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Abstract
A space–time Petrov–Galerkin spectral method for time fractional diffusion equations is
developed in this paper. The Petrov–Galerkin method is used to simplify the computation of
stiffnessmatrix but leads to full non-symmetricmassmatrix. However, thematrix decomposi-
tion method based on eigen-decomposition is numerically unstable for non-symmetric linear
systems. A QZ decomposition is adopted instead of eigen-decomposition. The QZ decompo-
sition has essentially the same computational complexity as the eigen-decomposition but is
numerically stable. Moreover, the enriched Petrov–Galerkin method is developed to resolve
the weak singularity at the initial time. We also carry out the error analysis for the proposed
methods and present ample numerical results to validate the accuracy and robustness of our
numerical schemes.

Keywords Fractional derivative · Spectral method · QZ decomposotion · Generalized
Jacobi functions · Error analysis

Mathematics Subject Classification Primary: 26A33 · 34A08 · 49M27 · 65N15 · 65N35

1 Introduction

We consider in this paper the following time fractional diffusion equation (TFDE):

C
0D

α
t v(x, t) + Lv(x, t) + N (v(x, t), t) = 0, ∀(x, t) ∈ D := � × (0, T ], (1.1)
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with the initial condition
v(x, 0) = v0(x), ∀x ∈ �, (1.2)

and the homogeneous boundary conditions. In the above, α ∈ (0, 1), � is a bounded domain
in R

d , L is a linear self-adjoint elliptic operator and N is a lower-order nonlinear operator,
and C

0D
α
t (0 < α < 1) is the left-sided Caputo fractional derivative of order α (see the

definition in 2.4).
There is now a vast literature on the numerical methods for the fractional differential equa-

tions, mostly with the finite difference methods (e.g., [3,6,19,22,32,38,39] and the references
therein) and the finite element methods (e.g., [8,16–18,36] and the references therein).

The two main difficulties in solving fractional PDEs such as (1.1) are (i) fractional deriva-
tives are non-local operators and generally lead to full nonsymmetric matrices; and (ii) their
solutions are often singular so polynomial based approximations are not efficient.

Since spectral methods are capable of providing exceedingly accurate numerical results
with less degrees of freedoms, they have been widely used for numerical approximations
[1,10,28,29]. In particular, well designed spectral methods appear to be particularly attrac-
tive to dealwith the difficulties associatedwith fractional PDEsmentioned above. Polynomial
based spectralmethods have been developed for TFDEs, e.g., [2,21,33].However, thesemeth-
ods use polynomial basis functions which are not particularly suitable for TFDEs whose
solutions are generally non-smooth at t = 0. Spectral methods for fractional PDEs with
non-smooth solutions have been a subject of intensive study in the last few years, e.g., Zay-
ernouri and Karniadakis [35] first proposed to approximate the singular solutions by Jacobi
poly-fractonomials, which were defined as eigenfunctions of a fractional Sturm–Liouville
problem; Chen et al. [5] constructed efficient Petrov–Galerkin methods for fractional PDEs
by using the generalized Jacobi functions (GJFs) which include Jacobi poly-fractonomials
as special cases. Subsequently, some authors developed spectral methods by using Jacobi
poly-fractonomials/GJFs to solve fractional PDEs [14,34,37,40]. Hou and Xu [12,13] intro-
duced a Müntz spectral method for some weakly singular integro-differential equations and
fractional differential equations. Liu et al. [23] proposed a novel spectral scheme using non-
standard singular basis function for time fractional differential equation. Very recently, Chen
and Shen [4] developed the enriched spectral-Galerkin method for the problems with weakly
singular solution.

In a previous work [31], we introduced a space–time Petrov–Galerkin spectral method
for linear/nonlinear time fractional diffusion equation, which employs the GJFs in tem-
poral discretization and Fourier-like basis in spatial discretization. The use of Fourier-like
basis functions in space can be regarded as using the matrix decomposition/diagonalization
method [11,24,30]. However, this approach is not feasible when � is not a simple tensor
product domain, one cannot construct a Fourier-like basis and the degree of freedom (DoF)
in space is too large to perform eigen-decomposition. In this paper, we focus on how to
construct an efficient matrix decomposition method based on time variable. The two main
difficulties here are: (i) the stiffness matrix in the time variable is not symmetric so the matrix
decomposition method based the eigen-decomposition is not suitable; and (ii) the solution
has weak singularity at t = 0 which limits the accuracy of the approximation by the GJFs.

We shall present in this paper an enriched Petrov–Galerkin spectral method for linear and
nonlinear TFDEs. This work introduces several new aspects: (i) We develop a novel direct
solver for time Petrov–Galerkin spectral method, which employs QZ decomposition to solve
the non-symmetric linear system efficiently in a stable manner; (ii) For the time variable,
we choose GJFs to match the leading singularity of the underlying solution; (iii) We use an
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enriched Petrov–Galerkin method to match leading singular terms of the underlying solution,
and thus significantly improved the accuracy.

The remainder of this paper is structured as follows. In Sect. 2, we introduce the basis
functions for the time variable, and present some useful properties of fractional calculus.
In Sect. 3, we develop efficient Petrov–Galerkin methods for TFDEs and establish the error
bounds for the proposedmethod.Wepresent the enrichedPetrov–Galerkinmethod for TFDEs
in Sect. 4. Numerical results for nonlinear problems and applications to time fractional Allen–
Cahn equations are presented in Sect. 5. Some concluding remarks are given in the last section.

2 Preliminaries

In this section, we review some basics of fractional integrals/derivatives, define some suitable
functional spaces to be used later, and introduce some properties of the shifted generalized
Jacobi functions and the shifted Legendre polynomials.

2.1 Fractional Derivatives

We start with some preliminary definitions of fractional derivatives (see, e.g. [7,25]).
Let I = (0, T ). For ρ ∈ R

+, the left-sided and right-sided Riemann–Liouville integrals
are respectively defined as

0 I
ρ
t u(t) = 1

�(ρ)

∫ t

0

u(s)

(t − s)1−ρ
ds, t ∈ I ,

t I
ρ
T u(t) = 1

�(ρ)

∫ T

t

u(s)

(s − t)1−ρ
ds, t ∈ I ,

(2.1)

where �(·) is the usual Gamma function.
For ν ∈ [m − 1,m) with m ∈ N, the left-sided Riemann–Liouville fractional derivative

of order ν is defined by

0D
ν
t u(t) = 1

�(m − ν)

dm

dtm

∫ t

0

u(s)

(t − s)ν−m+1 ds, t ∈ I , (2.2)

and the right-sided Riemann–Liouville fractional derivative of order ν is defined by

t D
ν
T u(t) = (−1)m

�(m − ν)

dm

dtm

∫ T

t

u(s)

(s − t)ν−m+1 ds, t ∈ I . (2.3)

For ν ∈ [m − 1,m) with m ∈ N, the left-sided Caputo fractional derivative of order ν is
defined by

C
0D

ν
t u(t) = 1

�(m − ν)

∫ t

0

u(m)(s)

(t − s)ν−m+1 ds, t ∈ I , (2.4)

and the right-sided Caputo fractional derivative of order ν is defined by

C
t D

ν
T u(t) = (−1)m

�(m − ν)

∫ T

t

u(m)(s)

(s − t)ν−m+1 ds, t ∈ I . (2.5)

The following lemma shows the relationship between the Riemann–Liouville and Caputo
fractional derivatives (see, e.g., [7,25]).
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Lemma 2.1 For ν ∈ [k − 1, k) with k ∈ N, we have

0D
ν
t u(t) =C

0D
ν
t u(t) +

k−1∑
j=0

u( j)(0)

�(1 + j − ν)
t j−ν . (2.6)

2.2 Some Functional Spaces and Their Properties

We now introduce some functional spaces to be used later.
LetC∞

0 (I ) be the space of smooth functions with compact support in I , and Hs
0 (I ) denote

the closure of C∞
0 (I ) with respect to norm ‖ · ‖s,I .

For any real s > 0, we introduce some useful spaces.

• Let H̃ s(I ) be the set of functions in Hs(I ) whose extension by zero to R is in Hs(R).
• Let H̃ s

l (I ) be the set of functions u whose extension by zero, denoted by ũ is in
Hs(−∞, T ).

• Let H̃ s
r (I ) be the set of functions u whose extension by zero, denoted by ũ is in Hs(0,∞).

Therefore, a direct consequence is as follows, see, e.g, [15].

Lemma 2.2 The operators 0Ds
t and t Ds

T extend continuously to bounded operators from
H̃s
l (I ) and H̃ s

r (I ), respectively, to L2(I ).

We define the following space in x-direction,

HL(�) = {v | v ∈ L2(�), 〈Lv, v〉 < ∞,

and v|∂� satisfy a homegeneous boundary condition}, (2.7)

equipped with the norm

‖v‖L =
(∫

�

v2(x)dx +
∫

�

Lv(x)v(x)dx

)1/2

. (2.8)

The notation 〈·, ·〉L2(�) denotes the duality pairing between HL(�) and its dual H−1
L (�),

also the inner product in L2(�). For u, v ∈ L2(D), for each t ∈ I , u(t), v(t) ∈ HL(�), we
denote

b(u, v) := 〈Lu, v〉L2(D) =
∫ T

0

∫
�

Lu(x, t) v(x, t)dxdt, (2.9)

and the Bochner spaces on D :

V := L2(I ; HL(�)) with norm ‖v‖2
V

= b(v, v),

V
∗ := L2(I ; H−1

L (�)) with norm ‖v‖V∗ = sup
φ∈V

〈v, φ〉L2(D)

‖φ‖V .
(2.10)

Below we will also use 〈·, ·〉L2(D) for the duality pairing between V and V
∗. For any

s ∈ (0, 1), we also define space

Bs(D) := H̃ s
l (I , H−1

L (�)) ∩ L2(I , HL(�)),

equipped with the norm

‖v‖Bs (D) :=
(
‖0Ds

t v‖2
L2(I ,H−1

L (�))
+ ‖v‖2L2(I ,HL(�))

)1/2
.

The following Lemma are useful; see, e.g., [8].
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Lemma 2.3 For all 0 < α < 1, if u ∈ Bα(D), then

‖u‖H̃α
l (I ;H−1

L (�))
∼ ‖0Dα

t u‖L2(I ;H−1
L (�))

. (2.11)

2.3 Trial & Test Functions in Time

We introduce below the trial & test functions that we will use for the time variable. For
α, β > −1, let P(α,β)

n (x), x ∈ 
 be the standard Jacobi polynomial of degree n, and denote
theweight functionχ(α,β)(x) = (1−x)α(1+x)β . The set of Jacobi polynomials is a complete
L2

χ(α,β) (
)-orthogonal system, i.e.,

∫ 1

−1
P(α,β)
l (x)P(α,β)

m (x)χ(α,β)(x)dx = γ
(α,β)
l δl,m, (2.12)

where δl,m is the Kronecker function, and

γ
(α,β)
l = 2α+β+1

(2l + α + β + 1)

�(l + α + 1)�(l + β + 1)

l!�(l + α + β + 1)
.

In particular, P(α,β)
0 (x) = 1.

The shifted Jacobi polynomial of degree n is defined by

P̃(α,β)
n (t) = P(α,β)

n

(
2t − T

T

)
, t ∈ I , n ≥ 0. (2.13)

Clearly, the set of {P̃(α,β)
n (t)}n≥0 is a complete L2

ω(α,β) (I )-orthogonal system with the weight

function ω(α,β)(t) = (T − t)αtβ, by (2.12) and (2.13) we get that∫
I
P̃(α,β)
l (t)P̃(α,β)

m (t)ω(α,β)(t)dt =
(T
2

)α+β+1
γ

(α,β)
l δl,m . (2.14)

For any α, β > −1, the shifted generalized Jacobi functions on I is defined by (cf. [27])

J (α,β)
n (t) = tβ P̃(α,β)

n (t), t ∈ I , n ≥ 0. (2.15)

and our approximation space on I is defined by

F (α)
N (I ) := {tαψ(t) : ψ(t) ∈ PN (I )} = span{J (−α,α)

n (t) = tα P̃(−α,α)
n (t) : 0 ≤ n ≤ N },

(2.16)
which incorporates the homogeneous boundary conditions at t = 0.

A particular case is the shifted Legendre polynomial Ln(t), t ∈ I is defined by

Ln(t) = P0,0
n

(
2t

T
− 1

)
, n = 0, 1, 2, . . . . (2.17)

The set of Ln(t) is a complete L2(I )-orthogonal system, namely,∫
I
Ll(t)Lm(t)dt = T

2l + 1
δl,m, (2.18)

Clearly, we derive from (2.15)–(2.17) and a direct calculation that (cf. [5])

0D
α
t J

(−α,α)
n (t) = �(n + α + 1)

n! Ln(t). (2.19)
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3 A Petrov–Galerkin Space–TimeMethod

In this section, we will propose a Petrov–Galerkin spectral method for (1.1). We shall start
by considering a special case of (1.1) with Nv = βv − g:

C
0D

α
t v(x, t) + Lv(x, t) + βv(x, t) = g(x, t), ∀(x, t) ∈ D, (3.1)

with the initial and boundary conditions (1.2) and the constant β ≥ 0. Note that the above
linear equation will be used as a preconditioner for nonlinear equation (1.1) later.

3.1 GJFs Petrov–Galerkin Method for (3.1)

Throughout this paper, we assume that v0 ∈ H2(�) ∩ H1
0 (�). For the case of non-

homogeneous initial conditions v(x, 0) = v0(x), we first decompose the solution v(x, t)
into two parts as

v(x, t) = u(x, t) + v0(x), (3.2)

with u(x, 0) = 0. Hence, by (3.2) and (2.6), the Eq. (3.1) is equivalent to the following
equation with Riemann–Liouville fractional derivative:

0D
α
t u(x, t) + Lu(x, t) + βu(x, t) = f (x, t), ∀(x, t) ∈ D, (3.3)

where

f (x, t) = g(x, t) − Lv0(x) − βv0(x),

with homogeneous initial
u(x, 0) = 0, ∀x ∈ �, (3.4)

and the corresponding boundary conditions.
We first recall the weak formulation of (3.1): find u ∈ Bα(D) such that

A(u, v) := 〈0Dα
t u, v〉L2(D) + b(u, v) + β(u, v)L2(D) = (g, v)L2(D), ∀v ∈ V. (3.5)

where b(·, ·) and V are defined in (2.9) and (2.10), respectively. Without loss of generality,
we assume that the bilinear form b(·, ·) : V × V → R satisfies

• Continuity: ∃C1 > 0 such that |b(u, v)| ≤ C1‖u‖V‖v‖V,
• Coercivity: ∃C2 > 0 such that |b(u, u)| ≥ C2‖u‖2

V
.

A direct consequence is the following.

Theorem 3.1 For any f ∈ V
∗, problem (3.5) has a unique solution u ∈ Bα(D), and it

satisfies
‖u‖Bα(D) ≤ c‖ f ‖V∗ .

Proof By using an argument similar to the proof of Lemma 2.4 in [8], we deduce that

|A(u, v)| ≤ ∣∣〈0Dα
t u, v〉L2(D)

∣∣ + |b(u, v)| + β|(u, v)L2(D)| ≤ cβ‖u‖Bα(D)‖v‖V,

sup
v∈V

A(u, v)

‖v‖V ≥ ‖u‖Bα(D), for all u ∈ Bα(D).
(3.6)

Hence, the existence, uniqueness and stability follow directly from the continuity and inf-sup
condition of the bilinear form A(·, ·). ��
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Remark 3.1 The Galerkin weak formulation (see, e.g., [21]) is to find: u ∈ B̃
α
2 :=

H
α
2 (I ; L2(�)) ∩ L2(I ; H1

0 (�)) such that

a(u, v) = 〈
0D

α
2
t u, t D

α
2
T v

〉
L2(D)

+ (∇u,∇v)L2(D) = 〈 f , v〉L2(D), ∀v ∈ B̃
α
2 .

Then, the bilinear form a(·, ·) is continuous and coercive on B̃
α
2 , and the variational problem

is well-posed. More results on well-posedness and regularity for (3.5), we refer to [9,20]
and the references therein.

Let Vh be a finite-dimensional approximation space of V := HL(�):

Vh = span{φ1, φ2, . . . , φM }. (3.7)

For the time variable, we shall use the fractional polynomial space F (α)
N (I ) defined in

(2.16). Then, thePetrov–Galerkinmethod for (3.3) is to seekuL(x, t) := uMN ∈ Vh⊗F (α)
N ⊂

Bα(D), such that

A(uL , v) := 〈0Dα
t uL , v〉L2(D) + b(uL , v)

+β(uL , v)L2(D) = (g, v)L2(D), ∀v ∈ Vh ⊗ PN ⊂ V. (3.8)

Next, we shall construct suitable basis functions of F (α)
N (I ) so that the above system can be

solved efficiently.
For the time variable, we use the generalized Jacobi functions J (−α,α)

n (t) defined in the
last section:

F (α)
N (I ) = span{J (−α,α)

n (t) : 0 ≤ n ≤ N }, (3.9)

and for PN (I ) in the test space, we simply use the scaled Legendre polynomials, namely:

PN (I ) = span
{
L(α)
n (t) := κn,αLn(t) : 0 ≤ n ≤ N

}
, with κn,α = n!(2n + 1)

T · �(n + α + 1)
.

(3.10)
We now describe the numerical implementations for (3.8) under this set of basis functions.

We write

uL(x, t) =
M∑

m=1

N∑
n=0

ũmnφm(x)J (−α,α)
n (t). (3.11)

Denote

fmn = ( f , φmL
(α)
n )L2(D), F = ( fmn)1≤m≤M,0≤n≤N ,

stpq =
∫
I
0D

α
t J

(−α,α)
q (t)L(α)

p (t)dt, mt
pq =

∫
I
J (−α,α)
q (t)L(α)

p (t)dt,

St = (stpq)0≤p,q≤N , M t = (mt
pq)0≤p,q≤N , U = (̃umn)1≤m≤M,0≤n≤N .

(3.12)

It can be easily verified from (2.18), (2.19) and (3.10) that St = I with I being the identity
matrix. On the other hand,

mt
pq =

∫
I
J (−α,α)
p (t)L(α)

q (t)dt =
∫
I
P̃(−α,α)
p (t)L(α)

q (t)tαdt . (3.13)

So M t is not sparse but can be accurately computed by Jacobi-Gauss quadrature with index
(0, α).

Then, we find that (3.8) is equivalent to the following linear system:

Mh U (St )T + Sh U (M t )T + βMh U (M t )T = F, (3.14)
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where Mh and Sh are the mass matrix and stiffness matrix in the space variable, namely,

shpq =
∫

�

Lφq(x)φp(x)dx, mh
pq =

∫
�

φq(x)φp(x)dx,

Sh = (shpq)1≤p,q≤M , Mh = (mh
pq)1≤p,q≤M .

(3.15)

Obviously, it is not computationally efficient to use matrix decomposition method in the
space direction for non-tensor product domains. Because the size of Mh and Sh alway very
large in (3.14). In this paper, we devote to do matrix decomposition in the time direction.
Notice that an advantage of using matrix decomposition in time direction is that we only
need to solve N times elliptic equation in the space direction. Moreover, it is straightforward
to extend this approach to the nonlinear case (1.1), we omitted all the details in this paper.

3.2 Several Algorithms for (3.14)

This subsection focuses on the efficient algorithms for the nonsymmetric linear system.
Algorithm I: Eigen-Decomposition. We consider the generalized eigenvalue problem: let
E := (ē0, . . . , ēN ) = (epq)p,q=0,...,N be the matrix formed by the orthonormal eigenvectors
of the generalized eigenvalue problem M t ē j = λ j St ē j and 
 = diag(λ0, . . . , λN ), i.e.,

M t E = St E
. (3.16)

SettingU = V ET , and multiplying (3.14) [or (4.6) respectively] both side by (St E)−T , we
arrive at

Mh V + Sh V
 + βMh V
 = G := F(St E)−T . (3.17)

Hence, the m-th column of the above matrix equation becomes:

(λnSh + (1 + βλn)Mh)vn = gn, 0 ≤ n ≤ N , (3.18)

where
V = (̃vm,n)1≤m≤M,0≤n≤N , vn = (̃v1,n, ṽ2,n, . . . , ṽM,n)

T ,

G = (gm,n)1≤m≤M,0≤n≤N , gn = (g1,n, g2,n, . . . , gM,n)
T .

The coefficient U can be computed by U = V ET . Finally, we can use (3.11) and (3.2) to
get the solution uL . This approach is very efficient because we only need to solve N + 1
times elliptic equation in space, and the total cost is O(NTM ), where TM is the cost of
the underlying algorithm in the space direction. However, since M t is nonsymmetric, this
approach suffer from large round off errors. In Table 1, we tabulate the maximum error of
(St E)−1M t E − 
 for the stifness/mass matrix in (3.12) with various N , which indicate
that error of eigen-decomposition is grown as N increases. We then conclude that the eigen-
decomposition algorithm for linear system with the full nonsymmetric matrix is not stable.

Algorithm II: Partial QZ Decomposition.We consider following QZ decomposition:

Q (St )T Z = A, Q (M t )T Z = B, ⇔ QT AZT = (St )T , QT BZT = (M t )T ,

(3.19)
where Q, Z are the unitary matrices, and A, B are upper triangular matrices, namely,

A =

⎛
⎜⎜⎜⎝

a0,0 a0,1 . . . a0,N
a1,1 . . . a1,N

. . .
...

aN ,N

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

b0,0 b0,1 . . . b0,N
b1,1 . . . b1,N

. . .
...

bN ,N

⎞
⎟⎟⎟⎠ .
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Table 1 The error of eigen-decomposition

N 4 8 12 16 20 24 28 32 100

Max error of (St E)−1M t E − 
 in (3.12) with α = 0.3

Error 7.98e−15 6.36e−13 1.33e−10 1.73e−08 2.20e−06 3.70e−04 2.81e−02 8.79e−02 1.58e−02

Max error of (St E)−1M t E − 
 in (3.12) with α = 0.7

Error 3.64e−15 1.91e−13 7.36e−11 3.85e−09 3.72e−07 2.22e−04 2.93e−03 2.11e−03 1.11e−02

Setting U = V Q, and multiplying (3.14) both sides by Z, we arrive at

Mh V A + Sh V B + βMh V B = G := FZ. (3.20)

We can obtain the column of coefficients vn = (̃v1,n, ṽ1,n, . . . , ṽM,n)
T , one by one, namely,

an,nMh vn + bn,nSh vn + βbn,nMh vn = gn − hn−1, 0 ≤ n ≤ N ,

where

hn−1 =
n−1∑
k=0

(
ak,nMh vk + bk,nSh vk + βbk,nMh vk

)
. (3.21)

Briefly, we obtain the unknown coefficients vn in terms of previous computed coefficients
{vk}n−1

k=0, as stated in Algorithm II below.

Algorithm II for (3.20)

For n = 0, 1, . . . , N ,

If n = 0,

Solve vh0 by: a0,0Mh v0 + b0,0Sh v0 + βb0,0Mh v0 = g0;
Else

Compute the history part hn−1 by (3.21);

Solve vhn by: an,nMh vn + bn,nSh vn + βbn,nMh vn = gn − hn−1;

End
End

Finally, the coefficient matrix U can be computed by U = V Q, and we can use (3.11)
and (3.2) to get the value of solution uL . In this algorithm, we only need to solve N +1 times
elliptic equation, so this new approach is also very efficient. Let TM be the cost of solving one
elliptic equation in space, then the total cost is O(N 2M)+ (N +1)TM (usually N � M). In
Table 2, we tabulate the maximum error of max{|QT AZT − St |, |QT BZT − M t |} for the
stifness/mass in (3.12) with various N , which indicate that error of eigen decomposition is
awaly stable.We find that QZ decomposition are muchmore stable than eigen decomposition
for full nonsymmetric matrix.

Algorithm III: Full Decomposition. In cases where it is feasible to diagonalize also in the
space variables, e.g., when � is a simple geometric (such as rectangular domains), we can
simplify the algorithm even further.

We consider following eigen decomposition in space and QZ decomposition in time:

MhEh = ShEh
h, Qt (St )T Zt = At , Qt (M t )T Zt = Bt ,
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Table 2 The error of QZ-decomposition

N 4 8 12 16 20 24 28 32 100

Max error of max{|QT AZT − St |, |QT BZT − M t |} in (3.12) with α = 0.3

Error 2.22e−15 2.22e−15 2.25e−15 1.65e−15 1.82e−15 1.57e−15 2.46e−15 3.10e−15 3.02e−15

Max error of max{|QT AZT − St |, |QT BZT − M t |} in (3.12) with α = 0.7

Error 1.31e−15 1.36e−15 1.59e−15 1.56e−15 2.00e−15 2.30e−15 2.10e−15 2.16e−15 1.24e−14

where Eh and 
h are matrix form eigenvectors and eigenvalues, Qt , Zt are the unitary
matrices, and At , Bt are upper triangular matrices.

Setting U = E V Qt , and multiplying the left (resp. right) of Eq. (3.14) by (ShEh)−1

(resp. Zt ), we arrive at


h V At + V Bt + β
h V Bt = G := (ShEh)−1FZt . (3.22)

We can solve the coefficients {̃vmn}0≤n≤N , one by one, namely,

ṽmn = gmn − hmn

λhmma
t
nn + btnn + βλhmmb

t
nn

, (3.23)

where

hmn =
n−1∑
k=0

(
λhm,m ṽmka

t
kn + ṽmkb

t
kn + βλhm,m ṽmkb

t
kn

)
, 1 ≤ m ≤ M . (3.24)

Briefly, we obtain tcoefficients {̃vmn}0≤n≤N , in terms of previous computed coefficients
{̃vmj } j=0,1...,n−1, as stated in Algorithm III below.

Algorithm III for (3.22)

For n = 0, . . . , N ,

If n = 0,

Solve ṽm0 by: gm0/
(
λhmma

t
00 + bt00 + βλhmmb

t
00

)
with 1 ≤ m ≤ M ;

Else
Compute the history part hmn by (3.24);

Solve ṽmn by: ṽmn = gmn − hmn

λhmma
t
nn + btnn + βλhmmb

t
nn

with 1 ≤ m ≤ M ;

End
End

Finally, the coefficient matrix U can be computed by U = E V Qt , and we can use (3.2)
to get the value of solution uL . Notice that the full decomposition algorithm procedure is
simpler to implement than the partial QZ decomposition algorithm, when � is a simple
geometric.

We summarize the three algorithms below: (i) all the three algorithm are only need to
consists of solving N + 1 times systems of order M ; (ii) Algorithms II and III are very
stable for solving nonsymmetric linear systems, while Algorithms I are not; (iii) Algorithms
II and III provide the same numerical result when � is a simple geometric, and Algorithm
III is simpler to implement than Algorithm II; (iv) It is worthwhile to point out that we can
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use QZ decomposition in both time and space direction when the spatial discretization is
nonsymmetric too.

3.3 Error Estimates for Petrov–Galerkin Spectral Method

In this subsection, we conduct an error analysis for the Petrov–Galerkin method described in
the previous section. Since the full error analysis for the nonlinear system is beyond the scope
of this paper, we shall only consider the analysis for the linear case of (3.1) with L = −�,
that is

Ñ (u) = β(u + u0).

In order to characterize the regularity of u in t , we define the following non-uniformly
weighted space involving fractional derivatives

Bs
α,β(I ) := {v ∈ L2

ω(α,−β) (I ) : 0Dβ+r
t v ∈ L2

ω(α+β+r,r) (I ) for 0 ≤ r ≤ s}, s ∈ N0.

The correspongding projection operator in time isπ
(−α,α)
N : L2

ω(−α,−α) (I ) → F (α)
N (I ) defined

by
(π

(−α,α)
N v − v,ψ)ω(−α,−α) = 0, ∀ψ ∈ F (α)

N (I ). (3.25)

It is shown in [5] that

(0D
α
t (π

(−α,α)
N v − v), p) = 0, ∀p ∈ PN (I ). (3.26)

We recall from [27] that

Lemma 3.1 Let α ∈ (0, 1), for any v ∈ Bs−α,α(I ), with integer 0 ≤ s ≤ N. Then

‖π(−α,α)
N v − v‖ω(−α,−α) � N−(α+s)‖0Dα+s

t v‖ω(s,s) . (3.27)

and
‖0Dα

t (π
(−α,α)
N v − v)‖I � N−s‖0Dα+s

t v‖ω(s,s) . (3.28)

Let πh be the H1
0 -orthogonal projection in space direction

〈πhu − u, v〉HL(�) = (∇(πhu − u),∇v)L2(�) = 0, ∀v ∈ Vh . (3.29)

Hence, using Lemma 3.1, we arrive at following result.

Theorem 3.2 Let u be the solution of (3.3) and uL be the numerical solution (3.8). If u ∈
Bα(D) and 0D

α+s
t u ∈ L2

ω(s,s) (I , HL(�)) there holds

‖u − uL‖Bα(D) � N−s‖0Dα+s
t u‖L2

ω(s,s) (I ,HL(�)) + ‖u − πhu‖Bα(D). (3.30)

Proof The discrete inf-sup condition can be derived in a similar fashion as Lemma 3.3 of
[8], namely, there is a constant cα > 0, independent N , such that

sup
v∈Vh⊗PN

A(uL , v)

‖v‖V ≥ cα‖uL‖Bα(D) for all uL ∈ Vh ⊗ F (α)
N . (3.31)

We can derive from continuity and Theorem 3.1 and 3.31 that 3.8 admits a unique solution
uL ∈ Bα(D) satisfying

‖uL‖Bα(D) ≤ 1

cα

‖ f ‖V ∗
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Moreover, we have

‖u − uL‖Bα(D) ≤ C inf
v∈Vh⊗F (α)

N

‖u − v‖Bα(D). (3.32)

Taking v = π
(−α,α)
N πhu = πhπ

(−α,α)
N u into 3.32, we obtain from above equation that

‖u − uL‖2Bα(D) ≤ C‖u − π
(−α,α)
N ◦ πhu‖2Bα(D)

� ‖0Dα
t (u − π

(−α,α)
N ◦ πhu)‖2L2(D)

+ ‖u − π
(−α,α)
N ◦ πhu‖2L2(I ,HL(�))

:= I1 + I2.
(3.33)

In view of this, taking s = 0 in (3.28), we conclude that

I1 = ‖0Dα
t (u − π

(−α,α)
N ◦ πhu)‖2L2(D)

� ‖0Dα
t π

(−α,α)
N (u − πhu)‖2L2(D)

+ ‖0Dα
t (u − π

(−α,α)
N u)‖2L2(D)

� ‖0Dα
t (u − πhu)‖2L2(D)

+ ‖0Dα
t (u − π

(−α,α)
N u)‖2L2(D)

� N−2s‖0Dα+s
t u‖2

L2
ω(s,s) (I ,L

2(�))
+ ‖0Dα

t (u − πhu)‖2L2(D)
.

By (3.29), we treat the second term I2 as

I2 = ‖u − π
(−α,α)
N ◦ πhu‖2L2(I ,HL(�))

� ‖πh(u − π
(−α,α)
N u)‖2L2(I ,HL(�))

+ ‖u − πhu‖2L2(I ,HL(�))

� ‖u − π
(−α,α)
N u‖2L2(I ,HL(�))

+ ‖u − πhu‖2L2(I ,HL(�))

� N−2(α+s)‖0Dα+s
t u‖2

L2
ω(s,s) (I ,HL(�))

+ ‖u − πhu‖2L2(I ,HL(�))
.

A combination of the above estimates and Lemma 2.2 leads to the desired result. ��

3.4 Numerical Examples

We employ the Petrov–Galerkin method to the linear TFDEs to demonstrate the spatial and
temporal convergence rates of the proposed algorithms.

Example 1 We first consider following linear TFDEs in rectangular domains

C
0D

α
t u(x, t) − div(a(x)∇u(x, t))

+βu(x, t) = f (x, t), ∀(x, t) ∈ (−1, 1)2 := � × (0, T ], (3.34)

with the exact solution u(x, y, t) = sin(πx) sin(π y)(tα sin(π t) + 1), a(x, y) = 1, and
non-homogeneous initial conditions u0(x, y) = sin(πx) sin(π y).

Without loss of generality, we use piecewise linear FEM for spatial discretization and GJFs
Petrov–Galerkin method for temporal discretization. Let Th = {K } be a uniformly regular
family of rectangular in (−1, 1)2, and define the mesh size h. In Fig. 1, we list the maximum
errors of (3.34), in log–log scale (or semi-log scale) at T = 1. We see from Fig. 1 (left) the
proposed scheme has a second-order convergence rate in time. In Fig. 1 (right), we observe
an exponential decrease of the numerical errors with increasing N and a level-off the error
curves beyond N = 8, due to the saturation of spatial errors.
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Fig. 1 Left: the maximum error in log–log scale against various h and α for Example 1 with M = 20; Right:
the L2(�)-error in semi-log scale against various N and α for Example 1 with h = 1/90
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Fig. 2 Left: the Bα(D)-error in semi-log scale against various N and α for Example 2 with M = 20; Right:
the Bα(D)-error in semi-log scale against various M and α for Example 2 with N = 20

Example 2 This example is devoted to comparing the numerical stability of algorithms in
Sect. 3.2. To this end, we employ GJFs Petrov–Galerkin method in temporal discretization
and Legendre spectral method in spatial discretization to resolve Example 1 numerically. In
Fig. 2 (left), we compare the Bα(D)-errors of algorithm I with algorithm III, for which we
take M = 40. Notice that algorithms II and III give the same numerical result, so we prefer to
use algorithm III in this example. We observe that for the N ≤ 10 the numerical results from
two algorithms are the same; but for N > 10, the algorithm III (or algorithm II) provides
more accurate numerical results than algorithm I. This is because the eigen-decomposition
is not stable for the nonsymmetric linear system, see Sect. 3.2. In Fig. 2 (right), we also
list the Bα(D)-errors, in semi-log scale, with N = 40. Although the exact solution has
singularity at t = 0, but in the weighted Sobolev spaces Bs−α,α(I ) which involving fractional
derivatives, we have u|t ∈ Bs−α,α(I ) for any large s. We observe that the numerical errors
decay exponentially as M /N increases. We note in particular that very high accuracy is
achieved with quite small M/N for this special problem.

Example 3 We also consider Eq. (3.34) in rectangular domains with the exact solution

u(x, y, t) = sin(πx) sin(π y) · sin(π tα), a(x, y) = x2+y2

2 , and the homogeneous initial
conditions u0(x) = 0. Clearly, the singularity of the exact solution in time is more compli-
cated than Example 1. Since we have
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Fig. 3 Left: the Bα(D)-error in log–log scale against various N and α for Example 3 with M = 20; Right:
the Bα(D)-error in semi-log scale against various M and α for Example 3 with N = 60
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Fig. 4 Left: the Bα(D)-error in semi-log scale against various N and α for Example 4 with M = 40; Right:
the Bα(D)-error in semi-log scale against various M and α for Example 4 with N = 20

u|t = sin(π tα) = tα − 1

3! t
3α + O(t5α). (3.35)

The GJFs can match the first leading singularity of the solution, then the convergence
rate only depends on the second leading singularity of the solution. Here we take α =
0.8, 0.6, 0.4, 0.2. Then, we can derive from Theorem 3.1 and (3.35) that the corresponding
convergence rate is N−4, N−3, N−2, N−1. In Fig. 3 (left) we plot the Bα-errors in log–log
scale against various N and α with M = 20. We observe that the numerical results are
consistent with theoretical results. We also list the Bα-errors in semi-log scale against var-
ious M and α with N = 60 in Fig. 3 (right). They indicate that the numerical errors decay
exponentially as M increases, and numerical errors decay algebraically as N increases.

Example 4 We consider TFDEs (3.34) in unit disk� = {x2+ y2 < 1}with the exact solution
u(x, y, t) = (x2 + y2 − 1)(cos(8(x + y)) + sin(8(x + y))) · tα sin(π t), a(x, y) = 1, and
homogeneous initial conditions u0(x, y) = 0. In Fig. 4, we list the Bα(D)-errors, in semi-
log scale. We observe that the numerical errors decay exponentially as M /N increases. We
note in particular that very high accuracy is achieved with quite small M/N for this special
problem.

Example 5 Wealso consider Eq. (3.34) in unit disk� = {x2+y2 < 1}with the exact solution
u(x, y, t) = (x2 + y2 − 1)(cos(8(x + y)) + sin(8(x + y))) · sin(π tα), a(x, y) = 1, and
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Fig. 6 Left: the Bα-error in log–log scale against various N and α for Example 6 with M = 40; Right: the
Bα-error in semi-log scale against various N and α for Example 6 with M = 40

the homogeneous initial conditions u0(x) = 0. In Fig. 5 (left) the Bα(D)-errors in log–log
scale against various N and α with M = 20 . We also list the Bα(D)-errors in semi-log scale
against variousM and α with N = 60 in Fig. 5 (right).We see that the numerical errors decay
exponentially as M increases, and numerical errors decay algebraically as N increases.

Example 6 To eliminate the error of spatial direction, we also consider Eq. (3.34) in unit
disk � = {x2 + y2 < 1} with the given right hand side term f (x, y, t) = (x2 + y2 − 1),
a(x, y) = 1, and the homogeneous initial conditions. Since no exact solution is available,
we use the numerical solution with M = 50, N = 100 and add three singular functions (see
Sect. 4.2 for more detail) as the reference solution. In Fig. 6 (left) the Bα(D)-errors in log–log
scale against various N and α with M = 40 . We observe that the numerical errors decay
algebraically as M increases. Since the GJFs Petrov–Galerkin method only match the first
leading singularity of the solution, then the second leading singularity are tν = t0.8, t1.2, t1.6

with respect to α = 0.4, 0.6, 0.8. We can derive from Theorem 3.2 that the convergence
rate are N−1, N−2, N−2 respectively. Similarly, we plot the Bα(D)-errors in log–log scale
against various N and α with M = 40 with f (x, y, t) = (x2 + y2 − 1) · cos(π t) in Fig. 6
(right).
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4 An Improved Algorithmwith Enriched Approximation Space in Time

This section is devoted to the improved algorithmwith enriched approximation space in time.
We develop in this section an enriched Petrov–Galerkin method for TFDEs as well as the
error estimate for the proposed method. Some numerical examples to illustrate the efficiency
of our method are presented.

4.1 Algorithm

In order to introduce the enriched Petrov–Galerkin method for (3.3), we first need the
following basis function space for time variable

F (k,α)
N (I ) := span{J−α,α

n (t) = tα P̃−α,α
n (t) : 0 ≤ n ≤ N } ⊕ {ψi = tνi , i = 1, . . . , k},

(4.1)
and in the test space, we take

PN+k(I ) = span
{
L(α)
n (t) := κn,αLn(t) : 0 ≤ n ≤ N + k

}
, (4.2)

where ψi , i = 1, . . . , k are some known singular functions.

Remark 4.1 Although we can use the basis in (4.1) directly, due to the added basis {ψi }ki=1
are not orthogonal to the original one {J−α,α

n (t)}Nn=0, which leads to ill-condition matrix.
Moreover, the ill-condition will affect the accuracy of solving the linear system.

In order to make the implementation more efficient, it is strongly recommended to use
following modified Gram–Schmidt process:

ϕn := J−α,α
n (t) = tα P̃−α,α

n (t), 0 ≤ n ≤ N ,

and ϕN+i , i = 1, . . . , k can be computed as

ϕ
(0)
N+i = tνi − projϕ0(t

νi ),

ϕ
(1)
N+i = ϕ

(0)
N+i − projϕ1(ϕ

(0)
N+i ),

...

ϕ
(N+i−2)
N+i = ϕ

(N+i−3)
N+i − projϕN+i−2

(ϕ
(N+i−3)
N+i ),

ϕN+i = ϕ
(N+i−2)
N+i − projϕN+i−1

(ϕ
(N+i−2)
N+i ), (4.3)

where

proju(v) = (u, v)ω(−α,−α)

(u, u)ω(−α,−α)

u.

Then, the enriched Petrov–Galerkin method for (3.3) is to seek ukL(x, t) := ukMN ∈
Vh ⊗ F (k,α)

N , such that

(0D
α
t u

k
L , v)L2(D) + b(ukL , v) + β(ukL , v)L2(D) = ( f , v)L2(D), ∀v ∈ Vh ⊗ PN+k . (4.4)

We now describe the numerical implementations for (4.4) under this set of basis functions.
We write

ukL(x, t) =
M∑

m=1

N+k∑
n=0

ũmnφm(x)ϕn(t). (4.5)
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Table 3 A comparison of decomposition error between eigen and QZ decomposition

Matrices in (4.6) with α = 0.3 and k = 3 Matrices in (4.6) with α = 0.7 and k = 3

N Eigen QZ Eigen QZ

4 1.37e−13 1.33e−15 3.58e−12 8.09e−16

8 2.73e−12 1.99e−15 3.33e−12 1.79e−15

12 3.17e−10 1.77e−15 8.77e−11 2.33e−15

16 9.55e−08 2.22e−15 3.39e−08 1.57e−15

20 6.45e−06 2.22e−15 7.29e−07 1.66e−15

24 1.81e−04 3.11e−15 3.60e−05 1.79e−15

28 6.10e−03 1.88e−15 2.41e−04 2.67e−15

32 2.34e−02 2.22e−15 1.35e−03 3.58e−15

80 6.86e−03 4.88e−15 3.61e−01 7.32e−15

Denote
f enmn = ( f , φm(x)L(α)

n (t))D, Fen = ( f enmn)1≤m≤M,0≤n≤N+k,

senpq =
∫
I
0D

α
t ϕq(t)L

(α)
p (t)dt, men

pq =
∫
I
ϕq(t)L

(α)
p (t)dt,

Sen = (senpq)0≤p,q≤N+k, Men = (men
pq)0≤p,q≤N+k,

U = (̃umn)1≤m≤M,0≤n≤N+k .

Then, from (3.2), we find that (4.4) is equivalent to the following linear system:

Mh U (Sen)T + Sh U (Men)T + βMh U (Men)T = Fen . (4.6)

Then, we can use Algorithm II or Algorithm III [cf. Sect. (3)] to resolve linear system 4.6.
InTable 3,we tabulate themaximumerror of (SenE)−1MenE−
 (resp.max{|QT AZT −

Sen |, |QT BZT − Men |}) for eigen-decomposition (resp. QZ decomposition) in (4.6) with
various N , which indicate that error of eigen decomposition is grow as N increases. We
observe similar behaviors as in Sect. 3.2 that the QZ decomposition is much more stable than
eigen decomposition for the nonsymmetric enriched matrices.

4.2 Error Analysis

In this subsection, we shall restrict our attention to the linear case (3.3) withL = −�. To this
end, we begin with the representation of the solution of (3.3). Let us consider the following
eigenvalue problem

Lϕ = λϕ in �,

whereϕ satisfy the homogeneous boundary condition, and it admits a nondecreasing sequence
{λ j }∞j=1 of positive eigenvalues and the eigenfunctions {ϕ j }∞j=1 forms an orthonormal basis

in L2(�). Then, the solution of (3.3) can be expressed as (see e.g., [26])

u(x, t) =
∞∑
n=1

∫ t

0
sα−1Eα,α(−(λn + β)sα)( f (·, t − s), ϕn)L2(�)ϕn(x)ds, (4.7)
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where Ea,b(z) denotes the two-parameter Mittag–Leffler function:

Ea,b(z) =
∞∑
j=0

z j

�(aj + b)
, z ∈ C, a > 0, b ∈ R.

Denote by k ∈ N the number of elements contained in the set

I (k;α) := {(i, j) : i, j ∈ N0, i + jα < k}, k ∈ N. (4.8)

For any given right hand side f ∈ Ck(I ; L2(�)) in (3.3), we can easily get the singularity
of the solution in t-direction. More precisely, for any k, the solution of (4.7) in t-direction
can be rewritten as

u|t =
∑
I (k;α)

γ α
i j t

i+ jα + ũk(t), t ∈ I ,

where the coefficients γ α
i, j are dependent on i, j and α. Let the leading singularity of ũk(t)

be tν+k−1, with ν ∈ (0, 1]. Clearly, the singularity of our approximation space is A(k;α) =
{i ∈ N0, i + α < k}, k ∈ N, so the rest part of the singularity is given by

R(k;α) := I (k;α)/A(k;α) = {(i, j) : i, j ∈ N0, i + jα < k, j �= 1}, k ∈ N. (4.9)

where k ∈ N denote the number of elements contained in R(k;α) or A(k;α).
Following the same procedure in Petrov–Galerkin spectral method, we arrive at

‖u − ukL‖Bα(D) � inf
v|t∈F (k,α)

N

‖v − u‖Bα(D) + inf
v|x∈Vh

‖v − u‖Bα(D).

To this end, we assume that

u(·, t) = ũk(·, t) +
∑
I (k;α)

γ α
i j t

i+ jα = ũk(·, t) +
k∑

i=1

usi ψi (t), (4.10)

then, we take

v|t = π
−α,α
N ũk(·, t) +

k∑
i=1

usi ψi (t)

and by applying Theorem 3.2 we have

‖v − u‖Bα(D) � N−s‖0Dα+s
t ũk‖L2

ω(s,s) (I ,HL(�)) + inf
v|x∈Vh

‖u − v‖Bα(D).

Theorem 4.1 Let u be the solution of (3.3) and ukL be the numerical solution (4.4).

Assume (4.10) holds and the leading singularity of ũk |t near t = 0 is tν+k−1 with ν ∈ (0, 1]
and k is defined in (4.8). If u ∈ Bα(D) and 0D

α+m
t ũk ∈ L2

ω(m,m) (I , HL(�)), there holds

‖u − ukL‖Bα(D) � N−m‖0Dα+m
t ũk‖L2

ω(m,m)
(I ,HL(�)) + inf

vL |x∈Vh
‖u − vL‖Bα(D), (4.11)

where the convergence index m ∈ N satisfy

• for ν − α ∈ (−1,− 1
2 ], we have m = 2k − 3,with k ≥ 2;

• for ν − α ∈ (− 1
2 , 0], we have m = 2k − 2, with k ≥ 2;

• for ν − α ∈ (0, 1
2 ] , we have m = 2k − 1, with k ≥ 1;

• for ν − α ∈ ( 12 , 1], we have m = 2k, with k ≥ 1;
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Proof Since the leading singularity of ũk |t is tν+k−1, ν ∈ (0, 1], which imply ν − α ∈
(−α, 1 − α]. According to Lemma 3.1 and Theorem 3.2, we only need to consider

‖0Dα+m
t tν+k−1‖L2

ω(m,m)
(I ) ≈

∫
I

(
tν−α+k−m−1

)2
tmdt < ∞,

‖0Dα+m+1
t tν+k−1‖L2

ω(m+1,m+1) (I )
≈

∫
I

(
tν−α+k−m−2

)2
tm+1dt = ∞,

(4.12)

or equivalently,

2ν − 2α + 2k − m − 2 > −1 ⇒ 2ν − 2α + 2k − m > 1,

2ν − 2α + 2k − m − 2 ≤ −1 ⇒ 2ν − 2α + 2k − m ≤ 2.
(4.13)

To determine the value of m ≥ 0, by fact that k ≥ 1 and a direct computation from (4.13)
gives

• For ν − α ∈ (−1,− 1
2 ] (or 2(ν − α) ∈ (−2,−1]), we obtain that m = 2k − 3, namely,

If k = 2, 3, 4, 5, . . . , we have m = 1, 3, 5, 7 . . . .

• For ν − α ∈ (− 1
2 , 0] (or 2(ν − α) ∈ (−1, 0]), we obtain that m = 2k − 2, namely,

If k = 1, 2, 3, 4, . . . , we have m = 0, 2, 4, 6, . . . .

• For ν − α ∈ (0, 1
2 ] (or 2(ν − α) ∈ (0, 1]), we obtain that m = 2k − 1, namely,

If k = 1, 2, 3, 4, . . . , we have m = 1, 3, 5, 7 . . . .

• For ν − α ∈ ( 12 , 1] (or 2(ν − α) ∈ (1, 2]), we obtain that m = 2k, namely,

If k = 1, 2, 3, 4, . . . , we have m = 2, 4, 6, 8, . . . .

Note that in the case ν − α ∈ (− 1
2 , 0]: when m = 0, we got α > ν + k − 1 in (4.12), but

this is not true. Hence, we have m ≥ 2 in the case ν − α ∈ (− 1
2 , 0]. A combination of the

above estimates leads to the desired result. ��

4.3 Numerical Results

In order to ignore the error in spatial direction, we consider TFDEs (3.34) in 1D with a given

source function f (x, t) = sin(πx) ·cos(π t), a(x) = x2
2 and homogeneous initial conditions.

In this example, we use improved algorithm to reslove (3.34) numerically. More specifically,
we can take the first k-th singular term tν j in R(k;α) = {t i+ jα, i, j ∈ N0, i + jα < k, j �=
1}. The exact solution is unknown, we compute a numerical solution with M = 40, N = 100
and k = 4 as the exact solution. In Fig. 7 , we list the Max-errors in log–log scale against
various N , k and α with M = 30. They indicate that the enriched Petrov–Galerkin method
is better than the Petrov–Galerkin method, and the numerical errors decay algebraically.

5 Numerical Results for Nonlinear Problems

In this section, we shall present some numerical results obtained by the proposed methods
introduced in Sect. 3 for nonlinear problem.
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Fig. 7 Left: the Max-error in log–log scale against various N and α for Example 6 with M = 30; Right: the
Max-error in semi-log scale against various M and α for Example 6 with M = 30
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Fig. 8 a The numerical solution with α = 0.7, γ = 0.01, N = 80, M = 100 against various t ; b The
numerical solution with γ = 0.01, N = 80, M = 100 at t = 1 against various α

Example 5.1 Consider the following time fractional Burgers equation in 1D:

C
0D

α
t u(x, t) − γ�u(x, t) + ∂x

(1
2
u2(x, t)

)
= 0, ∀(x, t) ∈ D, (5.1)

with the initial data u0(x) = − sin(πx).

We initially solved this problem by using the preconditioned Jacobian-free Newton-Krylov
method. To accelerate the convergence, we employed a two-grid approach. Namely, we use
Ñ ≈ N/2 and M ≈ M/2 as the initial data for the iteration the coarse approximation
solution with N for the fine approximation solution with N and M . This two-grid approach
significantly improved the convergence, only less than 10 iterations are needed to achieve
10−7-digit accuracy.

We plots in Fig. 8a the numerical solution with M = 100, N = 80, α = 0.7, γ = 0.01
at t = 0, 0.25, 0.5, 0.75, 1. We observe that, similar to the usual Burgers equation, the
profile of solution become steeper as t increases to about t = 0.25, and the solution start to
relax towards zero for t > 0.25. To investigate the influence of α on the solution, we plot
the numerical solution with γ = 0.01, N = 64, M = 100 at t = 1 for various α in Fig. 8b.
As a comparison, we also plot the solution with α = 1, i.e., the usual Burgers equation. We
observe that, as α increases, the profile of the solution becomes steeper and dissipates faster.
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Fig. 9 a The numerical solution with α = 0.7, ε = 0.1, N = 64, M = 250 against various t ; b The numerical
solution with ε = 0.1, N = 64, M = 250 at t = 1 against various α

Example 5.2 Consider the following time fractional Allen–Cahn equation in 1D:

C
0D

α
t u(x, t) − ε2�u(x, t) + f (u(x, t)) = 0, ∀(x, t) ∈ D, (5.2)

with the initial data

u0(x) =
{
1, 0 ≤ x ≤ 1,
−1, −1 ≤ x < 0,

(5.3)

and homogeneous Neumann boundary conditions

∂u

∂n
|∂� = 0.

In the above, f (u) = (u2 −1)u = F ′(u) is the usual double-well potential,� is the bounded
domain and n is the outward normal. The parameters we use in the following presentation is
ε = 0.1.

We also employed a two-grid approach (see Example 5.1) to resolve (5.2). Note that in
this example, only less than 12 iterations are needed to achieve 10−7-digit accuracy. We
plots in Fig. 9a the numerical solution with M = 250, N = 80, α = 0.7, ε = 0.1 at
t = 0, 0.5, 1, 1.5, 2. We observe that the relaxation process as t increases is similar to the
usual Allen–Cahn equation.

To further investigate the influence of α on the solution, we plot the numerical solution
with ε = 0.1, N = 80, M = 250 at t = 1 for various α in Fig. 8b. As a comparison, we
also plot the solution with α = 1, i.e., the usual Allen–Cahn equation. We observe that, as α

decreases, the speed of profile relaxation also decreases.

6 Concluding Remarks

We developed an efficient Petrov–Galerkin spectral method for linear/nonlinear TFDEs.
The proposed method employs an enriched Petrov–Galerkin method for time discretization
and can be coupled with any consistent Galerkin type discretization in space. The main
contributions of this paper are: (i) a novel and efficient matrix diagonalization method based
on QZ decomposition is introduced to solve the space–time linear system directly; (ii) an
enriched Petrov–Galerkin method which significantly improves the accuracy in time; and
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(iii) rigorous error analysis for the space–time Petrov–Galerkin method with and without
additional enriched basis functions.
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