

φn∇wn+1

ρn
;(3.24b)

(3.24c)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρn
un+1 − un

δt
−∇ · μnD(un+1) +∇(2pn − pn−1) + ρn(un · ∇)un+1 + Jn · ∇un+1

+ φn∇wn+1 +
1

2
un+1 ρ

n+1 − ρn

δt
+

1

2
∇ · (ρnun)un+1 +

1

2
∇ · Jnun+1 = 0,

un+1|∂Ω = 0,

with

Jn =
ρ2 − ρ1

2
∇wn;(3.24d)

⎧⎨
⎩

Δ(pn+1 − pn) =
χ

δt
∇ · un+1,

∂np
n+1|∂Ω = 0;

(3.24e)
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with χ = 1
2min(ρ1, ρ2) and

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2
2

, μn+1 =
μ1 − μ2

2
φ̂n+1 +

μ1 + μ2

2
.(3.24f)

Several remarks are in order.
• The last three terms in (3.24c) are a first-order approximation of the term

1

2
(ρt +∇ · (ρu) +∇ · J)u at tn+1.

This term vanishes due to (2.12). Hence, (3.24c) is indeed a consistent first-
order approximation to (2.7c).

• We derive from (3.24f) and (3.23) that ρn+1 ≥ min(ρ1, ρ2) and μn+1 ≥
min(μ1, μ2).

• In order to avoid solving an elliptic equation with 1/ρ as a variable coefficient,
we adapt a pressure-stabilized form in the above scheme which leads to a
pressure Poisson equation.

• As for the scheme (3.4), the systems for (φn+1, wn+1), un+1, and pn+1 are
decoupled and linear.

Theorem 3.3. Assuming that the condition (3.1) is satisfied with L = 2/η2, then
the scheme (3.24) is uniquely solvable (with pressure p determined up to a constant),
unconditionally stable, and satisfies the following discrete energy law:

‖σn+1un+1‖2 + δt2

χ
‖∇pn+1‖2 + λ‖∇φn+1‖2 + 2λ(F (φn+1), 1)

+ δt
(
2M‖∇wn+1‖2 + ‖√μnD(un+1)‖2)

≤ ‖σnun‖2 + δt2

χ
‖∇pn‖2 + λ‖∇φn‖2 + 2λ(F (φn), 1),

where σk =
√
ρk.

Proof. The unique solvability is a direct consequence of the fact that each of the
steps in the scheme (3.24) consists of a linear elliptic equation.

Using integration by part, we can show that

(3.25) (u · ∇v, v) +
1

2
((∇ · u)v, v) = 0 if u · n|∂Ω = 0.

Thanks to (3.25), we have(
(ρnun · ∇)un+1 +

1

2
∇ · (ρnun)un+1, un+1

)
= 0,(

Jn · ∇un+1 +
1

2
Jn · ∇un+1, un+1

)
= 0.

(3.26)

We also derive from (3.24b) that

(3.27) ρn
un+1 − un

δt
+ φn∇wn+1 = ρn

un+1 − un
∗

δt
.

Now, taking the inner product of (3.24c) with 2δtun+1, and using (3.26) and (3.27),
we obtain

‖σnun+1‖2 − ‖σnun
�‖2 + ‖σn(un+1 − un

� )‖2
+ ‖σn+1un+1‖2 − ‖σnun+1‖2 + δt‖√μnD(un+1)‖2
+ 2δt(pn+1 − 2pn + pn−1,∇ · un+1)− 2δt(pn+1,∇ · un+1) = 0.

(3.28)D
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Then, by taking the inner product of (3.24e) with 2δt2

χ (pn+1 − 2pn + pn−1) and with

− 2δt2

χ pn+1 separately, we obtain

−δt2

χ
(‖∇(pn+1 − pn)‖2 − ‖∇(pn − pn−1)‖2 + ‖∇(pn+1 − 2pn + pn−1)‖2)

= 2δt(∇ · un+1, pn+1 − 2pn + pn−1),

(3.29)

and

δt2

χ
(‖∇pn+1‖2 − ‖∇pn‖2 + ‖∇(pn+1 − pn‖2) = −2δt(∇ · un+1, pn+1).(3.30)

Adding the above two equalities together, we get

2δt(pn+1 − 2pn + pn−1,∇ · un+1)− 2δt(pn+1,∇ · un+1)

=
δt2

χ
(‖∇pn+1‖2 − ‖∇pn‖2) + δt2

χ
‖∇(pn − pn−1)‖2

− δt2

χ
‖∇(pn+1 − 2pn + pn−1)‖2.

(3.31)

Next, we take the difference of (3.24e) at step tn+1 and step tn to derive

δt2

χ
‖∇(pn+1 − 2pn + pn−1)‖2 ≤ χ‖un+1 − un‖2 ≤ 1

2
‖σn(un+1 − un)‖2.(3.32)

We then derive from (3.28), (3.31), and (3.32) that

‖σn+1un+1‖2 − ‖σnun
�‖2 + ‖σn(un+1 − un

� )‖2 + δt‖√μnD(un+1)‖2

+
δt2

χ
(‖∇pn+1‖2 − ‖∇pn‖2) + δt2

χ
‖∇(pn+1 − pn)‖2

≤ 1

2
‖σn(un+1 − un)‖2.

(3.33)

To deal with the last term, we rewrite (3.24b) as

ρn(un
� − un)

δt
= −φn∇wn+1,(3.34)

and take the inner product of (3.34) with 2δtun
� to obtain

‖σnun
�‖2 − ‖σnun‖2 + ‖σn(un

� − un)‖2 = −2δt(φn∇wn+1, un
� ).(3.35)

On the other hand, we derive from the triangle inequality that

‖σn(un
� − un)‖2 + ‖σn(un+1 − un

� )‖2 ≥ 1

2
‖σn(un+1 − un)‖2.(3.36)

Thus, combining (3.33), (3.36), and (3.35), we obtain

‖σn+1un+1‖2 − ‖σnun‖2 + δt‖√μnD(un+1)‖2 + δt2

χ
(‖∇pn+1‖2 − ‖∇pn‖2)

+
δt2

χ
‖∇(pn+1 − pn)‖2 ≤ −2δt(φn∇wn+1, un

� ).

(3.37)D
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It remains to deal with the last term on the right-hand side.
Taking the inner product of the first equation in (3.24a) with 2δtwn+1, we obtain

2(φn+1 − φn, wn+1) + 2δt((∇ · (un
�φ

n), wn+1)) + 2Mδt‖∇wn+1‖2 = 0;(3.38)

taking the inner product of the second equation in (3.24a) with −2(φn+1 − φn), we
get

−2(wn+1, φn+1 − φn) +
2λ

η2
‖φn+1 − φn‖2 + 2λ(f(φn), φn+1 − φn)

+ λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2) = 0.

(3.39)

Finally, combining (3.37), (3.38), and (3.39), the Taylor expansion (3.17), and using
the assumption (3.1) with L = 2/η2, we arrive at

‖σn+1un+1‖2 − ‖σnun‖2 + δt‖√μnD(un+1)‖2 + 2λ

η2
‖φn+1 − φn‖2

+
δt2

χ
(‖∇pn+1‖2 − ‖∇pn‖2 + ‖∇(pn+1 − pn)‖2)

+ 2Mδt‖∇wn+1‖2
+ λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)
+ 2λ(F (φn+1)− F (φn), 1) ≤ 2λ

η2
‖φn+1 − φn‖2,

which implies the desired result.
As in the case of matched density, we can also construct a convex splitting scheme

by replacing (3.24a) in the scheme (3.24) with (3.18) with un
∗ given by (3.24b). For

this convex splitting scheme, we have the following result.
Theorem 3.4. The convex splitting scheme, (3.18) with (3.24b)–(3.24f), is

uniquely solvable (with pressure p determined up to a constant), unconditionally sta-
ble, and satisfies the following discrete energy law:

‖σn+1un+1‖2 + δt2

χ
‖∇pn+1‖2 + λ‖∇φn+1‖2 + 2λ(F (φn+1), 1)

+ δt
(
2M‖∇wn+1‖2 + ‖√μnD(un+1)‖2)

≤ ‖σnun‖2 + δt2

χ
‖∇pn‖2 + λ‖∇φn‖2 + 2λ(F (φn), 1),

where σk =
√
ρk.

The above result can be proved using essentially the same procedure as in the
proof of Theorem 3.3 with the modifications outlined in the proof of Theorem 3.1.
The details are left to the interested readers.

4. Numerical simulations. We present in this section some numerical exper-
iments using the schemes constructed in the last section. Since it has been well
documented that both the convex splitting approach and stabilization approach pro-
vide consistent approximations to the phase-field models, we shall only examine the
schemes based on stabilization here, as the implementation of the schemes-based con-
vex splitting is more complicated due to its nonlinear nature.
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(a) Matched density case.
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(b) Nonmatched density case.

Fig. 1. Temporal convergence rates: L2 errors of the velocity (x component u, y-component of
v), pressure p, and phase field function φ as the funciton of time step δt for matched and nonmatched
density case.

Our spatial discretization is based on the Legendre–Galerkin method [31]. We
use the inf-sup stable (PN , PN−2) pair for the velocity and pressure, and PN for the
phase function φ and the chemical potential w.

Example 1: Accuray test. We first test the convergence rates of the proposed
schemes (3.4) and (3.24). Let Ω = [0, 2]2, we choose a forcing function such that the
exact solution for (2.7) and (2.10) is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ(t, x, y) = 2 + sin(t) cos(πx) cos(πy),

u(t, x, y) = π sin(2πy) sin2(πx) sin(t),

v(t, x, y) = −π sin(2πx) sin2(πy) sin(t),

p(t, x, y) = cos(πx) sin(πy) sin(t).

(4.1)

We set

ρ1 = 3, ρ2 = 1(4.2)

for system (2.10) with nonmatching density. We choose η = 0.02, ν = 1,M = 1, λ =
0.001. We use 1292 Legendre–Gauss–Lobatto points so the spatial discretization errors
are negligible compared with the time discretization error.

For both cases, we plot the L2 errors of the velocity, pressure, and phase function
between the numerical solution and the exact solution at t = 1 with different time
step sizes in Figure 1. We observe that our numerical schemes (3.4) and (3.24) are
asymptotically (at least) first-order accurate in time for all variables.

Example 2: The dynamics of a square shape fluid. We simulate the
evolution of a square shaped fluid bubble in the domain of [−1, 1] × [−1, 1]. We
assume the fluid bubble and ambient fluid have matched density (ρ1 = ρ2 = 1) and
viscosity (μ1 = μ2 = 1), and use the scheme (3.4). The following parameters are used:

(4.3) ν = 1, M = 2× 10−3, λ = 0.01, η = 0.02, δt = 0.001.

The initial velocity and pressure are set to zero. A 257×257 grid based on Legendre–
Gauss–Lobatto points is used. Figure 2 shows the dynamics evolution of the bubble
which turns to a circle under the effect of surface tension. To illustrate that our
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Fig. 2. The dynamics of a square shape bubble. Snapshots are shown at t = 0, 0.5, 1, 2, 3, 10 for
δt = 0.001.
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Fig. 3. Energy plot of Example 1.

numerical scheme (3.4) indeed obeys the discrete energy law proved in the last section,
we plot in Figure 3 the evolution of the discrete total energy for different time steps,

E
n
tot/E

0
tot where E

n
tot =

1
2‖un‖2+ δt2

2 ‖∇pn‖2+λ(12‖∇φn‖2+(F (φn), 1)). One observes
from these plots that the discrete energy indeed decays with time.

4.1. Example 3: An air bubble rising in water. We simulate in this example
an air bubble rising in the water using the scheme (3.24). The computational domain
is Ω = (0, d)× (0, 32d) with initially an air bubble (with density ρ1 and dynamic
viscosity μ1) in water (with density ρ2 and dynamic viscosity μ2). The equations are
nondimensionalized using the following scaled variables:

t̂ =
t

t0
, ρ̂ =

ρ

ρ0
, x̂ =

x

d0
, û =

u

u0
,(4.4)

where

t0 =
√
d0/g, u0 =

√
d0g, ρ0 = min(ρ1, ρ2), d0 = d.(4.5)

The dimensionless form of (2.7) with an extra gravitational force ρg in the momentum
equation, after omitting theˆfrom the notation, is as follows:

φt + (u · ∇)φ −MΔw = 0,(4.6a)

w + λ

(
Δφ− φ(φ2 − 1)

η2

)
= 0,(4.6b)

ρ(ut + (u · ∇)u) + J · ∇u −∇ · (μ∇u) +∇p− w∇φ = ρg,(4.6c)

∇ · u = 0,(4.6d)
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Fig. 4. Example 2: Snapshots of air bubble rising in water at t = 0, 1, 2, 2.5, 3, 3.5, 4, 4.5.

with

ρ(φ) =
ρ̃1 − ρ̃2

2
φ+

ρ̃1 + ρ̃2
2

, μ(φ) =
μ̃1 − μ̃2

2
φ+

μ̃1 + μ̃2

2
.

In the above, ρ̃1 = ρ1/ρ0, ρ̃2 = ρ2/ρ0, μ̃1 = μ1/(ρ0d
3/2g1/2), and μ̃2 = μ2/(ρ0d

3/2g1/2).
We set the initial velocity and pressure to be zero, and set the initial phase

function as

φ(x, y, t = 0) = tanh

(√
(x− x0)2 + (y − y0)2 − 1

4d

η0

)
,(4.7)

where (x0, y0) is the center of the bubble, and η0 is the diffusive interfacial width.
The physical parameters are ρ0 = ρ1 = 1.161, ρ2 = 995.65 and μ1 = 0.0000186, μ2 =
0.0007977. We set d = 0.005, g = 9.8, λ = 0.05, M = 4× 10−5, and η0 = η = 0.02d.
We use a grid size of 2572 and time step size of δt = 0.0001. In Figure 4, we plot a
comparison of the level sets {x : φ(x) = 0} by scheme (3.24) at different times. The
results are qualitatively similar to those given in [32] with a different scheme. Note
that due to the gravitational force in the momentum equation, the discrete energy
will no longer decay monotonically. However, our numerical tests confirm that the
scheme is indeed unconditionally stable, although sufficiently small time steps have
to be used to obtain accurate results.

5. Concluding remarks. We considered the time discretization for the Cahn–
Hilliard phase-field models of two-phase incompressible flows with constant and vari-
able density. In the case of variable density, we restricted our attention to the model
recently proposed in [2].

By combining several approaches which have proved to be effective for dealing
with different difficulties of the nonlinear coupled Cahn–Hilliard Navier–Stokes sys-
tem, we constructed two classes, one based on the stabilization and the other based
on convex splitting, of efficient and easy-to-implement schemes for the Cahn–Hilliard
phase-field models with constant or variable density. These schemes satisfy a discrete
energy law and lead to, at each time step, an elliptic system for the phase function,
a linear elliptic equation for the velocity, and a Poisson equation for the pressure.
Moreover, in the case of stabilization, the elliptic system for the phase function is also
linear. Hence, these schemes are extremely efficient and easy-to-implement. To the
best of our knowledge, the schemes based on stabilization are the first totally decou-
pled, linear, unconditionally energy stable schemes for phase-field models of two-phase
incompressible flows.

Some of the immediate extensions/projects related to this paper include the fol-
lowing:

• We have only considered time discretization in this paper. While the sta-
bility proofs are based on weak formulations with suitable test functions, it
is a still a challenge to extend the results to a properly formulated spatial
discretization.
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• The dynamics of multiphase flows may exhibit multiple time scales that are
expensive to capture accurately with an uniform time stepping scheme. A
main advantage of unconditionally energy stable schemes is that they can be
combined with an adaptive time-stepping strategy.

• Only first-order accurate schemes are constructed in this paper. As noted in
[33], it does not appear possible to construct an unconditionally energy stable
scheme using a second-order stabilization term in the Cahn–Hilliard equa-
tion. On the other hand, second-order, unconditionally energy stable convex-
splitting schemes for the Cahn–Hilliard equation are available. But how to
construct second-order, unconditionally energy stable, decoupled schemes for
the Cahn–Hilliard Navier–Stokes phase-field models remains to be a challeng-
ing task.
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