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We construct in this paper two Gauge–Uzawa schemes, one in conserved form and the 
other in convective form, for solving natural convection problems with variable density, 
and prove that the first-order versions of both schemes are unconditionally stable. We also 
show that a full discretized version of the conserved scheme with finite elements is also 
unconditionally stable. These schemes lead to a sequence of decoupled elliptic equations 
to solve at each step, hence, they are very efficient and easy to implement. We present 
several numerical tests to validate the analysis and demonstrate the effectiveness of these 
schemes for simulating natural convection problems with large density differences.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider in this paper numerical approximations of natural convection (NC) equations of an incompressible viscous 
Newtonian fluid with variable density [20]:

⎧⎪⎪⎨
⎪⎪⎩

ρt + (u · ∇)ρ = 0 in � × (0, T1] (a),
ρ(ut + (u · ∇)u) − μ�u + ∇p = ρg in � × (0, T1] (b),
∇ · u = 0 in � × (0, T1] (c),
ρ(Tt + (u · ∇)T ) − κ�T = 0 in � × (0, T1] (d),

(1.1)

where the unknown functions are the density ρ > 0, the velocity vector u, the pressure p and the temperature T ; μ, 
κ , T1 > 0 and g represent the dynamic viscosity coefficient, the thermal conductivity parameter, the fixed time and the 
gravitational force, respectively; � is an open bounded domain in Rd (d = 2 or 3) with a sufficiently smooth boundary ∂�. 
The above system is derived, under the assumptions that the energy depends only on the temperature and that the specific 
heat at constant volume is a constant, from the mass conservation, momentum conservation, incompressibility and the 
energy conservation. More details can be found in [1,4,20].
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The system (1.1) is supplemented with the following initial and boundary conditions for ρ , u and T :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x,0) = u0(x) in � and u(x, t)|� = g1(x, t),

ρ(x,0) = ρ0(x) in � and ρ(x, t)|�u(x,t) = r(x, t),

T (x,0) = T0(x) in � and
∂T (x, t)

∂n

∣∣
�1

= 0, T (x, t)|�2 = g2(x, t),

(1.2)

where � = ∂�, �1 is a regular open subset of �, �2 = ∂� \ �1, and for any velocity field v, �v is the inflow boundary 
defined by �v = {x ∈ � : v(x) · n < 0} with n being the outward unit normal vector. Throughout this paper we assume that 
the boundary � is impermeable, i.e., u · n = 0 everywhere on � and �v = ∅. We note that no initial and boundary condition 
is needed for the pressure p which can be viewed as a Lagrange multiplier whose mathematical role is to enforce the 
incompressibility condition.

NC phenomena are found in many scientific and engineering applications, and have been intensively studied in the 
literature, cf. [2,20,22,24,25]. When the density variation is small, it can be modeled by using a Boussinesq approximation 
[20], which treats the density as a constant but with an added buoyancy force as follows:

⎧⎨
⎩

ut − ν�u + (u · ∇)u + ∇p = Ra jT in � × (0, T1],
∇ · u = 0 in � × (0, T1],
Tt − κ�T + (u · ∇)T = γ in � × (0, T1],

(1.3)

where ν = 1
Re , κ = ν

Pr , Ra, Pr, Re is the Rayleigh number, the Prandtl number, and the Reynolds number, respectively. Most 
of the studies on the NC phenomena are based on the Boussinesq approximation [5,11,18,19,21–24,26].

However, in most geophysical flows, the temperature difference is the driving mechanism of the fluid motion. They are 
often driven by large temperature differences which lead to considerable density variations under which the Boussinesq 
approximation is no longer valid. In these cases, we are led to consider the model (1.1).

Constructing stable and efficient numerical schemes for the system (1.1)–(1.2) is challenging since it involves all the 
difficulties associated with the density-dependent Navier–Stokes equations as well as additional difficulties introduced by 
the temperature equation. Some numerical difficulties are: (i) the coupling of the velocity and pressure through the incom-
pressibility constraint, (ii) the presence of nonlinear terms, (iii) the coupling of flow field and temperature field, (iv) the 
transport equation for the density is of hyperbolic type while the others are of parabolic type. The objective for this paper 
is to design efficient and unconditionally energy stable numerical schemes to solve the coupled system (1.1)–(1.2).

For the incompressible Navier–Stokes equations with variable density, several stable schemes based on projection meth-
ods have been constructed in [9,12,16]. The schemes in [16] are based on the Gauge–Uzawa formulation [13–15] which has 
some advantages over the original Gauge method [7] and the pressure-correction projection method [17] for incompressible 
flows: (i) it does not require an artificial boundary condition on pressure, (ii) it does not require an initial pressure, (iii) its 
convergence is proved under minimal smoothness assumptions [10]. Hence, we shall extend the Gauge–Uzawa schemes in 
[16] for Navier–Stokes equations with variable density to the NC equations with variable density (1.1).

The system (1.1) is written in convective form which is not very convenient for analysis. We can rewrite (1.1) in a 
conservative form which is better suited for deriving energy dissipation laws. Following [8,16], we introduce σ = √

ρ and 
derive from (1.1a) and (1.1c) that

⎧⎪⎨
⎪⎩

σ(σu)t = ρut + 1

2
ρtu = ρut − u

2
(u · ∇ρ),

σ (σ T )t = ρTt + 1

2
ρt T = ρTt − T

2
(T · ∇ρ).

Using the above identities, we can rewrite (1.1) as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρt + (u · ∇)ρ + ρ

2
∇ · u = 0, in � × (0, T1] (a),

σ (σu)t + (ρu · ∇)u + u

2
(u · ∇ρ) − μ�u + ∇p = ρg in � × (0, T1] (b),

∇ · u = 0 in � × (0, T1] (c),

σ (σ T )t + (ρu · ∇)T + T

2
(u · ∇ρ) − κ�T = 0 in � × (0, T1] (d).

(1.4)

Note that the term ρ
2 ∇ · u = 0 in � because of the incompressibility condition (1.1c). A main advantage of the above 

formulation is that the nonlinear terms of (1.4) satisfy the following desired properties: for ρ , u, v, T smooth enough and 
u · n|� = 0, we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�

(u · ∇ρ)ρdx = 0 and
1

2

∫
�

ρ∇ · uρdx = 0 (a),

∫
�

(ρu · ∇v) · vdx + 1

2

∫
�

(u · ∇ρ)v · vdx = 0 (b),

∫
�

(ρu · ∇T )T dx + 1

2

∫
�

(u · ∇ρ)T T dx = 0 (c).

(1.5)

Hence, taking the inner product of (1.4a), (1.4b) and (1.4d) with ρ(x, t), u(x, t) and T (x, t), respectively, we obtain the 
following energy dissipation laws:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2

d

dt
‖ρ(·, t)‖2

L2 = 0,

1

2

d

dt
‖σ(t)u(·, t)‖2

L2 + μ‖∇u(·, t)‖2
L2 =

∫
�

ρ(x, t)g · u(x, t)dx,

1

2

d

dt
‖σ(t)T (·, t)‖2

L2 + κ‖∇T (·, t)‖2
L2 = 0.

(1.6)

We shall construct two new Gauge–Uzawa schemes in this paper one for the conserved form (1.4) and the other for the 
convective form (1.1). The scheme in conserved form is convenient for the analysis but slightly more expensive than the 
scheme in convective form because of the three additional nonlinear terms in (1.4a), (1.4b) and (1.4d). Generally, the con-
served form is more suitable for a Galerkin type spatial discretization while the convective form is more convenient for a 
collocation type method or finite difference method.

We now introduce some functional spaces to be used in the analysis. We denote the standard scalar Sobolev space by 
Hm(�) = W m,2(�) (m = 0, 1, 2, · · · ) with norm ‖v‖m = (

∑
|γ |≤m

‖Dγ v‖2
0)

1/2 where ‖v‖2
0 = ∫

�
v2dx. For vector-value functions, 

we use the Sobolev space Hm(�) = (Hm(�))d with norm |v|m = (
d∑

i=1
‖vi‖2

m)1/2, where d = 2 or 3 is the space dimension 

and H1
0(�) = {v ∈ H1(�) : v|∂� = 0}. We set L2(�) := (L2(�))d and denote L2

0(�) = {v ∈ L2(�) : ∫
�

vdx = 0}. We use 〈·, ·〉 to 
denote the inner product in L2(�) and use C to denote a generic positive constant which may depend on �, μ, κ , ρ0, u0, 
T 0, g and T1.

The remainder of this paper is organized as follows. In Sections 2–3, we present two first-order semi-discretized and 
full-discretized Gauge–Uzawa schemes, and prove that they are unconditionally stable, respectively. In addition, we give 
their corresponding second-order schemes. In Section 4, we firstly give some numerical results which reveal the convergence 
rate of our schemes for all unknown functions, then we present the simulation of Bénard convection problem to show the 
efficiency and validness of these schemes. Because of its simplicity and the richness of the phenomena, Bénard problem 
has been extensively studied both theoretically and experimentally [3,6], and serves as an excellent benchmark problem for 
numerical schemes. Finally, conclusions are drawn in Section 5.

2. Gauge–Uzawa method in conserved form

In this section, we construct the time discretization schemes for (1.4).
Let τ > 0 be a time step and set tn = nτ for 0 ≤ n ≤ N = �T1/τ�, where �·� is the floor function. The time-discrete 

approximations to (ρ(tn), u(tn), p(tn), T (tn)) will be denoted by (ρn, un, pn, T n).

2.1. First-order Gauge–Uzawa scheme

The first-order semi-discrete Gauge–Uzawa method is as follows:

Algorithm 2.1 (Gauge–Uzawa method in conserved form). Given ρ0 = ρ0, u0 = u0, T 0 = T0, and s0 = 0, then repeat the follow-
ing steps for 1 ≤ n ≤ N:

Step 1. Find ρn+1 as the solution of

⎧⎪⎨
⎪⎩

ρn+1 − ρn

τ
+ un · ∇ρn+1 + ρn+1

2
∇ · un = 0,

ρn+1|� n = rn+1.

(2.1)
u
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Step 2. Find ũn+1 as the solution of⎧⎪⎨
⎪⎩

σ n+1 σ n+1ũn+1 − σ nun

τ
+ ρn+1(un · ∇)ũn+1 + ũn+1

2
(un · ∇ρn+1) + μ∇sn − μ�ũn+1 = ρn+1g,

ũn+1|� = gn+1
1 .

(2.2)

Step 3. Find φn+1 as the solution of⎧⎪⎨
⎪⎩

− ∇ · ( 1

ρn+1
∇φn+1) = ∇ · ũn+1,

∂nφn+1|� = 0.

(2.3)

Step 4. Update un+1 and sn+1 by⎧⎪⎨
⎪⎩

un+1 = ũn+1 + 1

ρn+1
∇φn+1,

sn+1 = sn − ∇ · ũn+1.

(2.4)

Step 5. Find T n+1 as the solution of⎧⎪⎨
⎪⎩

σ n+1 σ n+1T n+1 − σ n T n

τ
+ ρn+1(un+1 · ∇)T n+1 + T n+1

2
(un+1 · ∇ρn+1) − κ�T n+1 = 0,

T n+1|� = gn+1
2 .

(2.5)

Remark 2.1. In practice, (2.3) is often reformulated in the following weak formulation〈
1

ρn+1
∇φn+1,∇q

〉
= −〈

ũn+1,∇q
〉
, ∀q ∈ H1(�). (2.6)

We derive from (2.4) and (2.6) that〈
un+1,∇q

〉 = 0, ∀q ∈ H1(�), (2.7)

which implies that in the space continuous case, we have

∇ · un+1 = 0 and un+1 · n|� = gn+1
1 · n|�. (2.8)

However, in the space discrete case, only a discrete version of (2.7) will be satisfied so the discrete velocity field will 
generally not be divergence free.

Remark 2.2. Note that the pressure does not appear in the above algorithm, however, by eliminating ũn+1 from (2.2) using 
(2.4) and (2.8), we can obtain a pressure approximation

pn+1 = − 1

τ
φn+1 + μsn+1. (2.9)

Next, we consider the stability of Algorithm 2.1. For the sake of simplicity, we assume o homogeneous Dirichlet boundary 
conditions for velocity, i.e., u|� = 0.

Theorem 2.1. Assuming g1 ≡ 0, the Gauge–Uzawa Algorithm 2.1 is unconditionally stable in the sense that, for all τ > 0 and 0 ≤ N ≤
T1/τ − 1, the following a priori bounds hold:

‖ρN+1‖2
0 +

N∑
n=0

‖ρn+1 − ρn‖2
0 = ‖ρ0‖2

0, (2.10)

‖σ N+1ũN+1‖2
0 +

N∑
n=0

(‖σ n+1ũn+1 − σ nun‖2
0 + ‖ 1

σ n
∇φn‖2

0) + μτ‖sN+1‖2
0 + μ

2
τ

N∑
n=0

‖∇ũn+1‖2
0

≤ ‖σ 0ũ0‖2
0 + C T1‖ρ0‖2

0, (2.11)

and

‖σ N+1T N+1‖2
0 +

N∑
n=0

‖σ n+1T n+1 − σ n T n‖2
0 + 2κτ

N∑
n=0

‖∇T n+1‖2
0 = ‖σ 0T 0‖2

0. (2.12)
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Proof. Taking the inner product of (2.1) with 2τρn+1 and using the identity (1.5a), we obtain

‖ρn+1‖2
0 + ‖ρn+1 − ρn‖2

0 − ‖ρn‖2
0 = 0. (2.13)

Summing up the above for n from 0 to N leads to (2.10).
Then we take the inner product of (2.2) with 2τ ũn+1, thanks to (1.5b), we get

‖σ n+1ũn+1‖2
0 + ‖σ n+1ũn+1 − σ nun‖2

0 − ‖σ nun‖2
0 + 2μτ‖∇ũn+1‖2

0 + 2μτ 〈∇sn, ũn+1〉 = 2τ (ρn+1g, ũn+1). (2.14)

The next task is to derive a suitable relation between ‖σ nun‖2
0 and ‖σ nũn‖2

0 so that we can sum up (2.14) over n. We derive 
from (2.3) and (2.7) that

‖σ nun‖2
0 = 〈ρnun,un〉 = 〈ρnũn + ∇φn,un〉 = 〈ρnũn,un〉 =

〈
ρnũn, ũn + 1

ρn
∇φn

〉

= ‖σ nũn‖2
0 +

〈
un − 1

ρn
∇φn,∇φn

〉
= ‖σ nũn‖2

0 − ‖ 1

σ n
∇φn‖2

0.

(2.15)

Now, we sum up (2.14) and (2.15) to get

‖σ n+1ũn+1‖2
0 − ‖σ nũn‖2

0 + ‖σ n+1un+1 − σ nũn‖2
0 + ‖ 1

σ n
∇φn‖2

0 + 2μτ‖∇ũn+1‖2
0 = A1 + A2 (2.16)

with

A1 := 2μτ 〈sn,∇ · ũn+1〉, A2 := 2τ 〈ρn+1g, ũn+1〉. (2.17)

We derive from the well-known inequality

‖∇ · v‖0 ≤ ‖∇v‖0, ∀v ∈ H1
0(�), d ≥ 2, (2.18)

and (2.4) that

A1 = −2μτ 〈sn, sn+1 − sn〉 = −μτ(‖sn+1‖2
0 − ‖sn − sn+1‖2

0 − ‖sn‖2
0)

= −μτ(‖sn+1‖2
0 − ‖sn‖2

0) + μτ‖∇ · ũn+1‖2
0

≤ −μτ(‖sn+1‖2
0 − ‖sn‖2

0) + μτ‖∇ũn+1‖2
0.

(2.19)

On the other hand, using the Cauchy–Schwarz inequality and ‖v‖0 ≤ C‖∇v‖0 (∀v ∈ H1
0(�)), we obtain

A2 ≤ 2τ‖g‖0‖ρn+1‖0‖ũn+1‖0 ≤ 2Cτ‖g‖0‖ρn+1‖0‖∇ũn+1‖0

≤ Cτ‖ρn+1‖2
0 + μ

2
τ‖∇ũn+1‖2

0

(2.20)

where C depends on μ, g. From (2.13), we have

‖ρn+1‖2
0 ≤ ‖ρn‖2

0 ≤ ‖ρ0‖2
0. (2.21)

Thus, we derive from (2.20) and (2.21) that

A2 ≤ Cτ‖ρ0‖2
0 + μ

2
τ‖∇ũn+1‖2

0. (2.22)

Inserting (2.19) and (2.22) into (2.16) leads to

‖σ n+1ũn+1‖2
0 − ‖σ nũn‖2

0 + ‖σ n+1un+1 − σ nũn‖2
0 + μτ(‖sn+1‖2

0 − ‖sn‖2
0)

+ ‖ 1

σ n
∇φn‖2

0 + μ

2
τ‖∇ũn+1‖2

0 ≤ Cτ‖ρ0‖2
0.

(2.23)

Summing (2.23) over n from 0 to N yields (2.11).
Finally, taking the inner product of (2.5) with 2τ T n+1, thanks to (1.5c), we obtain

‖σ n+1T n+1‖2
0 − ‖σ n T n‖2

0 + ‖σ n+1T n+1 − σ n T n‖2
0 + 2κτ‖∇T n+1‖2

0 = 0. (2.24)

Summing it over n from 0 to N leads to (2.12). The proof is complete. �
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2.2. Gauge–Uzawa FEM and its stability: full discretization

In this subsection, we introduce a spatial discretization of Algorithm 2.1 for NC equations with variable density. Let 
Th = {K } be a uniformly regular family of triangulation of �, and define the mesh size h = max

K∈Th

{diam(K )}. The spatial 

approximation of fluid density, velocity, hydrodynamic pressure and temperature field is applied by mixed element method 
with (Mh, Xh, Q h, Wh). Next, we present the following discrete subspaces:

Mh =
{
ψh ∈ L2(�) : ψh|K ∈ P2(K ), ∀ K ∈ Th

}
,

Vb
h =

{
vh ∈ C(�̄) : vh|K ∈ (P2(K ))2, ∀ K ∈ Th;vh|� = b

}
,

Q h =
{

qh ∈ L2(�) ∩ C(�̄) : qh|K ∈ P1(K ), ∀ K ∈ Th

}
,

Wh =
{

sh ∈ C(�̄) : sh|K ∈ P2(K ), ∀ K ∈ Th

}
,

Xh = Vb
h + ∇ Q h,

where Pi(K ) is the set of all polynomials on K of degree less than or equal to i ∈ N, b is boundary condition. Then, the 
Gauge–Uzawa finite element method (FEM) reads as follows.

Algorithm 2.2 (Gauge–Uzawa FEM). Let ρ0h , u0h and T0h be a suitable approximation of ρ0, u0 and T0, respectively. Set 
ρ0

h = ρ0h , u0
h = u0h , T 0

h = T0h and s0
h = 0; repeat for 1 ≤ n ≤ N:

Step 1. Find ρn+1
h ∈ Mh for ∀ψh ∈ Mh such that

〈
ρn+1

h − ρn
h

τ
+ un

h · ∇ρn+1
h + ρn+1

h

2
∇ · un

h,ψh

〉
= 0. (2.25)

Step 2. Find ũn+1
h ∈ V

gn+1
1

h for ∀vh ∈ V0
h such that

〈
σ n+1

h

σ n+1
h ũn+1

h − σ n
h un

h

τ
,vh

〉
+ 〈

ρn+1
h (un

h · ∇)ũn+1
h ,vh

〉 + 〈1

2
(un

h · ∇ρn+1
h )ũn+1

h ,vh
〉

+ μ
〈∇sn

h,∇ · vh
〉 − μ

〈∇ũn+1
h ,∇ṽn+1

h

〉 = 〈
ρn+1

h g,vh
〉
.

(2.26)

Step 3. Find φn+1
h ∈ Q h for ∀qh ∈ Q h such that〈

1

ρn+1
h

∇φn+1
h ,∇qh

〉
= −〈

ũn+1
h ,∇qh

〉
. (2.27)

Step 4. Update un+1
h and sn+1

h ∈ Q h by⎧⎪⎨
⎪⎩

un+1
h = ũn+1

h + 1

ρn+1
h

∇φn+1
h ,

〈
sn+1

h ,qh
〉 = 〈

sn
h − ∇ · ũn+1

h ,qh
〉
, ∀qh ∈ Q h.

(2.28)

Step 5. Find T n+1
h for ∀ϕh ∈ Wh such that

〈
σ n+1

h

σ n+1
h T n+1

h − σ n
h T n

h

τ
,ϕh

〉
+ 〈

ρn+1
h (un+1

h · ∇)T n+1
h ,ϕh

〉 + κ
〈∇T n+1

h ,∇ϕh
〉 + 1

2

〈
(un+1

h · ∇ρn+1
h )T n+1

h ,ϕh
〉 = 0.

(2.29)

Theorem 2.2. Assuming g1 ≡ 0, the Gauge–Uzawa Algorithm 2.2 is unconditionally stable in the sense that, for all τ > 0 and 0 ≤ N ≤
T1/τ − 1, the following a priori bounds hold:

‖ρN+1
h ‖2

0 +
N∑

n=0

‖ρn+1
h − ρn

h ‖2
0 = ‖ρ0

h ‖2
0,

‖σ N+1
h ũN+1

h ‖2
0 +

N∑
n=0

(‖σ n+1
h ũn+1

h − σ n
h un

h‖2
0 + ‖ 1

σ n
h

∇φn
h‖2

0) + μτ‖sN+1
h ‖2

0 + μ

2
τ

N∑
n=0

‖∇ũn+1
h ‖2

0

≤ ‖σ 0
h ũ0

h‖2
0 + C T1‖ρ0

h ‖2
0,
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and

‖σ N+1
h T N+1

h ‖2
0 +

N∑
n=0

‖σ n+1
h T n+1

h − σ n
h T n

h ‖2
0 + 2κτ

N∑
n=0

‖∇T n+1
h ‖2

0 = ‖σ 0
h T 0

h ‖2
0.

Proof. We can prove the desired result by using exactly the same procedure as in the proof of Theorem 2.1. Note that while 
∇ · un+1

h is not necessarily zero, we can derive from (2.28) and (2.29) that 
〈
un+1

h , ∇qh
〉 = 0, ∀qh ∈ Q h which is a discrete 

counterpart of (2.7). �
2.3. Second-order Gauge–Uzawa scheme

Algorithm 2.1 is only first-order accurate. However, a second-order version with essentially the same computational 
procedures can be constructed as follows. For simplicity, we denote, for any function a, its second-order extrapolation by 
ān+1 = 2an − an−1.

Algorithm 2.3 (Second-order Gauge–Uzawa method). Set ρ0 = ρ0, u0 = u0, T 0 = T0 and s0 = 0 and compute ρ1, u1, p1, s1

with Algorithm 2.1, then repeat for 2 ≤ n ≤ N .

Step 1. Find ρn+1 as the solution of⎧⎪⎨
⎪⎩

3ρn+1 − 4ρn + ρn−1

2τ
+ ūn+1 · ∇ρn+1 + ρn+1

2
∇ · ūn+1 = 0,

ρn+1|�ūn+1 = rn+1.

(2.30)

Step 2. Find ũn+1 as the solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρn+1 3ũn+1 − 4un + un−1

2τ
+ ρn+1(ūn+1 · ∇)ũn+1 + ũn+1

2
(ūn+1 · ∇ρn+1)

+ ∇pn + μ∇sn − μ�ũn+1 = ρn+1g,

ũn+1|� = gn+1
1 .

(2.31)

Step 3. Find φn+1 as the solution of⎧⎪⎨
⎪⎩

− ∇ · ( 1

ρn+1
∇φn+1) = ∇ · ũn+1,

∂nφn+1|� = 0.

(2.32)

Step 4. Update un+1 and sn+1 by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un+1 = ũn+1 + 1

ρn+1
∇φn+1,

sn+1 = sn − ∇ · ũn+1,

pn+1 = pn − 3φn+1

2τ
+ μsn+1.

(2.33)

Step 5. Find T n+1 as the solution of⎧⎪⎨
⎪⎩

ρn+1 3T n+1 − 4T n + T n−1

2τ
+ ρn+1(ūn+1 · ∇)T n+1 + T n+1

2
(ūn+1 · ∇ρn+1) − κ�T n+1 = 0,

T n+1|� = gn+1
2 .

(2.34)

Similarly, we can construct fully-discrete version of Algorithm 2.3.

Remark 2.3. Although numerical experiments indicate that this scheme is unconditionally stable, how to prove the stabil-
ity of Algorithm 2.3 is still an open problem. In fact, to the best of the authors’ knowledge, there is no provably stable 
second-order projection type scheme available even for the variable density Navier–Stokes equations.

3. Gauge–Uzawa methods in convective form

We construct in this section Gauge–Uzawa methods in convective form which is more convenient for non-variational 
methods such as spectral-collocation method or finite difference method.
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3.1. First-order Gauge–Uzawa method

Algorithm 3.1 (Gauge–Uzawa method in convective form). Given ρ0 = ρ0, u0 = u0, T 0 = T0, and s0 = 0, then repeat the fol-
lowing steps for 1 ≤ n ≤ N:

Step 1. Find ρn+1 as the solution of⎧⎪⎨
⎪⎩

ρn+1 − ρn

τ
+ un · ∇ρn+1 = 0,

ρn+1|�un = rn+1.

(3.1)

Step 2. Find ũn+1 as the solution of⎧⎪⎨
⎪⎩

ρn ũn+1 − un

τ
+ ρn+1(un · ∇)ũn+1 + μ∇sn − μ�ũn+1 = ρn+1g,

ũn+1|� = gn+1
1 .

(3.2)

Step 3. Find φn+1 as the solution of⎧⎪⎨
⎪⎩

− ∇ · ( 1

ρn+1
∇φn+1) = ∇ · ũn+1,

∂nφn+1|� = 0.

(3.3)

Step 4. Update un+1 and sn+1 by⎧⎪⎨
⎪⎩

un+1 = ũn+1 + 1

ρn+1
∇φn+1,

sn+1 = sn − ∇ · ũn+1.

(3.4)

Step 5. Find T n+1 as the solution of⎧⎪⎨
⎪⎩

ρn T n+1 − T n

τ
+ ρn+1(un · ∇)T n+1 − κ�T n+1 = 0,

T n+1|� = gn+1
2 .

(3.5)

Remark 3.1. In this Algorithm, the pressure does not appear explicitly but its approximation can be defined by (2.9). Fully-
discrete and second-order versions of Algorithm 3.1 can be similarly constructed as in Algorithm 2.2 and Algorithm 2.3, 
respectively.

Theorem 3.1. Assuming g1 ≡ 0, the Gauge–Uzawa Algorithm 3.1 is unconditionally stable in the sense that, for all τ > 0 and 0 ≤ N ≤
T1/τ − 1, the following a priori bounds hold:

‖ρN+1‖2
0 +

N∑
n=0

‖ρn+1 − ρn‖2
0 = ‖ρ0‖2

0, (3.6)

‖σ N+1ũN+1‖2
0 +

N∑
n=0

(
‖σ n(ũn+1 − un)‖2

0 + ‖ 1

σ n
∇φn‖2

0

)
+ μτ‖sN+1‖2

0 + μ

2
τ

N∑
n=0

‖∇ũn+1‖2
0

≤ ‖σ 0ũ0‖2
0 + C T1‖ρ0‖2

0, (3.7)

and

‖σ N+1T N+1‖2
0 +

N∑
n=0

‖σ n+1T n+1 − σ n T n‖2
0 + 2κτ

N∑
n=0

‖∇T n+1‖2
0 = ‖σ 0T 0‖2

0. (3.8)

Proof. Taking the inner product of (3.1) with 2τρn+1, thanks to the first equation in (1.5a), we get

‖ρn+1‖2
0 + ‖ρn+1 − ρn‖2

0 − ‖ρn‖2
0 = 0. (3.9)

Summing up over n from 0 to N leads to (3.6).
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Next, taking the inner product of (3.2) with 2τ ũn+1, we find

2
〈
ρn(ũn+1 −un), ũn+1〉+2τ

〈
ρn+1(un ·∇)ũn+1, ũn+1〉+2μτ

〈∇sn, ũn+1〉+2μτ‖∇ũn+1‖2
0 = 2τ

〈
ρn+1g, ũn+1〉. (3.10)

Now, we can write the first term in the above as

2
〈
ρn(ũn+1 − un), ũn+1〉 = ‖σ nũn+1‖2

0 + ‖σ n(ũn+1 − un)‖2
0 − ‖σ nun‖2

0. (3.11)

The relation (2.15) is still valid because we only used (2.3) and (2.7) to derive it. Hence, we only need to derive a suitable 
relation between ‖σ nũn+1‖2

0 and ‖σ n+1ũn+1‖2
0. For this purpose, we take the inner product of (3.1) with a scalar function 

τ ũn+1 · ũn+1 to get〈
ρn+1 − ρn, ũn+1 · ũn+1〉 = −τ

〈∇ · (ρn+1un), ũn+1 · ũn+1〉, (3.12)

which can be rewritten as

‖σ n+1ũn+1‖2
0 − ‖σ nũn+1‖2

0 = 2τ
〈
ρn+1(un · ∇)ũn+1, ũn+1〉. (3.13)

Combining (3.13) and (2.15) into (3.11), we obtain

2
〈
ρn(ũn+1 − un), ũn+1〉 + 2τ

〈
ρn+1(un · ∇)ũn+1, ũn+1〉

= ‖σ n+1ũn+1‖2
0 + ‖σ n(ũn+1 − un)‖2

0 − ‖σ nũn‖2
0 + ‖ 1

σ n
∇φn‖2

0.
(3.14)

Then, we can derive from (3.10) and (3.14) that

‖σ n+1ũn+1‖2
0 + ‖σ n(ũn+1 − un)‖2

0 − ‖σ nũn‖2
0 + ‖ 1

σ n
∇φn‖2

0 + 2μτ‖∇ũn+1‖2
0 = A1 + A2

with A1 and A2 defined in (2.17). Using the estimates (2.19) and (2.20) yields

‖σ n+1ũn+1‖2
0 − ‖σ nũn‖2

0 + ‖σ n(un+1 − ũn)‖2
0 + μτ(‖sn+1‖2

0 − ‖sn‖2
0) + ‖ 1

σ n
∇φn‖2

0 + μ

2
τ‖∇ũn+1‖2

0 ≤ Cτ‖ρ0‖2
0.

(3.15)

Summing up the above over n from 0 to N leads to (3.7).
Lastly, taking the inner product of (3.1) with a scalar function τ T n+1 T n+1 to get〈

ρn+1 − ρn, T n+1T n+1〉 = −τ
〈∇ · (ρn+1un), T n+1T n+1〉, (3.16)

which can be rewritten as

‖σ n+1T n+1‖2
0 − ‖σ n T n+1‖2

0 = 2τ
〈
ρn+1(un · ∇)T n+1, T n+1〉. (3.17)

Taking the inner product of (3.5) with 2τ T n+1 and using (3.17), we can get

‖σ n+1T n+1‖2
0 − ‖σ n T n‖2

0 + ‖σ n(T n+1 − T n)‖2
0 + κ‖∇T n+1‖2

0 = 0. (3.18)

Summing up the above n from 0 to N leads to (3.8). The proof is complete. �
4. Numerical experiments

We present in this section some numerical experiments to validate the effectiveness of Gauge–Uzawa methods for NC 
problems. Throughout this section, we use the finite element spaces (P2, P2, P1, P2) for (ρ, u, p, T ).

Firstly, we consider a flow problem with manufactured analytical solution. Secondly, a Bénard convection problem is 
presented.

4.1. Examples with analytical solution

As a first example, in order to test the accuracy of algorithms proposed in this paper, we consider a known analytical 
solution:

ρ(x1, x2, t) = 2 + x1 cos(sin(t)) + x2 sin(sin(t)),

u1(x1, x2, t) = −x2 cos(t),

u2(x1, x2, t) = x1 cos(t),

p(x1, x2, t) = sin(x1) sin(x2) sin(t),

T (x1, x2, t) = u1(x1, x2, t) + u2(x1, x2, t).
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Table 1
Error and convergence rate in time of the first-order Gauge–Uzawa method in conserved form.

τ 0.1 0.05 0.025 0.0125 0.00625 0.003125
‖∇(ρ−ρh)‖0‖∇ρ‖0

8.7953E−1 4.4518E−1 2.2392E−1 1.1234E−1 5.6304E−2 2.8210E−2
Order / 0.982 0.991 0.995 0.997 0.997
‖ρ−ρh‖0‖ρ‖0

1.0194E−2 5.1668E−3 2.5998E−3 1.3038E−3 6.5288E−4 3.2668E−4
Order / 0.980 0.991 0.996 0.998 0.999
‖∇(u−uh )‖0‖∇u‖0

3.8566E−2 1.8113E−2 8.7229E−3 4.2739E−3 2.1152E−3 1.0527E−3
Order / 1.090 1.054 1.029 1.015 1.007
‖u−uh‖0‖u‖0

1.1796E−2 6.0288E−3 3.0390E−3 1.5246E−3 7.6342E−4 3.8197E−4
Order / 0.968 0.988 0.995 0.998 0.999
‖p−ph‖0‖p‖0

2.6245E−1 1.3464E−1 6.8320E−2 3.4433E−2 1.7290E−2 8.6668E−3
Order / 0.963 0.979 0.989 0.994 0.996
‖∇(T −Th)‖0‖∇T ‖0

1.2806E−2 6.3355E−3 3.1499E−3 1.5704E−3 7.8404E−4 3.9173E−4
Order / 1.015 1.008 1.004 1.002 1.001
‖T −Th‖0‖T ‖0

6.2621E−3 3.1003E−3 1.5422E−3 7.6908E−4 3.8404E−4 1.9189E−4
Order / 1.014 1.007 1.004 1.002 1.001
Kdiv 3.8140E−2 1.7001E−2 7.8937E−3 3.7836E−3 1.8510E−3 9.1680E−4
Order / 1.166 1.107 1.061 1.032 1.014
Errorsum1 8.46512E−2 4.28300E−2 2.15485E−2 1.08085E−2 5.41295E−3 2.70866E−3
CPU(s) 273.88 529.90 1096.87 2197.47 4398.34 9275.64

Table 2
Error and convergence rate in time of the first-order Gauge–Uzawa method in convective form.

τ 0.1 0.05 0.025 0.0125 0.00625 0.003125
‖∇(ρ−ρh)‖0‖∇ρ‖0

6.5886E−1 3.3523E−1 1.6924E−1 8.5069E−2 4.2658E−2 2.1362E−2
Order / 0.975 0.986 0.992 0.996 0.998
‖ρ−ρh‖0‖ρ‖0

1.0184E−2 5.1607E−3 2.5964E−3 1.3021E−3 6.5199E−4 3.2622E−4
Order / 0.981 0.991 0.996 0.998 0.999
‖∇(u−uh )‖0‖∇u‖0

3.8605E−2 1.8141E−2 8.7382E−3 4.2818E−3 2.1192E−3 1.0548E−3
Order / 1.090 1.054 1.029 1.015 1.007
‖u−uh‖0‖u‖0

1.1809E−2 6.0330E−3 3.0412E−3 1.5258E−3 7.6409E−4 3.8233E−4
Order / 0.969 0.988 0.995 0.998 0.999
‖p−ph‖0‖p‖0

2.6147E−1 1.3420E−1 6.8115E−2 3.4335E−2 1.7242E−2 8.6424E−3
Order / 0.962 0.978 0.988 0.994 0.996
‖∇(T −Th)‖0‖∇T ‖0

1.2715E−2 6.3241E−3 3.1533E−3 1.5744E−3 7.8663E−4 3.9317E−4
Order / 1.008 1.004 1.002 1.001 1.001
‖T −Th‖0‖T ‖0

6.4481E−3 3.2211E−3 1.6098E−3 8.0470E−4 4.0230E−4 2.0113E−4
Order / 1.001 1.001 1.000 1.000 1.000
Kdiv 3.8067E−2 1.6990E−2 7.8914E−3 3.7831E−3 1.8508E−3 9.1676E−4
Order / 1.164 1.106 1.061 1.031 1.014
Errorsum2 8.46678E−2 4.28348E−2 2.15498E−2 1.08089E−2 5.41303E−3 2.70868E−3
CPU(s) 261.73 468.53 1026.36 1960.21 3680.27 8151.78

The computational domain is an unit circle. We choose μ = 1, κ = 1, T1 = 1, and the initial conditions in (1.1) are given by 
the above exact solutions.

The convergence rates with respect to the time step τ are calculated by the formula log(Ei/Ei+1)

log(τi/τi+1)
, where Ei and Ei+1 are 

the relative errors corresponding to the time steps τi and τi+1, respectively.
Computation are made on a fixed small enough mesh size with different time steps so that the error from the spatial 

discretization is negligible compared with the time error. The results are given in Tables 1–3, where Kdiv = max
Kh(�)

| ∫k ∇ ·uhdx|, 

Errorsum1 =
N∑

n=0
‖σ n+1ũn+1 − σ nun‖2

0 in (2.11), Errorsum2 =
N∑

n=0
‖σ n(ũn+1 − un)‖2

0 in (3.7). From Tables 1–2, we observe that 

the numerical results with the Gauge–Uzawa FEM in conserved and convective forms behave similarly, so we only present 
the numerical results of 2nd-order scheme in convective form in Table 3. These results indicate that first- and second-order 
convergence rates are achieved with the first- and second-order schemes, respectively. As for CPU time, we observe that the 
conserved scheme is slightly more expensive than the convective scheme.

4.2. Bénard convection

As the second example, we consider the Bénard convection which is a classical fluid dynamic phenomenon. In the 
standard case, the temperatures of the top and bottom plates are assumed to be distributed homogeneously.
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Table 3
Error and convergence rate in time of the second-order Gauge–Uzawa method in convective form.

τ 1/10 1/20 1/30 1/40 1/50 1/60
‖∇(ρ−ρh)‖0‖∇ρ‖0

1.4223E−1 3.7835E−2 1.7318E−2 9.9221E−3 6.4300E−3 4.5066E−3
Order / 1.911 1.927 1.936 1.944 1.949
‖ρ−ρh‖0‖ρ‖0

1.4328E−3 3.5278E−4 1.5583E−4 8.7363E−5 5.5795E−5 3.8690E−5
Order / 2.022 2.015 2.012 2.009 2.008
‖∇(u−uh )‖0‖∇u‖0

6.6946E−3 1.6682E−3 7.4067E−4 4.1634E−4 2.6632E−4 1.8488E−4
Order / 2.005 2.002 2.002 2.002 2.002
‖u−uh‖0‖u‖0

3.2855E−3 8.1434E−4 3.6073E−4 2.0252E−4 1.2945E−4 8.9820E−5
Order / 2.012 2.008 2.007 2.006 2.005
‖p−ph‖0‖p‖0

4.7783E−2 1.1758E−2 5.2019E−3 2.9217E−3 1.8756E−3 1.3229E−3
Order / 2.023 2.011 2.005 1.986 1.915
‖∇(T −Th)‖0‖∇T ‖0

1.1530E−3 2.9041E−4 1.2965E−5 7.3101E−5 4.6853E−5 3.2568E−5
Order / 1.989 1.989 1.992 1.994 1.995
‖T −Th‖0‖T ‖0

6.5338E−3 1.6314E−4 7.2625E−5 4.0894E−5 2.6189E−5 1.8195E−5
Order / 2.002 1.996 1.996 1.997 1.998
Kdiv 1.7081E−3 4.5968E−4 2.1219E−4 1.2162E−4 7.8734E−5 5.5153E−5
Order / 1.894 1.907 1.935 1.949 1.952
CPU(s) 463.97 870.38 1292.39 1934.95 2345.98 2811.36

Fig. 1. Bénard Convection: domain and boundary conditions.

Fig. 2. Bénard convection based on Boussinesq approximation with Pr = 1, Ra = 104, τ = 0.01, h = 1/150: (a) pressure; (b) temperature.

The domain and boundary conditions of Bénard convection problem are displayed in Fig. 1. The top boundary is isother-
mal and the bottom plate is uniformly heated; both vertical walls are adiabatic. And the boundary conditions for the velocity 
are no-slip at all boundaries. The initial conditions are T 0 = 0, u0 = 0 and ρ0 = 0.01 ∗ (y + 1).

4.2.1. Boussinesq approximation
We first consider the natural convection with small density difference such that the well-known Boussinesq approxi-

mation can be used. In order to validate our methodology and compare with the data provided by [14,22], we consider 
the uniformly heated boundary condition on the bottom plate with κ = 1, h = 1/150, Pr = 1. Figs. 2–3 show the pressure, 
temperature and velocity fields of NC equations based on the Boussinesq approximation using the second-order Gauge–
Uzawa FEM with ν = 1, Ra = 104, τ = 0.01 at times t = 0.1, t = 0.15, t = 0.3. And in Figs. 4–5 we present the numerical 
results with ν = 10, Ra = 106, τ = 5 × 10−5 at t = 0.03, t = 0.05, t = 0.08. We observe in particular appearance of the well 
documented convection rolls in Fig. 3 and Fig. 5, and more rolls appear as Ra increases.

4.2.2. Non-Boussinesq regime
In many applications such as geophysical flows, density varies significantly under the influence of temperature such 

that the Boussinesq approximation is no longer valid. In these cases, we use the model (1.1). Since the Rayleigh number 
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Fig. 3. Velocity of Bénard convection based on Boussinesq approximation at ν = 1, Pr = 1, Ra = 104, κ = 1, τ = 0.01, h = 1/150 at different times: 
(a) t = 0.1, (b) t = 0.15, (c) t = 0.3.

Fig. 4. Bénard convection based on Boussinesq approximation with ν = 10, Pr = 1, κ = 1, Ra = 106, τ = 5 × 10−5, h = 1/150: (a) pressure; (b) temperature.

Fig. 5. Velocity of Bénard convection based on Boussinesq approximation at ν = 10, Pr = 1, Ra = 106, κ = 1, τ = 5 × 10−5, h = 1/150 at different times: 
(a) t = 0.03, (b) t = 0.05, (c) t = 0.08.

(Ra), which describes the relationship between buoyancy and viscosity within a fluid and can also be used as a criterion to 
predict convectional instabilities, is the most important dimensionless number for NC problem with small density variations, 
we introduce a similar dimensionless number (Ra1) in the right hand side of (1.1b) to control the magnitude of buoyancy 
force for NC problem with large density variations.

We study below the influence of the ratio of μ (controlling the magnitude of viscosity force) and Ra1. First, we take 
Ra1 = 104, μ = 1, κ = 1, τ = 10−3, h = 1/100. The density, temperature and streamline function by the 2nd-order scheme 
are shown in Fig. 6. In this case, Ra1/μ = 104 so heat transfer is primarily in the form of conduction. Hence, the isothermal 
lines and density contours nearly parallel to the bottom plate. Next, we choose Ra1 = 103, μ = 0.01, κ = 0.01, τ = 10−4, 
h = 1/120. The density, temperature and streamline functions by the 2nd-order scheme are shown in Fig. 7. Finally, we 
present in Figs. 8–9 the numerical results of the 2nd-order scheme at different times with ν = 1, Pr = 1, Ra1 = 105, 
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Fig. 6. Isolines of density, temperature and streamlines of velocity (from up to bottom) of Bénard convection problem with variable density with ν = 1, 
Pr = 1, Ra1 = 104, κ = 1, τ = 10−3, h = 1/100 by the second-order Gauge–Uzawa FEM at different time: (a) t = 0.1, (b) t = 0.2, (c) t = 0.55.

Fig. 7. Isolines of density, temperature and streamlines of velocity (from up to bottom) of Bénard convection problem with variable density with ν = 0.01, 
Pr = 1, Ra1 = 103, κ = 0.01, τ = 10−4, h = 1/120 by the second-order Gauge–Uzawa FEM at difference time: (a) t = 0.2, (b) t = 0.24, (c) t = 0.28.

Fig. 8. Isolines of density (a) and temperature (b) of Bénard convection problem with variable density with ν = 1, Pr = 1, Ra1 = 105, κ = 1, τ = 10−4, 
h = 1/120 by the second-order Gauge–Uzawa FEM at difference time: t = 0.02, t = 0.05, t = 0.08 (from top to bottom).

κ = 1, τ = 10−4, h = 1/120. We observe from Figs. 7–9 that the heat transfer is primarily in the form of convection when 
Ra1/μ = 105. In these cases, a series of transitions to more complicated states occur. It is expected that the flow will 
eventually become turbulent when Ra1/μ is sufficiently large.

5. Summary

We developed two Gauge–Uzawa schemes, one in conserved form and the other in convective form, for the natural 
convection problem with variable density, and proved that their first-order versions are unconditionally stable. We believe 
that the convergence of these schemes can be established with suitable assumptions by following similar procedures in [10]. 
However, how to prove the stability for their second-order versions is still an open problem.
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Fig. 9. Velocity of Bénard convection with variable density at ν = 1, Pr = 1, Ra1 = 105, κ = 1, τ = 10−4, h = 1/120 at different times: (a) t = 0.02, 
(b) t = 0.05, (c) t = 0.08.

These schemes lead to decoupled elliptic systems for the velocity, the gauge variable and the temperature, respectively. 
Hence, they are very efficient and easy to implement. We have also presented several numerical tests to validate our analysis 
and demonstrate the effectiveness of the proposed schemes.

Acknowledgements

The author J. Wu thanks for the financial support from China Scholorship Council. The authors would like to thank the 
editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper.

References

[1] G. Batchelor, An Introduction to Fluid Dynamics, vol. 1, Cambridge University Press, 1967, pp. 4–252.
[2] J. Boland, W. Layton, An analysis of the finite element method for natural convection problems, Numer. Methods Partial Differ. Equ. 6 (2) (1990) 

115–126.
[3] F. Busse, Transition to turbulence in Rayleigh–Bénard convection, in: Hydrodynamic Instabilities and the Transition to Turbulence, Springer, 1981, 

pp. 97–137.
[4] A. Chorin, J. Marsden, A Mathematical Introduction to Fluid Mechanics, vol. 3, Springer, 1990, pp. 1–45.
[5] G. De Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Methods Fluids 3 (3) (1983) 249–264.
[6] J. Domaradzki, R. Metcalfe, Direct numerical simulations of the effects of shear on turbulent Rayleigh–Bénard convection, J. Fluid Mech. 193 (1988) 

499–531.
[7] W. E, J. Liu, Gauge method for viscous incompressible flows, Commun. Math. Sci. 1 (2) (2003) 317–332.
[8] J. Guermond, L. Quartapelle, A projection FEM for variable density incompressible flows, J. Comput. Phys. 165 (1) (2000) 167–188.
[9] J. Guermond, A. Salgado, A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys. 

228 (8) (2009) 2834–2846.
[10] J. Guermond, A. Salgado, Error analysis of a fractional time-stepping technique for incompressible flows with variable density, SIAM J. Numer. Anal. 

49 (3) (2011) 917–944.
[11] P. Huang, J. Zhao, X. Feng, Highly efficient and local projection-based stabilized finite element method for natural convection problem, Int. J. Heat Mass 

Transf. 83 (2015) 357–365.
[12] Y. Li, L. Mei, J. Ge, F. Shi, A new fractional time-stepping method for variable density incompressible flows, J. Comput. Phys. 242 (2013) 124–137.
[13] R. Nochetto, J. Pyo, The Gauge–Uzawa finite element method. Part I: The Navier–Stokes equations, SIAM J. Numer. Anal. 43 (3) (2005) 1043–1068.
[14] R. Nochetto, J. Pyo, The Gauge–Uzawa finite element method. Part. II: The Boussinesq equations, Math. Models Methods Appl. Sci. 16 (10) (2006) 

1599–1626.
[15] J. Pyo, Error estimates for the second order semi-discrete stabilized Gauge–Uzawa method for the Navier–Stokes equations, Int. J. Numer. Anal. Model. 

10 (1) (2013) 24–41.
[16] J. Pyo, J. Shen, Gauge–Uzawa methods for incompressible flows with variable density, J. Comput. Phys. 221 (1) (2007) 181–197.
[17] J. Shen, On error estimates of projection methods for Navier–Stokes equations: first-order schemes, SIAM J. Numer. Anal. 29 (1) (1992) 57–77.
[18] H. Su, X. Feng, Y. He, Defect-correction finite element method based on Crank–Nicolson extrapolation scheme for the transient conduction–convection 

problem with high Reynolds number, Int. Commun. Heat Mass Transf. 81 (2017) 229–249.
[19] H. Su, X. Feng, Y. He, Second order fully discrete defect-correction scheme for nonstationary conduction–convection problem at high Reynolds number, 

Numer. Methods Partial Differ. Equ. 33 (3) (2017) 681–703.
[20] K. Szewc, J. Pozorski, A. Taniere, Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation, Int. J. Heat Mass 

Transf. 54 (23) (2011) 4807–4816.
[21] J. Wu, X. Feng, F. Liu, Pressure-correction projection FEM for time-dependent natural convection problem, Commun. Comput. Phys. 21 (2017) 

1090–1117.
[22] J. Wu, D. Gui, D. Liu, X. Feng, The characteristic variational multiscale method for time dependent conduction–convection problems, Int. Commun. Heat 

Mass Transf. 68 (2015) 58–68.
[23] J. Wu, P. Huang, X. Feng, A new variational multiscale FEM for the steady-state natural convection problem with bubble stabilization, Numer. Heat 

Transf., Part A, Appl. 68 (7) (2015) 777–796.
[24] J. Wu, P. Huang, X. Feng, D. Liu, An efficient two-step algorithm for steady-state natural convection problem, Int. J. Heat Mass Transf. 101 (2016) 

387–398.
[25] Q. Zhang, T. Jackson, A. Ungan, Numerical modeling of microwave induced natural convection, Int. J. Heat Mass Transf. 43 (12) (2000) 2141–2154.
[26] T. Zhang, X. Feng, J. Yuan, Implicit–explicit schemes of finite element method for the non-stationary thermal convection problems with temperature-

dependent coefficients, Int. Commun. Heat Mass Transf. 76 (2016) 325–336.

http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6261746368656C6F72313936396Bs1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib426F6C616E64s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib426F6C616E64s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6275737365313938317472616E736974696F6Es1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6275737365313938317472616E736974696F6Es1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib63686F72696E313939306D617468656D61746963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6465313938336E61747572616Cs1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib646F6D617261647A6B6931393838646972656374s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib646F6D617261647A6B6931393838646972656374s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib4532303033s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib4775722E513030s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib677565726D6F6E643230303973706C697474696E67s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib677565726D6F6E643230303973706C697474696E67s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib4775652E533131s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib4775652E533131s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6875616E6732303135686967686C79s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6875616E6732303135686967686C79s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6C69323031336E6577s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib4E6F63686574746F3230303532s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6E6F63686574746F323030366761756765s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib6E6F63686574746F323030366761756765s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib50796Fs1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib50796Fs1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib50796F32303037s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib5368656E31393932s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib737532303137646566656374s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib737532303137646566656374s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7375323031367365636F6E64s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7375323031367365636F6E64s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib737A657763323031316D6F64656C696E67s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib737A657763323031316D6F64656C696E67s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib77757072657373757265s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib77757072657373757265s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7775323031356368617261637465726973746963s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7775323031356368617261637465726973746963s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7775323031356E6577s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7775323031356E6577s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib777532303136656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib777532303136656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7A68616E67323030306E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7A68616E6732303136696D706C69636974s1
http://refhub.elsevier.com/S0021-9991(17)30553-3/bib7A68616E6732303136696D706C69636974s1

	Unconditionally stable Gauge-Uzawa ﬁnite element schemes for incompressible natural convection problems with variable density
	1 Introduction
	2 Gauge-Uzawa method in conserved form
	2.1 First-order Gauge-Uzawa scheme
	2.2 Gauge-Uzawa FEM and its stability: full discretization
	2.3 Second-order Gauge-Uzawa scheme

	3 Gauge-Uzawa methods in convective form
	3.1 First-order Gauge-Uzawa method

	4 Numerical experiments
	4.1 Examples with analytical solution
	4.2 Bénard convection
	4.2.1 Boussinesq approximation
	4.2.2 Non-Boussinesq regime


	5 Summary
	Acknowledgements
	References


