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A b s h c t  The aim of this paper is to analyze the fully discrete nonlinear Galerkin 
methods, wliich are well suited to the long time integration of dissipative partial 
differential equations. 
With the help of several time discrete Gronwall lemmas, we are able to prove 
the L ~ ( I R + ,  H a )  ( a  = 0 , l )  stabilities of the fully discrete nonlinear Galerkin 
methods under a less restrictive time step constraint than that of the classical 
Galerkin methods. 
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1 Introduction and description of the method 

T h e  long time integration of the  Navier-Stokes equations (N.S.E) is of great impor- 
tance for numerical approximations of the  permanent regime of flows. I t  is well known 
t h a t  the  permanent regime of the flows can be  represented by a finite number of de- 
termining modes, e.g. by the  universal (global) attractors or the  inertial manifolds 
(if they esis t )  whose dimensions a re  finite (see for instance [0]). One of t h e  difficul- 
ties in  numerical simulatiolis of the permanent regime of t h e  flows is t o  construct an 
appropriate finite dimensional system which can capture t h e  long time behavior of 
these flows. 

T h e  inertial manifold (see 121, [n]), whenever i t  exists, is a positively invariant 
finite dimensional Lipscllitz manifold which at t racts  exponentially all the  trajectories, 

the  convergence of the  trajectories towards the  at t ractor  can be  very slow. 
Although the  existence of inertial manifolds for some dynamical systems, for instance 
the  2-D N.S.E., is still U I I I ~ ~ O W ~ ,  i t  has been proven t h a t  the  approximate inertial 
manifolds (see [I], [Ill, [12]) provide bet ter  approximations t o  t h e  solution than  
t h e  flat manifold P,II (see the  definition below). Therefore, i t  is of interest t o  
construct numerical schemes corresponding to these approximate inertial manifolds. 
This  observation motivated the  construction of the  nonlinear Galerkin methods (see 
[GI) and t h e  numerical tests presented in [3] and [lo]. 

W e  consider in  this paper  time discretizations of the nonlinear Galerkin methods. 
In order t o  make the  implementation of the  schcmes simpler, we restrict ourselves 

'This walk was suppolted in palt by NSF glant DRIS-8802596 and by Air Force Grant AFOSR- 
88103 and the Research Fund of Incl~ana University. 
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to  schemes of semi-implicit type: here the dissipative term is treated implicitly to 
avoid severe time step coi~straints while keeping the nonlinear terms explicit so that 
the corresponding discrete systems are easily invertible. It is well known that  this 
type of schemes is only stable under a restriction on the time step size, which has an 
important impact on the efficiency of the schemes since we are interested in the long 
time integrations. 

The upper bound and the error estimate for approximate solutions to evolutionary 
partial differential equations, given by a large number of existing stability analyses, 
often increases indefinitely when the time interval [O,T] goes to infinity. Such a sta- 
bility result is certainly irrelevant for the long time integrations. By using several 
discrete analogs of Gronwall lemmas, which are essential for proving stabilities in 
arbitrary large time intervals, we are able to show that solutions of the fully discrete 
nonlinear Galerkin schemes are uniformly (independent of time and space mesh sizes) 
bounded in L ~ ( I R + ;  H a )  ( a  = 0 , l )  under a less restrictive constraint on the time 
step size than what should be verified by the classical Galerkin methods. The con- 
vergence of the schemes in corresponding functional spaces are also established, and 
the appropriate choice for the parameter d i11 noillinear Galerkin methods (see be- 
low) is suggested as well. Let us inention that a local stability analysis for a discrete 
nonlinear Galerkin method was also carried out in [3]. 

The technique used here for proving the long time stability is quite general. I t  can 
be used to obtain uniform upper bounds and error estimates in large time intervals 
for a fairly large class of nuinerical schemes to some evolutionary partial differential 
equations (see already [7]). 

To be more specific, we restrict ourselves to the 2-D N.S.E. Similar schemes and 
analyses are applicable to other dissipative dynamical systems. 

1.1 Functional setting of the N.S.E. 

The 2-D unsteady Navier-Stokes equations in the primitive variable formulation are 
written as: 

d i v u  = 0 (a] 

where R is an open bounded set in lR2 with sufficient smooth boundary, v > 0 is the 
kinematic viscosity and F=F(s, t)  represents the external body force. The unknowns 
are the vector function 11 (velocity) and the scalar function p (pressure). 

We will consider either the liomogencous Dirichlet boundary conditions, for which 
we denote: 

V = {I ,  E (H;(R))' : diuv = 0)  



LONG TIME STABILITY 

or the periodic boundary conditions for which 

In both cases, we set 
H = closure of V in ( ~ ~ ( 0 ) ) ' .  

Let P be the orthonorinal projection of ( ~ ~ ( f l ) ) ~  onto H, we define the Stokes operator 

and the bilinear operator 

The Stokes operator A is an unbounded positive self-adjoint closed opera.tor in H 
with domain D(A) and its inverse A-' is compact in H. Consequently, there exists 
an orthonorlnal basis of If consisting of the eigenvectors w3 of A: 

We denote the norms in H and V respectively by 

u l  = (L l u ( r ) 1 2 d r ) i  and lull = ( I V U ( X ) ~ ~ ~ X ) ~ .  J, 
The corresponding scalar products are denoted by (., .) and ((., .)) respectively. 

We define a trilinear form on V x I/ x V by 

It is easy to verify that b satisfies the following important property 

b(u,v, w )  = -b(u,w,v),  Vu,v,w E V. 

We recall some of the continuity properties satisfied by B and b:  
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Under the above notations, the system (1)-(3) is equivalent to  the following abstract 
equation: 

where f=PF. The following results are well known (see for instance [g]). 
Theorem. W e  assume f E Lm(IR+; H ) .  Then for u0 E H ,  the system (8)-(9) 
admits a unique solution u E c ( lR t ;  H )  n ~ ~ ( 0 ,  T ;  V), VT > 0. 

A!foreover, if uo E V ,  then u E c ( R + ;  V )  n ~ ~ ( 0 ,  T; D(A)) ,  VT > 0. 

We denote hereafter Afl = sup,>o Ilu(t)ll, A l j  = sup,,o I f  (t)l. - - 

1.2 Description of the nonlinear Galerkin methods 

Let us first esplain briefly the idea of Foias-Manley-Temam [I]  for constructing an 
approximate inertial manifold of (8)-(9). 

We select a cut-off value in and define 

Pm : the projection operator onto Hm = span(w1,. . . , w,); 

Q m  = I - Pm. 

Therefore, we can write 

y,, corresponding to the small eigenvalues represents the large eddies of the flow, 
while z ,  corresponding to tllc large eigenvalues represents the small eddies. Now we 
apply respectively Pm and Q,,, to (8): 

It can be proven (see [I] and [ I l l )  that zm only carries a small part of the kinematic 
energy after a transient time, namely 
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where Lm = 1 + log y. It is then reasonable to neglect am in some circumstances. 
This leads them [I]  (see also 1111, [12] for other type of approximations) to  approxi- 
mate (11) by 

uAim + QmB(ym,  ym) = Qmf (13) 

since IQmB(ym + zm, ym + 2m)l IQmB(ymr ~ m ) l  >> I=h(t)l. 
If we define 

QI(P) = ( u ~ ) - ' ~ m [ f  - B(P, P)] , V P E f f m ,  

then 2 ,  = Ql(ym). It has been proven that the finite dimensional manifold M 1  = 
MI,, defined as the graph of Q1 is a better approximate manifold to the universal 
attractor than the flat manifold M o  = P m H ,  namely, we have (see [I]) 

This result was the motivation of the paper by M. Marion & R. Temam [GI where 
they introduced a finite dimensional version of (13) called nonlinear Galerkin meth- 
ods. The stability and convergence of the methods without time discretizations were 
established in [GI. Our aim in this paper is to analyze the time discretization of the 
nonlinear Galerkin methods. 

Let P = Pm, Q = Pdm - Pm (d = d(m) > 0 is of our choice), and f n  = 

2 J;;L+')~ f ( t ) d t .  Our first scheme (corresponding to the approximate inertial mani- 
fold M is the following: 

Given yo = P u O ,  z0 = Quo, find y n + l  = y$+' E H,, and zn+' = z$+' E Hdm - Hm 
such that 

V A Z ~ + '  = ~ [ f "  - ~ ( y ~ ,  yn)], (15) 

where k is the time step. 

The advantage of this scheme over the classical Galerkin scheme (which corre- 
sponds to  (16) with rn+' = 0) were clarified in [lo], [6] and [3]. 

The efficiency of the scheme (comparing to the classical Galerkin scheme with dm 
modes) depends clearly on the choice of d. We suggest d to be chosen according to 
the following arguments. 

We note that (15) defines a 111-dimensional manifold M ,d as the graph of 

Therefore, let p = Pnlu, by using (14) 

d is t (u( t ) ,Ml ,d)  5 d i s t (u ( t ) ,Ml )  + dist(M1, Ml ,d )  
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On t h e  other hand,  we derive from the  definition of @I ,  @l,d t h a t  

vA(@l(P) - @l,d(P)) = ( I  - Pdm)[f - B(P, P)]. 

We recall (see for instance [I]) tha t  

Since Ql(p) - @l,d(p) E (I - p d r n ) ~  and 

IAql L Adm+ll~I V Q E ( I  - Pdrn)H 

we derive 

~Adm+ll@l(P)  - @l,d(l))l 5 IvA(@l(P) - @ l , d ( ~ ) ) l  

5 If 1 + B ( P ,  P)l 5 If I + c 4 ~ : L i .  

Therefore 

Hence 
3 1 

dist(u( t) ,  M l,d) 5 bl~,A,:~ + k2~%A;;+~. (20) 

For fixed m ,  we should then choose d such tha t  

We recall t h a t  for the  2-D N.S.E. (see [5]) A, - m. We then derive t h a t  (21) is 
equivalent t o  

\Ve note tha t  with this choice of d ,  the error for (15)-(16) is of the  same order as t h a t  
of t h e  classical Galerkin scheme with din modes (see (12)). 
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2 Uniform stability 

From now on, we will use c; to denote some absolute constants, R;, b;, Bi and Gi 
to denote constants depending on some data: Ri = R;(v, X I ,  f ) ,  b; = b;(v, XI, f ,  uo), 
B; = B;(v, X I ,  f ,  rro, n ) ,  G; = G;(v, X I ,  f ,  u o ,  T ) .  We will assume hereafter k 5 ICo 
(for some I<o > 0 fixed). 

2.1 Uniforin stability in L"(IR+; H) 

Theorem 1 W e  ussunze that k and nz are such that 

where 6 E (0,;) and  

Then,  we have 

Remark 1 We emphysize that the stabihlity condition (23) only involves A,. In 
other word, no matter how large the d is, the time step constraints for (15)-(16) 
are always the same. It can be proven that the stability condition for the classical 
Galerkin scheme with dm modes is k - Xi:. This suggest that we can use larger time 
step size for the nonlinear Galerkin scheme (15)-(16) than for the classical Galerkin 
scheme. This may lead to substantial savings in cpu when doing long time integrations 
of the N.S.E. 

Before proving Theorem 1, let us first recall a simple inequality which is the time 
discrete counterpart of the Gronrvall lemma. 

Lemma 1 Let a n ,  bn be two positive series satisfying 

.n+l - a T L  + XU'"' < b n  and bn < b, vn > 0. 
k 
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provided k ,  1 + kX > 0. 

PROOF O F  THE T H E O R E ~ I  1: Taking the  scalar product of (15) with 2kzn+l ,  (16) 
with 2kyn+', by using the  relation 

we obtain 
2 k v l l ~ ~ ~ l 1 1 ~  = 2k(f n ,  t n f l )  - 2kb(yn, yn ,  zntl), (26) 

and 

T h e  following inequalities will be  used repeatly in  the  rest of the paper. 

By using sucessively Schwarz inequality and (28), we derive 

2k( fn ,  y n f l  + r n f l )  5 2kl f n l l y n + '  + rn f l l  

Then  the  summation of (26), (27) and (29) leads t o  

lyn+l12 - lP12 + lyntl - yn12 + kv(llyn+ll12 + 11tn+1112) 

+ 2 / ~ [ 6 ( ~ ~ ,  r n t l ,  yn+l)  + b(yn, y n ,  znfl)]}. (30) 

T h e  nonlinear terms in the  above inequality can be  majorized as  follows: 
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By using repeatly (4), ( 5 ) ,  (28) and Schwarz inequality, we obtain 

2kb(yn,  yn ,  ynf ')  = 2kb(yn,  y n ,  yn+' - y n )  

< 2kc1lynl3l lynl l~l lyn+l  - yn$lyn+l - yn13 

and 

2k[b(?ln, zn+' , yn+') + b(yn, y n ,  zn+')] = 2kb(yn,  z n + l ,  yn+l - y n )  

1 

I 2 k c l ~ K l l z ~ + l l l .  l y n l .  l y n + '  - ynl 

1 < -lyn+l - yni2  + 4c:k2X,lynl21)zn+'ll2. 
4 

Combining (31) to (33 )  into (30),  we arrive to 

1 ~y"'ll' - y"12 + l l y n + '  - ynl2  + kv(llyn+'l '  + 1 / ~ " + ' 1 / ~ )  

2k < -~lf2 + 1 2 k 2 c ~ ~ , l y n 1 2 1 1 z n f 1 ~ ~ 2  + 8c:k2~mlyn1211yn112 
vX1 

We derive from (28) that 

llynllZ I 211un+' - ~ " 1 1 ~  + 2 1 1 ~ ~ + ~ 1 1 ~  

5 2 h r l y n + l  - Yn12 + 211Yn112. 
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Using (35), we can rewrite (34) as 

Assuming that k and 111 verify the hypothesis (23), we are going to prove by induction 
that 

lyqlZ < BO((1) < bo 1 v (1. (37) . (37) at  y = 0 is obvious; 
assuming (37) is true up to y = n ,  then by using (23), the inequality (36) becomes 

Therefore, by using (28) and dropping some unnecessary terms, we arrive to 

We can now apply Lemma 1 to this last inequality with an  = lynI2, bn = * ~ f 2  and 
X = u6X1. From which we derive 

n f l  2 1 2(1+ Kov6X1) 1 
I Y  I I (1 $ k ~ 6 X l ) ~ f '  y 0 1 2  + v2h:6 - (1  + j_v6hl)n+2 ) ~ f 2  

The proof of (37) is complete. 

In order to prove the last inequality of Theorem 1, VT > 0 given, we take the sum 
of (38) for n from 0 to $ - 1, which lead to 

This completes the proof of Theorem 1. 7 
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Corollary 1 Under the hypotheses of Theorem I ,  we have 

hforeover, there exists Ro = Ro(v,  X I ,  f )  such that Vuo E H ,  we can find N ( u O )  > 0 
such that for all 12 > N ( u O ) ,  we have 

PROOF: To  inajorize z n ,  we take the scalar product of (15) with z n f l  

n f l  2 ullt 1 1  = ( f n ,  zn+l )  - b ( y n ,  yn ,  zn+l ) .  

By using ( 2 5 ) ,  ( 6 )  and Schwarz inequality, we find 

Therefore 

By using the  results of Theorem 1, me derive 



JIE SHEN 

also from (42) and (39) 

(41) is then a direct consequence of (30) and the last inequality. u 

2.2 Uniform stability in L"(IRt; V) 

We can also prove that the scheme (15)-(16) is stable in stronger topologies. To this 
end, we need the following time discrete Gronwall lemmas. 

Let us recall first the time discrete counterpart of the usual Gronwall lemma. 

Lemma 2 Let d n ,  g n ,  h n  be three series satisfying 

Then, V N  > 0, 

PROOF: For the reader's convenience, we give below the proof of the lemma. Using 
recursively the following relation 

dn+' 5 (1 + k y n ) d n  + k h n ,  (43) 

we derive 

On the other hand, since (1 + x )  < e x  , V x E IR, we derive 

Therefore 

Now let us establish the time discrete counterpart of the uniform Gronwall lemma. 
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Lemma 3 Let d n ,  g n ,  h n  be three series satisfying 

d"+' - d n  
5 g n d n  $ h n  , V n 2 no, 

6 

PROOF: For any  i n l , m 2  such that  no 5 1771 5 m2 < m l  $ N ,  we use recursively (43) 
t o  get 

As in  t h e  proof of the  previous lemma, we have 

Applying t h e  above inequality t o  ( 4 4 ) ,  we arrive t o  
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We rewrite this inequality as 

Finally, by adding the above inequality for m2 from ml  to ml  + N - 1, keeping in 
mind RN = I * ,  we obtain 

Theorem 2 W e  assume uo E I ' ,  k,fz satisfying (23) and i n  addition 

where 6 is  the same as in  Theorem 1. Then, we have 

where b z  is to  be given eqjlicitly in  the process of the proof. 

PROOF: As in the proof of Theorem 1, we take the scalar product of (15) with 
2k,4inf1, (16) with 2kAyn+l respectively 

and 

\Ve then add them up to get, 
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We majorize the right hand side terms as follows: 

2 k ( f n , A y n f 1  + A z n + l )  5 2 k l f n l l ~ y n + '  + d z n + l 1  

kv  8 k  
< - ( l ~ ~ " + ' ~ ~  + lAzn+'12) + _M!. (47) - 4 

By using sucessively Schwarz inequality and (6)  and Holder inequality, we derive 

2kb(yn, yn ,Ayn t l )  5 2h lB(yn ,  y n ) ~ ~ A y n f l ~  

< 2 k c 2 1 y n ~ ~ / ~ y n l ~ ~ ~ y n ~ ~ ~ ~ y n + 1 ~ ~  - 

'v n+l 2 k v  5 ~ 1 - 4 ~  I + E l ~ ~ n 1 2  + cs~-3k l~"1211~n l14 .  (48) 

Similarly 

Combining these inequalities to (461, we obtain 

l l y ? z + 1 1 1 2  - ( ( y n 1 1 2  + (lyn+l - y n 1 ~ 2  + k v ( ~ ~ y n + 1 ~ 2  + ( A P + ~ I ~ )  

8b k  11 

5 -A[; + - - I A $ I ~  + g7L11~n112 
4 
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By using the results of Theorem 1, we derive 

gn 5 ~ s v - ~ b [ b o ( l l ~ ~ 1 1 ~  t + b l l l ~ " + ~ l l ~ ]  

Hence 

N+ko csu-4 1 
b g n  5 T(26~  + bl)G0(1) = bs. for N = - . V ko > 0. 

n= ko k (53) 

Using the relation 

I A Y " I ~  I 2X,t11ynf1 - yn112 t 21dyn+'12, 

we can rewrite (52) as 

We assume t, 112 satisfying in addition (45). By dropping some unnecessary terms in 
(55), we get 

The idea for deriving a uniform upper bound of l l y n 1 1 2  is the following: 

applying Lemma 2 to get an upper bound of llynJ12 for n 5 N = 3 ;  
applying the time discrete uniform Gronwall lemma (Lemma 3) to get an upper 
bound of l ly"~1~ for n 2 N = f .  

We apply first Lemma 2 with (In = l l y n 1 ) 2 ,  h,, = :AJ? and N = 3. Since 

we derive from Lemma 2 and (53) that 
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In order t o  derive a uniform bound for n 2 N ,  we apply Lemma 3. Using l y n J 2  5 bo,  
we derive from ( 4 0 )  that 

N t k o  2 1 
k dn 5 (bo $ - M ? ) ( u ~ ) - '  = b4 for N = - , V  kg > 0 .  

n= ko V A  1 
k 

Therefore, the hypotheses of Lemma 3 are all verified. We derive from Lemma 3 that 

Therefore 
l l Y n 1 1 2  5 b2 = ma.x(b3, b6) , V n 2 0 .  

Finally, V T  > 0 given, taking the sum of ( 5 5 )  for n from 0 to $ - 1, we recover the 
last inequality of Theorem 2. q 

Corollary 2 Under the hypotheses of Theorem 2, we have 

AIoreover, There ezists R1 = R 1 ( u ,  A 1 ,  f) such t h d  Vu0 E Ii, we can find N ( u 0 )  > 0  
such that for all n > N ( u o ) ,  we have 

PROOF: The proof is similar to that of Corollary 1. 
By taking the scalar product of (15) with Asn+', we derive 
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Therefore, from (59) and Theorem 2, we derive 

also from (60) 

~ / z " + ~ / I  5 ~- 'A; 'M~ + c2X;'bz. 

(58) is then a consequence of Theorem 2 and this inequality. 

Remark 2 A direct consequence of Corollaries 1 & 2 is that there exist uniform 
(independent of k , n z )  absorbing sets BH = Bv(O, Ro) in H and Bv = Bv(0, R1) in 
V for solutions of the approsilllate system (15)-(16). In virtue of a general theorem 
(Thm 1.1 of [9]), there exist universal attractors Ak,m in H ,  for the system (15)- 
(16) which are uniformly (independent of t ,  in) compact in H. The analysis for the 
convergence and the error estimate of Ak,, to A (as k ,  nz-' + 0) is beyond the 
scope of this paper. The related problems in a different context will be reported in a 
subsequent paper (see [7]). 

3 Convergence 

With the stability results we established in the previous section, the procedure to 
prove the convergence of the scheme is rather standard. We will only sketch it rapidly. 

Lct us first introduce some approsinlate functions of u(t). 
DEFINITION: 

0 ul( t)  = ur"'"(t) : IR,+ - H is the piecewise constant function which equals to  
yn on [ n k ,  (n  + 1) t ) ;  

. 2 i2 ( t )  = ~ ? ' ~ ) ( t )  : IIL+ - H is the piecewise constant function which equals to 
yn on [ n t ,  (n  + 1)k); 

u3(t) = ~ $ ~ ' ~ ) ( d )  : lR+ + is the continuous function which is linear on 
[nk, (n + 1)k) and P L ~ ( I I ~ )  = un, u3((11 + 1)k) = yn+'; and 

~ ( t )  = ~ ( ~ , ~ ' ) ( t )  : lR+ -+ II is the piecewise constant function which equals to 
zn+' on [ iak ,  (71 + 1)k). 

The main results in this section are 

Theorem 3 Under  the hypothesis (23), we have 
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ui(k'm) + u ( a s  h ,  nl-* + 0 )  i = 1 , 2 , 3 ,  in L2(0 ,  T ;  V )  n LP(0, T ;  H )  strongly, 
V T  > 0 ,  1 5 p < fco, provided kXm + 0  in case o f  i=l,3. 

Moreover if uo E V and k,nz satisfying in addition (45), then 

~ i ~ ' ~ )  + u  ( a s  k ,  r n - I  + 0 )  i = 1 , 2 , 3  in  L2(0 ,  T ;  D ( A ) )  n LP(0, T ;  I/) 
strongly , V T > 0 ,  1 5 p < +co, provided h X ,  + 0  in  case of i=1,3. 

PROOF: By using these definitions, we can reformulate the system (15) - (16)  as 

v A z ( t )  = Q [ f n  - B ( ~ l ( t ) ,  ~ l ( t ) ) l ,  ( 61 )  

Let us first derive an estimate on us.  From the definition of u s ,  we have 

The last inequality comes from the results of Theorem 1. 

This inequality and Tlleorem 1 can be reinterpreted as 

u,(L,  i n ) ( t ) ,  i = 1 , 2 , 3  and r ( t )  are bounded uniformly in L~O(IR+; H )  

~ , ( " ~ ' ) ( t ) ,  i = 1 , 2 , 3  and ~ ( t )  are bounded unifornlly in ~ ' ( 0 ,  T ;  V )  , V T > 0.  

& ~ ? ' ~ ' ( t )  E ~ ~ ( 0 ,  T ;  11') 

(63)  
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A direct consequence of (63) is that there exists U; E Lm(IRt ; ~ ) n  L2(0, T ;  V )  , V T  > 
0, i = 1 , 2 , 3  and a subsequence (kt, m') such that 

From the definitions of n; ,  we have 

Similarly, 

It is then obvious that U1 = U2 = U3 = u* .  In virtue of a classical compactness 
theorem (see for example [4]), we derive from (64) that 

u$k'7n) -+ u* in ~ ~ ( 0 ,  T; 11) strongly 

Then from ((55)-(GG), we have also 

p 4  + u* in L2(0, T; H)  strongly, i = 1,2 .  

Finally, we derive from Corollary 1 that 

z(knL) - 0 in ~ ' ( 0 ,  T ;  11) strongly 

With these strong convergence results, the passage to the limit in (61)-(62) is standard 
(see [S] for more details) and we find out that u* is indeed the solution of the N.S.E. 
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It remains to prove the strong convergence in ~ ~ ( 0 ,  T ;  V ) .  Let us define 

&ing the sum of (27) for 11 from 0 to $ - 1, we obtain 

Let k ,  rn-' -+ 0 in the last relation, by using the strong convergences of u,!~'"), z ( ~ , ~ )  
and (1), we derive 
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Finally, by taking the scalar product of (8) with u, we find 

The integration of which over [O,T] implies 

Combining all these relations, we derive 

Similarly as in (65) 

Therefore 

u?'"), U r ' n ' )  + u in ~ ~ ( 0 ,  T; V) strongly provided kX, + 0. 

This conlpletes the proof of the first part of Theorem 3. We omit the proof of the 
second part since the procedure is exactly the same. 7 

4 Another nonlinear Galerkin scheme 

We consider in  this section a second sche~nc corresponding to a better approximate 
inertial manifold of N.S.E. 
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Find ynt l  = y;+l E H ,  and zn+' = z;+' E H d m  - H m  such that 

Theorem 4 We assume k and nz satisfying 

Then, we have 
lynlZ + Izn12 I B o ( n )  , V n ,  

$-1 
n f l  2 2 T  

+ kv6 x [ I I Y  I I  + llt.n+11~2] 5 60 + -M; = G ~ ( T ) ,  
n=O v.A1 

and 

where 6,bo,  B o ( n )  are the same as  in the Theorem I .  

PROOF: We take respectively the scalar product of (67) with 2kzn+', (68) with 
2kyn+l  and add the corresponding equalities, we obtain 

lzn+112 - 1 p 1 2  + lzn+l - p 1 2  + lynf112 - lyn12 

+ lyn+l - yn12 + 2kv(llYn+1112 + llzn+1112) 
= 2 k ( f n ,  yn+l  + zn+') 

-{2k6(yn, y n ,  yn+') + 2k6(rnf1 ,  yn ,  yn+l)  

+2k[b(yn, zntl, y n f l )  + 6(yn, yn ,  zn+')] 

+ 2k[6(zn, znf  l ,  yntl)  + 6(zn,  yn ,  zn f l ) ]  

+2kb(yn, z n ,  z n + l ) )  

= 2 k ( f n ,  ynf l  + 2"'') - B1 - B 2  - B S  - B4 - B 5 .  (71) 
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As in the proof of Theorem 1 ,  B1, B 2 ,  Bg  can be majorized respectively by (31-33) .  
Other nonlinear terms can be majorized by using ( G ) ,  ( 2 8 )  and Schwarz inequality, 
namely 

Bq = 2kb(zn ,  z n f  l ,  yn+l - yn)  

Similarly 

B:, = 2kb(yn ,  z n ,  zn+' - z n )  

By using these inequalities and ( 2 9 ) ,  ( 8 2 )  becomes 
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Assuming that k and m verifies the hypotl~esis (69), using exactly the same technique 
as in the proof of Theorem 1, we can prove by induction that 

lyq12 + 1zq12 I B O ( Q )  , v q .  (74) 

Therefore, VT > 0 given, taking the sum of (72) for n from 0 to  $ - 1, we obtain 

To prove (70), we take the scalar product of (67) with 2kzn+l, using repeatly (28) 
and (6), after some lengthy but easy con~putations, we arrive to 

Therefore, by taking the sum of this last inequality for n from 0 to $ - 1, using (74) 
and (75), we derive 

Theorem 5 If u o  E V ,  k,  n satisfying (69) and in addition 

Then, we ha.ve 
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where 6 is the same as in the Theorem 1 rind b7 is to be given explicitly i n  the process 
of the proof. 

PROOF: Taking the  scalar product of (67) with 2kAzn+', (68) with 2kAyn+' respec- 
tively, after some lengthy computations, we arrive t o  

Using t h e  relation (54), we can rewrite (79) as 

After dropping some iinnecessary terms in (81), we get 

We apply first Lelnma 2 t o  this last inequality. 
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Let dn = ] I Y n ] 1 2  + llzn112, hn = :M;, N = 2 .  We derive from Lemma 2 and (80) 
that 

We can now apply Lemma 3 to derive a upper bound of dn for n large. We derive 
from the definitions of y n ,  hn and (75) that 

The hypertheses of Lemma 3 are then all verified. R'e derive from Lemma 3 that 

Let b7 = mas(bs, blo), (81) can be obtained by taking the sum of (79) for n from 0 to 
T - - 1. 
k 

To prove (78), we take the scalar product of (67) with 2kAznf ', using repeatly 
(28) and (G), we can derive 

Hence, by taking the sum of this inequality for n from 0 to $ - 1, using (77) and 
(84), we derive 

The proof is complete. T[ 
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Remark 3 The stability condition in (69) is not independent of d but is still better 
than that of the classical Galerkin scheme with dm modes which needs k - A;;. 

Let u i ( t ) ,  i = 1 , 2 , 3  and ~ ( t )  be defined as in the section 3. By using the same 
procedures as in the section 3, We can prove the following convergence theorem. 

Theorem 6 Under the hypothesis (691, we have 

u j  - u ((as k ,  m-' -t 0) i = 1 ,2 ,3 ,  in L2(0, T; V )  n LP(0, T; H )  strongly, 
V T  > 0, 15  p <  t o o ,  providedbA, -+ 0 i n  case of i=1,3. 

Aforeover if uo E V and k,nz satisfying i n  addition (76), then 
u ;  -+ u ( a s  b ,  m-' - 0) i = 1 , 2 , 3  i n  L2(0, T; D ( A ) )  n LP(0, T; V) 
strongly , V T > 0, 1 5 p < t o o ,  provided kX, + 0 i n  case of i=1,3. 

Reinark 4 For the sake of simplicity, we have only analyzed two first order (in time) 
semi-implicit schemes. IIigher order schemes of semi-implicit type such as Crank- 
Nicolson & Adams Bashforth-scheme, etc. are suggested in practice to  increase the 
efficiency. 
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