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Long Time Stability and Convergence
for Fully Discrete Nonlinear Galerkin
Methods
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JIE SHEN!?
The Institute for Applied Mathematics and Scientific Computing
Department of Mathematics, Indiana University
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Abstract The aim of this paper is to analyze the fully discrete nonlinear Galerkin
methods, which are well suited to the long time integration of dissipative partial
differential equations.
With the help of several time discrete Gronwall lemmas, we are able to prove
the L®(IRY, H*) (« = 0,1) stabilities of the fully discrete nonlinear Galerkin
methods under a less restrictive time step constraint than that of the classical
Galerkin methods.
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1 Introduction and description of the method

The long time integration of the Navier-Stokes equations (N.S.E) is of great impor-
tance for numerical approximations of the permanent regime of flows. It is well known
that the permanent regime of the flows can be represented by a finite number of de-
termining modes, e.g. by the universal (global) attractors or the inertial manifolds
(if they exist) whose dimensions are finite (see for instance [9]). One of the difficul-
ties in numerical simulations of the permanent regime of the flows is to construct an
appropriate finite dimensional system which can capture the long time behavior of
these flows.

The inertial manifold (see [2], [9]), whenever it exists, is a positively invariant
finite dimensional Lipschitz manifold which attracts exponentially all the trajectories,
whereas the convergence of the trajectories towards the attractor can be very slow.
Although the existence of inertial manifolds for some dynamical systems, for instance
the 2-D N.S.E., is still unknown, it has been proven that the approximate inertial
manifolds (see [1], [11], [12]) provide better approximations to the solution than
the flat manifold P, H (see the definition below). Therefore, it is of interest to
construct numerical schemes corresponding to these approximate inertial manifolds.
This observation motivated the construction of the nonlinear Galerkin methods (see
[6]) and the numerical tests presented in (3] and [10].

We consider in this paper time discretizations of the nonlinear Galerkin methods.
In order to make the implementation of the schemes simpler, we restrict ourselves

!This work was supported in part by NSF grant DMS-8802596 and by Air Force Grant AFOSR-
88103 and the Research Fund of Indiana University.
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202 JIE SHEN

to schemes of semi-implicit type: here the dissipative term is treated implicitly to
avoid severe time step constraints while keeping the nonlinear terms explicit so that
the corresponding discrete systems are easily invertible. It is well known that this
type of schemes is only stable under a restriction on the time step size, which has an
important impact on the efficiency of the schemes since we are interested in the long
time integrations.

The upper bound and the error estimate for approximate solutions to evolutionary
partial differential equations, given by a large number of existing stability analyses,
often increases indefinitely when the time interval [0,T] goes to infinity. Such a sta-
bility result is certainly irrelevant for the long time integrations. By using several
discrete analogs of Gronwall lemmas, which are essential for proving stabilities in
arbitrary large time intervals, we are able to show that solutions of the fully discrete
nonlinear Galerkin schemes are uniformly (independent of time and space mesh sizes)
bounded in L®(IR*; H¥) (a = 0,1) under a less restrictive constraint on the time
step size than what should be verified by the classical Galerkin methods. The con-
vergence of the schemes in corresponding functional spaces are also established, and
the appropriate choice for the parameter d in nonlinear Galerkin methods (see be-
low) is suggested as well. Let us mentjon that a local stability analysis for a discrete
nonlinear Galerkin method was also carried out in [3].

The technique used here for proving the long time stability is quite general. It can
be used to obtain uniform upper bounds and error estimates in large time intervals
for a fairly large class of numerical schemes to some evolutionary partial differential
equations (see already [7]).

To be more specific, we restrict ourselves to the 2-D N.S.E. Similar schemes and
analyses are applicable to other dissipative dynamical systems.

1.1 Functional setting of the N.S.E.

The 2-D unsteady Navier-Stokes equations in the primitive variable formulation are
written as:

du

E—uAu-l—(u-V)Uﬁ'VP:F (1)
dive =0 (2)
w(0) = ug (3)

where §2 is an open bounded set in IR? with sufficient smooth boundary, » > 0 is the
kinematic viscosity and F=F(x,t) represents the external body force. The unknowns
are the vector function u (velocity) and the scalar function p (pressure).

We will consider either the homogeneous Dirichlet boundary conditions, for which
we denote:

V = {ve (H}Q))?: divv = 0}
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or the periodic boundary conditions for which
V={ve (H;(Q))2 tdive =0, / v(z)dz = 0}.
Q

In both cases, we set

H = closure of V in (L*(Q))%

Let P be the orthonormal projection of (L%())? onto H, we define the Stokes operator
Au=—PAu, Yu € D(A) =V n (H}(Q))?,
and the bilinear operator
B(u,v) = Pl{u - V)], Yu,v € V.

The Stokes operator A is an unbounded positive self-adjoint closed operator in H
with domain D(A) and its inverse A~! is compact in H. Consequently, there exists
an orthonormal basis of H consisting of the eigenvectors w; of A:

Aw; = djwy, 0< A <A< - < Aj — +oo.

We denote the norms in H and V respectively by
ul = ([ Ju(e)Pde)¥ and Jiall = (| [Pt
Q Q

The corresponding scalar products are denoted by (-,-) and ((-,-)) respectively.
We define a trilinear formon V x V x V by
b(u,v,w) =< B(u,v),w >y v, Yu,v,w € V.
It is easy to verify that b satisfies the following important property
blu,v,w) = —b{u,w,v), Yu,v,w € V. (4)

We recall sonie of the continuity properties satisfied by B and b:
1 1 1 L
b(u, v, w)l < exlul2]full2]jv]w|Z||w]]Z, (5)

1 1
1B(u,v)| < ealulZ]Jull? [Jo]|%] Av]%, (6)

1B(u,v)] < calul¥|AulF|lo]]. (7)
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Under the above notations, the system (1)-(3) is equivalent to the following abstract
equation:

Z—?+VAu+B(u,u)=f (8)

u(0) = ug (9

where f=PF. The following results are well known (see for instance [9]).
Theorem. We assume f € L®(IR";H). Then for ug € H, the system (8)-(9)
admits a unique solution v € C(IRY;H)n L%(0,T;V), VT > 0.

Moreover, if ug € V, then w € C(IRT; V)N L%(0,T;D(A)), VT > 0.

We denote hereafter My = sup;5 ||u(t)|], My = sup;5q | f(2)]-

1.2 Description of the nonlinear Galerkin methods

Let us first explain briefly the idea of Foias-Manley-Temam [1] for constructing an
approximate inertial manifold of (8)-(9).
We select a cut-off value m and define

P, : the projection operator onto H,, = span{wy,...,wn};
Qm =1 -~ Pp.
Therefore, we can write

u=Pupu+@nu =Ym~+ z2m.

ym corresponding to the small eigenvalues represents the large eddies of the flow,
while z,, corresponding to the large eigenvalues represents the small eddies. Now we
apply respectively P, and Q,, to (8):

FYm
‘gt_'+Vf1y771+PnzB(ynz+zmyym+zm):P'mfv (10)
Oz
ot +VAZm+QmB(ym+zm7ym+2m)=me~ (11)

It can be proven (see [1] and [11]) that z,, only carries a small part of the kinematic
energy after a transient time, namely

1

LI

{ m (O S FoLAATAL o farge (12)
o8] < boLEAGL
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where Ly, = 1+ log —A—”fl’—l It is then reasonable to neglect 2, in some circumstances.
This leads them [1] (see also [11], [12] for other type of approximations) to approxi-
mate (11) by

VAim + QnB(Ym Ym) = Quf (13)
since |QmB(ym + Zm, Ym T+ zm)l ~ |QmB(ym’ ym)I >> |37In(t)|

If we define
$1(p) = (vA) ' Qm[f - B(p.p)], VP € Hn,

then Z, = ®,(y™). It has been proven that the finite dimensional manifold M; =
My, defined as the graph of ®; is a better approximate manifold to the universal
attractor than the flat manifold My = P, H, namely, we have (see [1])

_2
dist(u(t),M1) < k1LmA,,%1. 14
m+1

This result was the motivation of the paper by M. Marion & R. Temam [6] where
they introduced a finite dimensional version of (13) called nonlinear Galerkin meth-
ods. The stability and convergence of the methods without time discretizations were
established in [6]. Our aim in this paper is to analyze the time discretization of the
nonlinear Galerkin methods.

Let P = P, Q@ = Pgyp — P (d = d(m) > 0 is of our choice), and f" =

% TEZH)k f(t)dt. Our first scheme (corresponding to the approximate inertial mani-

fold M) is the following:
Given yo = Pug, 2° = Qug, find y"*! = y&"’l € Hp, and 2" = z,’,‘.["l € Hym — Hpy
such that
vA:" = Qf" - B(y", ")), (15)

yn+1 - yn n+l _ n no.mn n+l n n _n+l
—T——+VAy = P[f —B(y,y)—B(Z ,y)—B(y,z )] (16)
where k is the time step.
The advantage of this scheme over the classical Galerkin scheme (which corre-
sponds to (16) with z"*+1 = 0) were clarified in [10], [6] and [3].

The efficiency of the scheme (comparing to the classical Galerkin scheme with dm
modes) depends clearly on the choice of d. We suggest d to be chosen according to
the following arguments.

We note that (15) defines a m-dimensional manifold M 4 as the graph of
B14(p) = (vA) " (Pym ~ Pm)lf ~ B(p,P)] , ¥ P E Hp.
Therefore, let p = P u, by using (14)
dist(u(t) M1g) < dist(u(t), M1) + dist(My, M1 4)

3
< kiLmAgi +121(p) — @1,4(p)l. (17)
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On the other hand, we derive from the definition of @, ®; 4 that

vA(®1(p) ~ ®1,4(p)) = (I - Pam)[f — B(p,p)].

We recall (see for instance [1]) that

|[Aul® 1
B{u,v) < eqllull||vI(1 + log———3)2.
(u,v) < cqllullllv]I( ghllﬂllz)
Hence
[Ap|* |1

1
|B(p, p)| < callp|*(1 + log 12)5 < eaMELE.

Allp
Since 91(p) — ®1,4(p) € (I — Py )H and

|Aql = Aamsrlal s Y ¢ € (I — Pym)H

we derive
VAdm+1|®1(p) = @14(p)l < |vA(D1(p) — R1.4(p))l
< I+ 1B P < 1]+ cam?Lh.
Therefore
[@1(p) — @1,4(p)| < (WAamr) " [IF| + c4Ml2L,%n] < ’”‘ZLT%n’\ﬂwy
Hence

! i
dist(u(t), M1,4) < k1lmA 51 + k2L7%t’\;nl1+1'

For fixed m, we should then choose d such that

3 1
5 7, -1
kll’m’\mi-l ~ k2L72ﬂ)‘dm+1'

(18)

(19)

(20)

(21)

We recall that for the 2-D N.S.E. (see [5]) A, ~ m. We then derive that (21) is

equivalent to

1
m \?2
d ~ .
logm

(22)

We note that with this choice of d, the error for (15)-(16) is of the same order as that

of the classical Galerkin scheme with dm modes (see (12)).
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2 Uniform stability

From now on, we will use ¢; to denote some absolute constants, R;,b;, B; and G;
to denote constants depending on some data: R; = Ri(v, A, f), b; = bi(v, A1, f, wo),
B; = By(v, My, fyug,n), Gi = Gi(v, A, f,up, T). We will assume hereafter & < Kq
(for some Ko > 0 fixed).

2.1 Uniform stability in L*(IR*; H)

Theorem 1 We assume that k and m are such that

16c2k222bg < 3 - 6 (23)
16c2kApv~lbg < 1~ 6
where § € (0,%) and
< 2(1 +]&’0V(5)‘1)
(2 ST A0, g
bo = |u0| + 1/2/\%(5 .’Uf. (24)
Then, we have
, 1 2(1 + Kovbhy)
n2 042 2
< Mi =218 <
"* < (]+ku6/\1)"+1|u I” + EIVT F o(n) < b,
L ! 2T
VT >0, 6 oy ks )2 "2 < b+ ——M % = Go(T).
; 1;)“} YU+ ke "zz:o[”y e+ 11= |l]_0+1/)\1 I o(T)

Remark 1 We emphysize that the stabiblity condition (23) only involves An,. In
other word, no matter how large the d is, the time step constraints for (15)-(16)
are always the same. It can be proven that the stability condition for the classical
Galerkin scheme with dm modesis k ~ /\;T}L. This suggest that we can use larger time
step size for the nonlinear Galerkin scheme (15)-(16) than for the classical Galerkin
scheme. This may lead to substantial savings in cpu when doing long time integrations
of the N.S.E.

Before proving Theorem 1, let us first recall a simple inequality which is the time
discrete counterpart of the Gronwall lemma.

Lemma 1 Let a™, V" be two positive series satisfying

an+1 —a

(3
P +2a™t < p"and b® < b, Vo > 0.
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Then
n 1

. 1+ kA 1
CE T ey

. (1+kA)n+1)b

04 ,¥Yn>0

provided k, 1+ kX > 0.

Proor oF THE THEOREM 1: Taking the scalar product of (15) with 2kz"+1, (16)

with 2ky™*1, by using the relation
(a—b,2a) = |a|? - o> + |a - b]?,

we obtain
2kv || 2 = 2k(F7, 2"HY) - 2kb(y", ", MY,

and

W = TP T = g™ 2kl = 2k (5T Y

— 2k[b(y", y" g+ b(y", 2 ) by ),

The following inequalities will be used repeatly in the rest of the paper.

1
Hull > Aflul, YueV
1
Iyl < A&lyl Yy € PrV
1 1
Nell 2 Afqalzl 2 Adlzl, Yz € (I - PR)V

By using sucessively Schwarz inequality and (28), we derive

k(f™ y™ T+ ") < 2k Py 4 2
_1
< 2RAZIFM™TH + YD
. n+1,,2 n+1y12 2k 2
< k(™R )2 ll)+me-

Then the summation of (26), (27) and (29) leads to

y 2
!yn+1|2 _ |yn|2 + |yn+1 _ anQ + kV(HyTH-IH + ”Zn+1”2)

IN

+  2kb(y", FLany y”+1) +6(y", y", 5n+1)]}‘

The nonlinear terms in the above inequality can be majorized as follows:

%
=AM {2k v ") + 2k (7 ",
1

(25)

(26)

(27)

(28)

(29)

(30)
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By using repeatly (4), (5), (28) and Schwarz inequality, we obtain

ka(yn’yn’yn-fl) — ka(yn,yn’yn-{-l_yn)
< 2keyEWIE Y - Y~ g
< 2ker Bl ] 1y = )
S Sy SR, (31)
ka(zn-i-l’ yn,y’n-f-l) — 2kb(2n+l, ynyy’n-{-l _ yn‘)
< 2ker || E [ = g B = R
< 2keal]=" TR Y - T
< gl oy SR
S gy A P (32)

and

Qk[b(y”, Zn+1,yn+l) + b(yn,yn, zn+1)] — ka(yn, Zn+1yyn+1 _ yn)

i 1 i 1
2kery™ Iy 21" = g™z - 72

<
1
< 2kerdAR Y Y 1y - g
1
S AR R 1S LR A R [ (33)

Combining (31) to (33) into (30), we arrive to

1
2
L N A e 1 A A S ([ (R (B[

2%k
< ;—;;M? + 1262 " PP 4 8ek 2y P17 (34)

We derive from (28) that
lly™ 112 2lly™ =y 20y

<
< Dl -yt 42l (35)
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Using (35), we can rewrite (34) as

1
i e P e U N P o i &

+ kv(1= 16cikAmy T Y (™R 4 11217

2%k
iy V23 36
”e (36)

IN

Assuming that & and m verify the hypothesis (23), we are going to prove by induction
that
v/I* < Bo(a) < bo, Vg (37)

s (37) at ¢ = 0 is obvious;
e assuming (37) is true up to ¢ = n, then by using (23), the inequality (36) becomes

2k
WP = 1y S = T ks (T ) < SmME (38)
VAl

Therefore, by using (28) and dropping some unnecessary terms, we arrive to

ly" 1|2
3

n|2
- 2

W L eaymi < —M3}.
l/)\l

We can now apply Lemma 1 to this last inequality with o« = [y™|%, b" = ;i—lMJ? and
X = véAr;. From which we derive

2(1 +[X’0V6/\1) 1
ntl2 o 02 _ M2
W s (1+ku6}\1)”+1|y "+ vIA%s ( (1+ku6)\1)"+2) f
2(1 + Kové
< Bo(n+1)< |u0|2 + _(_L()V—l)M? = bg. (39)

1/2)\%6

The proof of (37) is complete.

In order to prove the last inequality of Theorem 1, VT > 0 given, we take the sum
of (38) for n from 0 to % — 1, which lead to

I_q I 4
T 3 r 2T
WFE46 3 1=y P ks 3 [P+ 117 < bo+ =M = Go(T). (40)
n=0 n=0

This completes the proof of Theorem 1. q
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Corollary 1 Under the hypotheses of Theorem 1, we have

Cc2 1 c2 1
]znl < jBo(n) + ;\:Aff = Bl(n) S 7b0 + V_Al.Mf = b1 s A4 n,

! , LT L 2esbo . .
kST < A (M + Go(T)) = A;}G(T) = 0 (asm™ ' —=0),VT>o0.
= v vé

Moreover, there exists Ry = Ro(v, X1, f) such that Vug € H, we can find N(ugp) > 0
such that for all n > N(ug), we have

6(1 + [{01/5/\1) 4 2
A M? = R, 41
% u2,\§] e (41)

"2+ 1" <

Proor: To majorize ™, we take the scalar product of (15) with z"+!
V”Zn+1H2 — (fn’ zn+l) _ b(yn)yn7 zn-}—l).

By using (28), (6) and Schwarz inequality, we find

i 1
T e | [ A e M e | P[P VA e

which implies

1 1
vARle™ < Myt ey 2]yl Ay 2
i
< Myp+aAnly iyl
< Mp+ednly™?, Vo (42)
Therefore
2 2¢
L2 o M2+ 252070201, 12,
R

By using the results of Theorem 1, we derive

T z
%1 -1

2T 2¢2bp %
k ZTL 2 __1”2 + '——k’ yn 2
nzzo | | = 1/2>\%1 f Am nZ::O || “

A

262b0
vé

Go(T)) = 0 (asm™ —0), v T>0,

IN

2T
-1 2
’\m (l/2 A[j +
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also from (42) and (39)
1
2" < M fVEBO(n) = By(n).
(41) is then a direct consequence of (39) and the last inequality. q

2.2 Uniform stability in L*(IR*:;V)

We can also prove that the scheme (15)-(16) is stable in stronger topologies., To this
end, we need the following time discrete Gronwall lemmas.

Let us recall first the time discrete counterpart of the usual Gronwall lemma.
Lemma 2 Let d", g™, h"™ be three series satisfying

dn+1 —d"

: <g™d"+hR", VY n.

Then, VN > 0,

N N N
d* < d%exp(kY g )+ kD hlexp(kd g¢') Vo< N +1
i=0 i=0 j=i

Proor: For the reader’s convenience, we give below the proof of the lemma. Using
recursively the following relation

d™ < (14 kg™)d"™ + kA", (43)
we derive

n—1 n—1 n-1
d" < d® TT(L+kg') + & 3 R° TL(1 + k).
=0

1=0 j=t

On the other hand, since (1 + z) < ¥, V z € IR, we derive

n—1 n-~-1 n—1
IL(+ ko) < TT explhg’) = exp(k D" g') , Va<n-1.
i=g i=gq i=q

Therefore
N ) N ) N ]
d* < d%exp(kY_g')+ kY hlexp(kd ¢?) V<N +19
;=0 =0 i=t

Now let us establish the time discrete counterpart of the uniform Gronwall lemma.
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Lemma 3 Let d”, g™, h" be three series satisfying

dn+1 —dr

—— < g"d"+ A", ¥ n 2o,

and

N4k
k ankoo g" < ay

N+k
kY ok <ag , ¥ ko2 no

kZN'H»‘o d" < as

n=ko
with kN = ». Then

4" < (az + =)exp(ay) , Y n > no+ N.
r

ProoF: For any m1,ms such that ng < my < mz < mj + N, we use recursively (43)
to get

my+N-1
dm1+N = 4™ H (1-|-kgn)

n=ms
mi+N-1 mi+N-1

+ kS o I (k). (44)

n=maz j=n

As in the proof of the previous lemma, we have

mi+N mi1+N )
IT +k™) < D explhg?)
n=mj n=mjy
mi+N ]
= ek Y o) < expla).
n=mj

Applying the above inequality to (44), we arrive to

mp+N-—-1
d™TN < d™exp(ar) +k Z k"™ exp(ay)
n=mso
< exp(ar)(d™ +az).
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We rewrite this inequality as
kd™ N < exp(ay )(kd™ + kag).

Finally, by adding the above inequality for mg from m; to m; + N ~ 1, keeping in
mind kN = », we obtain

mi+N-—-1

rd™*N < exp(ar)(k Z d™? + rag)
ma=m1
< exp(al)(ag -+ 7‘a2).1]

Theorem 2 We assume ug € V, k,n satisfying (23) and in addition

kv,
2

<16, (45)

where § is the saume as in Theorem 1. Then, we have

ly™|1* < b2, ¥ m,

I 1 L,
3 o kv & 2T

VT > 0,6 30 Iy -y P o 3 (AT AT < by o+ =M = Ga(T),
n=0 n=0 1

where by is to be given explicitly in the process of the proof.

PrOOF: As in the proof of Theorem 1, we take the scalar product of (15) with
2k Az (16) with 2k Ay™F! respectively

2w | AV = 2R(f7, A2 < 20b(y", ", AT,
and

W™ R = NI+ I = P 2k Ay P < 2R(57, Ay
_ Qk[b(yn,yn,AyTH-l)+b(yn,zn+1,Ayn+1)+b(zn+1,yn,Ayn+l)].

We then add them up to get

||yn+1“2 _ ”yn”2 + “yn+1 _ yn|l2 + 2kV(A]yn+l|2 _+_ IAzn+1l2)
Qk(fn,Ayn.‘rl +AZTL+1)
{2kb(y”,y",Ay"+1)+2kb(z"+1,y”,Ay”+1)

£ 2kb(y", 2T Ay™Th) - 2kb(y", v, A2 (46)

IA
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We majorize the right hand side terms as follows:

2k(f", Ay™ + A2 < 2k )|Ay" T + A2

kv 8k
Ay A ) —uMF (47)

By using sucessively Schwarz inequality and (6) and Hélder inequality, we derive

2kb(y™, y", Ay™Y) < 2k|B(y", y™)|Ay™Y
1 1 1
< 2kely™Z |y Ay™E Ay E
kv kv _
< T!Ay“+112+E|Ay"|2+csu Skly™ Pyt (48)

Similarly
1 1 1 1
2kb(y", 2 Ay < 2keoly™ |7 |y HE M| F 1A T 14y

< %li(lAyTH'l!? + |Az"+1|2) _{_C6V—3k(yn'2”yn”2“ZTL+‘1”27 (49)

2kb("TL, yn, AY™TY) < keq| U E Y 2|y 12| A" 2 [Ay™TY
kv kv _
1AV A e TR PP, (50)

and

2kb(y", y", Az < 2kealy 2|y IlAy™F AT

IN

kv kv _
Tl AV P+ A e TR Pl (51)

IA

Combining these inequalities to (46), we obtain

My PP — (™1 + g™ = y™M1E + kv (JAy™ T P+ 42"
8k k n n n
< —Mit 1A+ ot (52)

with
g™ = ear k(PP 4 PR A 1R,
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By using the results of Theorem 1, we derive

g" < esr ™ k[bo(lly™ 112 + 112" H1%) + bl 2" ).

Hence
Ntko Cgl/'-‘1 ) 1
kY g"< - (2b + 51)Go(1) = b5, for N = T Yko>0 (53)
n=kg
Using the relation
[4y™* < 20mlly™ = 1+ 2049 (54)

we can rewrite (52) as

Am

kv
L T [ e e

k 8k
oS UAr T AT ) < SaE 4R (55)
14
We assume k, m satisfying in addition (45). By dropping some unnecessary terms in
(55), we get

[y 12 = 1ly™?

n n|2 _8_/2
- < g™l 4 - M7 (56)

The idea for deriving a uniform upper bound of ||y"||? is the following:

o applying Lemma 2 to get an upper bound of [[y"||? for n < N = §;

e applying the time discrete uniform Gronwall lemma (Lemma 3) to get an upper
bound of ||y"||? forn > N = .

We apply first Lemma 2 with d™ = ||y™||?, hm = §Mf2 and N = 1. Since

v

N+kg 8
k A = —M? >
Dk SM, ¥ ko 20,
n=ko
we derive from Lemma 2 and (53) that
N N N
117 < 101 Peep(k S 0) + £ S hexp(k 3 g9)
=0 ;=0

j=t

8
< |10 Peap(bs) + —M;‘»’ezp(bs) =b3, Vn<N. (37)
v
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In order to derive a uniform bound for n > N, we apply Lemma 3. Using |y™|? < by,
we derive from (40) that

Ntko 2 1
k d" < (bg+ —MBH(ws) L =by for N== , Vkg>0.
n;() _(o+w\1 (o) 4 " 0

Therefore, the hypotheses of Lemina 3 are all verified. We derive from Lemma 3 that
n ny2 8 2
d™ = ||y S(;Mf +by)exp(bs) =bg, Yn> N.

Therefore
Ily"]|* < by = max(b3, bs) , ¥ n > 0.

Finally, VI > 0 given, taking the sum of (55) for n from 0 to % — 1, we recover the
last inequality of Theorem 2. q

Corollary 2 Under the hypotheses of Theorem 2, we have
1. -k -1
Han <v™ /\1 2]\[}, -f-CQ)\l 2[)2 , Von,

T
7;—1
B P < 2051 (M + AT 02Go(T)) —» 0 (asm™ = 0) , ¥ T> 0.

n=0

Moreover, There exists Ry = Ry(v, A1, f) such that Vug € H, we can find N(ug) > 0
such that for all n > N(ug), we have

g™ 11 + 112" < Ry (58)

Proor: The proof is similar to that of Corollary 1.
By taking the scalar product of (15) with A:"*! we derive

1 1
v[AZVT2 < My A 4 eoly™ 2 |y | Ay™Z | AT

By using (28)

1 L1
PARIZ"T < v]AZMTY < My ead 2" 14T (59)

IN

Aml n
Myt eI (60)
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Therefore, from (59) and Theorem 2, we derive

T
£-1
kv D 112" < 2051 (M F + c2AT12Go(T)) — 0 (asm™! — 0),

n=0
also from (60)

=1 L
N2 < v AR Mg + egA] 2ba.

(58) is then a consequence of Theorem 2 and this inequality. q

Remark 2 A direct consequence of Corollaries 1 & 2 is that there exist uniform
(independent of k,m) absorbing sets By = By (0, Rp) in H and By = By (0, Ry) in
V for solutions of the approximate system (15)-(16). In virtue of a general theorem
(Thm 1.1 of [9]), there exist universal attractors Ay, in H, for the system (15)-
(16) which are uniformly (independent of k,m) compact in H. The analysis for the
convergence and the error estimate of Ay, to A (as k,m~! — 0) is beyond the
scope of this paper. The related problems in a different context will be reported in a
subsequent paper (see [7]).

3 Convergence

With the stability results we established in the previous section, the procedure to
prove the convergence of the scheme is rather standard. We will only sketch it rapidly.

Let us first introduce some approximate functions of u(t).
DEFINITION:

e ui(t) = u(lk’m)(t) : IRY — H is the piecewise constant function which equals to
y" on [nk,(n + 1)k);

o uy(t) = ugk’m)(t) : IRT — H is the piecewise constant function which equals to
y" on [nk,(n + 1)k);

()

e uz(t) = uy IRt — H is the continuous function which is linear on
[nk,(n + 1)k) and ug(nk) = y*, us{(n + 1)k) = y"t1: and

o 2(t) = :(bm)(¢) . IRT — H is the piecewise constant function which equals to
2" on [nk,(n + k).

The main results in this section are

Theorem 3 Under the hypothesis (23), we have
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o ul*™ S u(as k,m™1 — 0)i=1,2,3, in L(0,T;V) A LP(0,T; H) strongly,
VT > 0, 1< p < oo, provided kA, — 0 in case of i=1,3.
o Moreover if ug € V and k,m satisfying in addition (45), then
wl™ s u (as k,m=t = 0) i =1,2,3in L3(0,T; D(4)) N LP(0,T; V)
strongly , VT >0, 1< p < +oo, provided kX, — 0 in case of i=1,3.

Proo¥: By using these definitions, we can reformulate the system (15)-(16) as
vAz(t) = QIf" - Blui(t), wmi(1))], (61)

du;g(i)

o +vAug(t) = Pf"~ B(ur{t),u1(t))

— B{ui{t),z(t)) = B(z(t), v1(1))]. (62)

Let us first derive an estimate on uz. From the definition of u3, we have

ST uso)l?de = Z / sl

1

(n+1)k n+1(12 _ 2
-3 {“.y__”__”?l + [llg™I12 = n(lly™ 1 - ||y“||2>]}dt

0 Vnk k

1
|

n

£-1 .
= X {(n + U™ = 1™ 17 + Elly™ 17 = k(™17 - ||y"||2)}

n=0

T
1—~1 -1

= Z(Ily”“ll IPHISEX Il
n=0

1——1
= = Z(ny”“H + [ly" ] )<(bo+——)v‘16‘

The last inequality comes from the results of Theorem 1.

This inequality and Theorem 1 can be reinterpreted as

ui(k,m)(t),i = 1,2,3 and =(¢t) are bounded uniformly in L*°(IR*; H)
(k’m)(t),i =1,2,3 and z(t) are bounded uniformly in L2(0,7;V), V T > 0.

Zu$™ (1) € L2(0,T; V)

(63)
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A direct consequence of (63) is that there exists U; € L®(IR*; H)nL?(0,T;V), VT >
0, i = 1,2,3 and a subsequence (&', m’) such that

— U; (ask,m~! — 0)in L®(IR*; H) weak — star
u; = u — U; (ask,m™! — 0)in L2(0, T; V) weakly (64)

(k! m/y 4
8u5t(t) — Juy - (t) _ d({jt(t) (as k,m‘l - 0) in Lz(O,T;V/) weakly

k’ !
u; = uE m')
_ {K'\m')

i

From the definitions of u;, we have

r 2 (n+1)k n yn+1_yn n n+1 ny1 2
[ @ -w@pa = X [T - eyt - )P
n=0 v71F
k (n+1)k
s X [T -y - e
n=0 Y7T¥
-1 (n+1)
n t
= > ! y"IZ/ (5 —n)idt
n=0 nk
P E k
= 3 D A T L 5G0(T)‘ (65)
n=0
Similarly,
T 2 k
/0 Jua(t) =~ us(t)Pdt < Z=Go(T). (66)

It is then obvious that U; = Uy = Uz = u*. In virtue of a classical compactness
theorem (see for example [4]), we derive from (64) that

u‘g“”") — w” in L2(0, T; H) strongly.

Then from (65)-(66), we have also

ugk’m) — u*in L%(0, T; H) strongly, i = 1,2.
Finally, we derive {from Corollary 1 that
2(5™) 0 in L2(0, T;11) strongly.

With these strong convergence results, the passage to the limit in (61)-(62) is standard
(see [8] for more details) and we find out that u* is indeed the solution of the N.5.E.
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It remains to prove the strong convergence in £2(0, 75V ). Let us define

X = Xx*™ =g (T) - w(T)P

i1 T
+ LW =g P2 [ () = w I + (01
n=0 0

-1 T
= Jlus(T)P+ 3 1™ -y + 21'/0 (luz(®)]] 4 112())]?)dt
n=0

T
+ {Iu(T)l"’Jrzz//o ||u(t)[|2dt}

‘ T
+ {—2(113(T),U(T))—41'/0 ((uz(t)w(t)))dt}

_ Xl(k,m) +X2(k,m) +X:§k,m).

From (64), we derive that
(km) 2 r 2
X337 — =2|u(T) —41// [Jult)]}*dt.
0

Taking the sum of (27) for n from 0 to % — 1, we obtain

-1 T
lus(T)F + D W™t -~ y“|2+2v/ (w1 + 1|21t
n=0 Y
= |u3(_0)|2+2/T(f",112(t)+z(t))dt
0
T
- /0 (B(u(t), ur(t), ua(t)) + d(ur(t), z(t), ua(t)) + b(2(t), wa(t), uz(t))de.

Let k,m~1 — 0 in the last relation, by using the strong convergences of ugk’m), 2 (k)

and (4), we derive

m T
X — ) +2 [ (e
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Finally, by taking the scalar product of (8) with u, we find

a|u(t) + 2ulu()I® = 2(f, u(t)).

The integration of which over [0,T] implies

T T
(D) + 20 [ lu@lPae = (O +2 [ (£, u(e)r
Combining all these relations, we derive

() = () o () x5 g (as k,m T - 0).

This implies

u(2k,m) — w in L*(0, T; V) strongly.

By the definition of wy(t), ua(t)

T Z
kA
/0 r(0) = wa(OIPdt = & 3 ™ = 41 < kd 3 107 = P < 2 Go(T).
n=0 =
Similarly as in (65)
T i ! kA,
/0 llus(t) = ua(t)||?dt < = Z ly™*! - ™| < ")‘m Z ™t -yt < WGO(T)
n=0

Therefore

wlFm) 8™y in L2(0, T; V) strongly provided kim — 0.

This completes the proof of the first part of Theorem 3. We omit the proof of the
second part since the procedure is exactly the same. q

4 Another nonlinear Galerkin scheme

We consider in this section a second scheme corresponding to a better approximate
inertial manifold of N.S.E.
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Find y"*! = y"+1 ¢ H,, and 2™ = 2% € Hy,, — Hy, such that

zn-i-l _

n
: +vAxtt!

QU - By - B 2") = By, (67)

n+1

k03
Yy +1/Ay"+1 P{fn— B(ynyn)_ B(Zn+l’yn)

il

_B(yn’ Zn+l) _ B(zn,zn+1)]. (68)

Theorem 4 We assume k and m satisfying

{ 166 A mAgmbo < 3 ~ 8 (69)

16c§L,\mA vl < 2(1-6)

Then, we have
y"|* +12"|* < Bo(n) , V n,

T
'E-—l

vT > 0, § Z [Iyn+1 _ yn|2 + |zn+1 _ zn|2]
n=0

——1
+ hvé Z Uly™ 12 + 112" 1P) < bo + ——Mf = Go(T),

n=0
and

T
£

A 4c2 \
kv Y 2P <A {|z 2 + - Mf + 14 2(= dm) ]-—zzboGo(T)} -0, (70)

where &,bg, Bo(n) are the same as in the Theorem 1.

ProoF: We take respectively the scalar product of (67) with 2k:™*!, (68) with
2ky™t! and add the corresponding equalities, we obtain
|Zn+l|2 _ Izn|2 "I' izn+1 _ zn|2 + lyn+1|2 _ |yn|2
+ ™ = P 2k (TR 1R
— 2k(fn’yn+1 _+_zn+l)
—{2kb(y", v,y ) + 280 (="H Y7, )
+2k[b(yn, zn-{-l’ yn+1) + b(yn’ ynY zn+l)]
+2k[b(zn, zn+l’ yn+1) + b(zn’ yn’ zn+1)]
+2kb(y", 2", PAE)!
= 2%k(f",y"*t 4+ ")~ By — By — B3 — By~ Bs. (71)
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As in the proof of Theorem 1, By, By, B3 can be majorized respectively by (31-33).
Other nonlinear terms can be majorized by using (6), (28) and Schwarz inequality,
namely

By = ka(zn’zn+17yn+l -
< 2ker]"F |23l - g™ E Y - 7R
< ke A EAT ]y -y
< Ty SARARAL R
Similarly
B,s = Zkb(yn,zn,zn+1—zn)

11
< ke AL 1T Y- 2 - 2T
1 L1
< gl = 2 8 IARA L I P12 P
By using these inequalities and (29), (82) becomes
1 1
lzn+1|2 _ Izn|2 "|' §'zn+l - znl2 + |yn+ll2 _ !ynl2 _+_ §lyn+1 _ yn|2

+ ke(ly"THE 1T

IN

2k L1
oM I A LGP Dl Pl o+ AR LRI

SRy Rl AEAD I R (72)
By using (35), we can rewrite (72) as
e R R R s S AT [
+ ’zn+1|2 _ |3n|2 + (_;_ _ lﬁckaAmAdm|y"12)|z"+l — 2n2
+ kv(1— 163k dpy 7y By

i1
+ kv[l— 16cTkrTIAZAE (2077 + 127l )P

IA
=1
5

-

(73)
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Assuming that k£ and m verifies the hypothesis (69), using exactly the same technique
as in the proof of Theorem 1, we can prove by induction that

[v*) + 127> < Bo(q) , ¥ q. (74)

Therefore, VT' > 0 given, taking the sum of (72) for n from 0 to _tkT_ - 1, we obtain

T T
I-1 i1
A A i A Ea e A O I 220 W [ L [ P 1Y
n=0 n=0
2T
< bo+ =—MF = Go(T). (75)
V/\]

To prove (70), we take the scalar product of (67) with 2kz"*!, using repeatly (28)
and (6), after some lengthy but easy computations, we arrive to

n41,2 72 n+1,2 4k 2 46‘3 ny2, n2
[0 = [T+ kvdm |20 < —=— M+ —2k|y""lly" ]
VYim v
4C%Adml n2y, 712 ny2y,n12
< = (—/\ V2R 1+ ™ =" 1),
m

Therefore, by taking the sum of this last inequality for n from 0 to % — 1, using (74)
and (75), we derive

T
-1 2
4T A 4
by S P < AR 102 + S 4 [1 4 2(28) 7] 200Go(T) § 9
n=0 vAm Am v

Theorem 5 If ug € V, k,n satisfying (69) and in addition

kv
Ydm s, (76)

Then, we have
™1 + 11" < b7, ¥ m,

Z
%
L I S [ e [ S EAAE A
77,:0
£
+ .]YZ “Ayn+1]2 + 'Azn+1|2] < by + 2_TM? = GS(T), (77)
2 vy

n=0
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T
—k-—l

- 4T 8¢c3
kv Y (1P <A {|1z°|12 tMp
n=0

(Am,\,)-%b7G3(T)} -0, (78

v

where & is the same as in the Theorem 1 and br is to be given explicitly in the process
of the proof.

Proor: Taking the scalar product of (67) with 2k Az"+1, (68) with 2kAy"*! respec-
tively, after some lengthy computations, we arrive to

[ | e (A e | T A e i T
4 7= P k(A 4 AR

< 2kM2
- v f

kv
+ Ay +1427)
+ " (WM + 1M (79)
with
0™ = cor 2k (" PIy™ 12 + ™R+ TR A PR,

We then derive from (74) and (75) that

N+ko 1
kS g™ < 200076 hoGo(1) = bg , for N = T (80)

n=ko

Using the relation (54), we can rewrite (79) as

kv
[ | e (e [ | e [ R A O e [ A I
kvA kv
+ (1= ZEE P (g™ A
2k 2 n 2 n2
< M7 (WP 1), (81)

After dropping some unnecessary terms in (81), we get

g™ M2 4 1 2) = Ul + 112"
: <

2k n n
S D (82)

We apply first Lemma 2 to this last inequality.
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Let d™ = {[y"* + [|"||*, hm = M}, N = . We derive from Lemma 2 and (80)
that

N N N
y™ 12+ =™ < (12 + 11200P)eap(k S g*) + kY hiexp(k Y ")

=0 =0 j=i

8
< |[u®||Pezp(bs) + ;M?ea:p(bg) =bg,Vn<N. (83)

We can now apply Lemma 3 to derive a upper bound of d" for n large. We derive
from the definitions of y™, k™ and (75) that

k Zi\:kio v* < (bo+ S M6 = by

1
, for N:-lz , Vko> 0.
kYo nm < B}

The hypertheses of Lemma 3 are then all verified. We derive from Lemma 3 that
ny2 n||2 8 2
lly™1* + 117117 < (S AL § + by)ezp(bs) = bro. (84)

Let b7 = max(bg, b1o), (81) can be obtained by taking the sum of (79) for n from 0 to
-1

To prove (78), we take the scalar product of (67) with 2kAz™+!, using repeatly
(28) and (6), we can derive

4k 4¢3
NP = 2P 4 kvdnlle™ TP < =M+ 2kl Ay
v vAq
463 -1 ny2 ni2 ni2 n(2
< T(Am/\l) 2k(|[="°1 Ay + g™ 11714 27F).

Hence, by taking the sum of this inequality for n» from 0 to % — 1, using (77) and
(84), we derive

T
-ic-—l

4T 8c3 L
kv 30 1P <A {||z°||2 + M7+ “U_z(’\m/\l)_?b7Ga(T)} :
n=0

The proof is complete. q
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Remark 3 The stability condition in (69) is not independent of d but is still better
than that of the classical Galerkin scheme with dm modes which needs k ~ A;,}l.

Let u;(t),i = 1,2,3 and z(t) be defined as in the section 3. By using the same
procedures as in the section 3, We can prove the following convergence theorem.

Theorem 6 Under the hypothesis (69), we have

o u; — u(as k,m™r = 0)i=1,2,3, in L%0,T;V )N LP(0,T; H) strongly,
YT >0, 1 < p< +4oo, provided kX, — 0 in case of i=1,3.

e Moreover if ug € V and k,m satisfying in addition (76), then
wi — u(ask,m™t —0)i=1,2,34in L*0,T;D(A))N LP(0,T;V)
strongly , YT > 0, 1 < p < 400, provided k),, — 0 in case of i=1,3.

Remark 4 For the sake of simplicity, we have only analyzed two first order (in time)
semi-implicit schemes. Higher order schemes of semi-implicit type such as Crank-
Nicolson & Adams Bashforth-scheme, etc. are suggested in practice to increase the
efficiency.
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