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Method for 

A new spectral Galerkin method is proposed for the convection-dominated 
convection-diffusion equation. This method employs a new class of trail function 
spaces. The available error bounds provide a clear theoretical interpretation for 
the higher accuracy of the new method compared to the conventional spectral 
methods when applied to problems with thin boundary layers. Efficient solution 
techniques are developed for the convection-diffusion equations by using 
appropriate basis functions for the new trial function spaces. The higher accuracy 
and the effectiveness of the new method for problems with thin boundary layers 
are confirmed by our numerical experiments. 

KEY WORDS: Spectral-Galerkin method; boundary layer; singular perturba- 
tion; convection-diffusion. 

1. I N T R O D U C T I O N  

Many physical processes possess very thin boundary layers within which 
some concerned physical quantities vary sharply. The presence of thin 
boundary layers introduces a serious difficulty for their numerical simula- 
tions. Conventional numerical schemes, e.g., conventional spectral methods, 
finite element methods or central difference methods, usually suffer from 
numerical instability and/or unphysical oscillation when applied to a 
reasonably accurate mathematical model of such processes. Among the well 
studied mathematical models is the convection-diffusion equation: 

-eAu(x)+Vu(x).p(x)+q(x)u(x)=f(x,e), in 12 (I.1) 
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where s'2 is a domain in R d with d = 1, 2 or 3, e > 0 is a fixed constant. 
We assume for convenience that p = (Pt ..... pd) r, q and f are smooth func- 
tions on O and liT( ', ~)IILo-~ is bounded by a constant independent of e. 
In this paper, we restrict ourselves to the cases t'2 = ( - 1, 1 )d and only the 
homogeneous Dirichlet boundary condition for u is considered. 

In many applications, Eq. (1.1) possesses boundary layers of width 
O(e:'), where 7 is a positive constant. When the parameter e is very small, 
it is well known that the central difference schemes and conventional finite 
element schemes suffer from unphysical oscillation when applied to Eq. 
(1.I), unless very fine meshes are used. For the conventional spectral 
methods (cf. Gottlieb and Orszag (1977); Canuto et aL (1988): or Funaro 
(1992) for a general introduction of the spectral method), very large N 
(N is the number of modes of the approximate solution in each direction) 
is required to get acceptable resolution of the boundary layer. This causes 
various computational problems. For instance, the pseudo-spectral methods 
with large N lead to severely ill-conditioned systems, resulting a significant 
loss in precision. In fact, when the problem possesses a boundary layer of 
width O(e) with e ~ 1 (e.g., e < 10-6), high accuracy cannot be expected by 
using the conventional pseudo-spectral method [cf. Eisen and Heinrichs 
(1992)]. There have been many attempts in searching suitable schemes for 
this problem. For instance, the adaptive finite element or finite difference 
method (cf. Ascher et al. (1979)], up-wind finite difference method [cf. 
Hughes (ed.) (1979)], the boundary layer resolving spectral methods 
[BLRSMs, cf. Orszag and Israeli (1974); Tang and Trummer (1993)] and 
others [Kalinay De Rivas (1972); Maclcenzie and Morton (1990); Oriordan 
and Stynes (1991)] have been successfully applied to the Eq. (1.1) in various 
cases. We shall focus our attention to the spectral methods. It is observed that 
the BLRSMs can handle very thin boundary layers and give very accurate 
results when the solutions are smooth [cf. Orszag and Israeli (1974); Liu and 
Tang ( 1994b); and Tang and Trummer ( 1996)]. The key to the success of the 
BLRSMs is to apply suitable transformations to the approximate equations 
before discretizing them with global polynomials as the trial functions. 
However, the transformed equations are usually rather complicated with 
degenerate coefficients even when the original equations are very simple. In 
fact, let x i = g~(y~) with g~ e C~[  - 1, 1 ] such that 

g ~ ( - 1 ) = - - l ,  g~(1)=l ,  g',.(y~)>O, for y ~ e ( - 1 , 1 ) a n d i = l  ..... d 

Applying the change of variables x = g(y) to Eq. (1.1), we obtain 

d d 

--e ~ ai C~y,(ajc~yv) + ~ a~P~ ayV + q(g(y)) v = f(g(y), e), 
i = l  i = 1  

in£2 (1.2) 
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where 

v(y) = uo g(y), ai(y~) = 1/g'~(y~), P;(y) = p ,  o g(y), i=  1 ..... d 

In order to obtain a finer resolution near the boundary, it is necessary to 
have J i ( -  1)= g ' ; ( -  1)= 0 and/or J i (1)= g',.(1) = 0 for at least one index i. 
Hence, a~(y~) is not even bounded near the boundary. Therefore, the trans- 
formed equation has unbounded coefficients even when the coefficients of 
the original equation are constants. This causes several major difficulties to 
the analysis and to the implementation of these methods. For instance, it 
is very difficult to carry out a theoretical analysis for such schemes due to 
the degenerate character of the transformed equations. On the other hand, 
the complexity of the transformed equations also increases considerably the 
difficulty of the implementation. 

One of the essential questions is what is the gain in accuracy by using 
the BLRSMs compared with the conventional spectral methods. This ques- 
tion has recently been-addressed in I-Liu and Tang (1994a, b)]. Another 
important question which we would like to address here is how to 
efficiently solve the transformed Eq. (1.2). The existing procedures [cf. 
Orszag and Israeli (1974); and Tang and Trummer (1996)] are based on 
applying the conventional pseudo-spectral methods directly to the trans- 
formed equations. Therefore, to generate the discretized matrix system, one 
first needs to evaluate some unbounded functions at the collocation points 
including those near or at the boundary. This introduces extra computa- 
tional difficulties and appreciable roundoff errors when the number of 
collocation points N in each direction is large. Furthermore, one needs to 
solve an ill-conditioned linear algebraic system with a full matrix. There- 
fore, this type of implementations is not efficient. 

The main purpose of this paper is to address the difficulty of the 
implementation. We here propose a new spectral-Galerkin method which 
uses a new trial function space. In addition to the ability of resolving very 
thin boundary layers, the resulting linear system can also be efficiently 
solved in many notable cases. More precisely, when p~ (i = 1,..., d) and q are 
constants, the resulting linear system has sparse matrix which can be 
efficiently inverted by a direct method. Therefore very efficient and accurate 
direct solvers can be developed for Eq. (1.1) in this case. A remarkable fact 
is that the computational complexity of the new spectral-Galerkin method 
is essentially the same as that 1: of the very efficient conventional spectral- 
Galerkin method developed by Shen (1994). In other words, the ability of 
resolving much thinner boundary layers does not introduce extra computa- 
tional expenses. Variable-coefficient or nonlinear problems can be dealt 
with using an iterative method with a suitable constant-coefficient problem 
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as the preconditioner or subdomain solver. More specifically, in solving Eq. 
(1.1) on a complex geometry by the domain decomposition methods or 
fictitious domain methods, it is essential to have a fast and highly accurate 
solver on a rectangular domain. Since this solver will be repeatedly used in 
the iterative process, the efficiency and accuracy of those methods will 
largely depend on that of the solver. The method developed here can also 
be used in solving time-dependent problems with thin boundary layers such 
as Navier-Stokes equations with high Reynolds number, since at each time 
step an equation like the form of Eq. (1.1) need to be solved. 

Theoretical analysis for the one-dimensional case and numerical 
experiments for one and two dimensional cases indicate that this new 
method is more efficient and more accurate than the existing spectral 
methods. The idea in this work can be easily adopted to other singularly 
perturbed elliptic equations, including the fourth-order elliptic equations. 

We now briefly describe some of the notations used in this paper. 
We adopt the standard notations L2(t2) and H'"(t-2) to denote the usual 
Sobolev spaces, and Hg'(f2) to denote the subspace of H'"(I2) whose 
elements have vanishing traces. We denote by L~,,(12) and H~",j(O) the 
weighted Sobolev spaces with the weight function co. Let 1= ( - 1 ,  1), 
we denote r~N to be the space of real polynomials on I with degrees not 
exceeding N. We set XN = {UN er~N: UN(__+I)=0}. We shall use letters of 
boldface type to denote vectors and vector functions as well as product 

d spaces such as XN = I-I;= ~ XN. 
The rest of the paper is organized as follows. In Section 2, we intro- 

duce the new spectral method. In Section 3, we develop efficient solution 
techniques for the new Legendre-Galerkin method applied to the convec- 
tion-diffusion equations in one-and two-dimensional domains. In Section 4, 
we present numerical experiments, by using both the new and conventional 
Legendre-Galerkin methods, on several typical examples with thin bound- 
ary layer. Some error analysis for the one-dimensional case is presented in 
the Appendix. 

2. THE NEW SPECTRAL GALERKIN METHOD 

We first examine the weak formulation for Eqs. (1.1) and (1.2). The 
weak formulation of Eq. (1.I) reads: Find u ~ HI(O) such that 

e fQVu'Vvdx + f (Vu'p) vdx + fr2quvdx 

=IQfvdx, VveHI(t'2 ) (2.1) 
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The conventional spectral Galerkin method is: Find uN in XN such that 

e~aVuN.Vvdx+~a(VuN.p) vdx+~ qUNVdX=~ fvdx, VV~XN 

(2.2) 

As indicated in the introduction, Eq. (2.2) is not appropriate to 
approximate Eq. (2.1) when e ,~ 1. To introduce the new method, we apply 
the transformation x = g ( y )  as described in Section 1 to Eq. (2.1). Let us 
denote J(Y)-I-[i=l- ,/ J~(y~) with Ji(y~)= g'~(y~) and 

GH~(£2):= yelloW(g2): II011t~,~>+ ~ I[0,.yllL?4~<O0 (2.3) 
i = l  

where og~(y)= a~(y~)J(y). It should be noted that all the smooth functions 
with compact support in t-2 are indeed in this space. A weak formulation 
of Eq. (1.2) can be established in GH~(Y2) which is the image space of 
Ho~(12) under the transformation Gu := u o g. We multiply the Eq. (1.2) by 
J(y) and set 

d 

fr(a~J)(O,.vO.,,w)dy+faQvwdy (2.4) A ( v ,  w )  = i=  l " 

d 

B(v, w) = ~ ~ aiJPi(OyV) w dy (2.5) 

(F, w) = fa Fw dy (2.6) 

where Q(y)=  q(g(y))J(y) and F(y, e )=  f(g(y), e)J(y). Then the weak for- 
mulation for Eq. (1.2) is as follows: 

Find v e GH~(f2) such that 

eA(v, w) + B(v, w) = (F, w), gw ~ GHIo(O) (2.7) 

We now consider the approximation of Eq. (2.7) by using a spectral 
Galerkin method. At the heart of the new spectral Galerkin method is a 
new trial function space. Although it is possible to present this space in the 
x variable(s) and then introduce the new method for Eq. (2.1) directly, it 
is more convenient to introduce the trial function space in the y variable(s) 
and introduce the scheme for the transformed Eq. (2.7). 

It is essential to find suitable trial function spaces in order to properly 
approximate the solution of Eq. (2.7) in GH~(£2). It is clearly improper to 
consider the Galerkin approximation for Eq. (2.7) in XN. One would then 
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naturally consider the image space of XN under the transformation G 
defined earlier as the trial function space. It turns out, however, that one 
would obtain the same results by applying the spectral Galerkin methods 
directly to Eq. (2.7). 

Let Y~,~= { v e H~(12  )( I )  : v' = J+P, P ~ n u}  , i =  1 ..... d. It is clear that 
Y~v is a N dimensional subspace of G H ~ ( I )  with Gu := uog+. It turns out 
that the space YN= a ; I-I+= ~ Y N  is a good choice as the trial function space. 
Therefore, the new spectral Galerkin approximation for Eq. (2.7) reads: 
Find VN e YN such that 

eA(I)N, W)q-B(UN, W)=(F, w), V w ~ Y  N (2.8) 

The theoretical analysis, especially the error analysis, for this scheme is not 
an easy task. In the Appendix, we present some results for the one dimen- 
sional case. The details of the proof can be found in Liu and Tang (1994b). 
The analysis for the multi-dimensional case is much more difficult and will 
be addressed in a future work. 

3. AN EFFICIENT IMPLEMENTATION OF THE 
NEW GALERKIN METHOD 

A new spectral Galerkin method is introduced above and the results in 
the Appendix indicate that the new method leads to higher accuracy when 
applied to Eq. (1.1) with e < I .  However, one important question left 
unanswered is how to implement the new method efficiently. It is clear that 
the efficiency of the method depends on the choice of basis functions for Y~¢. 
If the basis functions are not properly chosen, the resulting linear system will 
generally have a full matrix. Therefore, the computational work will be 
significantly increased compared to the conventional spectral Galerkin 
method [cf. Shen (1994)]. In this section, we show that for problems with 
constant coefficients, we can find an appropriate basis for Y N  such that the 
resulting linear systems have sparse matrices. Furthermore, these linear 
systems can be solved by an efficient direct method. The problems with 
variable coefficients are solved by using a preconditioned conjugate gradient 
type method with a suitable constant-coefficient problem as the preconditioner. 

3.1. One-Dimensional Case 

Let us consider first the following equation: 

--  ev.~.,. + f lu ,. + ),u = f , x ~ I ; u(+_l)=0 

where fl and y are some appropriate constants. 

(3.1) 
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Let k be a positive integer. We consider the following transformation: 

fY  x = g ( y ) = g ( y , k ) = - l + t r ~ .  (1-t2)~dt 
--I 

(fl  )--1 
with o'k=2 (1--y2)kdy (3.2) 

1 

Hence, J(y)=J(y, k) = g'(y, k)=ak(1 _y2)k and 

YN = rN(k)..~ {veH~(I): v' =JP with PenN} (3.3) 

To alleviate the notations, the parameter k in the notations will be 
frequently dropped when no confusion is possible. 

Then the new spectral Galerkin method for Eq. (3.1) is: Find VN e YN 
such that 

I~ _ _ f l  f '  J - 'v 'uw'dy+fl f '  Jv%wdy+y _ JVuWdy 

=fl  Jfogwdy, VWeYN (3.4) 
--I 

It is clear that YN is a N dimensional space. However, it is not clear at all 
how to construct an appropriate basis for YN such that the linear system 
(3.4) can be efficiently solved. 

Since the Legendre polynomials form an orthogonal basis for L~(I), 
it is natural to construct basis functions for YN by using the Legendre poly- 
nomials. Let Li(x) denote the ith degree Legendre polynomial. If we set 

~(y )  = J(t)(Li(t) + ~,) dt, 
--1 

i =  1, 2,..., N (3.5) 

and we choose a i = - l ~ l  I J(t)Li(t)dt, then ~ ( 1 ) = 0  and ¢ie YN" It is 
obvious that {~,~} ~= ~, 2,.... U are linearly independent and therefore form a 
basis for YN. Unfortunately, this basis leads to a full matrix for the linear 
system (3.4) and hence is prohibited in practice for N large. We shall con- 
struct below a more appropriate basis by exploiting the properties of the 
Legendre polynomials. 

The following well known identities of the Legendre polynomials [see 
for instance Szeg6 (1975)] will be frequently used: 
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ej' L,(y) L j ( y ) d y - -  2 c5o. 
_~ 2 i +  1 

f t  Li(t) dt= I -,  ~ (L,+ ,(y) -- L,_ l(Y)) 

( 1 -- y2) L'~(y) - i(i + 1 ) (L,_ ~(y) - L~+ ,(y)) 
2 i +  1 

1 
yL,(y) = ~  ((i + 1) L,+ ,(y) + iL,_ ~(y)) 

Z l t l  

Let  us define 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

f Y  ~i.k(y)= ( 1 - - t 2 ) k L  ~k~ l(t) dt, i = 0 ,  1,2 ..... k = l ,  2,... (3.10) i+k+ 

The following Lemma shows that  ~b;. k can be expressed as compact  com- 
bination of the Legendre polynomials.  

L e m m a  1. There exist constants {ay "kl} such that  

k + l  
~b~.k(y)= ~ a)~'k~L~+2j(y), i = 0 , 1 , 2 , . . . ,  k = l , 2 , . . .  (3.11) 

j = 0  

Proof. We prove the result by induct ion on k. For  k = 1, we can 
derive Eq. (3.11 ) by direct computa t ion  using Eqs. (3.10), (3.7) and  (3.8). 

Now we assume that  Eq. (3.11) holds for k ~ < m - 1 .  Then by Eq. 
(3.10) and integration by part,  

fY  ~b,. ,,,(y) = ( 1 - .,"2v", ~/+,,, + l,a',  + r {  .... i} t ,,~ 2 t ( 1 -  t 2 ) . . . .  i - i . , , ,  . f {  .. . .  i} i(t) dt (3.12) 
--1 

We derive from Eq. (3.10) tha t  

(fi+l,,n_l(y)=(1 __y2) . . . .  I t '  ~i+,, ,+ .. . .  I} l,a',t"~ (3.13) 

Therefore, since ~b~. k( -- 1 ) = 0 for any  i and k, we have 

f3 ' t ~,,,,,(y)=(1--y2)~'i+, . . . . .  , (y)  + 2  tck,+, ..... ,(t) dt 
--1 

= (1 - y2) ~b',.+, . . . . .  , (y)  + 2y~b,+ l . . . . .  i(Y) 

- 2  ~,.+1 . . . . .  l(t)dt (3.14) 
- - |  
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By assumption, we have 

~b,+l . . . . .  I (Y) - -  ~, ay +' ..... "Li+t+z;(Y) 
j = O  

Hence 

¢',+~ ..... ~(y)= Y, a "+~ ..... ~L' (v~ j i+ ~ + 2j-_. 
j = 0  

Using these two relations in Eq. (3.14) and using Eq. (3.7)-(3.9), one can 
easily conclude that there exist constants a~/"'"~ such that 

J 

m + 1 

¢i .m(y)= ~ ay'')Li+2j(Y), i = 0 , 1 , 2  .... 
j =  0 

The proof is complete. 

Theorem 1. {¢)i,k}i=O,l,...,N--I form a basis for YN(k), k = l , 2  ..... 

Proof. By definition, ¢~. k( -- 1 ) = 0, i = 0, 1,..., N- -  1, k = 1, 2 ..... On the 
other hand, by using Lemma 1 and the fact that L~( _ 1) = ( ___ 1) ~, we derive 

k + l  k + l  
.~i.k)r _(__1)(__I) i+2j el, k(1)= ~ -'i'a~r t l ) =  E " j  --i+2j --.] ~ i  + 2j', 

j=O j = O  

k + l  

=(-1)' E L,+2g-1)=(-1/¢,,k(-1)=O 
j = o  

Since ~lk~ en  N for i = 0 ,  1 ..... N - - l ,  we conclude from Eq. (3.10) that / - ' i + k  + 1 

¢i. k E Yu(k) for i = 0, 1 ..... N -  1. On the other hand, if there are constants 
b; such that Z~=o ~ b~¢~,k(y)=0, y e L  then by Eq. (3.10), we have 

N - - I  

j '" ( l _ t Z ) k  ~. ~k~ ,(t) dt=O, e I  biLi+k+ Y 
--1 i=O 

Taking the derivative with respect to y, we derive 

N - - I  
(1-- y2)k ~ ~k) biLi+k+l(y)=O, y ~ I  

i=O 

which implies 

N - - I  

~'i--i+k+ ~' r~k~ l ( y ) = 0 ,  y e I  
i=O 
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It is clear that {r~k~ + l(Y)} ;=0. 1..... N- I are linearly independent. Therefore, ~ i + k  

bo=bl . . . . .  b N _ l = 0 ,  and {¢~.k(Y)}i=O.l,....N--I are linearly inde- 
pendent. Since dim{YN(k)} = N ,  {¢i.k(Y)},=O.,.....U-I form a basis for 
Y,v(k). The proof  is complete. 

Since J (y ,  k) = ak(1 -- yZ)k, we conclude from Theorem 1 that for any 
nonzero constants a;, k, the functions 

~ki.k(Y)=°:i.~ J( t ,k )  L~k~i+k+ I(t) dt, i = 0 ,  1 ..... N - - 1  (3.15) 
1 

also form a basis for Yu(k). The constants 0~;,k are of our choice. By 
Lemma 1, we have 

k + l  

~k~.k(y ) =C¢,,kak¢;,k(y ) = ~ Ctckaka~'k'L,+zi(y), i = 0 ,  1 ..... N - -  1 
. /= 0 

(3.16) 

Let us now reformulate the Eq. (3.4) under the basis functions defined by 
Eq. (3.15). For  a fixed k, we denote 

N - - I  

VN(y) = ~ Xi~/i.k(Y), X=(X0, Xl ..... XN-I)  r 
i = 0  

and 

f , '=  fl_, J(Y, k ) f (g (u , k ) )Oi . k (Y )d t ,  f = ( f o ,  f , , . . . , f g_ l )  r 

We also denote 

f 
l 

au=a~(k  ) = J -~(y ,  k) t~'i.k(y) tP).k(y) dy 
--I 

A = A(k) = (au(k))i. j=o. t...., u - l  

b~ = b~l(k ) = ~t_l J(y, k)~i .  k(Y) ~b~.k(Y) dy 

B = B(k) = (bij(k))i, j=o. i..... N-- 

CO.= c~(k) = ~k).k(Y) Oi.k(Y) dy 
--1 

C =  C ( k )  = ( c u ( k ) ) j  ' j = o .  ,..... N - i  

(3.17) 

(3.18) 

(3.19) 
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By using these notations, we find that Eq. (3.4) is equivalent to the 
following linear system: 

(eA +tiC+ yB) x = f  (3.20) 

The next Lemma shows that the matrices A, B, and C are banded with 
band-lengths independent of N. Thus, the system Eq. (3.20) can be solved 
in O(N) operations for any k. 

Lemma 2. Let k be a positive integer. Then A(k) and B(k) are sym- 
metric positive definite and C(k) is skew-symmetric. Furthermore, 

ao.(k) = 0 for i ~ j 

b,y(k) = 0 for i ¢ j , j + 2  ..... j+_(4k+ 2) 

c~j=0 for i¢ j+l , j+_3 ..... j + ( 2 k +  1) 

Proof. We observe immediately that A and B are symmetric and C 
is skew-symmetric. Furthermore, for any x = (xo, xl ..... XN-~)r, let w(y)= 
ZNZo t Xi~i,k(Y). Then we have 

and 

i 
I 

x r A x =  J-l(y)  w'(y)w'(y)dy>O 
--1 

if x ¢ 0  

I 
xTBx= I J(y) w(y)w(y)dy>O if x # O  

--1 

Therefore A and B are positive definite. 
We derive from Eq. (3.15) that 

O'i.k(y)=o~i, kJ(y ,k )  r(k~i+k + l(Y) (3.21) 

Using Eqs. (3.17) and (3.21), and integration by part, 

aij(k)----c~i.k I ~i+k+rlk~ l(Y)~bj.~-(y)dy=--e,.k ~i+kr~k+~l(Y)~kj.k(y)dy 
1 --1 

Since r(k+l) ere,., we derive from this relation and Eq. (3.16) that ~i+k+ I 
ao.(k)=O for i<j. By symmetry, we have also a;j(k) = 0  for i>j. 

Since J(y, k) =ek(1 -- y2)k, we have 

bij(k)=~k f'-i ( 1 -  y2)k ~Yi, k(y ) ~lj, k(y ) dy 
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We observe from Eq. (3.16) that (1 __y2)k ~i,k ~/Zi+21k+t~+2k" Therefore, 
bo.(k)=O for i + 4 k + 2 < j .  By symmetry, we have also b~i(k)=O for 
j +  4k + 2 < i. On the other hand, it is easy to realize by using repeatedly 
Eq. (3.9) that Legendre expansion of (1--y2)kLs(y) is of the form 

fl~t,., s~ Ls Z~'=-k +2/(Y). Therefore, bo(k ) = 0 if i, j are not of the same parity. 
We then conclude that 

b,./(k) = 0 for i # j , j + 2  ..... j _  (4k + 2) 

By using Eq. (3.7), it is easy to derive that 

m -  1 

L',,,(x) = ~ (2•+ 1) L~(x) 
/ = O; / + m o d d  

By using this relation and Eq. (3.15) in Eq. (3.19), we can conclude that 

co.(k)=O for i ~ j + l , j + _ 3  ..... j + ( 2 k +  1) 

The proof is complete. 

The entries of A, B and C can be explicitly computed by using proper- 
ties of the Legendre polynomials. The following lemma provides explicit 
formulae for a o, b• and % in the case of k = 1. Note that in the following 
lemma, the parameter k is dropped from most of the notations, and as, bs, 
ci are not related to a o b o %. 

Lemma 3. Let k = l ,  then J(y)=J(y,  l ) = ~ ( 1 - y Z ) .  We set cc;.l= 
- (2(2i + 3)(2i + 5)/3(i + 2)(i + 3)) and denote 

a i =  
2(2i+5)  2 i + 3  i - - 2 f l - - i + 3  

2 i + 7  ' b " = 2 i + 7 '  c ; - 2 i + 1 '  ds-(2i+l)(2i+7) 

e l =  
2i 2 + 19i + 42 (2i  + 3) (2 i  + 5 ) 2 

( 2 i + 7 ) ( 2 i + 9 ) '  f ~ - ( 2 i + 7 ) ( 2 i + 9 ) '  g s = 2 i + l  

Then we have 

~b;. t(Y) = L;(y) +asL,+2(y) + bsL,+4(Y) 

4(2i+ 3)2(2i + 5) 
aii- 3 ( i + 2 ) ( i + 3 )  ' ao.=O for i # j  

6(2i + 5) 
Ci+l'i=--Ci'i+l-- 2 i + 9  ' Ci+3. i ~ --Ci, i+3 

2(2i + 3) 

2 i + 7  

(3.22) 

(3.23) 

(3.24) 
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c~=0 for i~j+_l,j+_.3 (3.25) 

bi, i + 6  = --f ici+6gi+5 (3.26) 

bi, i + 4  = bigi+4 - (eici+4gi+3 + f i  di+4gi+ 5)  ( 3 . 2 7 )  

bi. i+2 = (aigi+ 2 + biai+ 2gi+4) 

-- (dici+2gi+ t + e~ di+2gi+ 3 + f~ei+zgi+5) (3.28) 

b,. i= (g, + a~ g;+2 + b~ g,+ 4) 

- -  (c~ g~_~ + d~ g~+ t + e~ gi+ 3 + f~ gJ+ 5) (3.29) 

bi.i=b/.;, b,. j = 0  for i # j , j + 2 ,  j+__4, j+_6 (3.30) 

Proofi  We can derive Eq. (3.22) by direct computation using Eqs. 
(3 .10) ,  (3.7) and (3.8).  By using Eq. (3.8) and integration by part, we 
obtain 

( i+2 ) ( i+3)  
f '  (L,+ L' " , (y ) -L ,+3(y) )  7+2(Y) dy au=oti'lO~J'l 2i+5 -l  

(since L~( ___ I)  = ( +__ 1) i) 

( i+2 ) ( i+3 )  
f '  Lj+~(y)(L~+,(y)-L',+3(y)) dy 

= --°~i" I aJ' I 2 i+5  -l - 

(using Eq. (3.7)) 

= c~,, l~j, i(i  + 2 ) ( i  + 3) -~ Lj+,(y) L ~ + ~ ( y )  dy 

Equation (3.23) is then a direct consequence of the above relation and 
Eq. (3.6). 

Similarly, using Eq. (3.10), Eq. (3.8) and integration by part, 

' I' 
c, j=f  O}.,(y) tk,.,(y)dy=aj.~ J(y)Lj+z(y)O, . , (y)dy  

--1 --1 

1 

-23 (j  + 2)(j + 3 ) 2 j + 5  O~j'l f - ,  (LJ+t(Y)-LJ+3(Y))Oi' t(y)dy 

We can then derive Eq. (3.24) and (3.25) by direct computation using 
Eq. (3.22) and Eq. (3.6). 
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The computation of b,.j is a little more involved. We split bij into two 
part as follows: 

! I 

_ t~,,. t( t)  t~,j. ~(t) dt  = b l j - b b  

Then b~i can be easily computed by using Eq. (3.22) and Eq. (3.6). To com- 
pute b~i, we use Eq. (3.9) and Eq. (3.22) to get 

tOi(t) =c,Li_ t(t) +d~Li+ ~(t)+esLi+ 3(t)+ f,.L~+5(t) 

We can then compute b 0 and derive Eqs. (3.26)-(3.30) by straightforward 
computation using Eq. (3.6). 

Remark 1. Thanks to Lemma 1, the matrix for the system Eq. (3.20) 
has only nine nonzero diagonals in the case k = 1 and hence can be easily 
inverted in O(N) operations. The matrix becomes even simpler when fl or 
y=0 .  In fact, if ~,=0, the matrix is tridiagonal; if f l=0,  the system 
(eA + ),B)x = f can be decoupled into two subsystems with odd and even 
components of x. 

In the case k > 1, it is clear that we can also derive explicit formulae 
for the corresponding matrices A(k), B(k) and C(k) under the basis 
Eq. (3.15). We should point out that although the numbers of nonzero 
diagonals of B(k) and C(k) increase as k increases, but they remain to be 
independent of N (see Lemma 2). Therefore, the system Eq. (3.20) can still 
be solved in O(N) operations. 

3.2. Two-Dimensional Case 

It is well known that certain singularly perturbed problems arising in 
physical and engineering sciences also exhibit boundary layers of the form 

u(x, s ) =  a(s) exp(-e-~'p(x)) 

where s, p denote the arc length and the normal distance to the boundary 
of a point x within the boundary layer, a(s) is a smooth function. It is clear 
that this type of boundary layer phenomenon is essentially one-dimen- 
sional. Hence, good approximation properties can be expected by using the 
tensor product of the one-dimensional approximation space. To fix the 
idea, we consider the model problem: 

-eAu+flu,_,+yu=f x ~ = I Z ;  u lo~=0  (3.31) 
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where fl and ?, are some appropriate constants. More general equation with 
additional first-order term au,, can also be treated in similar manner. 

We continue to use the notations in Section 3.1. For  fixed k, Let g be the 
function defined in Eq. (3.2), we use the transformation x; = g(y~) = g( Yi, k), 
i =  1, 2. Hence, J~(y~) = J(y;)  =J(y~, k) =ak(1 _y~)k  and a~(yi)= 1/J~(y~), 
i = 1, 2. We will drop the parameter k from the following notations. We set 

YN = YN × Yu=span{IPi(Yt) @j(Y2): i, j = 0 ,  1 ..... N - -  1} 

Therefore, the scheme in Eq. (2.8) applied to Eq. (3.31) is as follows: Find 
v^, e YN such that 

fa J, aN O.,.~ VN C3y~ w dy + ~ J~ a2 C3y~ V N Oy~w dy -k- fl ~ J~ C3 y,_VNW dy 

+ y l J~J,_vNwdy=Ir J~J2f °gwdy, 

Let us set 

N-I 
l)N(Yl, Y2)= E v~i~i(Yl) Oj(Y~) 

i,j~O 
V= (vi:):. j=o. c.... N- I 

Let A, B, 

VW • YN (3.32) 

(3.33) 

Z~ = f Jr(Y1) J2(Y2)f(g(Y~), g(Y2)) ~,(Y~) ~j(Y2) dy 
(3.34) 

F=(fij)i.j=o. l.....N-I 

and C be the matrices defined in Section 3.1, we find that 
Eq. (3.32) is equivalent to the following matrix equation: 

e(A VB + BVA) +/3A VC + ),BVB = F (3.35) 

We can also rewrite this equation in the following form using the tensor 
product  notation: 

{e(A®B+ B®A)+/3A®C+ yB®B} v = f  

where f and v are respectively F and V written in the form of a column 
vector, i.e. 

f = (fo.o, f , .o ..... fN-,.o;fo., ..... fN-,.,;'";fO.q ..... fN--,.N--,) r 

and @ denotes the tensor product of matrices, i.e., A ® B = (Abo.)i" j=0. 1..... N- 1" 



426 Liu and Shen 

We now describe how the Eq. (3.35) can be efficiently solved by using 
the matrix decomposition method. Since A is symmetric positive definite, 
A ~/2 is well defined. We make the transformation 

A~/2V= X, i.e., V =  A - I / 2 X  

Multiplying A -  ,/2 to Eq. (3.35) and applying this transformation, we get 

e(XB + A-~/2BA-1/RXA) + f lXC + y A - : ' B A - ~ / 2 X B = A - ~ / ' - F  (3.36) 

Since the matrix A-~/2BA -~/2 is symmetric, there exist an orthogonal 
matrix E and a diagonal matrix A, consisting respectively eigenvectors and 
eigenvalues of A - ~/2BA - J/2, such that 

A -I/2BA - I/ZE = EA 

We then define W= E r x  and set X =  E W  in Eq. (3.36), obtaining 

e ( E W B  + EA WA)  + f l E W C  + yEA WB = A - t/ZF 

Therefore, since E - I =  E r, we find 

e ( W B + A W A ) + f l W C + y A W B = E r A - * / Z F  - G (3.37) 

Taking the transpose of this equation, since A and B are symmetric and C 
is skew-symmetric, we obtain 

e ( B W r  + A W r A )  - - f l C W r  + y B W r A  = G r (3.38) 

Let we=(wp.0, wp.t,..., Wp.N_1) r and gp=(gp.0, gp, l,..., ge .N- l )  r for p =  
0, 1 ..... N--  1. Then the p th  column of the Eq. (3.38) can be written as: 

( eB+e2pA  - f l C + y 2 p B )  wp = gp, p =0, 1 ..... N -  1 (3.39) 

where 2p is the p th entry of the diagonal matrix A. We note that for each p, 
Eq. (3.39) is in fact an equation of the form Eq. (3.20). 

In summary, the solution of Eq. (3.35) consists of the following steps: 

o 

BA - i/2. 

2. 

3. 

4. 

Pre-processing: compute the eigenvalues and eigenvectors of A -  ~/2 

Compute G = E r A  - ~/2F; 

Obtain W by solving Eq. (3.39); 

Set V =  A - : - E W .  
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Since A-  t/2BA- ~/2 has only a fixed number of nonzero diagonals, the 
eigenvalues and eigenvectors of A-~/ZBA-~/'- can be computed in O(N z) 
operations. Solving Eq. (3.39) for p = 0, 1 ..... Nt requires only O(N 2) opera- 
tions as well. Hence, the bottleneck of the algorithm is the two matrix 
multiplications in Steps 2 and 4. The operation counts for the two matrix 
multiplications can be further reduced by half if we take into account the 
fact that e~j = 0 for k + j odd. Consequently, Steps 2 and 4 take about 2N 3 
arithmetic operations. In short, the complexity of the new Legendre-Galerkin 
method is essentially the same as that of the conventional Legendre-Galerkin 
method [cf. Shen (1994)]. 

Remark 2. This algorithm can be easily extended to the three-dimen- 
sional case with (2=13. We refer to [Shen (1994)] for similar considera- 
tions on this aspect. 

For problems with variable coefficients, the resulting discrete systems 
usually have full matrices. Hence, it is inefficient to evaluate these matrices 
and to invert them directly. However, given an equation with variable coef- 
ficients, we can choose an appropriate equation (which approximates the 
original equation in certain sense) with constant coefficients as a precondi- 
tioner. Then the original equation with variable coefficients can be solved 
by using an iterative method such as the Preconditioned Conjugate Gradient 
Method (see Example 3 later). The convergence rate of the iterative method 
varies with different equations but is usually independent of N. 

4. NUMERICAL EXPERIMENTS 

In this section we report on several numerical results by using the new 
Legendre-Galerkin method presented in the previous section. All the com- 
putations are based on the transformation of Eq. (3.2) with k = 1. In order 
to demonstrate the high accuracy and the efficiency of the new method, we 
also make some comparisons with the conventional Legendre-Galerkin 
method [cf. Shen (1994)] and with the boundary layer resolving Chebyshev 
method [cf. Tang and Trummer (1996)]. 

We note that for the transformation of Eq. (3.2) with k = 1, the highest 
degree of Legendre polynomials in both XN and YN-3 is N. Hence, we 
shall compare the conventional Legendre-Galerkin method in XN with the 
new Legendre-Galerkin method in YN-3- Note however that XN is a 
(N--1)  '/dimensional space, while YN-3 is a ( N - 3 )  a dimensional space. 
Let og ~ be the set of the Legendre Gauss-Lobatto collocation points with 
respect to XN. For all the examples considered below, we compute 

[[U--~tN[[U~ ~ max [u(g(y))-uN(g(y))[ 
y E.//N 
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and 

]Iv - UJv_3 lit,- ~ max Iv(y) - uN-3(y)I 
y ~ .  t i n  

where v = u(g(y)), UN and VN-3 are respectively the solution of  the conven- 
tional Legendre-Galerkin scheme in Eq. (2.2) and the new Legendre- 
Galerkin scheme in Eq. (2.8). Since the collocation points in the y 
variable(s) in ~/~. are well condensed near the boundary for the x 
variables, the boundary layers in x variable(s) are well resolved by , ~ .  
(for N sufficiently large). Hence, I lu-  uNII/~- (resp. [Iv - oN-311~) is usually 
very close to I lu -  UN II r~-I~ (resp. Ilv - vN_ 3 II t~l~). 

Example 1. Our  first example is the one-dimensional diffusion equa- 
tion 

x + l  
- e u x . , . + u =  2 ' x e I ,  u ( _ l ) = 0  (4.1) 

with the exact solution 

s inh( (x+ 1)/-,/~) x +  1 

u(x)  - sinh(2/v/~ ) 2 

The solution has a boundary layer at x = 1 of width O(v/e). 
In Tables I and II, we list the maximum pointwise error I lu -  uN II/~ by 

the conventional Legendre-Galerkin method (CLGM),  and maximum 
pointwise e r r o r  llV--VN_3llr, by our new Legendre-Galerkin method 
(NLGM).  For  the sake of comparison, we also included in Table II the 
available results by the boundary layer resolving Chebyshev-collocation 
method with rn = 1 which corresponds to N L G M  with k = 1 [BLRCC,  
cf. Tang and Trummer (1996)]. We recall that for the same value N, the 

Table 1. Maximum Pointwise Errors Ilu-u~,llz, and IIv-v,v_3llt~. for Example I 

Method N e = 1 0 E - 8  e = 1 0 E - 9  t = 1 0 E - 1 0  e = t 0 E - t l  t = 1 0 E - 1 2  

CLGM 512 3 .9E-7  4 .8E-  3 1.6E- 1 
CLGM 1024 5 .5E-  7 1.4E- 3 1.0E- 1 
CLGM 2048 3 .2E-5 3 .2E-4  6 .1E-2  
NLGM 64 4 .5E-  3 3 .9E-2  1.4E- 1 
NLGM 128 1.3E-5 4 .5E-4  4 .7E-3  2 .3E-2  6 .4E-2  
NLGM 256 3 ,0E-  12 6 .6E-  9 2 .2E- 6 1.1E-4 1.5E-3 
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Table 11. Max imum Pointwise Errors Ilu- UNUt~ and Ilv- 0 u - s  I1,~. for Example 2 

Method  N e =  1 0 E - 4  e =  1 0 E - 5  e =  1 0 E - 6  e =  1 0 E - 7  e =  1 0 E - 8  

C L G M  512 2 , 2 E - 7  1 . 8 E -  1 
C L G M  1024 1 , 3 E - 9  9 . 5 E - 4  
C L G  M 2048 4,2E - 8 
N L G M  64 3 . 2 E -  3 1 . 6 E -  1 
N L G M  128 9 , 7 E -  6 3 . 8 E -  3 
N L G M  256 2 , 1 E -  12 1 . 4 E - 6  
N L G M  512 6 . 8 5 E -  12 
BLRCC 64 O ( 1 . 0 E - 2 )  
BLRCC 128 O ( h 0 E - 5 )  
BLRCC 256 O( 1 . 0 E -  12) 

o(I) 
5 , 1 E - 2  O(1) 

3 . 3 E -  2 O( 1 ) 
1 . 6E-  3 2 . 7 E -  2 
2 . 4 E - 7  5 . 1 E - 4  

O( 1 . 0 E -  1 ) 
O( 1 ,0E-  1 ) 

o(11 
3 . 5 E - 2  

computational complexity of CLGM and N L G M  are essentially the same, 
while that of BLRCC is much higher. 

Example 2. The second example is the one-dimensional convection 
equation 

--eux,.+ux=--½, xeI, u(+__l)=0 (4.2) 

with the exact solution 

u(x) = exp((x + 1 )/e) - 1 x + 1 
exp(2 /e) -  1 2 

The solution has a boundary layer at x = 1 of width O(e). 
We observe that for the first two examples, the N L G M  is considerable 

more accurate than the C L G M  when e is small. It is transparent from 
Tables I and II that the N L G M  can resolve much finer boundary layer 
than the CLGM.  We emphasize that for a fixed N, the computational com- 
plexities of the C L G M  and the N L G M  are essentially the same. It is also 
interesting to note that the N L G M  is even a little more accurate than the 
BLSCC, which needs significantly more computational work than the 
N L G M  does. 

Example 3. The third example is the following one-dimensional dif- 
fusion equation with variable coefficients: 

--e2u"+(e+x2)u=2ez--(e+cZ)x 2, xeI; u ( + l ) = 0  (4.3) 

854/11/4-10 
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Table III. Max imum Pointwise Errors llu-uxllt~ and Ilv-vm_31b~ for Example 3 

Method N c =  I O E - 4  e =  1 0 E - 5  e =  10E--6  e =  1 0 E - 7  e =  1 0 E - 8  

CLG M 256 8 . 7 E -  2 
C L G M  512 2 . 0 E - 4  O( I ) 
N L G M  64 1 . 2 E -  1 
N L G M  128 2 , 8 E - 6  2 . 4 E - 2  
N L G M  256 3 , 8 E - 9  2.5E-5 
N L G M  512 

1 . 6 E - 3  2 . 8 E - 2  
5 . 7 E - 4  2 . 9 E - 2  

with the exact solution 

x - 1 ~ _ x2 
u ( x ) = e x p \  2a J " 

The solution has a boundary layer at x = _+ 1 of width O(e). 
In Table III, we list the maximum pointwise error Itu-UNII,=- by the 

CLGM and IIv--vN-3Ill~- by the NLGM. The discrete systems for both 
schemes are solved by using the preconditioned conjugate gradient method 
with a suitable equation with constant coefficients as the preconditioner. 
The number of iteration used to obtain the results in Table III ranges from 
30-100, indicating a good convergence behavior given the highly varying 
coefficient when e ~ 1. 

We have also used the popular adaptive collocation solver COLSYS 
[Ascher et al. (1994)] to solve the first three examples. Although it is heard 
to make a precise comparison due to the adaptive nature of COLSYS, we 
do observe that for Examples 1 and 2 which have constant-coefficients, our 
method is much more efficient than COLSYS while for Example 3 the 
efficiency of the two methods are comparable. 

Example 4. The fourth example is the two-dimensional diffusion 
equation 

--eAu+2u=F, (XI,X2)6~'2=I2; t, t l 0 ~ = 0  (4.4) 

where 

F(x,, x2)= -½((x~ + 1) w(x,_)+ (x2 + 1)w(x, )) 

with 

w(x)- 
sinh((x + 1)/v/~) x + 1 

sinh(2/v/~) 2 
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Table IV. Max im um Pointwise Errors llU--UNIlt~ and IIv--vu-311t~ for Examples 4 

Method N e = 1 0 E - 8  e = I O E - 9  ~ ; = 1 0 E - 1 0  e = I O E - - 1 I  e = 1 0 E - - 1 2  

C L G M  256 2 . 1 E - 2  2 . 7 E -  1 
C L G M  512 6 . 6 E - 7  8 . 0 E -  3 1 .9E-  1 
N L G M  64 9 . 9 E -  3 5 . 7 E - 2  
N L G M  128 2 . 6 E - 5  6 . 2 E - 4  7 . 2 E - 3  2 . 5 E - 2  1 .2E-  1 
N L G M  256 3 , 5 E -  11 1 .5E -  8 4 . 8 E -  6 2 . 4 E - 4  1 ,9E-  3 

This equation has the exact solution u(xl,x2)=w(xt)w(x~) which has 
boundary layers of width O(x/~) at the two sides 1 × ( - 1, 1 ) and ( - 1, 1) x 1. 

In Table IV, we list the maximum pointwise error UNlike. by the 
CLGM and [IV--VN-3[[r~ by the NLGM. 

We note that, similarly to the one-dimensional case (cf. Table I), the 
NLGM can resolve much finer boundary layers and is significantly more 
accurate than the CLGM. As described in Section 4, the computational 
complexities of the NLGM and the CLGM in the two-dimensional case 
are also essentially the same. Similar computational tests have also been 
carried out for two-dimensional convection-diffusion equations. Very 
similar results to Example 2 have been observed. We therefore do not 
include those tests here. 

CONCLUSIONS 

We have presented a new spectral Galerkin method for solving the 
convection-dominant convection diffusion equations in a multi-dimensional 
domain. The key to the success of the new method is to apply a suitable 
transformation to the original equation before discretizing it and to use a 
suitable new trial function space. The new method enjoys higher accuracy 
when applied to problems with thin boundary layers. 

We have constructed appropriate basis functions for the new trial 
function space by using the Legendre polynomials. We showed that by 
using these basis functions, the resulting linear systems are sparse for 
problems with constant coefficients. We have also developed efficient solu- 
tion techniques for solving these linear systems with the computational 
complexity similar to that of the conventional Legendre Galerkin method. 
We have only presented numerical results by using the transform 3.2 with 
k--  1 for several typical singular perturbation problems by using both the 
conventional and new Legendre Galerkin methods. These results indicate 
that our new method is more efficient and more accurate than the existing 
spectral methods for problems with thin boundary layers. Furthermore, it 



432 Liu and Shen 

is clear from the theoretical results in Section 2 that our method using a 
transform 3.2 with k > 1 will perform significantly better than using the 
transform with k = I. 

We note finally that the new Legendre-Galerkin method presented here 
can be accelerated by using the Chebyshev-Legendre method introduced in 
Shen (1996). 

5. APPENDIX: SOME ANALYTICAL RESULTS FOR 
ONE-DIMENSIONAL CASES 

We first consider the Helmholtz type equation: 

- t u " ( x ) + q ( x ) u ( x ) = f ( x , e ) ,  x e I ,  u ( + l ) = 0  

with q(x)>1 O, x eL  Then the transformed equation becomes 

-e (a(y )  v ' ( y ) ) '+Q(y)v (y )=F(y ,e ) ,  y e L  v ( + l ) = 0  

where 

(5.5) 

(5.6) 

1 1 
v(y) = u(g(y)), a(y) = 

g'(y) = J ( y )  

Q(y) = q(g(y)) J(y) and F(y, e) = f (g (y ,  e) J(y) 

The weak formulation is stated as follows: Find v e GH~(I) such that 

- e av'w' dy + Qwv dy = Fw dy, Wv ~ GH~(I) (5.7) 
- 1  - 1  - 1  

We note that GH~(1) is a Hilbert space with the inner product (v, w)~ = 
~ j a v ' w ' d y  + S ~_~Jvw dy. From the Poincarffs inequality there is a c~ > 0 
such that 

IlVtlnql~<~cl Hvll Gn/,.t, VveGHlo(I) (5.8) 

The spectral Galerkin approximation of Eq. (5.7) in YN reads: Find 
VN e YN such that 

;' f' f' e av%w'dy+ QvNwdy= Fwdy, Vwe YN (5.9) 
- - I  --1 --1 

It follows from the Lax-Milgram Theorem that Eq. (5.9) is well posed in Yu- 
Hereafter, we use C to denote a positive constant independent of e and 

N, but possibly with different values at different places. 

Theorem 2. [cf. Liu and Tang (1994a, b)]. Let u(x) and VN(y) be 
respectively the unique solution of Eq. (5.5) and of Eq. (5.9). Assume that 
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there exist constants CI, C2, fl > 0 such that Ct ~< J ( y ) ( 1 -  y2)-#< C2 for 
any y e I. Then the following estimates hold: 

~ l l u '  ' '- -_v,v II L - ' . )+  Ilu ---VN II L;~,-~ 

(5.10) 

and 

Ilu'-_v~v II ~.-~,z, + I lu- PN IIL~,,~ 

<,N C(N-4e + N -6) (u ' )~-dx+f  J2(u")2dx 

where _vN(x) = V,v(g - l (x)) ,  _J(x) = J(g-1(x)) and _J'(x) = J'(g - ~(x)). 
These estimates can be generalized to higher order approximations, 

with the right-hand sides dominated by N -2' '  I]_~ _J-'l .... ')(u~"") 2 dx 
(m = 4, 5,...), as e ~ 0. The most remarkable feature of Theorem 2 is that as 
e ~ 0 the dominant terms in the right-hand sides of Eqs. (5.10) and (5.11) 
can be controlled by choosing suitable J. This is the essential difference of 
such estimates compared to the available estimates for the conventional 
spectral methods. It provides a theoretical interpretation for the high 
accuracy of BLRSMs when e ,~ 1. More precisely, when the conventional 
spectral method (i.e., without using any transformation) is applied directly 
to Eq. (5.5), then one only has the following error estimates (cf. Canuto 
(1988)] 

f '  dx) (5.12) <.C(eN-~-+N-')(f'_ (u')Zdx+ (u") 2 

and 

<~ C(eN -4 + N-6) 

(u")'- dx) (5.13) 
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In the presence of a thin boundary layer (i.e., e ,~ 1 ), the terms ~ 1_! (u")2 dx 
and ~_~ (u")2dx are usually the dominant  ones in these error estimates. 
Similarly, J~_l_J-' (u")2 dx and ~t_l_J4 (u'")2 dx are dominant terms in Eq. 
(5.I0) and (5.11 ). However, in many important cases one can show that 

fl f l J-4(u")~-ds~ (u") 2dx, as e-~O (5.14) 

which explains why the BLRSMs are superior to the conventional spectral 
methods for singular perturbation problems, as is further demonstrated by 
the following example. 

We assume that there are positive constants 0~, v, C such that 

lul~(x)l<.C+Ce-~/2(e-'ll-x~/~+e-"~l+"-~/~), x~I, i=1 ,2 , ._  (5.15) 

where u is the solution of Eq. (5.5). 
This assumption is indeed verified by many equations of Helmholtz 

type [see Ascher (1988)]. Let us consider the following transformation: 

f i, x = ( g ( y ) = - l + a ,  (1--y2)kdy with k~>l 
--1 

/f' and ak = 2 ( 1 - y2)k dy (5.16) 
-I 

In this case we can show that J(y)=cr~.(1-y2) k, J(g-l(x))<~ 
C( 1 - x2) k/~k + i~ and J'(g-l(x)) ~< C( 1 - x2) ~k- i i/~k + i i and so on. Applying 
Theorem 2, we obtain the following estimates [see Example 2 in Liu and 
Tang (1994b) ]: 

~ l l u '  , 2 - -  PN [J L-~ I1 + tJU - -  PNI 2 ~ C(N-2 t  + N -4) e-3/2 +k/~k+ I) 

e l l u '  ' -~ --_VNIIL-~m+ IlU--_Vu "~ ~< C(N-4e+N-6) e -3/2+'*-1~/~k+~' L~II} 

Here the constants C may depend on k but not e. If we choose k sufficiently 
large, then these upper bounds can be made arbitrarily close to 
O(N -2 x//~e + N-%-~/2) and O(N -4 ~ + N-6e-t/2) respectively. On the 
contrary, if the conventional spectral method is applied to Eq. (2.1), one 
can only expect a upper bound of O(N-Ze -t/2 +N-4~ -3/2) [cf. Canuto 
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(1988)]. Hence, there is a significant improvement in using the BLRSMs 
when e is sufficiently small. Moreover, it can be shown that for m/> 1, 

e tlu'-_v%ll ~-,~z~ + llu-v_,vll~t~<~C(N-2"e~/z-'~+N-2'"'+~e -'/2-a) 

where ~ is a positive constant and can be made arbitrarily small if k is 
sufficiently large. This estimate shows that the error bound of the new 
scheme can be made almost independent of e. On the other hand, one only 
can expect that for m >t 1, 

IIu' , z 2 _<C(N-2,,,el/2 .... +N-2~,,,+l~e-~/2 .... ) --O_N II L21 I) + tl bl - -~-N II L~(I} "~z 

if the conventional spectral method is applied directly to Eq. (5.5). 
Let us now examine the convection-diffusion equation: 

- e u " ( x ) + p ( x ) u ' ( x ) + q ( x ) u ( x ) = f ( x , e ) ,  x~ I ,  u ( + l ) = 0  (5.17) 

with c(x) = -p ' (x) /2  + q(x) >1 0 for x ~ L In this case Eq. (1.2) reads: 

-e(a(y)  v ( y ) ' ) '+P(y )v ' ( y )+Q(y )v (y )=F(y , e ) ,  y~ I ,  v ( + l ) = 0  

(5.18) 

where P(y) =pog(y)  and a, Q, F are defined as in Eq. (5.6). We use the 
assumption c(x)>~0 because it makes the analysis simpler and yet can 
cover many useful cases. Let us denote 

S av'w'ay+ S e0'wdy+ Ovwdy, 
- - I  - -1  - -1  

for v, w e GH~(I) 

The weak formulation then can be stated as follows: 
Find v ~ GH~o(I) such that 

D(v, w ) = f  I Fwdy, Vw~GHIo(I) 
- I  

The new spectral Galerkin approximation of Eq. (5.19) in YN is: 
Find VN ~ YN such that 

(5.19) 

f 
l 

D(VN, W) = Fw dy, Vw e YN (5.20) 
--1 

Theorem 3. [cf. Liu and Tang (1994a, b)] .  Let c(x)>~O on L The 
Eqs. (5.19) and (5.20) are well posed in GH~(I) and YN respectively. Let 
u(x) and VN(y) be respectively the solution of Eq. (5.17) and Eq. (5.20). 
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We assume that there exist Ct, C2, fl > 0 such that C~ <~J(y)(1-  y2)-/s ~< 
C2 for y e L Then the following estimates hold: 

-_oN 11L-'(,) + tlu -_vN 11L~.~ 

< ~ C ( N - 2 e + N - 4 e - ' ) ( ~  (u ' ) 2dx+f t l J_2 (u" )2dx )  (5.21) 

ellu' , 2 2 -_vN II L-'.) + II U --_VN II Z.~X) 

where G.N(X) = VN(g -I(X)) ,  J ( x )  = J ( g -  I(x)) and _J'(x) = J'(g - ' (x)) .  
Furthermore, if c(x)> 0 on L we have 

t ~ 2 2 _vm 11 ~-'.) 

e I l u ' - G ,  2 2 II L-~,~ + Ilu -_vN II ,~lz, 

1 

+;, )2 ) + _ dx (_J' (u") 2 dx (5.24) 

These results can also be generated to higher order cases. In fact, if the 
boundary  layers of  Eq. (5.17) are of  width O(e) and if the transformation 
in Eq. (5.16) is used, we can show that for m >/1 and y > 0 (the proof  for 
m = 1 and 2, can be found in Liu and Tang (1994b), and the other case can 
be shown in a similar way), 

flu ! --/=)~r II L211} "4- ]tU--_VN II ~2~z)~ C0'; k ) ( N - ~ " e + N  -21''+l)) e-"-l-4,,,/~k+ t~ 
(5.25) 

If we choose k large enough and a small enough, then the dominant  term 
on the right-hand side of Eq. (5.25) behaves like N-2"'e - ~. For the conven- 
tional spectral methods, the dominated term in the error bound can only 
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be shown to behave  l ike N -2~''+ t~e .... . W e  no te  tha t  even this last  s ta te-  
men t  was only  p roved  [cf. C a n u t o  (1988)]  for the special  cases where  p 
a n d  q are  cons tan ts .  Thus,  the  B L R S M s  do  p rov ide  a subs tan t i a l  improve -  
men t  over  the  conven t iona l  spect ra l  m e t h o d s  when e ~ 1. 

W e  no te  tha t  very recent ly  Schwab  and  Suri  (1996) has  o b t a i n e d  
un i fo rm (in e) e r ro r  es t imates  for the hp vers ion o f  the  finite e lement  
m e t h o d  for the  m o d e l  b o u n d a r y  layer  funct ion u ( x ) = e x p ( - ( a . x / e ) ) .  
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