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 Journal of Computational Mathematics, Vol.8, No.3, 1990, 276-288.

 ON AN UNCONDITIONALLY STABLE SCHEME FOR THE UNSTEADY

 NAVIER-STOKES EQUATIONS*

 Shen Jie

 ( Department of Mathematics, Indiana University , Bloomington, IN 17105, U.S.A.)

 Abstract

 Theoretical time step constraints of semi-implicit schemes are known to be more
 restrictive than should be in practice. We intend to alleviate the constraints with more
 smoothness assumptions on the solutions. By introducing a new scheme with modifi-
 cation on the treatment of the nonlinear term, we are able to prove that the scheme
 is unconditionally stable and convergent. Further more, we show that the modified
 scheme and the original semi-implicit one are equivalent under a weak condition on the
 time step and the number of space discretization points.

 §1. Introduction

 In numerical simulations of incompressible flow represented by the Navier-Stokes equa-
 tions (1.1), one of the major difficulties is to construct a suitable time discretization scheme.
 The origin of such difficulty consists essentially of two parts:

 (i) The pressure and the velocity in Navier-Stokes equations are coupled by the incom-
 pressibility constraint (1.1b) such that a direct inversion of the resulting discrete system is
 very expensive. A great number of fast Stokes solvers have been developed by using either an
 iterative method or a Green's function method (also called influence matrix method, see for
 instance [8]). Another remedy for removing this difficulty is to use the so called projection
 method initially proposed by A.J.Chorin and R. Temam (cf. [4], [11]) which separates the
 calculation of the pressure from that of the velocity. However, this kind of splitting schemes
 suffers from a large time splitting error which can only be removed by a sophisticated ex-
 trapolation process (cf. [10]).

 (ii) The treatment of the nonlinear term: usually, explicit treatment of the nonlinear term
 leads to in some cases a restrictive theoretical time step constraint (see for instance [12])
 while implicit treatment makes the resulting discrete system very difficult to be resolved.

 In this paper, we concentrate on improving existing theoretical stability constraints for
 semi-implicit schemes in which the diffusion term is treated implicitly, leaving the convection
 term (i.e. nonlinear term) treated explicitly.

 In many cases, one observes that a semi-implicit scheme gives stable results under a time
 step constraint which is much weaker than what the theoretical results predict, especially
 in cases where a smooth solution exists. A natural question one can ask is: can we improve
 the existing stability conditions by giving more smoothness assumptions on the solutions?

 We will give a positive answer to this question by considering a concrete space discretiza-
 tion, namely, the Chebyshev-Galerkin approximation (we refer to [7] for a detailed presen-
 tation of this method). For other space discretizations, similar results could be obtained by

 * Received January 11, 1988.
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 On an Unconditionally Stable Scheme for the Unsteady Navier-Stokes Equations 277

 using the same technique. The idea used here can also be applied to other time-dependent
 elliptic nonlinear systems.

 The unsteady Navier-Stokes equations in the primitive variable formulation are written
 as

 du
 - i/Au-f uVu+ Vp = f(x,t) , (x}t) e Q = fi X [0,T], (1.1a)

 div u = 0 , in Q, (I lk)
 u(x,0) = u0(x), (1.1c)
 u(x,t) = 0|*o Vi G [0, T], (l.ld)

 where fi is an open set in Rd (cř = 2 or 3) with sufficiently smooth boundary, the unknowns
 are the vector function u (velocity) and the scalar function p (pressure). For the sake of
 simplicity, we assume that the velocity satisfies the homogeneous boundary condition.

 We will restrict ourselves to the two dimensional case. More specifically, we consider
 fi = (-1, 1) X (-1, 1). The Chebyshev weight function defined in fi is

 cj(x) = (1 - Xi)~* (1 - x')~~* for X = (xi, x2) G fi.

 The following functional spaces will be used in the sequel:

 X = *<Un).

 )/w = {u6 C J (fi) : div u = 0, u • ~řČ = 0},

 Vw = {u € I : div u = 0},

 Vw = {u € X : div (u • (Jj) = 0},

 where w is the Chebyshev weight function, and ££(fi) and ^oļW(fi) are weighted Sobolev
 spaces. To alleviate notations, we use calligraphic letters to denote vector function spaces,
 for instance, = (L*)a.

 With the help of these functional spaces, we can reformulate the problem (1.1) as

 {find u(0) J^(u'v)« = u(t) u0 G +vau{u,v) Vw such that + {find J^(u'v)« +vau{u,v) + (ß(u),t>)w =< f,v >u , Vvčík. (1-2) u(0) = u0

 where we have

 (u, v)w = (u, vw) = I uxKodx , Ow(«,v) = (Vu,V(t;'w)),
 Jo

 d du
 B(u) = - and < -, • >u the duality relation between X ' and X.

 »= i dXi

 Due to the Chebyshev weight function involved here, the formulation (1.2) is not symmetric
 such that the existence of solutions for (1.2) is not covered by the conventional theory.
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 278 SHEN JIE

 It is proved in [5] and [9] that the bilinear form } •) is continuous and coercive on
 X X X. More precisely, we have

 Íou(u,v) M«,u) < > aļļu||i,w )9||«||î,w ||v||i,w . Vu el". , Vu,«6i, M«,u) > )9||«||î,w . Vu el".

 Therefore, || • ||w = ow (•, )ł is a norm equivalent to || • ||i,u on X. We will use in the sequel
 the norm || - ||w instead of || ■ ||i,w and we will denote the norm on Cļ (fi) by | • |w.

 In order to formulate a discrete Chebyshev-Galerkin approximation of (1.2), we define
 5//: The set of polynomials such that the order of each variable is less than or equal to

 N;

 Xn = Sn n X , Vjv = Sn n Vw and Vn = Sn n X, .

 Let us consider first the following fully discretized scheme which consists of the second
 order Crank- Nicolson and Adams-Bashforth scheme in time and the Chebyshev-Galerkin
 scheme in space:

 Let Ujy = n^uo, find G Mn such that

 < i(u5r+1 -u^,v)w + |aw(u^+1 =< /n+ï,u >w (1.4)
 -1.5(B(ufļ), v)u + 0.5(J3(uJr-1), v)w , Vve"VN

 T i 1 /*ín+1ífc
 where k = - K : time discretization step and /n+* i = - / /(x,t)di; K . v. 'nk
 II// : a projection . operator X v. - ► Xn such that

 aw (u - Un u, v) = 0 , Vv G Ijv , u e X. (1.5)

 Throughout the paper, we will use c and ct to denote constants which can vary from one
 equation to another.

 We infer from (1.5) and (1.3) that

 <*«(« - IltfU, u - II#«) = au (u - Iljru, u - <f>) < c||u - ITwuļ|w||u - <ļ>''u,

 Vuer ,V4>€Xn. (1.6)

 Since the following is true (cf. [9]):

 inf ||u - ¿||w < cJV1_'||u||,,w , V u G n X
 06 Xn

 we deduce from (1.3) and (1.6) that

 ||u-nw«||u <dvl-|MU , Vtt€*;(fl)nr. (1.7)

 R. Temam analyzed in [12] this kind of scheme in a general space discretization form. He
 introduced two quantities S(N) and Si(N) defined by

 Í IMI < S{N)'un' , Vu n€Sn,

 ' |((«w • V)t>/r,ttw)| < 5i(7V)|ujv| • ||VAT|| • |«0jv| , VUJV, vn,WN e Xn
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 On an Unconditionally Stable Scheme for the Unsteady Navier-Stokes Equations 279

 and proved that the semi-implicit schemes are stable and convergent under the conditions:

 kS2{N) < Ci , kS?{N) < C2. (1.9)

 These conditions are somewhat restrictive especially when a spectral method is adapted
 to the space discretization. For instance, we have S(N) = 0(N2) for the Chebyshev or
 Legendre approximations (cf. [6]). It means that we should have a time step at least less
 than cN~A to ensure the stability. This is evidently not a reasonable constraint in practice.
 It is then necessary to lighten this constraint by assuming more smoothness of the solution.

 In the next section, we will introduce a modified scheme which differs from (1.4) in the
 treatment of the nonlinear term. We will prove the new scheme is unconditionally stable
 provided that the solution u is uniformly bounded in Q. Then, we will prove in Section 3
 that the new scheme preserves the second order accuracy in time and the spectral accuracy
 in space. Finally, we will prove in Section 4 that the modified scheme and the original one
 are equivalent under a very weak condition.

 §2. A Modified Scheme and Related Stability

 We assume that u is uniformly bounded in Q, i.e.

 (HI) There exists M > 0 such that Ml»(<î) < M.
 Following an idea of Bressan and Quafteroni (cf. [2]) , we introduce the truncated function

 H : R -* R defined as

 y , if |s/| < 2M,

 H (y) = • 2M , if y > 2Af, (2.1)
 -2 M , if y < -2 M.

 Let us set ^
 "(«(»»-¿¿-WwMM«)) ^ 0Xi . v»eX. t=l 0Xi

 We observe that

 Ílul^oofo) < 2 M  implies N(u) = B{u).

 We consider now the following modified scheme in which we replace 2?(u) in (1.4) by
 JV(u):

 {Let £ (UJNT+1 tijy = - -(l.SN(u%)-0.5N(u%-1),v)u+< = tijy īlNu0i , v)u + finduj^ (ujr+1 6 Vn + uft such , v) that {Let £ (UJNT+1 - tijy , v)u + (ujr+1 + uft , v) (2.2) = -(l.SN(u%)-0.5N(u%-1),v)u+< fn+i,v>u ,

 To start (2.1), one needs to know also u]^. We assume that uj^ is given such that the
 truncation error at time t = k is 0(t2). Such a may be obtained by for instance the
 Runge-Kutta scheme.
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 280 SHEN JIE

 At each time step, the scheme (2.2) can be interpreted as a discrete Stokes type equation
 which admits aiinique solution as proved in [3] by means of the following lemma which is
 essential for our analysis.
 Lemma sl. Vu G Vjy, 3 <f> € //q w fi Sn such that

 u = rot^ and o/"1 curilo/) €

 We define the operator T: Vn - ♦ Vjv by

 Tu = ü;~1curl (^w). (2.3)
 Then

 (u,Tu)w = ( curl <j>, curl (¿w)) = au(4>,4) = ||¿|£ > a|uß, (2.4)
 aw(u,Tu) = (A¿, Afe«)) > ßM'l„ > ß''u''l. (2.5)

 where i. curl i ¿ ¿ = td+ ( - d*' where i. curl i ¿ ¿ = td+ ( - d*' ).

 Let us prove first a stability result.
 Lemma 2. Let t¿o G and f G £ž(0, T, Xf). We assume moreover that the solution

 u of (1.1) satisfies (Hi). Then the scheme (2.2) is unconditionally stable. More precisely,
 for 0 < m < K , we have

 m- 1

 'v!R'Z + kvJ2 ||uSr+1 + < ^(/.u^.uo), (2.6)
 n=0

 m - 1

 T. IUAT+1 ~UArlw ^ Ilt/.u^llo). (2.7)
 n= 0

 Proof In order to alleviate notations, we will ignore the sub-index N whenever no
 confusion is possible.

 Replacing v by 2k • T(un+1 + un) in (2.2) and using Lemma 1, we obtain

 2(ii^+1i£ - wrwi) + + <t>n''l„
 (2-8)

 = k< 2/n+* - 3 N{un) + JV(ttn-1)ir(un+1 + un) >w .

 where <f>n is the function associated to ujy (cf. Lemma 1).
 We derive from the Schwarz inequality that

 < 2/»+*,» >w< 2|ir+*iir.iHu < "f''v' 'i + ¿nr+*i&.. (2.9)
 The modified nonlinear term can be easily handled thanks to the definition of the function
 H. Actually, we derive from integration by parts and the Schwars inequality

 {N{u),v)u = Y, f ■ uj)v,u>dx = - Yl Í  iy° dXi

 < 2M ijl ¿ 1J-1 fl |uy|w . dxi dXi. (MO) ijl 1J-1 dxi
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 On an Unconditionally Stable Scheme for the Unsteady Navier-Stokes Equations 281

 Then, by using the following result (cf. [5]):

 -i 3(v,Wi) ^ D „
 O Xi w i

 we arrive at

 (N(u)tv)u < dMluĻM». (2.11)
 We recall that (cf. [9])

 [ tWdxïaxMl and f 4>2<»9dx < ßiM^ , V * € X. (2.12) Jn J n

 One can then readily check that

 ||rK+1 + u")||w<c2||^+1 + rik«.

 We infer from (2.9), (2.10) and (2.12) that

 |Jfc < 2 fn+i - 3 N{un) + JV(un"1),r(un+1 + un) >u I

 +2^(ļlf"1iiī + ir ië). ("s)
 Now summing (2.13) for n = 1, . . . , m - 1 (m < if), we get

 211« +^£V+1 + *nlli,w
 n= 1

 < ^ P + Eine- (2l4i P n=l n=0

 (2.6) can then be established by using the following simple remark:
 Let am,6m and cm be three positive sequences with cm increasing and such that

 m - 1

 a0 ~ł" ¿0 - C0, Am ~t" ¿m - Cm + A a» , V m > 1
 n=0

 with À > 0, then
 am + 6m < exp(Am)cm , V m > 1. (2.15)

 It is proveed readily by induction that

 + bm < (1 + A)mcm,

 and (2.15) follows then from (1 + A)m < exp(Am).

 We apply (2.15) with

 = mm''i , &n> = ^£V+1+¿niii.«
 n=l
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 282 SHEN JIE

 and

 «--SEiir^ik+wie-
 n=l

 By taking into account (2.4) and (2.5), we obtain

 2«l«m£ + ^Elltt"+1 + ""l£
 n=0

 - ^~ßWfWc'{o,T,X') + 2lukfc + °*MV ¿l"Sflw)exp(C2j^ T) , V 1 < m < K.

 Similarly, by the aid of the last inequality, we can prove (2.7) if we replace v by
 2fcT(ujyfl - Ujy) in (2.2) and proceed exactly as we did for proving (2.6).

 In virtue of the previous lemma, we can prove, by using a compactness argument exactly
 as in §3.5 of [12], the following convergence theorem.

 Theorem 1. Let ujct//(t) be the function from [0, T] in defined by

 "fc,tf(*) = uAr , Vt € [mfc,(m + 1)*;), m = 0, 1, . . . , K - 1.

 Given uq G Vw; / G £2(0 , T, X') and we assume that the solution u satisfies (Hi). Then

 Ufc,Ar(-) -> «(•), w/i en k,N~l->0

 in £2(0, T, Vu,) weakly, L°°(0, T, Mw) weak-star and £2(0, T, J/w) strongly.

 The proof of this theorem is quite long and technical. We refer to [12] for a detailed
 presentation.

 Remark 1. Theorem 1 also implies that

 u 6 £2(0, T, Vw) n L°° (0 ,T, Mu) (2.16)

 where u is the solution of (1.1). Actually, the hypothesis (Hi) can be removed if we work
 directly on the scheme (1.4); we get instead a conditional stability and convergence result,
 but (2.16) still holds.

 §3. Error Estimates

 In this section, we will derive first an error estimate by assuming that the solution u is
 sufficiently smooth. Namely, we assume

 (H2) u"{t)eC2{ 0,T,Vw) and u'"(t) G £2(0, T, X').

 We then prove that, by using this error estimate and an inequality which controls the L°°
 norm by L2 norm in the discrete space Ąy, the schemes (1.4) and (2.2) are equivalent under
 a very weak condition which we will describe late on.
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 On an Unconditionally Stable Scheme for the Unsteady Navier-Stokes Equations 283

 We establish first a preliminary result explaining the truncation error of the scheme (2.2).

 Lemma 3. We assume that the solution u of ( 1.1) satisfies (HI) and (H2). Then

 kK^''ekn''2z.<L2(u,f)k' (3.1)
 n= 1

 where ta defined by

 < v >w= £(u(n + 1) - u(n), t;)^ + |aw(u(n + 1) + u(n), v)

 ~(/n+^ - 1.5JV(u(n)) H-0.5 N(u(n- l)),v)w , (3.2)

 where we have set u(n) = u(n • fc), n = 0, 1, . . . , K.

 Proof. We develop v(n - 1), u(n) and u(n+ 1) at t = k(n- f -) by using Taylor's formula
 Ł

 with integral residue

 1

 1 i rk(n+õ)
 u(n - 1) = u(n + -) 1 - 1-5 ku'(n + -) + 'k / (* - k(n - l))u"(t)dt,

 2 2 ifc(n-l)
 1

 1 1 /,fc(n+õ)
 u(n) = u(n + -) 1 - 0.5fcu'(n + -) 1 + ^k I (t - kn)u"(t)dt}

 2 2 Jkn

 < u(n), t; >w =< u(n + i) - 0.5fcu'(n + ;;) + 7 k2u"(n + ^), t; >„, 2 2 4 2

 1
 1 /**(n+õ) 1

 -S*2< 1 / + Jkn ¿

 < u(n + 1), v >u =< u(n + Ì) + 0.5¿u'(n + ^) + 'k2u"(n + Ì), v >w 2 2 4 2

 1 O /,fc(n+1) 1
 + 8 *k 1 O < / /,fc(n+1) 1 {t-k{n+ ~))u'"(t)dt,v 2 1 >u . 8 '*<»+5) 2

 A direct computation leads to

 |(1.5u(n) • Vtt(n) - 0.5u(n - 1) • Vu(n - 1) - u(n + • Vu(n + i), t/)wļ
 L Ł

 /•*(»»+ r)
 <cikļ ||u"(t)||wdt • ||v||W)

 Jk(n- 1)

 Il li fk(n+l)
 |(¿(u(* Il + !) -«(»)) -«'(»+ 3)» li v)« I - C2k Jk fk(n+l) IKWIIr'dí • IMI«,

 ļo^O.SMn + 1) + u(»)) - u(n+ ì),t»)w1 < c3fc^ ||u"'(t)||r»át • ||t»||w.

 We then substract (2.2) from (3.2). Using the above inequalities and the relation N(u(n)) =
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 B(u(n)), we can get

 Iknllr» < C4 k [k{n+1''W"mX- + |KWIU)A.
 Jk(n- 1)

 It follows that

 HWl' < csk3 J / (||«"'(0irr' + IK(t)lß)*. J fc(n- 1)

 The summation of the last inequality for n = 1, • • -, K - 1 leads to

 * E Hilft- í + ll«"Wlß.(o.T.v.))-
 n= 1

 We can now prove the following theorem.
 Theorem 2* Assuming that the solution u satisfies (Hl), (H2) and

 ueC7([o,r],tf*(n)) yecao.rur'in)), 5 <2. (3.3)
 Then

 m- 1

 |u(m) -u£|* + kv Yl ||u(n + 1) + u(n) - - uft+1|ß
 n=0

 + , 1 < m < K. (3.4)

 Proof. Let us set

 en = Iljyu(ri) - ujy and ēn = u(n) - IT^u(n) for n = 0, 1, • ••,/£.

 We can then reformulate (3.2) in the discrete form by the help of en and Iljy:

 1(nw (u(n+ 1) -u(n)),v)w + jow(nw(u(n+ 1) + u(n)),v)

 - (/n+ł - 1.57V(u(n)) + 0.5 N(u(n - 1)), v)u

 =< e£,t> >w -j(ēn+i - ēn,v)u , V t> e Vat- (3.5)

 Using Taylor's formula as we did in the proof of Lemma 3, we can get

 1 i rfc(n+1)

 I(ēn+1 -ēn,v)u' < {|u'(n+ -) 1 -nwu'(n+ -)|w i + cik / IK'WIIx'^OIMU
 2 2 Jk(n-l)

 1 1 i

 < |«'(n + I) 2 1 -lW(n+ ')'l+4Clk> 2 1 / IKMII*'* + ÍIM£. 2 i (3-6) 2 2 Jk(n- 1) 2

 We subtract (3.5) from (2.2)

 1 (e»+l _ enf W)(1) + + enf „) =< gkf v >u _ A(?n+1 _ ?nj „)w

 +1.5(JV(u(n)) - JV(un),u)u r- 0.5(JV(u(n- 1)) - JV(un_1),t»)w , V v € Un- (3.7)
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 On an Unconditionally Stable Scheme for the Unsteady Navier-Stokes Equations 285

 Let us majorize first the nonlinear terms. By definition

 N{u (n)) - *(«») = £ ¿(tf K"K)
 t=l *

 = Ž ¿-{«W(íř(u,(n)) aXi - i/«)) + #(«?)(«(») - «")}. ,=i aXi

 One can readily check from the definition of H that

 'H(x) - #(y)| < 'x - y| , V x, y € R.

 which implies that
 |i/(u)-if(v)|w < |tt-w|„ , Vu,ve£l(Ū). (3.8)

 We then take the scalar product of (3.7) with v and integrate by parts. Using (3.8), (1.5)
 and (Hi), we obtain:

 |JV(u(n))- JV(un), «)„! < {2M'u(n) - un|w + |u(n)|£co(n)|u(n) - un|w}|MI"

 < c2(|en|„ + |ē„U)||v||w < c2(' e»|* + |ēn| ») + ^''v''l. (3.9)

 Replacing v by k ■ T(en+1 + en) (where T is the operator defined in Lemma 1) in (3.7) and
 taking into account (3.6), (3.9) and Lemma 1, we find

 leu

 l«n+1£- ni + ^l|en+1 leu + en| 'l < czk{'e«'l + 'e»+l'l + |*„£ + + ||^||2X,
 1 1 rk(n + l)

 +|«'(n+ -) ¿ 1 - Tin An + r)£ *■ 1 + k3 / ||u"'(i)||2r,dt}. ¿ *■ J fc(n- 1)

 We then sum this inequality for n = 1, . . . , m - 1. Using (3.1) and (H2), we get

 i - 1 m - 1

 le"N I +T i E llen+1 + e"H I * + I fillw + ¿ |e"| I
 n=l n=0
 *

 m-l

 +c,k £ {!«'(»+ ¿) - n *«'(» + -)'l + I -en'l).
 n= 1

 We can now apply (2.15) to the last inequality, which gives

 m-l m-l

 l«ml I £ ||en+1 + en'' I < cGk 4 + ļe1^ + c6k £ I «»£
 1=1 n=0

 m-l

 +cek'e°'l + c6fc £{|«'(n+ ±) - IW(»+ i)ß}.
 n=0

 The proof is complete by combining (1.7), (3.3) and the relations

 |u(n) - un Ļ < 'enĻ + ļēn|w ,
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 I ēnL < c''ēn'Ļ and e° = 0

 into the last inequality.
 By using Theorem 2, we can now prove the following interesting result.

 Theorem 3. We suppose that all the conditions of Theorem 2 are satisfied . Then, there
 exists No > 0 such that the schemes (1.4) and (2.2) are equivalent as long as N > N0 and
 kN 2 -0.

 Proof. It is sufficient to prove that

 ^max^ |ujy - u(n)|oo - ♦ 0 ( N - ► 0) provided kN* - ► 0.

 Let us prove first that
 Moo < N'q'u> , v q e sNì

 which is a kind of inverse inequality.
 We recall the following orthogonality formula satisfied by the Chebyshev polynomials:

 f 1 n
 J Tk(x)Tļ(x)u>(x)dx = - n CkSki

 where Co = 2 and c* = 1 for k > 1.
 We infer from this formula that

 V<7 = H 1k¡Tk{x)T,(y), I q'l = ^ ckwh-
 kl= 0 k,l=0

 Since |Tfc(x) | < 1 , V i G /, we deduce that

 Iii» = I E »irfc(«)r,(y)|3 °° < { ¿ M}2 < (N+ l)2 ¿ (çfcj)2 < + 1)2|9|„2.
 k,l=0 °° fc,/=0 k,l=0

 We know from Theorem 2 that

 max K? - n*u(m)|w2 < c{k* + |«J, - nwu(l)|w2 + iV2«1- >).
 »71=0,1, ••*,/£

 The last two inequalities imply that

 K ~u(m)lL < 2(|t*^ - Ilwuím)!2;, + |u(m) - n^uím)^)

 < 8(^ + _ n^u(łTł) 2 + |u(m) - nwu(m)|^,
 7T

 < cN2{k 4 + lujļ, - nwu(l)|w2 + JV2*1"')) + ļu(m) - nwu(m)|^. (3.10)

 The first teru» on the right-hand side of (3.10) tends to zero provided that

 I UV* - 0 . (3.11)

 In virtue of the following Sobolev inequality (cf. for instance [l]):

 Ml < «IMI* • M , v u e H2(fí) (3.12)
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 and by taking into account (1.7) and (3.3), the second term on the right-hand side of (3.10)
 also tends to zero. It means that

 max |uJv " - u(n) * |oo - ► 0 , N - ► 0 0<n<K " *

 under the condition (3.11).

 Consequently, there exists No > 0 such that

 max 1 I u*™ N - u(n)|oo V " - < M ' , V N < No- 0 <n<K 1 N V " - , '

 Hence

 maxm=0,it...,ic |u^|oo < maxo<n</c Wn ~ u(n)l oo + maxo<n<Ä |«(n)|oo

 < M + M = 2M

 which implies N(vļ}) = JB(uj^).
 Remark 2. By giving more smoothness assumtions on the solution u, we can reduce

 the very restrictive time step constraint (1.9) for the scheme (1.4) to the very weak condition
 (3.11) which is evidently not a constraint in practice since we should keep the time step k
 reasonably small to balance the spectral precision of the space discretization.
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