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Abstract
We consider in this paper numerical approximations for the Poisson-Nernst-Planck-Navier-
Stokes (PNP-NS) system. We propose a decoupled semi-discrete and fully discrete scheme
that enjoys the nice properties of positivity preserving, mass conserving, and unconditionally
energy stability. Then, we establish the well-posedness and regularity for the initial and
(periodic) boundary value problem of the PNP-NS system under suitable assumptions on the
initial data, and carry out a rigorous convergence analysis for the fully discretized scheme.
We also present some numerical results to validate the positivity preserving property and the
accuracy for our decoupled numerical scheme.

Keywords Error analysis · PNP-NS system · Unique Solvability · Structure-preserving ·
Positivity-preserving

1 Introduction

In this paper, we consider a time-dependent system that describes the electrodiffusion of ions
in an isothermal, incompressible, and viscous Newtonian fluid. Such a system is called the
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Poisson-Nernst-Planck-Navier-Stokes (PNP-NS) system [10, 19, 26], which has many appli-
cations in biological membrane channels and electrochemical systems. In recent years, this
model is widely used to describe electro-chemical and fluid-mechanical transport through-
out the cellular environment which includes a range of spatial and temporal scales for many
applications. A large number of dedicated applications are possible with this set of equations
as for example semiconductors, electrokinetic flows in electrophysiology, drug delivery into
biomembranes, and many others, see [4, 6, 25]. By normalizing all relevant coefficients, the
Poisson-Nernst-Planck-Navier-Stokes (PNP-NS) system is given by

pt + (u · ∇)p = ∇ · (∇ p + p∇ψ), (1.1)

nt + (u · ∇)n = ∇ · (∇n − n∇ψ), (1.2)

− ε�ψ = p − n, (1.3)

ut + (u · ∇)u − �u + ∇P = −∇ψ(p − n), (1.4)

∇ · u = 0, (1.5)

where u and P denote the velocity field of the fluid and the pressure function, respectively.
In (1.1) and (1.2), the variables p and n represent the concentration functions of positive
and negative ions in the fluid, respectively, ψ is the electric potential, and the parameter ε

represents the dielectric permittivity. The system (1.1)-(1.5) is subjected to a set of initial
and boundary conditions, which will be specified later.

There has been considerable interest in the mathematical analysis of the PNP-NS sys-
tem. For example, Schmuck [25] established the global existence of weak solutions in three
dimensions under the blocking boundary condition for (p, n) and the zero Neumann bound-
ary condition for ψ ; Gong-Wang-Zhang [10] established the existence and partial regularity
of suitable weak solutions in three dimensions under the zero Neumann boundary condition
for p, n, and ψ ; Constantin-Ignatova [5] proved the global existence and stability result
in two dimensions, with the blocking and selective boundary conditions for (p, n) and the
Dirichlet boundary condition for ψ . We emphasize that the solutions of the PNP-NS system
are positive (n, p > 0), mass-conserving, and energy-dissipative.

In recent years, a large effort has been devoted to constructing positivity-preserving
schemes for various problems in different areas [1, 8, 16–18, 21, 27, 30, 31]. There are
also quite a few numerical investigations on the PNP-NS system (1.1)-(1.5). It was shown in
[9] that it is important for numerical schemes to maintain mass conservation. Prohl-Schmuck
proposed in [24] a coupled fully implicit first-order scheme with a finite-element method
in space for the PNP-NS system and studied its convergence. Additionally, a first-order
time-stepping method was proposed in [22] with spectral method discretization in space.
Several structure-preserving numerical methods have been proposed for the PNP equations,
for example, [2, 3, 7, 9, 14, 15, 19, 20, 23, 28]. However, there appears to be no scheme
available in the literature for the PNP-NS system (1.1)-(1.5) that enjoys the properties of
unique solvability, mass- and positivity-preserving, and energy stability.

In this paper, we propose a decoupled, mass- and positivity-preserving, and uncondition-
ally energy-stable scheme for the PNP-NS system and carry out a rigorous error analysis.
The main contributions of this paper include:

• We propose a totally decoupled, mass- and positivity-preserving, and unconditionally
energy-stable scheme for the PNP-NS system by combining the following techniques:

– Rewriting the PNP system as a Wasserstein gradient flow and using the technique
introduced in [28] to preserve positivity and energy stability for the PNP system;

– Using a projection-type method [11–13] to decouple the velocity and pressure;
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– Introducing an extra O(�t) term as in [29], which allows us to treat the convective
term in the PNP equations explicitly while maintaining stability.

• We derive the existence and regularity results of the PNP-NS system (1.1)-(1.5) with
periodic boundary conditions under suitable assumptions on the initial data.

• To carry out an error analysis, it is necessary to have L∞ bounds for n and p, which are
not available through energy stability. We use an approach similar to [19] to derive these
bounds by introducing a high-order asymptotic expansion for both the PNP equations
and the Navier-Stokes equations.

This paper is organized as follows: In Section 2, we construct a semi-discrete (in time)
scheme, followed by a fully discrete scheme with a generic spatial discretization, and prove
that it preserves mass and positivity, and is unconditionally energy stable. In Section 3, we
establish the well-posedness and regularity of the PNP-NS system under periodic boundary
conditions. An error analysis of the fully discretized scheme is carried out in Section 4. Some
numerical results are provided in Section 5.

2 A Decoupled Numerical Scheme and Its Properties

Let� be a bounded domain inR2. We consider the time discretization of the PNP-NS system
(1.1)-(1.5) subjected to either

• Block boundary condition: the non-slip boundary condition for u, the homogeneous
Neumann boundary condition for (φ, ln p + ψ, ln n − ψ), i.e., all the fluxes vanish on
the boundary of �:

u|∂� = 0, ∇φ · �ν∣
∣
∂�

= (∇ p + p∇ψ) · �ν∣
∣
∂�

= (∇n − n∇ψ) · �ν∣
∣
∂�

= 0, (2.1)

• Periodic boundary condition: the periodic boundary conditions for all variables,

along with the initial condition:

(u, p, n)(x, y, 0) = (uin, pin, nin)(x, y), for (x, y) ∈ �. (2.2)

For either (2.1) or the periodic boundary conditions, one observes that the mass of ions is
conserved, i.e.,

∫

�

p(x, t) dx =
∫

�

p(x, 0) dx,
∫

�

n(x, t) dx =
∫

�

n(x, 0) dx, ∀t ∈ [0, T ].

Another essential property of the PNP-NS system (1.1)-(1.5) is the following energy dissi-
pation law:

d

dt
E(p, n,u) = −

∫

�

(|∇u|2 + p|∇μ|2 + n|∇ν|2)

dx, (2.3)

where μ = ln p + ψ and ν = ln n − ψ are chemical potentials of the PNP-NS system, and
E is the total energy given by

E(p, n,u) =
∫

�

(

p(ln p − 1) + n(ln n − 1) + ε

2
|∇ψ |2 + 1

2
|u|2

)

dx .
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2.1 Time Discretization

We first consider the time discretization. For simplicity, we choose the dielectric permittivity
to be ε = 1. In order to construct an efficient time discretization scheme, we first rewrite the
right-hand side of equation (1.4) as

−∇ψ(p − n) = −(p∇μ + n∇ν) + ∇(p + n),

and introduce a modified pressure φ = P − p−n. Then, the PNP-NS system (1.1)-(1.5) can
be reformulated as

pt + (u · ∇)p = ∇ · (p∇μ), (2.4)

nt + (u · ∇)n = ∇ · (n∇ν), (2.5)

− �ψ = p − n, (2.6)

ut + (u · ∇)u − �u + ∇φ = −(p∇μ + n∇ν), (2.7)

∇ · u = 0. (2.8)

Let X = H1(�), W = {v ∈ H1(�) : v|∂� = 0} under Block boundary condition and
W = H1(ω) under Periodic boundary condition, andU = {q ∈ L2(�) : ∫

�
q dx = 0}. Fol-

lowing some of the ideas in [19, 28, 29], we construct a first-order time discretization scheme
as follows: for any given (pm, nm,um, φm) with

∫

�
(pm − nm) dx = 0, (pm, nm) > 0 and

∇ · um = 0 in �, we compute (pm+1, nm+1, ψm+1, ũm+1,um+1, φm+1) in three steps:

• Step 1: Solve (pm+1, nm+1) ∈ X × X from

pm+1 − pm

�t
+ ∇ · (pmum) = ∇ · (pm(1 + 2�tpm)∇μm+1), (2.9)

nm+1 − nm

�t
+ ∇ · (nmum) = ∇ · (nm(1 + 2�tnm)∇νm+1), (2.10)

− �ψm+1 = pm+1 − nm+1. (2.11)

where

μm+1 = ln pm+1 + ψm+1 and νm+1 = ln nm+1 − ψm+1.

• Step 2: Solve ũm+1 ∈ W 2 from

ũm+1−um
�t +(um · ∇)ũm+1 − �ũm+1 + ∇φm =− (

pm∇μm+1 + nm∇νm+1
)

. (2.12)

• Step 3: Solve (um+1, φm+1) ∈ W 2 ×U from

um+1 − ũm+1

�t
+ ∇(φm+1 − φm) = 0, (2.13)

∇ · um+1 = 0. (2.14)

The first step involves solving a coupled nonlinear system for (pm+1, nm+1, ψm+1) which
can be formulated as a minimization problem for a convex functional, see [28] and also
Theorem 2.2. The second step solves a Poisson-type equation for ũm+1. And the third step
is equivalent to solving

�(φm+1 − φm) = 1

�t
∇ · ũm+1, (2.15)
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along with either (φm+1 − φm) · �ν∣
∣
∂�

= 0 or the periodic boundary condition, and

um+1 = ũm+1 − �t∇(φm+1 − φm). (2.16)

Thus, the scheme (2.9)-(2.14) can be efficiently implemented.

Remark 1 The first step can be rewritten as:

pm+1 − pm

�t
+ ∇ · (pmum∗,p) = ∇ · (pm∇μm+1),

nm+1 − nm

�t
+ ∇ · (nmum∗,n) = ∇ · (nm∇νm+1),

where

um∗,p = um − 2�tpm∇μm+1,

um∗,n = um − 2�tnm∇νm+1.

This is similar to the decoupling technique introduced by [29].

2.2 Fully Discretized Scheme

In this subsection, we shall consider a generic spatial discretization for (2.9)-(2.14). Let 
N

be a set of mesh points or collocation points in �̄. Note that
N should not include the points
on the part of the boundary where a Dirichlet (or essential) boundary condition is prescribed,
while it should include the points on the part of the boundary where a Neumann or mixed
(or non-essential) boundary condition is prescribed.

We consider a Galerkin-type discretization with finite elements, spectral methods, or
finite differences with summation-by-parts in a subspace XN ⊂ X , and define a discrete
inner product, i.e., numerical integration, on 
N = {z} in �̄:

〈u, v〉 =
∑

z∈
N

ωzu(z)v(z), (2.17)

where we require that the weights ωz > 0. We also denote the induced norm by ‖u‖ =
〈u, u〉 1

2 . For finite element methods, the sum should be understood as
∑

K⊂T
∑

z∈Z(K ),
where T is a given triangulation. We assume that there is a unique function ψz(x) satisfying
ψz(z′) = δzz′ for z, z′ ∈ 
N .

Let XN , WN , and UN be suitable subspaces of X , W , and U , respectively. For example,
if we consider a Legendre spectral method, we can choose XN = {v ∈ PN , v ∈ H1(�)},
WN = {v ∈ PN , v ∈ H1

0 (�)} and UN = {v ∈ PN−2, v ∈ L2(�) : ∫

�
v dx = 0}. PN repre-

sents the polynomials with degree less than or equal to N. For convenience, we choose the
Fourier spectral method to make the error analysis, and we shall define the corresponding
spaces XN , WN , and UN in the next section. We define the discrete gradient and divergence

operators as following: ifuN =
N∑

k=0
ukφk , then∇uN =

N∑

k=0
uk∇φk .Without loss of generality,

we define the discrete divergence operator in 2D, If uN = (uN , vN ) = (
N∑

k=0
ukφk,

N∑

k=0
vkψk),

then ∇ · uN =
N∑

k=0
(uk∂xφk + vk∂yψk). Here φk and ψk are polynomial basis functions with

degree less than or equal to k.
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Then, a fully discretized version of (2.9)-(2.14) for the PNP-NS system (2.4)-(2.8) is as
follows:

Given (pmN , nmN ,umN , φm
N ) ∈ XN ×XN ×W 2

N ×UN , with pmN , nmN > 0 in�, 〈pmN −nmN , 1〉 =
0, and ∇ · umN = 0 in �, we proceed as follows:

• Step 1: Solve (pm+1
N , nm+1

N ) ∈ XN × XN from

〈 p
m+1
N − pmN

�t
, vN 〉 − 〈pmNumN , ∇vN 〉 + 〈pmN (1 + 2�tpmN )∇μm+1

N ,∇vN 〉 = 0, ∀vN ∈ XN ,

(2.18)

〈n
m+1
N − nmN

�t
, vN 〉 − 〈nmNumN ,∇vN 〉 + 〈nmN (1 + 2�tnmN )∇νm+1

N , ∇vN 〉 = 0, ∀vN ∈ XN ,

(2.19)

〈∇ψm+1
N , ∇vN 〉 = 〈pm+1

N − nm+1
N , vN 〉, ∀vN ∈ XN , (2.20)

where

μm+1
N = ln pm+1

N + ψm+1
N , νm+1

N = ln nm+1
N − ψm+1

N . (2.21)

• Step 2: Solve ũm+1
N ∈ W 2

N from

〈 ũ
m+1
N − umN

�t
, wN 〉 + 〈(umN · ∇)ũm+1

N , wN 〉 + 〈∇ũm+1
N ,∇wN 〉 + 〈∇φm

N , wN 〉,
+ 〈pmN∇μm+1

N + nmN∇νm+1
N , wN 〉 = 0, ∀wN ∈ W 2

N , (2.22)

• Step 3: Solve (um+1
N , φm+1

N ) ∈ W 2
N ×UN from

〈u
m+1
N − ũm+1

N

�t
, vN 〉 + 〈∇(φm+1

N − φm
N ), vN 〉 = 0, vN ∈ X2

N , (2.23)

〈um+1
N ,∇qN 〉 = 0, qN ∈ UN . (2.24)

We shall show below that the nonlinear system (2.18)-(2.20) in Step 1 can be interpreted
as a minimization of a convex functional. In Step 2, we only need to solve a Poisson-type
equation for ũm+1

N , and Step 3 is a discrete Darcy system which can be reduced to a discrete
Poisson equation for φm+1

N − φm
N . Hence, the above scheme can be efficiently solved.

2.3 Properties of the Numerical Scheme

We show below that our decoupled numerical scheme (2.18)-(2.24) enjoys four properties:
mass conservation, unique solvability, positivity-preserving, and unconditional energy sta-
bility.

Before proceeding to the proof, for any discrete positive function M(z) > 0 for all
z ∈ 
N , we introduce the operator LM : XN → XN defined by

〈LM fN , vN 〉 = 〈M∇ fN ,∇vN 〉, ∀ fN , vN ∈ XN . (2.25)

The operator LM is invertible on the space Ẋ N = {

f ∈ XN | 〈 f , 1〉 = 0
}

, so we can define
the inverse operator L−1

M : XN → Ẋ N and the induced norm

‖ fN‖L−1
M

=
√

〈 fN ,L−1
M fN 〉, ∀ fN ∈ XN .
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If M(z) ≡ 1 for all z ∈ 
N , then we have

LM( fN ) = −� fN and ‖ fN‖−1,� =
√

〈 fN , (−�)−1 fN 〉, ∀ fN ∈ XN .

Lemma 2.1 Suppose fN ∈ XN and M ≥ M0, then we have the estimate:

‖L−1
M fN‖∞ ≤ CN

M0
‖ fN‖,

where C depends only on �.

Proof Denote uN = L−1
M fN ∈ Ẋ N . From (2.25) and using the Poincaré-Wirtinger inequality,

we have

M0‖∇uN‖2 ≤ 〈M∇uN ,∇uN 〉 = 〈 fN , uN 〉 ≤ ‖ fN‖‖uN‖ ≤ C‖ fN‖‖∇uN‖,
and applying the Nikolskii’s inequality, we have

‖uN‖∞ ≤ C(�)N‖u‖2 ≤ C(�)N‖∇uN‖ ≤ CN

M0
‖ fN‖,

where C depends only on �. ��
Theorem 2.2 Given (pmN , nmN ,umN , φm

N ) ∈ XN × XN × W 2
N × UN , with pmN (z), nmN (z) > 0

for all z ∈ 
N , 〈pmN − nmN , 1〉 = 0, and ∇ · umN = 0 in �, then the scheme (2.18)-(2.24)
enjoys the following properties:

(1) Mass Conservation:

〈pm+1
N , 1〉 = 〈pmN , 1〉, 〈nm+1

N , 1〉 = 〈nmN , 1〉.
(2) Unique Solvability: The scheme (2.18)-(2.23) has a unique solution

(pm+1
N , nm+1

N ,um+1
N , φm+1

N ) ∈ XN × XN × W 2
N ×UN .

(3) Positivity Preserving: The unique solution (pm+1
N , nm+1

N ,um+1
N , φm+1

N ) satisfies

pm+1
N (z), nm+1

N (z) > 0, ∀z ∈ 
N .

(4) Unconditional Energy Stability:

1

�t

(
(

E(pm+1
N ) + E(nm+1

N ) + 1

2
‖∇ψm+1

N ‖2 + 1

2
‖um+1

N ‖2 + �t2

2
‖∇φm+1

N ‖2)

− (

E(pmN ) + E(nmN ) + 1

2
‖∇ψm

N ‖2 + 1

2
‖umN‖2 + �t2

2
‖∇φm

N‖2)
)

+ ‖∇ũm+1
N ‖2 + 〈pmN |∇μm+1

N |2, 1〉 + 〈nmN |∇νm+1
N |2, 1〉

+ 1

2�t
‖∇(ψm+1

N − ψm
N )‖2 + 1

2�t
‖um+1

N − ũm+1
N ‖2

+ 1

2�t
‖ũm+1

N − umN‖2 + �t

2
‖∇(φm+1

N − φm
N )‖2

≤ −‖∇ũm+1
N ‖2 − 〈pmN |∇μm+1

N |2, 1〉 − 〈nmN |∇νm+1
N |2, 1〉.

where the energy is defined by

E(vN ) = 〈vN (ln vN − 1), 1〉,
for any function vN ∈ XN .
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Proof (1) Mass Conservation: This follows directly by choosing the test function vN = 1
in the equations (2.18) and (2.19).

(2) Unique Solvability and Positivity Preserving: The numerical solution {pm+1
N , nm+1

N }
of (2.18)-(2.20) is obtained through the minimization of the discrete energy functional:

J (p∗
N , n∗

N ) = 1

2�t

(

‖p∗
N − pmN‖2L−1

pmN (1+2�tpmN )

+ ‖n∗
N − nmN‖2L−1

nmN (1+2�tnmN )

)

+ 〈∇ · (pmNu
m
N )p∗

N , 1〉 + 〈∇ · (nmNu
m
N )n∗

N , 1〉
+ 〈p∗

N (ln p∗
N − 1), 1〉 + 〈n∗

N (ln n∗
N − 1), 1〉 + 1

2
‖p∗

N − n∗
N‖2−1,�,

over the admissible space

ŶN =
{

(pN , nN ) ∈ X2
N | 0 < pN (z), nN (z) < MN , ∀z ∈ 
N , 〈pN , 1〉 = 〈nN , 1〉 = β0|�|

}

,

where

β0 = 1

|�| 〈p
m
N , 1〉 = 1

|�| 〈n
m
N , 1〉

is the average of pmN (and nmN ), and

MN = β0|�|N 3

8π3 .

Below we show uniqueness, solvability, and positivity for scheme (2.18)-(2.23) by suit-
able modifications of [19] and [28].
Firstly, we observe that every term in the functional J (pN , nN ) is strictly convex or
linear with respect to the variables (pN , nN ) over the admissible space ŶN . To show the
existence of a unique minimizer of J (pN , nN ) over ŶN , we proceed as follows. For a
sufficiently small 0 < δ < β0, whose value is to be determined later, we define

YN ,δ =
{

(pN , nN ) ∈ ŶN | δ ≤ pN (z), nN (z) ≤ MN − δ, ∀z ∈ 
N

}

.

Since YN ,δ is a compact subset of ŶN , there exists a minimizer (p∗
N , n∗

N ) ∈ YN ,δ of
J (pN , nN ) over YN ,δ . Next, we need to show that (p∗

N , n∗
N ) lies in the interior of YN ,δ ,

provided δ > 0 is chosen to be sufficiently small.
Suppose the contrary that for an arbitrarily small δ, the minimizer of J (pN , nN ) occurs
at the boundary of YN ,δ , i.e., (p∗

N , n∗
N ) ∈ ∂YN ,δ for all δ > 0. For simplicity, we only

consider the case that there exists a point (x0, y0) ∈ 
N such that p∗
N (x0, y0) = δ (the

other case can be handled similarly). Notice that there exists another point (x1, y1) �=
(x0, y0) and (x1, y1) ∈ 
N such that p∗

N (x1, y1) = maxx∈
N p∗
N (x) ≥ β0. Now we can

choose the test functionψN asψN = φN
(x0,y0)

(x, y)−φN
(x1,y1)

(x, y), where φN
(x0,y0)

(x, y)

and φN
(x1,y1)

(x, y) are Lagrange polynomials satisfying the following property: for all
(x, y) ∈ 
N

φ
(x0,y0)
N (x, y) = δ(x0,y0)(x, y),

φ
(x1,y1)
N (x, y) = δ(x1,y1)(x, y),

where δ(x0,y0)(x, y) and δ(x1,y1)(x, y) are the Kronecker delta functions. Since (p∗
N , n∗

N )

is the minimizer and (p∗
N + sψN , n∗

N ) ∈ YN ,δ for s ≥ 0 small, we have

d

ds
J (p∗

N + sψN , n∗
N )

∣
∣
∣
∣
s=0

= 0.
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Direct computations imply

d

ds
J (p∗

N + sψN , n∗
N )

∣
∣
∣
∣
s=0

= 1

�t
〈L−1

pmN (1+2�tpmN )
(p∗

N − pmN ), ψN 〉 + 〈ln p∗
N , ψN 〉

+
∫

�

∇ · (pmNu
m
N )ψN dx + 〈(−�)−1(p∗

N − n∗
N ), ψN 〉.

(2.26)

Plugging ψN = φ
(x0,y0)
N (x, y) − φ

(x1,y1)
N (x, y) into (2.26), we obtain

− ln

(

p∗
N (x0, y0)

p∗
N (x1, y1)

)

= ∇ · (pmNu
m
N )(x0, y0) − ∇ · (pmNu

m
N )(x1, y1)

+ (−�)−1(p∗
N − pmN )(x0, y0) − (−�)−1(p∗

N − pmN )(x1, y1)

+ 1

�t

(

L−1
pmN (1+2�tpmN )

(p∗
N − pmN )(x0, y0) − L−1

pmN (1+2�tpmN )
(p∗

N − pmN )(x1, y1)
)

.

(2.27)

It is readily seen that

− ln

(
p∗
N (x0, y0)

p∗
N (x1, y1)

)

≥ − ln

(
δ

β0

)

,

and
∣
∣∇ · (pmNu

m
N )(x0, y0) − ∇ · (pmNu

m
N )(x1, y1)

∣
∣ ≤ 2‖∇ · (pmNu

m
N )‖∞.

Furthermore, using Lemma 2.1, we obtain
∣
∣(−�)−1(p∗

N − pmN )(x0, y0) − (−�)−1(p∗
N − pmN )(x1, y1)

∣
∣ ≤ 2CNMN ,

and
∣
∣
∣L−1

pmN (1+2�tpmN )
(p∗

N − pmN )(x0, y0) − L−1
pmN (1+2�tpmN )

(p∗
N − pmN )(x1, y1)

∣
∣
∣

≤ 2CN MN
minz∈
z pmN (z) .

Substituting the inequalities derived above into (2.27), we obtain

0 ≤ ln

(
δ

β0

)

+ 2CN

(

MN + MN

�t · minz∈
z p
m
N (z)

)

+ 2‖∇ · (pmNu
m
N )‖∞. (2.28)

This is impossible for any fixed N and �t , since we can choose δ > 0 to be sufficiently
small. This implies that the absolute minimum of J (pN , nN ) over YN ,δ can only occur
at an interior point of YN ,δ , provided δ > 0 is chosen to be sufficiently small. Since
J (pN , nN ) is smooth, we conclude that there exists a solution (p∗

N , n∗
N ) ∈ ŶN such that

d

ds

∣
∣
∣
∣
s=0

J (p∗
N + sφN , n∗

N + sψN ) = 0, ∀(φN , ψN ) ∈ Ẋ N × Ẋ N .

Thus, (p∗
N , n∗

N ) is a positive solution of the modified discrete PNP-NSE system (2.18)-
(2.20). The uniqueness of positive solutions to (2.18)-(2.20) follows from the strict
convexity of J (pN , nN ) over ŶN . The existence and uniqueness of {um+1

N , φm+1
N } can

be easily observed from (2.22)-(2.24).
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(3) Unconditional Energy Stability:We first derive the energy inequality for (2.18)-(2.20).
Taking the test function vN = μm+1

N in (2.18) and vN = νm+1
N in (2.19), we have

〈

pm+1
N − pmN

�t
, ln pm+1

N + ψm+1
N

〉

+
〈

pmN

∣
∣
∣∇μm+1

N

∣
∣
∣

2
, 1

〉

+
〈

nm+1
N − nmN

�t
, ln nm+1

N − ψm+1
N

〉

+
〈

nmN

∣
∣
∣∇νm+1

N

∣
∣
∣

2
, 1

〉

=
〈

pmNu
m
N − 2�t (pmN )2∇μm+1

N , ∇μm+1
N

〉

+
〈

nmNu
m
N − 2�t (nmN )2∇νm+1

N , ∇νm+1
N

〉

. (2.29)

From the convexity of the function x(ln x − 1) for x > 0, we know

〈 p
m+1
N − pmN

�t
, ln pm+1

N 〉 ≥ 1

�t

(

〈pm+1
N (ln pm+1

N − 1), 1〉 − 〈pmN (ln pmN − 1), 1〉
)

,

(2.30)

〈n
m+1
N − nmN

�t
, ln nm+1

N 〉 ≥ 1

�t

(

〈nm+1
N (ln nm+1

N − 1), 1〉 − 〈nmN (ln nmN − 1), 1〉
)

.

(2.31)

Applying a(a − b) = 1
2 (a

2 − b2 + (a − b)2) and the fact that

〈pmN − nmN , ψm+1
N 〉 = ‖∇ψm+1

N ‖2,
we have

〈 p
m+1
N − pmN

�t
− nm+1

N − nmN
�t

, ψm+1
N 〉 = 1

2�t
(‖∇ψm+1

N ‖2 − ‖∇ψm
N ‖2

+‖∇(ψm+1
N − ψm

N )‖2). (2.32)

Combining (2.29), (2.30), (2.31) with (2.32) we obtain

1

�t

(
(

E(pm+1
N ) + E(nm+1

N ) + 1

2
‖∇ψm+1

N ‖2) − (

E(pmN ) + E(nmN ) + 1

2
‖∇ψm

N ‖2)
)

+ 1

2�t
‖∇(ψm+1

N − ψm
N )‖2 + 〈pmN |∇μm+1

N |2, 1〉 + 〈nmN |∇νm+1
N |2, 1〉

+ 1

2�t
‖∇(ψm+1

N − ψm
N )‖2 + 1

2�t
‖um+1

N − ũm+1
N ‖2

+ 1

2�t
‖ũm+1

N − umN‖2 + �t

2
‖∇(φm+1

N − φm
N )‖2

≤ −‖∇ũm+1
N ‖2 − 〈pmN |∇μm+1

N |2, 1〉 − 〈nmN |∇νm+1
N |2, 1〉.

(2.33)

Now we derive the energy inequality for (2.22)-(2.24). Taking the test function vN =
ũm+1
N in (2.22), vN = um+1

N in (2.23), we have

1

2�t
(‖ũm+1

N ‖2 − ‖umN‖2 + ‖ũm+1
N − umN‖2) + ‖∇ũm+1

N ‖2 + 〈∇φm
N , ũm+1

N 〉
= −〈pmN∇μm+1

N + nmN∇νm+1
N , ũm+1

N 〉.
(2.34)
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and

1

2�t
(‖um+1

N ‖2 − ‖ũm+1
N ‖2 + ‖um+1

N − ũm+1
N ‖2) = 0, (2.35)

where we have used (2.24) that yields

〈(umN · ∇)ũm+1
N , ũm+1

N 〉 = 1

2
〈umN ,∇|ũm+1

N |2〉 = 0,

and

〈∇(φm+1
N − φm

N ),um+1
N 〉 = 0.

To estimate the term 〈∇φm
N , ũm+1

N 〉 in (2.34), we take the test function vN = ∇φm
N in

(2.23), and obtain

〈ũm+1
N ,∇φm

N 〉 = �t

2

(

‖∇φm+1
N ‖2 − ‖∇φm

N‖2 + ‖∇(φm+1
N − φm

N )‖2
)

. (2.36)

Combining (2.34), (2.35) with (2.36), we have

1

2�t
(‖um+1

N ‖2 − ‖umN‖2 + ‖ũm+1
N − umN‖2 + ‖um+1

N − ũm+1
N ‖2)

+ �t

2
(‖∇φm+1

N ‖2 − ‖∇φm
N‖2 + ‖∇(φm+1

N − φm
N )‖2) + ‖∇ũm+1

N ‖2

= −〈pmN∇μm+1
N + nmN∇νm+1

N , ũm+1
N 〉.

(2.37)

Combining (2.33) with (2.37), we have

1

�t

(
(

E(pm+1
N ) + E(nm+1

N ) + 1

2
‖∇ψm+1

N ‖2 + 1

2
‖um+1

N ‖2 + �t2

2
‖∇φm+1

N ‖2)

− (

E(pmN ) + E(nmN ) + 1

2
‖∇ψm

N ‖2 + 1

2
‖umN‖2 + �t2

2
‖∇φm

N‖2)
)

+ ‖∇ũm+1
N ‖2 + 〈pmN |∇μm+1

N |2, 1〉 + 〈nmN |∇νm+1
N |2, 1〉

+ 1

2�t
‖∇(ψm+1

N − ψm
N )‖2 + 1

2�t
‖um+1

N − ũm+1
N ‖2

+ 1

2�t
‖ũm+1

N − umN‖2 + �t

2
‖∇(φm+1

N − φm
N )‖2

≤ −‖∇ũm+1
N ‖2 − 〈pmN |∇μm+1

N |2, 1〉 − 〈nmN |∇νm+1
N |2, 1〉.

(2.38)

This yields the energy inequality for (2.18)-(2.23).
��

3 Well-posedness and Regularity

In this section, we shall establish the well-posedness and regularity of the PNP-NS system.
For simplicity, we shall focus on periodic boundary conditions , for which the regularity of
the solution can be determined by the regularity of the initial conditions. More precisely, we
set � = (0, 2π)2 and assume that

(p, n, ψ,u)(2π, y) = (p, n, ψ,u)(0, y), y ∈ (0, 2π);
(p, n, ψ,u)(x, 2π) = (p, n, ψ,u)(x, 0), x ∈ (0, 2π).

(3.1)
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Theorem 3.1 Let � = (0, 2π)2, and assume the initial conditions (pin, nin) ∈ Lr (�) ∩
W 2,q(�), with r = 2q > 4, are positive and satisfy

∫

�

(pin − nin) dx = 0, and the velocity

uin ∈ W 1,r
0 (�,R2) is divergence-free. Then there exists a unique global strong solution

of (1.1)–(1.5) with the initial condition (2.2) and the periodic boundary condition (3.1).
Moreover, there exists a constant Cr depending on ε and the initial energy E(pin, nin,uin),
‖pin‖Lr , ‖nin‖Lr , and ‖uin‖L2 such that

sup
0≤t<∞

‖p(t)‖Lr (�) ≤ Cr , sup
0≤t<∞

‖n(t)‖Lr (�) ≤ Cr , sup
0≤t<∞

‖ψ(t)‖W 2,r (�) ≤ Cr .

Furthermore,

sup
0≤t<∞

‖p(t)‖L∞(�) + sup
0≤t<∞

‖p(t)‖H1(�)

≤ C, sup
0≤t<∞

‖n(t)‖L∞(�) + sup
0≤t<∞

‖n(t)‖H1(�) ≤ C,

and the velocity field u satisfies

‖u‖2L∞(0,T ;H1(�))
+

∫ T

0
‖u(t)‖2H2(�)

dt ≤ CT ,

for any 0 < T < ∞, where C depends on initial energy, ‖pin‖Lr (�), ‖nin‖Lr (�), and
‖uin‖H1(�).

Proof A similar result for blocking boundary conditions has been obtained by Constantin
and Ignatova [5]. Their argument remains applicable for periodic boundary conditions, which
will be sketched here for completeness. For the full proof, refer to [5].

Step 1: Firstly, we have

‖ψ‖L∞(�×[0,T ]) ≤ CE(pin, nin, ψ in), (3.2)

which is a direct application of Lemma 1 in [5], following the same proof for periodic
boundary conditions.
Step 2: We aim to show p > 0 and n > 0 in � × [0, T ]. To see this, let F : R → R be a
nonnegative, C2-convex function such that F(t) = 0 for t > 0, and F(t) > 0 for t < 0, and

F ′′(t)t2 ≤ CF(t), ∀t ∈ R.

Multiplying (1.1) by F ′(p) and integrating over �, using the periodic boundary conditions

and integration by parts, we obtain that
∫

�

u · ∇F(p) dx = −
∫

�

∇ · u F(p) dx = 0, and

hence

d

dt

∫

�

F(p) dx = −
∫

�

F ′′(p)
[|∇ p|2 + p∇ψ · ∇ p

]

dx,

which, combined with the Cauchy-Schwarz inequality |p∇ψ · ∇ p| ≤ 1
2 |∇ p|2 + 1

2 p
2|∇ψ |2,

yields

d

dt

∫

�

F(p) dx ≤ −1

2

∫

�

F ′′(p)|∇ p|2 dx + 1

2

∫

�

F ′′(p)p2|∇ψ |2 dx . (3.3)

From the properties of F , we have

d

dt

∫

�

F(p) dx ≤ C

2
‖∇ψ‖2L∞(�)

∫

�

F(p) dx .
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By the Gronwall inequality and
∫

�

F(pin) dx = 0, we conclude that
∫

�

F(p) dx = 0, and

hence F(p) ≡ 0, which yields that p > 0 in � × [0, T ]. Similarly, n > 0 in � × [0, T ].
Step 3: We aim to estimate the local uniform bound for ‖(p, n)‖L1

t Lr (�). Because of the
energy dissipation law (2.3), we have

∫ T

0

∫

�

p|∇ ln(peψ)|2 dx dt =
∫ T

0

∫

�

p|∇μ|2 dx dt ≤ E(pin, nin, ψ in) � �.

Using (3.2) in Step 1, we know that the auxiliary function

p̃ � peψ

satisfies the estimate
∫ T

0

∫

�

1

p̃
|∇ p̃|2 dx dt ≤ �eC�.

From the mass conservation property and (3.2), we have
∫

�

peψ dx ≤ eC�

∫

�

pin dx .

Combining the previous two equations, for any t0 ∈ [0, T ] and τ ∈ [0, T − t0], we have
∫ t0+τ

t0
‖√

p̃‖H1(�) dt ≤ eC�

(

� + τ

∫

�

pin dx

)

.

Thus, from the Sobolev embedding ‖√

p̃‖Lr (�) ≤ ‖√

p̃‖H1(�) for any r ∈ [1,∞), applying
(3.2) again, we have the local uniform estimate for ‖p‖Lr (�)

∫ t0+τ

t0
‖p‖Lr (�) dt ≤ Cre

C�

(

� + τ

∫

�

pin dx

)

, (3.4)

where Cr depends on r . Similar estimates hold for n.
Step 4: Now we can estimate the global bound for ‖(p, n)‖Lr (�). To do this, taking F(p) =

1
r(r−1) p

r in (3.3), we obtain

1

r(r − 1)

d

dt

∫

�

|p|r dx ≤ −1

2

∫

�

|∇ p|2 pr−2 dx + 1

2
‖∇ψ‖L∞(�)

∫

�

|p|r dx .

Similar estimates hold for n:

1

r(r − 1)

d

dt

∫

�

|n|r dx ≤ −1

2

∫

�

|∇n|2nr−2 dx + 1

2
‖∇ψ‖L∞(�)

∫

�

|n|r dx .

From the regularity of the Poisson equation, we know that

‖∇ψ‖L∞(�) ≤ Cr

ε
‖p − n‖Lr (�) ≤ Cr

ε

(‖p‖Lr (�) + ‖n‖Lr (�)

)

.

From here we obtain

1

r(r − 1)

d

dt
Ar ≤ −1

2

∫

�

(|∇ p|2 pr−2 + |∇n|2nr−2)

dx + Cr

2ε
A

1
r
r Ar , (3.5)

where Ar = ‖p‖rLr (�) + ‖n‖rLr (�). From (3.4), we have
∫ t0+τ

t0
A

1
r
r dt ≤ Cre

C�

(

� + τ

∫

�

pin + nin dx

)

� �∗, (3.6)
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Combining this with (3.5), we obtain

Ar (t0 + τ) ≤ Ar (t0)e
Cr�

∗/ε. (3.7)

Now we cover the interval [0, T ] with fixed time step intervals {(tk, tk + τ
2 ) | k ∈ N}.

From (3.6), for any k, there exists some t∗ ∈ [tk − τ
2 , tk] such that A

1
r
r (t∗) ≤ �τ �

max

(

2
τ
�∗,

(‖pin‖Lr (�) + ‖nin‖Lr (�)

) 1
r

)

, which, combining with (3.7) and [tk, tk + τ
2 ] ⊂

[t∗, t∗ + τ ], yields
sup

t∈[tk ,tk+ τ
2 ]
Ar (t) ≤ �τ ,

for a slightly different �τ . Notice that the right-hand side only depends on initial energy �,
initial ion mass

∫

�
pin + nin dx , ε, and r ; it is independent of time T . We can extend the

estimate to the entire time interval by an induction argument, and from the regularity of the
Poisson equation obtain the global bound

sup
0≤t<∞

‖p(t)‖Lr (�), sup
0≤t<∞

‖n(t)‖Lr (�), sup
0≤t<∞

‖ψ(t)‖W 2,r (�) ≤ C∗
r , (3.8)

where C∗
r depends on r , ε, initial energy, initial ion mass, ‖pin‖Lr (�), ‖nin‖Lr (�). Returning

to (3.5), we know that
∫ t0+τ

t0

∫

�

(|∇ p|2 pr−2 + |∇n|2nr−2)

dx dt ≤ �τ , (3.9)

for some �τ depending on �∗ and τ .
Step 5: Now we are ready to estimate ‖p, n‖L∞(�). Multiplying (1.1) by −�p and

integrating, we have

1

2

d

dt
‖∇ p‖2L2(�)

= −‖�p‖2L2(�)
−

∫

�

∇ · (p∇ψ)�p dx −
∫

�

u · ∇ p�p dx,

≤ −‖�p‖2L2(�)
+ ‖∇ p‖L4(�)

(‖∇ψ‖L4(�) + ‖u‖L4(�)

) ‖�p‖L2(�)

+ ‖p‖L4(�)‖�ψ‖L4(�)‖�p‖L2(�). (3.10)

We have a global bound for ‖∇ψ‖L4(�), ‖p‖L4(�), ‖�ψ‖L4(�) from (3.8). And from energy

law (2.3), we know that maxt∈[0,T ] ‖u(t)‖2
L2(�)

and
∫ T
0 ‖∇u‖2

L2(�)
dt are bounded by initial

energy �. Hence, we have the uniform bound for ‖u‖L4([0,T ]×�),

∫ T

0
‖u‖4L4(�)

dt ≤
∫ T

0
C‖u‖2L2(�)

‖∇u‖2L2(�)
dt,

≤ C max
t∈[0,T ] ‖u(t)‖2L2(�)

∫ T

0
‖∇u‖2L2(�)

dt,

≤ C�2.

Applying these bounds to (3.10), we have

d

dt
‖∇ p‖2L2(�)

+ ‖�p‖2L2(�)
≤ �‖∇ p‖2L2(�)

.

Applying the local uniform bound for ‖∇ p‖L2
t L2(�) from (3.9) with r = 2, we cover the

interval [0, T ] with fixed time step intervals {(tk, tk + τ
2 ) | k ∈ N}. With a similar argument
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as in Step 4, we have

sup
0≤t≤T

‖∇ p‖L2(�) ≤ �τ ,

and for any [t0, t0 + τ ] ⊂ [0, T ]
∫ t0+τ

t0
‖�p‖2L2(�)

dt ≤ �τ .

Hence, we have the local uniform bound of ‖p‖L∞(�)

∫ t0+τ

t0
‖p‖L∞(�) dt ≤

∫ t0+τ

t0
‖p‖H2(�) dt ≤ �τ . (3.11)

Now, multiplying (1.1) by pr−1 and integrating over �, we have

1

r

d

dt

∫

�

pr dx = −(r − 1)
∫

�

|∇ p|2 pr−2 dx +
∫

�

∇ p · ∇ψ pr−1 dx +
∫

�

�ψ pr dx,

≤ −r − 1

2

∫

�

|∇ p|2 pr−2 dx + 1

2(r − 1)
‖∇ψ‖2L∞(�)‖p‖rLr (�)

+ ‖�ψ‖L∞(�)‖p‖rLr (�).

Therefore, for any t ≥ t0 we have

‖p(t)‖Lr (�) ≤ ‖p(t0)‖Lr (�)e
∫ t
t0

(
1

2(r−1) ‖∇ψ‖2L∞(�)
+‖�ψ‖L∞(�)

)

dt
.

Taking the limit as r → ∞, we obtain

‖p(t)‖L∞(�) ≤ ‖p(t0)‖L∞(�)e
∫ t
t0

‖�ψ‖L∞(�) dt .

Combining ‖p‖L∞(�) local uniform estimate (3.11) and cover interval [0, T ]with fixed time
step intervals {(tk, tk + τ

2 ) | k ∈ N}, with a similar induction argument as in Step 4, we have

sup
0≤t<T

‖p(t)‖L∞(�) ≤ �τ .

Since the forcing term in (1.4) is in L2(�), from the energy inequality (1.1) and on the
standard estimates on non-stationary Navier-Stokes equation, we have

‖u‖2L∞(0,T ;H1(�))
+

∫ T

0
‖u(t)‖2H2(�)

dt ≤ CT ,

where C depends on the initial energy and other constants. This completes the proof. ��

Corollary 3.1.1 (Maximum principle) Assuming pin ≥ δp, nin ≥ δn for some δp, δn > 0,
then we have p ≥ δp, n ≥ δn on � × [0, T ].

Proof This proof follows from the positivity proof for (p, n) in Theorem 3.1. ��

Next we derive the higher order regularity for the global strong solutions obtained in
Theorem 3.1 when the initial data (pin, nin,uin) is assumed to have higher regularity.
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Theorem 3.2 Suppose, in addition, that the initial data satisfies (pin, nin,uin) ∈ H2m+1(�)×
H2m+1(�) × H2m+1(�) for m ≥ 0. Then the solution (p, n,u) obtained in Theorem 3.1
satisfies

m+1
∑

k=0

‖(∂kt p, ∂kt n, ∂kt u)‖L2(0,T ;H2m+2−2k (�))

≤ C(T , ‖pin‖H2m+1(�), ‖nin‖H2m+1(�), ‖uin‖H2m+1(�)).

Proof The proof proceeds by induction on m. The case m = 0 was proved in Theorem 3.1.
Assume the theorem holds for some non-negative integer m, and suppose the initial data
satisfies

(pin, nin,uin) ∈ H2m+3(�) × H2m+3(�) × H2m+3(�).

We can verify that

(∂kt p
in , ∂kt n

in , ∂kt u
in) ∈ H2m−2k+3(�) × H2m−2k+3(�) × H2m−2k+3(�), ∀ k = 1, . . . ,m + 1.

(3.12)

Now set p̃ := ∂m+1
t p, ñ := ∂m+1

t n, ũ := ∂m+1
t u, and ψ̃ := ∂m+1

t ψ . Differentiating the
system (1.1)–(1.5) with respect to tm+1, we find that ( p̃, ñ, ũ) satisfies the following system:

p̃t − � p̃ = ∇ · (

∂m+1
t (p∇ψ − pu)

)

, (3.13)

ñt − �ñ = ∇ · (

∂m+1
t (−n∇ψ − nu)

)

, (3.14)

−ε�ψ̃ = p̃ − ñ, (3.15)

ũt − �ũ = ∂m+1
t (−∇P − (u · ∇)u − ∇ψ(p − n)) , (3.16)

∇ · ũ = 0. (3.17)

Step 1: Multiply equation (3.13) by p̃ and integrate over �. Observing that there are no
boundary term contributions due to the periodic boundary condition, we obtain

1

2

d

dt
‖ p̃‖2L2(�)

= −‖∇ p̃‖2L2(�)
+

∫

�

∂m+1
t (p∇ψ − pu) · ∇ p̃ dx,

≤ −1

2
‖∇ p̃‖2L2(�)

+ 1

2
‖∂m+1

t (p∇ψ − pu)‖2L2(�)
.

Applying the induction hypothesis, we have

‖∂m+1
t (p∇ψ − pu)‖L2(0,T ;L2(�))

≤ ‖ p̃‖L2(0,T ;L2(�))‖∇ψ − u‖L∞(0,T ;L∞(�))

+
(

‖∇ψ̃‖L2(0,T ;L2(�)) + ‖ũ‖L2(0,T ;L2(�))

)

‖p‖L∞(0,T ;L∞(�))

+
m

∑

k=1

‖∂kt p‖L∞(0,T ;L2(�))‖∂m+1−k
t (∇ψ − u)‖L2(0,T ;L∞(�))

≤ C
(

‖ p̃‖2L2(0,T ;L2(�))
+ ‖ñ‖2L2(0,T ;L2(�))

+ ‖ũ‖2L2(0,T ;L2(�))

)

+
m

∑

k=1

‖∂kt p‖L2(0,T ;H1(�))‖∂k+1
t p‖L2(0,T ;H−1(�))‖∂m+1−k

t (∇ψ − u)‖L2(0,T ;H2(�))

≤ C .

(3.18)
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Here C depends on T and the initial data and we used the estimate: for any function f

‖ f ‖L∞
t Hl+1

�
≤ C‖ f ‖L2

t H
l+1
�

‖∂t f ‖L2
t H

l
�
. (3.19)

Therefore, from the initial condition (3.12), we have

sup
0≤t≤T

‖ p̃(t)‖L2(�) +
∫ T

0
‖∇ p̃‖2L2(�)

dt ≤ C . (3.20)

Similarly, we obtain

sup
0≤t≤T

‖ñ(t)‖L2(�) +
∫ T

0
‖∇ñ‖2L2(�)

dt ≤ C . (3.21)

Multiplying (3.16) by ũ and integrating over �, we have

1

2

d

dt
‖ũ‖2L2(�)

= −‖∇ũ‖2L2(�)
−

∫

�

∂m+1
t ((u · ∇)u + ∇ψ(p − n)) · ũ dx .

Applying the Ladyzhenskaya inequality and the induction hypothesis, we estimate
∫ T

0

∫

�

∂m+1
t ((u · ∇)u) · ũ dx dt

= −
∫ T

0

∫

�

(ũ · ∇)ũ · u +
m

∑

j=1

(∂
j
t u · ∇)ũ · ∂m+1− j

t u dx dt

≤
∫ T

0
‖ũ‖L4(�)‖u‖L4(�)‖∇ũ‖L2(�) dt +

m
∑

j=1

‖∂ j
t u‖L∞(�)‖∂m+1− j

t u‖L2(�)‖∇ũ‖L2(�) dt

≤
∫ T

0
‖ũ‖1/2

L2(�)
‖u‖1/2

L2(�)
‖∇u‖1/2

L2(�)
‖∇ũ‖3/2

L2(�)
dt

+
m

∑

j=1

‖∂ j
t u‖L2(0,T ;H2(�))‖∂m+1− j

t u‖L∞(0,T ;L2(�))

≤ 1

2
‖∇ũ‖2L2(0,T ;L2(�))

+ C,

where C depends on T and the initial data. We also have

‖∂m+1
t (∇ψ(p − n)) ‖L2(0,T ;L2(�)) ≤ C .

Combining these estimates, we obtain

sup
0≤t≤T

‖ũ(t)‖2L2(�)
+

∫ T

0
‖∇ũ‖2L2(�)

dt ≤ C . (3.22)

Step 2:Multiply (3.13) by � p̃ and integrate over � to obtain

1

2

d

dt
‖∇ p̃‖2L2(�)

= −‖� p̃‖2L2(�)
+

∫

�

∇ · (

∂m+1
t (p∇ψ − pu)

) · � p̃ dx

≤ −1

2
‖� p̃‖2L2(�)

+ 1

2
‖∇ · (

∂m+1
t (p∇ψ − pu)

) ‖2L2(�)
.

Using estimates similar to (3.18) and the results (3.20), (3.21), and (3.22), we verify that

‖∇ · (

∂m+1
t (p∇ψ − pu)

) ‖2L2(0,T ;L2(�))
≤ C .
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Combining these inequalities with the initial condition (3.12), we obtain

sup
0≤t≤T

‖∇ p̃(t)‖2L2(�)
+

∫ T

0
‖� p̃‖2L2(�)

dt ≤ C . (3.23)

Analogously, we have

sup
0≤t≤T

‖∇ñ(t)‖2L2(�)
+

∫ T

0
‖�ñ‖2L2(�)

dt ≤ C . (3.24)

Multiplying (3.16) by �ũ and integrating over �, we obtain

1

2

d

dt
‖∇ũ‖2L2(�)

= −‖�ũ‖2L2(�)
−

∫

�

∂m+1
t ((u · ∇)u + ∇ψ(p − n)) · �ũ dx

≤ −1

2
‖�ũ‖2L2(�)

+ ‖∂m+1
t ((u · ∇)u) ‖2L2(�)

+ ‖∂m+1
t (∇ψ(p − n)) ‖2L2(�)

.

Applying the Ladyzhenskaya inequality and induction estimates, we have

‖∂m+1
t ((u · ∇)u) ‖L2(0,T ;L2(�)) ≤

∫ T

0
‖ũ‖2L4(�)

‖∇u‖2L4(�)
dt

+ ‖u‖L2(0,T ;L∞(�))‖∇ũ‖L∞(0,T ;L2(�))

+
m

∑

j=1

‖∂ j
t u‖L2(0,T ;H2(�))‖∂m+1− j

t u‖L2(0,T ;H2(�))‖∂m+2− j
t u‖L2(0,T ;L2(�))

≤ C .

Therefore, with the initial condition (3.12), we have

sup
0≤t≤T

‖∇ũ(t)‖2L2(�)
+

∫ T

0
‖�ũ‖2L2(�)

dt ≤ C . (3.25)

Using estimates (3.23), (3.24), and (3.25) in equations (3.13), (3.14), and (3.16), we verify
that

‖∂t p̃‖L2(0,T ;L2(�)), ‖∂t ñ‖L2(0,T ;L2(�)), ‖∂t ũ‖L2(0,T ;L2(�)) ≤ C .

This completes the proof. ��

4 Error Analysis

In this section, we will carry out a detailed error analysis for the positivity-preserving scheme
(2.18)-(2.24) under the periodic boundary condition (3.1), for which the scheme (2.18)-(2.24)
can be made more specific as follows:

We denote the Fourier collocation points as 
N =
{ (

xi = 2π i

N
, y j = 2π j

N

) ∣
∣
∣
∣
0 ≤ i, j

≤ N − 1
}

. Then the discrete inner product for two functions u, v is defined by

〈u, v〉 =
∑

z∈
N

wzu(z)v(z),

where wz =
(
2π

N

)2

is the quadrature weight in 2D.
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We also introduce the corresponding induced discrete norm by ‖u‖ = 〈u, u〉 1
2 for any

function u. We define the discrete Fourier space

XN := span

{

eikx
∣
∣
∣
∣
x ∈ 
N , 0 ≤ |k| ≤ N − 1

}

,

and set WN = UN = XN .
Let (p, n,u) be the exact solution of the system (1.1)-(1.5) with initial condition (2.2).

Denote (pm, nm,um, φm) as the L2-orthogonal projections of (p, n,u, φ) at time m�t onto
XN × XN × X2

N × XN , i.e.,

pm = �N p(m�t), nm = �Nn(m�t),

um = �Nu(m�t), φm = �Nφ(m�t),

and set

ψm = �N
[

(−�)−1(pm − nm)
]

, μm = �N
[

ln pm + ψm]

, νm = �N
[

ln nm − ψm]

.

In order to establish the error analysis for the pressure correction scheme of the Navier-
Stokes equations (2.22)-(2.24), we need to introduce an intermediate function RNum+1 ∈
X2
N , defined by

〈
um+1 − RNum+1

�t
, vN

〉

+ 〈∇(φm+1 − φm), vN
〉 = 0, ∀vN ∈ X2

N .

We define the error functions by

emp = pm − pmN , emn = nm − nmN , emψ = ψm − ψm
N ,

emũ = RNum − ũmN , emu = um − umN , emφ = φm − φm
N .

The main result of this section is

Theorem 4.1 Assume the initial data (pin, nin,uin) ∈ Hk+7(�)×Hk+7(�)×Hk+7(�), for

some k ≥ 2, and pin, nin ≥ δ0 for some δ0 > 0. Then, provided �t and
1

N
are sufficiently

small, under the refinement requirement �t ≤ C
1

N
, we have the following error estimate

for the scheme (2.18)-(2.24):

‖emp ‖ + ‖emn ‖ + ‖emu ‖ + �t‖∇emφ ‖

+
(

�t
m

∑

l=1

(

‖∇elp‖2 + ‖∇eln‖2 + ‖∇elũ‖2
)

) 1
2

≤ C
(

�t + N−k
)

,

for all positive integers m such that m�t ≤ T , where C is independent of �t and N.

To prove this theorem, it is vital to establish a uniform strictly positive lower bound for the
numerical solution (pm+1

N , nm+1
N ), analogous to the strictly positive lower bound property of

continuous solutions (p, n) described in Corollary 3.1.1. Recall that we established upper
and lower bounds for (pm+1

N , nm+1
N ) in Theorem 2.2; however, the lower bound implied in

(2.28) depends on the norms of previous step solutions, and is insufficient to establish a
uniform strictly positive lower bound for (pm+1

N , nm+1
N ) for arbitrary m. To overcome this

difficulty, we use an approach similar to [19]. In Section 4.1, by assuming sufficient regularity
of the PNP-NS system solution, we establish the procedure of building supplementary fields
with high-order local truncation errors through Lemma 4.2. With Lemma 4.3, we perform a
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rough error analysis that gives the minimum order required of the error terms to establish the
lower bound for the numerical solution (pm+1

N , nm+1
N ). In Section 4.3, with Theorem 4.4, we

conduct a refined error analysis, recover the assumption in Lemma 4.3, and prove the error
estimates for the supplementary fields built in Lemma 4.2. Thus, Theorem 4.1 is a direct
combination of Theorem 3.2 and Theorem 4.4; the proof will be presented in Section 4.3.

4.1 A rough error analysis

Assume that the solution of PNP-NS system is smooth enough. Then applying Tylor expan-
sion to the system, one obtains

〈 p
m+1 − pm

�t
, vN 〉 − 〈pmum ,∇vN 〉 + 〈pm(1 + 2�tpm)∇μm+1,∇vN 〉 = τm+1

p (vN ),∀vN ∈ XN ,

〈n
m+1 − nm

�t
, vN 〉 − 〈nmum ,∇vN 〉 + 〈nm(1 + 2�tnm)∇νm+1,∇vN 〉 = τm+1

n (vN ),∀vN ∈ XN ,

〈∇ψm+1,∇vN 〉 − 〈pm+1 − nm+1, vN 〉 = 0, ∀vN ∈ XN ,

〈 RNum+1 − um

�t
, vN 〉 + 〈(um · ∇)RNum+1, vN 〉 + 〈∇RNum+1,∇vN 〉 + 〈∇φm , vN 〉

+ 〈pm∇μm+1 + nm∇νm+1, vN 〉 = τm+1
u (vN ), ∀vN ∈ X2

N ,

〈u
m+1 − RNum+1

�t
, vN 〉 + 〈∇(φm+1 − φm), vN 〉 = 0, ∀vN ∈ X2

N ,

〈um+1,∇vN 〉 = 0, ∀vN ∈ XN ,

we have the following local truncation error (see more computation details in Appendix (A.1)
- (A.3)):

∣
∣
∣τ

m+1
p (vN )

∣
∣
∣ ,

∣
∣τm+1
n (vN )

∣
∣ ,

∣
∣τm+1
u (vN )

∣
∣ ≤ Ck(�t + N−k)‖vN‖H1 ,

where Ck depends only on regularity of (p, n, ψ,u, φ).
High-Order Consistent analysis. As stated above, we only have a first-order truncation

error in time for nm+1 and pm+1, which is insufficient to establish a priori strictly positive
lower bound for the numerical solution (pm+1

N , nm+1
N ). Using the technique similar to [19], we

will construct the supplementary fields ( p̆, n̆, ŭ, φ̆, μ̆, ν̆, ψ̆), providing sufficient regularity
for the solution (p, n,u, φ), a higher orderO(�t3 + N−k) consistency local truncation error
will be established.

Lemma 4.2 Let (p, n,u) be the solution of the PNP-NS system (1.1)-(1.5) satisfying the
following properties:

(1) The ionic concentrations are strictly positive

p, n ≥ δ0 > 0,

(2) The solution satisfies

(∂4t p, ∂
4
t n, ∂4t u) ∈ L∞(0, T ; L2(�)), (∂3t p, ∂

3
t n, ∂3t u) ∈ L∞(0, T ; Hk+1(�)), (k ≥ 2),
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we can construct correction functions (p�t,i , n�t,i ,u�t,i , φ�t,i )(i = 1, 2) depending only
on (p, n,u, φ), such that the supplementary fields ( p̆, n̆, ŭ, φ̆, μ̆, ν̆, ψ̆), defined by

p̆ = p + �tp�t,1 + �t2 p�t,2, n̆ = n + �tn�t,1 + �t2n�t,2,

ŭ = u + �tu�t,1 + �t2u�t,2, φ̆ = φ + �tφ�t,1 + �t2φ�t,2,

ψ̆ = (−�)−1( p̆ − n̆),

μ̆ = ln p̆ + ψ̆, ν̆ = ln n̆ − ψ̆,

(4.1)

has higher order consistency truncation error as defined in (4.5)-(4.9)

|τ̆m+1
p (vN )|, |τ̆m+1

n (vN )|, |τ̆m+1
u (vN )| ≤ C((�t)3 + N−k)‖vN‖H1 .

Moreover, with �t, 1
N chosen small enough, we have

(1) The
supplementary functions are strictly positive:

p̆, n̆ ≥ δ∗
0 > 0, (4.2)

(2) The
supplementary functions satisfy

( p̆, n̆, ŭ) ∈ L∞(0, T ,W 1,∞). (4.3)

The detail of constructing ( p̆, n̆, ŭ, φ̆, μ̆, ν̆, ψ̆) in Lemma 4.2 will be given in the
Appendix.

Now we start to make an error analysis for the scheme (2.18)-(2.24) by analyzing its
truncation error for supplementary fields ( p̆, n̆, ŭ, φ̆, μ̆, ν̆, ψ̆) Denote the error functions
by

ĕmp = p̆m − pmN , ĕmn = n̆m − nmN , ĕmμ = μ̆m − μm
N , ĕmν = ν̆m − νmN ,

ĕmψ = ψ̆m − ψm
N , ĕmRNu

= RN ŭm − ũmN , ĕmu = ŭm − umN , ĕmφ = φ̆m − φm
N .

(4.4)

Denote by ( p̆m, n̆m, ŭm, φ̆m) the L2-orthogonal projection of ( p̆, n̆, ŭ, φ̆) at time m�t
onto XN × XN × X2

N × XN . We have the expression for the consistency truncation error
(τ̆p, τ̆n, τ̆u) for the modified functions:

〈 p̆
m+1 − p̆m

�t
, vN 〉 − 〈 p̆m ŭm,∇vN 〉 + 〈 p̆m(1 + 2�t p̆m)∇μ̆m+1,∇vN 〉 = τ̆m+1

p (vN ),

(4.5)

〈 n̆
m+1 − n̆m

�t
, vN 〉 − 〈n̆m ŭm,∇vN 〉 + 〈n̆m(1 + 2�t n̆m)∇ν̆m+1,∇vN 〉 = τ̆m+1

n (vN ),

(4.6)

〈∇ψ̆m+1,∇vN 〉 = 〈 p̆m+1 − n̆m+1, vN 〉, (4.7)

〈 RN ŭm+1 − ŭm

�t
, vN 〉 + 〈(ŭm · ∇)RN ŭm+1, vN 〉 + 〈∇RN ŭm+1,∇vN 〉 + 〈∇φ̆m, vN 〉

+ 〈 p̆m∇μ̆m+1 + n̆m∇ν̆m+1, vN 〉 = τ̆m+1
u (vN ), (4.8)

〈 ŭ
m+1 − RN ŭm+1

�t
, vN 〉 + 〈∇(φ̆m+1 − φ̆m), vN 〉 = 0, (4.9)

where

μ̆m+1 = �N (ln p̆m+1 + ψ̆m+1); ν̆m+1 = �N (ln n̆m+1 − ψ̆m+1).
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Subtracting (2.18)-(2.23) from (4.5)-(4.9), we have

〈 ĕ
m+1
p − ĕmp

�t
, vN 〉 − 〈 p̆m ŭm − pmNu

m
N ,∇vN 〉

= −〈 p̆m(1 + 2�t p̆m)∇μ̆m+1 − pmN (1 + 2�tpmN )∇μm+1
N ,∇vN 〉 + τ̆m+1

p (vN ), (4.10)

〈 ĕ
m+1
n − ĕmn

�t
, vN 〉 − 〈n̆m ŭm − nmNu

m
N ,∇vN 〉

= −〈n̆m(1 + 2�t n̆m)∇ν̆m+1 − nmN (1 + 2�tnmN )∇νm+1
N ,∇vN 〉 + τ̆m+1

n (vN ), (4.11)

〈∇ ĕm+1
ψ ,∇vN 〉 = 〈ĕm+1

p − ĕm+1
n , vN 〉, (4.12)

〈 ĕ
m+1
RN u

− ĕmu
�t

, vN 〉 + 〈(ŭm · ∇)RN ŭm+1 − (umN · ∇)ũm+1
N , vN 〉 + 〈∇ ĕm+1

RN u
,∇vN 〉 + 〈∇ ĕmφ , vN 〉

= −〈 p̆m∇μ̆m+1 + n̆m∇ν̆m+1, vN 〉 + 〈pmN∇μm+1
N + nmN∇νm+1

N , vN 〉 + τ̆m+1
u (vN ), (4.13)

〈 ĕ
m+1
u − ĕm+1

RN u

�t
, vN 〉 + 〈∇(ĕm+1

φ − ĕmφ ), vN 〉 = 0, (4.14)

〈ĕm+1
u ,∇vN 〉 = 0. (4.15)

To simplify the presentation, we rewrite the third term in (4.10) as

− 〈 p̆m(1 + 2�t p̆m)∇μ̆m+1 − pmN (1 + 2�tpmN )∇μm+1
N ,∇vN 〉

= −〈 p̆m(1 + 2�t p̆m)∇μ̆m+1 − pmN (1 + 2�tpmN )∇μ̆m+1,∇vN 〉
− 〈pmN (1 + 2�tpmN )∇μ̆m+1 − pmN (1 + 2�tpmN )∇μ̆m+1

N ,∇vN 〉
= −〈ĕmp (1 + 2�t( p̆m + pmN ))∇μ̆m+1,∇vN 〉 − 〈pmN (1 + 2�tpmN )∇ ĕm+1

μ ,∇vN 〉.
Rewrite the second term of (4.10) into

− 〈 p̆m ŭm − pmNu
m
N ,∇vN 〉

= −〈 p̆m ŭm − pmN ŭ
m,∇vN 〉 − 〈pmN ŭm − pmNu

m
N ,∇vN 〉

= −〈ĕmp ŭm,∇vN 〉 − 〈pmN ĕmu ,∇vN 〉.
Similarly, for the third and second term of (4.11), we have

− 〈n̆m(1 + 2�t n̆m)∇ν̆m+1 − nmN (1 + 2�tnmN )∇νm+1
N ,∇vN 〉

= −〈ĕmn (1 + 2�t(n̆m + nmN ))∇ν̆m+1,∇vN 〉 − 〈nmN (1 + 2�tnmN )∇ ĕm+1
ν ,∇vN 〉,

and

− 〈n̆m ŭm − nmNu
m
N ,∇vN 〉

= −〈ĕmn ŭm,∇vN 〉 − 〈nmN ĕmu ,∇vN 〉.
For the Navier-Stokes equation, in (4.13), we have

〈(ŭm · ∇)RN ŭm+1 − (umN · ∇)ũm+1
N , vN 〉

= 〈(ŭm · ∇)RN ŭm+1 − (umN · ∇)RN ŭm+1, vN 〉
+ 〈(umN · ∇)RN ŭm+1 − (umN · ∇)ũm+1

N , vN 〉
= 〈(ĕnu · ∇)RN ŭm+1, vN 〉 + 〈(umN · ∇)ĕm+1

RNu
, vN 〉,
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and

− 〈 p̆m∇μ̆m+1 + n̆m∇ν̆m+1, vN 〉 + 〈pmN∇μm+1
N + nmN∇νm+1

N , vN 〉
= −〈 p̆m∇μ̆m+1 + n̆m∇ν̆m+1, vN 〉 + 〈pmN∇μ̆m+1 + nmN∇ν̆m+1, vN 〉

− 〈pmN∇μ̆m+1 + nmN∇ν̆m+1, vN 〉 + 〈pmN∇μm+1
N + nmN∇νm+1

N , vN 〉
= −〈ĕmp ∇μ̆m+1 + ĕmn ∇ν̆m+1, vN 〉 − 〈pmN∇ ĕm+1

μ + nmN∇ ĕm+1
ν , vN 〉.

Collecting all previous equations, the error equations (4.16)-(4.21) could be rewritten as

〈

ĕm+1
p − ĕmp

�t
, vN

〉

−
〈

ĕmp ŭ
m,∇vN

〉

− 〈

pmN ĕ
m
u ,∇vN

〉

= −
〈

ĕmp
(

1 + 2�t( p̆m + pmN )
) ∇μ̆m+1,∇vN

〉

− 〈

pmN
(

1 + 2�t pmN
) ∇ ĕm+1

μ ,∇vN
〉 + τ̆m+1

p (vN ), (4.16)
〈
ĕm+1
n − ĕmn

�t
, vN

〉

− 〈

ĕmn ŭ
m,∇vN

〉 − 〈

nmN ĕ
m
u ,∇vN

〉

= − 〈

ĕmn
(

1 + 2�t(n̆m + nmN )
) ∇ν̆m+1,∇vN

〉

− 〈

nmN
(

1 + 2�t nmN
) ∇ ĕm+1

ν ,∇vN
〉 + τ̆m+1

n (vN ), (4.17)
〈

∇ ĕm+1
ψ ,∇vN

〉

=
〈

ĕm+1
p − ĕm+1

n , vN

〉

, (4.18)
〈

ĕm+1
RNu

− ĕmu
�t

, vN

〉

+ 〈

(ĕmu · ∇)RN ŭm+1, vN
〉 +

〈

(umN · ∇)ĕm+1
RNu

, vN

〉

+
〈

∇ ĕm+1
RNu

,∇vN

〉

+
〈

∇ ĕmφ , vN

〉

= −
〈

ĕmp ∇μ̆m+1 + ĕmn ∇ν̆m+1, vN

〉

− 〈

pmN∇ ĕm+1
μ + nmN∇ ĕm+1

ν , vN
〉 + τ̆m+1

u (vN ), (4.19)
〈

ĕm+1
u − ĕm+1

RNu

�t
, vN

〉

+
〈

∇(ĕm+1
φ − ĕmφ ), vN

〉

= 0, (4.20)

〈

ĕm+1
u ,∇vN

〉 = 0. (4.21)

To finish the error analysis, we will need Lemma 4.3 below.

Lemma 4.3 Under the same assumption and procedure as in Lemma 4.2, we build sup-
plementary fields ( p̆, n̆, ŭ, φ̆), for the numerical error defined in (4.4), assume that for
2 < α < 3, 2 < β < k the error estimate holds for the m-th step, i.e.

‖ĕmp ‖2 ≤ �tα + (
1

N
)β, (4.22)

‖ĕmn ‖2 ≤ �tα + (
1

N
)β, (4.23)

‖ĕmu ‖2 ≤ �tα + (
1

N
)β, (4.24)
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under the linear refinement requirement �t ≤ C 1
N , we have the following L∞-estimate for

the (m + 1)-th step, i.e.

‖ĕm+1
p ‖∞ ≤ C

(

�tα−2 + (
1

N
)β−2

)

,

‖ĕm+1
n ‖∞ ≤ C

(

�tα−2 + (
1

N
)β−2

)

,

where C is independent of �t, N, and

Proof First, from Lemma 4.2, we can construct ( p̆, n̆, ŭ) that satisfies (4.2) (4.3). To obtain
the bound of pmN , nmN , ‖∇ pmN‖∞, ‖∇nmN‖∞, given the a priori estimate (4.22), a direct
application of inverse inequalities implies

‖ĕmp ‖∞ ≤ CN‖ĕmp ‖2 ≤ C
(

�tα−1 + (
1

N
)β−1

)

,

‖∇ ĕmp ‖∞ ≤ CN‖ĕmp ‖∞ ≤ C
(

�tα−2 + (
1

N
)β−2

)

,

where we used �t ≤ C 1
N . Similarly, we have

‖ĕmn ‖∞ ≤ C
(

�tα−1 + (
1

N
)β−1

)

,

‖∇ ĕmn ‖∞ ≤ C
(

�tα−2 + (
1

N
)β−2

)

.

Provided �t, 1
N are sufficiently small, we have

⎧

⎪⎪⎨

⎪⎪⎩

‖ĕmp ‖∞, ‖ĕmn ‖∞ ≤ δ∗
0

2
,

‖∇ ĕmp ‖∞, ‖∇ ĕmn ‖∞ ≤ δ∗
0

2
.

(4.25)

where δ∗
0 > 0 is a small constant.

Combining (4.25) with the regularity of ( p̆, n̆) as in (4.3), we obtain bounds for
pmN , nmN ,∇ pmN ,∇nmN :

δ∗
0

2
≤ min p̆m − ‖ĕmp ‖∞ ≤ pmN ≤ ‖ p̆m‖∞ + ‖ĕmp ‖∞ ≤ M + δ∗

0

2
, (4.26)

δ∗
0

2
≤ min n̆m − ‖ĕmn ‖∞ ≤ nmN ≤ ‖n̆m‖∞ + ‖ĕmn ‖∞ ≤ M + δ∗

0

2
, (4.27)

‖∇ pmN‖∞ ≤ ‖∇ p̆m‖∞ + ‖∇ ĕmp ‖∞ ≤ M + δ∗
0

2
, (4.28)

‖∇nmN‖∞ ≤ ‖∇n̆m‖∞ + ‖∇ ĕmn ‖∞ ≤ M + δ∗
0

2
. (4.29)

Taking vN = ĕm+1
μ in (4.16), using the equality ĕm+1

μ = ln p̆m+1 − ln pm+1
N + ĕm+1

ψ , we
obtain the left hand side of (4.16):

LHSp = 1

�t
〈ĕm+1

p , ln p̆m+1 − ln pm+1
N 〉 + 1

�t
〈ĕm+1

p , ĕm+1
ψ 〉

− 1

�t
〈ĕmp , ĕm+1

μ 〉 − 〈ĕmp ŭm + pmN ĕ
m
u ,∇ ĕm+1

μ 〉,
(4.30)
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and the right hand side of (4.16):

RHSp = −〈ĕmp
(

1 + 2�t( p̆m + pmN )
) ∇μ̆m+1,∇ ĕn+1

μ 〉
−

∫

�

pmN (1 + 2�tpmN )|∇ ĕm+1
μ |2dx + τ̆m+1

p (ĕm+1
μ ).

(4.31)

Similarly taking vN = ĕm+1
ν in (4.17), we obtain

LHSn = 1

�t
〈ĕm+1

n , ln n̆m+1 − ln nm+1
N 〉 − 1

�t
〈ĕm+1

n , ĕm+1
ψ 〉

− 1

�t
〈ĕmn , ĕm+1

ν 〉 − 〈ĕmn ŭm + nmN ĕ
m
u ,∇ ĕm+1

ν 〉,
(4.32)

and

RHSn = −〈ĕmn
(

1 + 2�t(n̆m + nmN )
) ∇ν̆m+1,∇ ĕn+1

ν 〉
−

∫

�

nmN (1 + 2�tnmN )|∇ ĕm+1
ν |2dx + τ̆m+1

n (ĕm+1
ν ).

(4.33)

From the monotonicity of ln x for x > 0, we obtain that

〈ĕm+1
p , ln p̆m+1 − ln pm+1

N 〉 = 〈 p̆m+1 − pm+1
N , ln p̆m+1 − ln pm+1

N 〉 ≥ 0, (4.34)

〈ĕm+1
n , ln n̆m+1 − ln nm+1

N 〉 = 〈n̆m+1 − nm+1
N , ln n̆m+1 − ln nm+1

N 〉 ≥ 0. (4.35)

From (4.18), we have

〈ĕm+1
p − ĕm+1

n , ĕm+1
ψ 〉 = ‖∇ ĕm+1

ψ ‖2 ≥ 0. (4.36)

Combining (4.30), (4.32), (4.34), (4.35) with (4.36), we have

LHSp + LHSn

≥ − 1

�t
(〈ĕmp , ĕm+1

μ 〉 + 〈ĕmn , ĕm+1
ν 〉) − 〈ĕmp ŭm + pmN ĕ

m
u ,∇ ĕm+1

μ 〉
− 〈ĕmn ŭm + nmN ĕ

m
u ,∇ ĕm+1

ν 〉.
(4.37)

Summing up (4.31) and (4.33) and using (4.37), we have
∫

�
pmN (1 + 2�tpmN )|∇ ĕm+1

μ |2 + nmN (1 + 2�tnmN )|∇ ĕm+1
ν |2dx

≤ −〈ĕmp
(

1 + 2�t( p̆m + pmN )
) ∇μ̆m+1, ∇ ĕm+1

μ 〉
− 〈ĕmn

(

1 + 2�t(n̆m + nmN )
) ∇ν̆m+1, ∇ ĕm+1

ν 〉
+ 1

�t
(〈ĕmp , ĕm+1

μ 〉 + 〈ĕmn , ĕm+1
ν 〉) + 〈ĕmp ŭm + pmN ĕ

m
u , ∇ ĕm+1

μ 〉 + 〈ĕmn ŭm + nmN ĕ
m
u , ∇ ĕm+1

ν 〉
+ τ̆m+1

p (ĕm+1
μ ) + τ̆m+1

n (ĕm+1
ν ).

(4.38)

Using the L∞ bound of pmN , nmN in (4.26) and (4.27), we have
∫

�

pmN (1 + 2�tpmN )|∇ ĕm+1
μ |2 + nmN (1 + 2�tnmN )|∇ ĕm+1

ν |2dx

≥ δ∗
0

2
(‖∇ ĕm+1

μ ‖2 + ‖∇ ĕm+1
ν ‖2). (4.39)
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Applying Hölder and Young’s inequalities, for the second term in (4.38), we have

− 〈ĕmp
(

1 + 2�t( p̆m + pmN )
) ∇μ̆m+1,∇ ĕm+1

μ 〉
≤ ‖1 + 2�t( p̆m + pmN )‖∞‖ĕmp ‖‖∇μ̆m+1‖∞‖∇ ĕm+1

μ ‖
≤ (4M + δ∗

0 + 1)‖ĕmp ‖‖∇μ̆m+1‖∞‖∇ ĕm+1
μ ‖

≤ δ∗
0

2

1

8
‖∇ ĕm+1

μ ‖2 + 4C̃

δ∗
0

‖ĕmp ‖2,

(4.40)

and for the third term in (4.38),

− 〈ĕmn
(

1 + 2�t(n̆m + nmN )
) ∇ν̆m,∇ ĕn+1

ν 〉
≤ ‖1 + 2�t(n̆m + nmN )‖∞‖ĕmn ‖‖∇ν̆m+1‖∞‖∇ ĕm+1

ν ‖
≤ (4M + δ∗

0 + 1)‖ĕmn ‖‖∇ν̆m+1‖∞‖∇ ĕm+1
ν ‖

≤ δ∗
0

2

1

8
‖∇ ĕm+1

ν ‖2 + 4C̃

δ∗
0

‖ĕmn ‖2,

(4.41)

where C̃ ≥ (4M + δ∗
0 + 1)2(‖∇μ̆m+1‖2∞ + ‖∇ν̆m+1‖2∞). Note that by (4.3), ‖μ̆‖L∞

t W 1,∞
x

and ‖ν̆‖L∞
t W 1,∞

x
are bounded.

Using Hölder and Young’s inequalities, we derive

1

�t
(〈ĕmp , ĕm+1

μ 〉 + 〈ĕmn , ĕm+1
ν 〉)

≤ δ∗
0

2

1

8
(‖∇ ĕm+1

μ ‖2 + ‖∇ ĕm+1
ν ‖2) + 4

δ∗
0

1

�t2
(‖ĕmp ‖2H−1 + ‖ĕmn ‖2H−1)

≤ δ∗
0

2

1

8
(‖∇ ĕm+1

μ ‖2 + ‖∇ ĕm+1
ν ‖2) + 4

δ∗
0

C

�t2
(‖ĕmp ‖2 + ‖ĕmn ‖2).

(4.42)

Using the bound of ‖pmN‖∞ from (4.26), and the bound of ‖ŭm‖∞ from (4.3), we obtain

〈ĕmp ŭm,∇ ĕm+1
μ 〉 + 〈pmN ĕmu ,∇ ĕm+1

μ 〉
≤ ‖∇ ĕm+1

μ ‖(‖ŭm‖∞‖ĕmp ‖ + ‖pmN‖∞‖ĕmu ‖)
≤ δ∗

0

2

1

8
‖∇ ĕm+1

μ ‖2 + 4C

δ∗
0

(‖ĕmp ‖2 + ‖ĕmu ‖2).
(4.43)

Similarly, we obtain

〈ĕmn ŭm,∇ ĕm+1
ν 〉 + 〈nmN ĕmu ,∇ ĕm+1

ν 〉
≤ ‖∇ ĕm+1

ν ‖(‖ŭm‖∞‖ĕmn ‖ + ‖nmN‖∞‖ĕmu ‖)
≤ δ∗

0

2

1

8
‖∇ ĕm+1

ν ‖2 + 4C

δ∗
0

(‖ĕmn ‖2 + ‖ĕmu ‖2).
(4.44)

From Lemma 4.2, we have

〈τ̆m+1
p , ĕm+1

μ 〉 + 〈τ̆m+1
n , ĕm+1

ν 〉 ≤ C(�t3 + N−k)(‖ĕm+1
μ ‖H1 + ‖ĕm+1

ν ‖H1)

≤ δ∗
0

2

1

8
(‖∇ ĕm+1

μ ‖2 + ‖∇ ĕm+1
ν ‖2) + 4

δ∗
0
(C(�t3 + N−k))2,

(4.45)
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where the positive constant C in (4.45) is independent of �t and N .
Plugging (4.39)-(4.45) into (4.38), we have

δ∗
0

4
(‖∇ ĕm+1

μ ‖2 + ‖∇ ĕm+1
ν ‖2)

≤ 4C̃

δ∗
0

(‖ĕmp ‖2 + ‖ĕmn ‖2) + 4

δ∗
0

C

�t2
(‖ĕmp ‖2 + ‖ĕmn ‖2)

+ 4C

δ∗
0

(‖ĕmp ‖2 + ‖ĕmn ‖2 + 2‖ĕmu ‖2) + 4

δ∗
0
(C(�t3 + N−k))2.

(4.46)

Combing (4.46) with assumption (4.22), (4.23), (4.24), we derive

‖∇ ĕm+1
μ ‖, ‖∇ ĕm+1

ν ‖ ≤ Ĉ
�tα + ( 1

N )β

�t
, (4.47)

where Ĉ depends only on δ∗
0 , p̆

m+1, n̆m+1, ψ̆m+1, ŭm+1, independent of �t, 1
N .

Now taking the test function vN = ĕm+1
p − ĕmp in (4.16), we have

1

�t
‖ĕm+1

p − ĕmp ‖2

≤ ‖ŭmĕmp + pmN ĕ
m
u ‖‖∇(ĕm+1

p − ĕmp )‖
+ ‖ĕmp (1 + 2�t( p̆m + pmN ))∇μ̆m+1 + pmN (1 + 2�tpmN )∇ ĕm+1

μ ‖‖∇(ĕm+1
p − ĕmp )‖

+ C(�t3 + N−k)‖∇(ĕm+1
p − ĕmp )‖

≤
(

‖ŭm‖∞‖ĕmp ‖ + ‖pmN‖∞‖ĕmu ‖ + ‖(1 + 2�t( p̆m + pmN ))∇μ̆m+1‖∞‖ĕmp ‖

+ ‖pmN (1 + 2�tpmN )‖∞‖∇ ĕm+1
μ ‖ + C(�t3 + N−k)

)

‖∇(ĕm+1
p − ĕmp )‖

� N

(

‖ŭm‖∞‖ĕmp ‖ + ‖pmN‖∞‖ĕmu ‖ + ‖(1 + 2�t( p̆m + pmN ))∇μ̆m+1‖∞‖ĕmp ‖

+ ‖pmN (1 + 2�tpmN )‖∞‖∇ ĕm+1
μ ‖ + C(�t3 + N−k)

)

‖ĕm+1
p − ĕmp ‖,

(4.48)

where we have used the inverse inequality

‖∇(ĕm+1
p − ĕmp )‖ � N‖ĕm+1

p − ĕmp ‖.
Combining (4.26), (4.47) with (4.48), we have

‖ĕm+1
p − ĕmp ‖ ≤ CN�t(‖ĕmp ‖ + ‖ĕmu ‖ + ‖∇ ĕm+1

μ ‖ + �t3 + N−k)

≤ CN�t
�tα + N−β

�t
≤ C(�tα−1 + N−β+1),

(4.49)

where we have used �t ≤ C 1
N in (4.49).

Finally, using the triangle inequality and the inverse inequality, we have

‖ĕm+1
p ‖ ≤ ‖ĕmp ‖ + ‖ĕm+1

p − ĕmp ‖ ≤ C(�tα−1 + N−β+1),

‖ĕm+1
p ‖∞ ≤ N‖ĕm+1

p ‖ ≤ C(�tα−2 + N−β+2).
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Similarly, we can derive the bound for ĕm+1
n :

‖ĕm+1
n ‖ ≤ C(�tα−1 + N−β+1),

‖ĕm+1
n ‖∞ ≤ C(�tα−2 + N−β+2).

This completes the proof of the lemma. ��

4.2 A Refined Error Analysis

Firstly, for error terms as defined in (4.4), we provide following equations

∇(ln p̆m+1 − ln pm+1
N ) = 1

pm+1
N

(∇ ĕm+1
p − ĕm+1

p ∇ ln p̆m+1), (4.50)

∇(ln n̆m+1 − ln nm+1
N ) = 1

nm+1
N

(∇ ĕm+1
n − ĕm+1

n ∇ ln n̆m+1). (4.51)

Equation (4.50) could be derived as

∇(ln p̆m+1 − ln pm+1
N )

= (
∇ p̆m+1

p̆m+1 − ∇ pm+1
N

pm+1
N

)

= (
pm+1
N

pm+1
N

∇ p̆m+1

p̆m+1 − ∇ pm+1
N

pm+1
N

)

= 1

pm+1
N

(
p̆m+1 − ĕm+1

p

p̆m+1 ∇ p̆m+1 − ∇ pm+1
N )

= 1

pm+1
N

(∇ ĕm+1
p − ĕm+1

p ∇ ln p̆m+1).

And equation (4.51) could be established similarly.
Now we proceed to a refined error analysis. The main result is

Theorem 4.4 Under the same assumption and procedure as in Lemma 4.2, we can build
supplementary fields ( p̆, n̆, ŭ, φ̆), provided �t and 1

N sufficiently small and under the linear

refinement requirement �t ≤ 1
N , for the numerical error between numerical solution from

scheme (2.18)-(2.23) and supplementary fields ( p̆, n̆, ŭ, φ̆), as defined in (4.4), we have

‖ĕmp ‖ + ‖ĕmn ‖ + ‖ĕmu ‖ + �t‖∇ ĕmφ ‖

+ C1
δ∗
0 ,M (�t

m
∑

l=1

(‖∇ ĕlp‖2 + ‖∇ ĕln‖2 + ‖∇ ĕlRNu‖2))
1
2

≤ C2
δ∗
0 ,M (�t3 + N−k),

for all positive integer m, such that m�t ≤ T , where C1
δ∗
0 ,M ,C2

δ∗
0 ,M are positive constants

that are independent of the choice of �t, N.

Proof The proof of Theorem 4.4 is divided into two steps:

• Step 1: Assume that the rough estimate (4.22)-(4.24) is true for all the m ≤ m∗, where
m∗�t ≤ T , we will obtain an error estimate for the (m + 1)-th time step as (4.79);
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• Step 2: Recover the rough estimate (4.22)-(4.24) for the (m∗ + 1)-th time step.

Step 1: A refined error analysis with a prior assumption.
First, from the choice of initial data:

p0N = �N p(·, 0) = p̆0, n0N = �Nn(·, 0) = n̆0, ψ0
N = �Nψ(·, 0) = ψ̆0,

u0N = �Nu(·, 0) = ŭ0, φ0
N = �Nφ(·, 0) = φ̆0,

we have

ĕ0p = ĕ0n = ĕ0ψ = ĕ0u = ĕ0φ = 0.

Assume (4.22)-(4.24) hold for the m-th time step with α = 11
4 , β = k − 1

4 . Then by
Lemma 4.3, we have

‖ĕm+1
p ‖∞ ≤ C(�t

3
4 + (

1

N
)k−

9
4 ) ≤ δ∗

0

2
,

‖ĕm+1
n ‖∞ ≤ C(�t

3
4 + (

1

N
)k−

9
4 ) ≤ δ∗

0

2
,

where δ∗
0 > 0 is sufficiently small. Since p̆, n̆ are also bounded, we obtain

δ∗
0

2
≤ min p̆m+1 − ‖ĕm+1

p ‖∞ ≤ pm+1
N ≤ ‖ p̆m+1‖∞ + ‖ĕm+1

p ‖∞ ≤ M + δ∗
0

2
, (4.52)

δ∗
0

2
≤ min p̆m+1 − ‖ĕm+1

p ‖∞ ≤ nm+1
N ≤ ‖n̆m+1‖∞ + ‖ĕm+1

n ‖∞ ≤ M + δ∗
0

2
. (4.53)

Now we proceed to the proof, which is divided into two steps.
(i) Estimate of (4.16)-(4.18):
Taking the test function vN = ĕm+1

p in (4.16), we obtain

1

2�t
(‖ĕm+1

p ‖2 − ‖ĕmp ‖2 + ‖ĕm+1
p − ĕmp ‖2)

= 〈ĕmp ŭm,∇ ĕm+1
p 〉 + 〈pmN ĕmu ,∇ ĕm+1

p 〉
− 〈ĕmp (1 + 2�t( p̆m + pmN ))∇μ̆m+1,∇ ĕm+1

p 〉
− 〈pmN (1 + 2�tpmN )∇ ĕm+1

μ ,∇ ĕm+1
p 〉

+ 〈τ̆m+1
p , ĕm+1

p 〉.

(4.54)

Using ĕm+1
μ = ln p̆m+1 − ln pm+1

N + ĕm+1
ψ and (4.50) we have

− 〈pmN (1 + 2�tpmN )∇ ĕm+1
μ , ∇ ĕm+1

p 〉
= −〈pmN (1 + 2�tpmN )∇(ln p̆m+1 − ln pm+1

N ),∇ ĕm+1
p 〉 − 〈pmN (1 + 2�tpmN )∇ ĕm+1

ψ , ∇ ĕm+1
p 〉

= −〈 p
m
N (1 + 2�tpmN )

pm+1
N

∇ ĕm+1
p , ∇ ĕm+1

p 〉 − 〈 p
m
N (1 + 2�tpmN )

pm+1
N

ĕm+1
p ∇ ln p̆m+1, ∇ ĕm+1

p 〉

− 〈pmN (1 + 2�tpmN )∇ ĕm+1
ψ , ∇ ĕm+1

p 〉.

(4.55)

Using the bounds of pmN and pm+1
N given in (4.26), (4.52), we have

− 〈 p
m
N (1 + 2�tpmN )

pm+1
N

∇ ĕm+1
p ,∇ ĕm+1

p 〉 ≤ − δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖2. (4.56)
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For the last two terms in (4.54), and the right hand side terms in (4.55), applying Hölder and
Young’s inequalities and the properties in (4.52), (4.26), we have

〈ĕmp ŭm,∇ ĕm+1
p 〉 + 〈pmN ĕmu ,∇ ĕm+1

p 〉
≤ ‖ŭm‖∞‖ĕmp ‖‖∇ ĕm+1

p ‖ + ‖pmN‖∞‖ĕmu ‖‖∇ ĕm+1
p ‖

≤ 1

8

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖2 + 4M + 2δ∗
0

δ∗
0

(‖ŭm‖2∞‖ĕmp ‖2 + ‖pmN‖2∞‖ĕmu ‖2)

≤ 1

8

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖22 + CM,δ∗
0
(‖ĕmp ‖22 + ‖ĕmu ‖22),

(4.57)

〈ĕmp (1 + 2�t( p̆m + pmN ))∇μ̆m+1,∇ ĕm+1
p 〉

≤ ‖1 + 2�t( p̆m + pmN )‖∞‖∇μ̆m+1‖∞‖ĕmp ‖‖∇ ĕm+1
p ‖

≤ 1

8

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖2 + CM,δ∗
0
‖ĕmp ‖2,

(4.58)

〈 p
m
N (1 + 2�tpmN )

pm+1
N

ĕm+1
p ∇ ln p̆m+1,∇ ĕm+1

p 〉

≤ ‖ pmN (1 + 2�tpmN )

pm+1
N

‖∞‖∇ p̆m+1

p̆m+1 ‖∞‖ĕm+1
p ‖‖∇ ĕm+1

p ‖

≤ 1

8

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖2 + CM,δ∗
0
‖ĕm+1

p ‖2,

(4.59)

and

〈pmN (1 + 2�tpmN )∇ ĕm+1
ψ ,∇ ĕm+1

p 〉
≤ ‖pmN (1 + 2�tpmN )‖∞‖∇ ĕm+1

ψ ‖‖∇ ĕm+1
p ‖

≤ 1

16

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖2 + CM,δ∗
0
‖∇ ĕm+1

ψ ‖2

≤ 1

16

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖2 + CM,δ∗
0
(‖ĕm+1

p ‖2 + ‖ĕm+1
n ‖2),

(4.60)

where we have used the elliptic estimate from (4.18) to get

‖∇ ĕm+1
ψ ‖2 ≤ C(‖ĕm+1

p ‖2 + ‖ĕm+1
n ‖2).

From Lemma 4.2, we have

τ̆m+1
p (ĕm+1

p ) ≤ C(�t3 + N−k)‖ĕm+1
p ‖H1

≤ 1

16

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖2 + CM,δ∗
0
(�t3 + N−k)2.

(4.61)

Plugging (4.55), (4.56), (4.57), (4.58), (4.59), (4.60), (4.61) into (4.54), we obtain

1

2�t
(‖ĕm+1

p ‖2 − ‖ĕmp ‖2 + ‖ĕm+1
p − ĕmp ‖2) + 1

2

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

p ‖2

≤ CM,δ∗
0

(‖ĕmp ‖2 + ‖ĕmu ‖2 + ‖ĕm+1
p ‖2 + ‖ĕm+1

n ‖2 + (�t3 + N−k)2
)

.

(4.62)

123



Journal of Scientific Computing (2025) 104 :105 Page 31 of 45 105

Similarly, taking vN = ĕm+1
n in (4.17), we obtain

1

2�t
(‖ĕm+1

n ‖2 − ‖ĕmn ‖2 + ‖ĕm+1
n − ĕmn ‖2) + 1

2

δ∗
0

2M + δ∗
0
‖∇ ĕm+1

n ‖2

≤ CM,δ∗
0

(‖ĕmn ‖2 + ‖ĕmu ‖2 + ‖ĕm+1
p ‖2 + ‖ĕm+1

n ‖2 + (�t3 + N−k)2
)

.

(4.63)

(ii) Estimate of (4.19)-(4.21).
Taking vN = ĕm+1

RNu
in (4.19) yields

1

2�t
(‖ĕm+1

RNu
‖2 − ‖ĕmu ‖2 + ‖ĕm+1

RNu
− ĕmu ‖2)

+ 〈(ĕmu · ∇)RN ŭm+1, ĕm+1
RNu

〉 + ‖∇ ĕm+1
RNu

‖2 + 〈∇ ĕmφ , ĕm+1
RNu

〉
= −〈ĕmp ∇μ̆m+1 + ĕmn ∇ν̆m+1, ĕm+1

RNu
〉 − 〈pmN∇ ĕm+1

μ + nmN∇ ĕm+1
ν , ĕm+1

RNu
〉

+ 〈τ̆m+1
u , ĕm+1

RNu
〉,

(4.64)

where we have used (2.24) to obtain

〈(umN · ∇)ĕm+1
RNu

, ĕm+1
RNu

〉 = 0.

Taking the test function vN = 1
2 (ĕ

m+1
u + ĕm+1

RNu
) in (4.20), we obtain

1

2�t
(‖ĕm+1

u ‖2 − ‖ĕm+1
RNu

‖2) + 1

2
〈∇(ĕm+1

φ − ĕmφ ), ĕm+1
RNu

〉 = 0. (4.65)

Summing (4.64) with (4.65), we have

1

2�t
(‖ĕm+1

u ‖2 − ‖ĕmu ‖2 + ‖ĕm+1
RNu

− ĕmu ‖2)

+ 〈(ĕmu · ∇)RN ŭm+1, ĕm+1
RNu

〉 + ‖∇ ĕm+1
RNu

‖2 + 1

2
〈∇(ĕm+1

φ + ĕmφ ), ĕm+1
RNu

〉
= −〈ĕmp ∇μ̆m+1 + ĕmn ∇ν̆m+1, ĕm+1

RNu
〉 − 〈pmN∇ ĕm+1

μ + nmN∇ ĕm+1
ν , ĕm+1

RNu
〉

+ 〈τ̆m+1
u , ĕm+1

RNu
〉.

(4.66)

For the second term in (4.66), we have

|〈(ĕmu · ∇)RN ŭm+1, ĕm+1
RNu

〉|
= −〈(ĕmu · ∇)ĕm+1

RNu
, RN ŭm+1〉

≤ ‖ĕmu ‖‖∇ ĕm+1
RNu

‖‖RN ŭm+1‖∞

≤ 1

4
‖∇ ĕm+1

RNu
‖2 + ‖RN ŭm+1‖2∞‖ĕmu ‖2.

(4.67)

Taking the test function vN = ∇(ĕm+1
φ + ĕmφ ) in (4.20), we obtain

〈∇(ĕm+1
φ + ĕmφ ), ĕm+1

RNu
〉 = �t(‖∇ ĕm+1

φ ‖2 − ‖∇ ĕmφ ‖2). (4.68)

For the first and second term on the right hand side of (4.66), we have

|〈ĕmp ∇μ̆m+1 + ĕmn ∇ν̆m+1, ĕm+1
RNu

〉|
≤ (‖∇μ̆m+1‖∞‖ĕmp ‖ + ‖∇ν̆m+1‖∞‖ĕmn ‖)‖ĕm+1

RNu
‖

≤ ‖ĕm+1
RNu

‖2 + 1

4
(‖∇μ̆m+1‖2∞‖ĕmp ‖2 + ‖∇ν̆m+1‖2∞‖ĕmn ‖2),

(4.69)
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and

〈pmN∇ ĕm+1
μ + nmN∇ ĕm+1

ν , ĕm+1
RN u

〉
= 〈pmN∇(ln p̆m+1 − ln pm+1

N + ĕm+1
ψ ), ĕm+1

RN u
〉 + 〈nmN∇(ln n̆m+1 − ln nm+1

N − ĕm+1
ψ ), ĕm+1

RN u
〉

= 〈pmN∇(ln p̆m+1 − ln pm+1
N ), ĕm+1

RN u
〉 + 〈nmN∇(ln n̆m+1 − ln nm+1

N ), ĕm+1
RN u

〉
+ 〈(pmN − nmN )∇ ĕm+1

ψ , ĕm+1
RN u

〉.

(4.70)

Consider the first two terms on right-hand side of (4.70) and apply (4.50) (4.51), we have

|〈pmN∇(ln p̆m+1 − ln pm+1
N ), ĕm+1

RNu
〉|

= 〈 pmN
pm+1
N

∇ ĕm+1
p , ĕm+1

RNu
〉 − 〈 pmN

pm+1
N

ĕm+1
p ∇ ln p̆m+1, ĕm+1

RNu
〉

≤ ‖ pmN
pm+1
N

‖∞‖∇ ĕm+1
p ‖‖ĕm+1

RNu
‖ + ‖ pmN

pm+1
N

‖∞‖∇ ln p̆m+1‖∞‖ĕm+1
p ‖‖ĕm+1

RNu
‖

≤ 1

8

δ∗
0

2M + δ∗
0
(‖∇ ĕm+1

p ‖2 + ‖ĕm+1
p ‖2) + Cδ∗

0 ,M‖ĕm+1
RNu

‖2,

(4.71)

and

|〈nmN∇(ln n̆m+1 − ln nm+1
N ), ĕm+1

RNu
〉| ≤ 1

8

δ∗
0

2M + δ∗
0
(‖∇ ĕm+1

n ‖2 + ‖ĕm+1
n ‖2)

+Cδ∗
0 ,M‖ĕm+1

RNu
‖2. (4.72)

Using the estimate (4.2), for the final term in (4.70), we obtain

∣
∣
∣〈(pmN − nmN )∇ ĕm+1

ψ , ĕm+1
RNu

〉
∣
∣
∣

≤ (‖pmN‖∞ + ‖nmN‖∞)‖∇ ĕm+1
ψ ‖‖ĕm+1

RNu
‖

≤ C(‖pmN‖∞ + ‖nmN‖∞)(‖ĕm+1
p ‖ + ‖ĕm+1

n ‖)‖ĕm+1
RNu

‖
≤ ‖ĕm+1

p ‖2 + ‖ĕm+1
n ‖2 + Cδ∗

0 ,M‖ĕm+1
RNu

‖2.

(4.73)

Combining all these estimates (4.70)-(4.73), we have

|〈pmN∇ ĕm+1
μ + nmN∇ ĕm+1

ν , ĕm+1
RNu

〉|

≤ 1

4

δ∗
0

2M + δ∗
0
(‖∇ ĕm+1

p ‖2 + ‖∇ ĕm+1
n ‖2) + Cδ∗

0 ,M (‖ĕm+1
p ‖22 + ‖ĕm+1

n ‖22 + ‖ĕm+1
RNu

‖22).
(4.74)

From Lemma 4.2, we have

〈τ̆m+1
u , ĕm+1

u 〉 ≤ C(�t3 + N−k)‖ĕm+1
RNu

‖H1

≤ 1

4
‖∇ ĕm+1

RNu
‖22 + C(�t3 + N−k)2.

(4.75)
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Plugging (4.67), (4.68), (4.69), (4.74), (4.75) into (4.66), we obtain

1

2�t
(‖ĕm+1

u ‖2 − ‖ĕmu ‖2 + ‖ĕm+1
RNu

− ĕmu ‖2 + �t2‖∇ ĕm+1
φ ‖2 − �t2‖∇ ĕmφ ‖2)

+ 1

2
‖∇ ĕm+1

RNu
‖2 − 1

4

δ∗
0

2M + δ∗
0
(‖∇ ĕm+1

p ‖2 + ‖∇ ĕm+1
n ‖2)

≤ Cδ∗
0 ,M (‖ĕmp ‖2 + ‖ĕmn ‖2 + ‖ĕm+1

p ‖2 + ‖ĕm+1
n ‖2 + ‖ĕmu ‖2)

+ Cδ∗
0 ,M‖ĕm+1

RNu
‖2 + C(�t3 + N−k)2.

(4.76)

Now taking the test function vN = ∇(ĕm+1
φ − ĕmφ ) in (4.20), and combining (4.65), we have

‖ĕm+1
RNu

‖2 = ‖ĕm+1
u ‖2 + �t2‖∇(ĕm+1

φ − ĕmφ )‖2. (4.77)

Plugging (4.77) into (4.76), we obtain

1

2�t
(‖ĕm+1

u ‖2 − ‖ĕmu ‖2 + ‖ĕm+1
RNu

− ĕmu ‖2 + �t2‖∇ ĕm+1
φ ‖2 − �t2‖∇ ĕmφ ‖2)

+ 1

2
‖∇ ĕm+1

RNu
‖2 − 1

4

δ∗
0

2M + δ∗
0
(‖∇ ĕm+1

p ‖2 + ‖∇ ĕm+1
n ‖2)

≤ Cδ∗
0 ,M

(‖ĕmp ‖2 + ‖ĕmn ‖2 + ‖ĕm+1
p ‖2 + ‖ĕm+1

n ‖2 + ‖ĕmu ‖2
+ ‖ĕm+1

u ‖2 + �t2‖∇ ĕm+1
φ ‖2 + �t2‖∇ ĕmφ ‖2) + C(�t3 + N−k)2.

(4.78)

Step 2: Recovery of the induction assumption (4.22)-(4.24) for the (m∗ + 1)-step.
A summation of (4.62) (4.63) (4.78) leads to

1

2�t

(‖ĕm+1
p ‖2 + ‖ĕm+1

n ‖2 + ‖ĕm+1
u ‖2 + �t2‖∇ ĕm+1

φ ‖2

− ‖ĕmp ‖2 − ‖ĕmn ‖2 − ‖ĕmu ‖2 − �t2‖ĕmφ ‖2
+ ‖ĕm+1

p − ĕmp ‖2 + ‖ĕm+1
n − ĕmn ‖2 + ‖ĕm+1

RNu
− ĕmu ‖2)

+ 1

4

δ∗
0

2M + δ∗
0
(‖∇ ĕm+1

p ‖2 + ‖∇ ĕm+1
n ‖2) + 1

2
‖∇ ĕm+1

RNu
‖2

≤ Cδ∗
0 ,M

(‖ĕmp ‖2 + ‖ĕm+1
p ‖2 + ‖ĕmn ‖2 + ‖ĕm+1

n ‖2 + ‖ĕmu ‖2
+ ‖ĕm+1

u ‖2 + �t2‖∇ ĕm+1
φ ‖2 + �t2‖∇ ĕmφ ‖2) + Cδ∗

0 ,M (�t3 + N−k)2.

(4.79)

Note that from the induction assumption in Step 1, the above inequality holds for allm ≤ m∗,
where m∗�t ≤ T . An application of discrete Gronwall’s inequality implies

‖ĕm∗+1
p ‖ + ‖ĕm∗+1

n ‖ + ‖ĕm∗+1
u ‖ + �t‖∇ ĕm

∗+1
φ ‖

+ C1
δ∗
0 ,M (�t

m∗+1
∑

l=1

(‖∇ ĕlp‖2 + ‖∇ ĕln‖2 + ‖∇ ĕlRNu‖2))
1
2

≤ C2
δ∗
0 ,M (�t3 + N−k),

where C1
δ∗
0 ,M ,C2

δ∗
0 ,M are positive constants, independent of �t, N . Then we obtain higher

order error estimate for p̆, n̆, ψ̆, ŭ and are able to recover our induction assumption (4.22)-
(4.24) with α = 11

4 , β = k − 1
4 and �t, 1

N chosen small enough. This completes the proof
of Theorem 4.4. ��
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4.3 Proof of Theorem 4.1

Now we are ready to prove our main result Theorem 4.1 , which is a direct combination of
Theorem 3.2 and Theorem 4.1.

Proof Given pin, nin ≥ δ0 for some δ0 > 0, fromCorollary 3.1.1, we have solution p, n ≥ δ0
in � × [0, T ].

Also from Theorem 3.2 and (3.19), we have

‖∂4t p‖2L∞L2(�×[0,T ]) � ‖∂4t p‖L2H1(�×[0,T ])‖∂5t p‖L2H−1(�×[0,T ]) ≤ C(T , ‖pin‖H8(�)),

‖∂3t p‖2L∞Hk+1(�×[0,T ]) � ‖∂3t p‖L2Hk+2(�×[0,T ])‖∂4t p‖L2Hk (�×[0,T ]) ≤ C(T , ‖pin‖Hk+7(�)).

Similar results hold for (n,u). Then given (pin, nin,uin) ∈ Hk+7(�)×Hk+7(�)×Hk+7(�)

with k ≥ 2, we have

(∂4t p, ∂
4
t n, ∂4t u) ∈ L∞(0, T , L2(�)), (∂3t p, ∂

3
t n, ∂3t u) ∈ L∞(0, T , Hk+1(�)), (k ≥ 2).

Hence assumptions in Lemma A.1 are satisfied, and Theorem 4.4 follows.
From the error term definition (4) (4.4), we have

emp = ĕmp − �tpm�t,1 − �t2 pm�t,2,

emn = ĕmn − �tnm�t,1 − �t2nm�t,2,

emu = ĕmu − �tum�t,1 − �t2um�t,2.

(4.80)

From the constructionprocess in the appendix, themodification functions (p�t,i , n�t,i ,u�t,i )

(i = 1, 2) have sufficient regularity. Combining Theorem 4.4 with (4.80), Theorem 4.1 is
proved. ��

5 Numerical Examples

In this section, we present numerical experiments to validate the stability, positivity, and
accuracyof our numerical schemes.Weconsider periodic boundary conditions and implement
the Fourier spectral method in � = [0, 2π ]2.

5.1 Accuracy Test

To verify the accuracy and convergence rate of our numerical scheme, we introduce an
artificial exact solution by adding external forces to the PNP-NS system, formulated as

pt + (u · ∇)p = ∇ · (∇ p + p∇ψ) + f p,

nt + (u · ∇)n = ∇ · (∇n − n∇ψ) + fn,

− ε�ψ = p − n,

ut + (u · ∇)u − �u + ∇P = −∇ψ(p − n) + fu,

∇ · u = 0,
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Table 1 L2 errors and convergence orders for the numerical solutions of p, ψ , u, and ψ

�t L2 error in p Order L2 error in ψ Order L2 error in u Order L2 error in ψ Order

1 × 10−2 1.01 × 10−2 – 4.24 × 10−3 – 6.33 × 10−4 – 1.21 × 10−2 –
1
2 × 10−2 5.11 × 10−3 0.98 2.15 × 10−3 0.98 3.17 × 10−4 1.00 6.13 × 10−3 0.99
1
4 × 10−2 2.57 × 10−3 0.99 1.08 × 10−3 0.99 1.59 × 10−4 1.00 3.08 × 10−3 0.99
1
8 × 10−2 1.29 × 10−3 1.00 5.45 × 10−4 0.99 7.93 × 10−5 1.00 1.54 × 10−3 1.00
1
16 × 10−2 6.46 × 10−4 1.00 2.73 × 10−4 1.00 3.97 × 10−5 1.00 7.73 × 10−4 1.00
1
32 × 10−2 3.23 × 10−4 1.00 1.37 × 10−4 1.00 1.98 × 10−5 1.00 3.87 × 10−4 1.00

where we set ε = 1 and the source terms f p , fn , and fu are determined from the exact
solutions

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p(x, y, t) = 1.1 + cos(x) cos(y) sin(t),

n(x, y, t) = 1.1 − cos(x) cos(y) cos(t),

u(x, y, t) =
(

sin2(x) sin(2y) sin(t)
− sin(2x) sin2(y) cos(t)

)

,

P(x, y, t) = cos(x) cos(y) sin(t),

defined in the domain � × [0, T ] = [0, 2π ]2 × [0, T ]. We use N = 64 Fourier modes with
different time steps �t . Using scheme (2.18)–(2.24), we compute the L2 errors between
the numerical solutions and the exact solutions. The results are shown in Table 1, where
first-order convergence rates are observed for the different variables.

5.2 Property Test

We also perform numerical simulations to test the mass-conserving and positivity-preserving
properties of our scheme. The positivity-preserving scheme is applied to solve the following
PNP-NS system:

pt + (u · ∇)p = ∇ · (∇ p + p∇ψ),

nt − (u · ∇)n = ∇ · (∇n − n∇ψ),

− ε�ψ = p − n,

ut + (u · ∇)u + ∇P − �u = −κ∇ψ(p − n),

∇ · u = 0. (5.1)

We set the parameters in (5.1) to be ε = 1 and κ = 1000, with the initial data given by

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

p(x, y, 0) = 1 + 10−6 − tanh
(

2
(

(x − 0.8π)2 + (y − 0.8π)2 − (0.2π)2
))

,

n(x, y, 0) = 1 + 10−6 − tanh
(

2
(

(x − 1.2π)2 + (y − 1.2π)2 − (0.2π)2
))

,

u(x, y, 0) =
(

0
0

)

.

The initial condition indicates that the positive and negative ions accumulate in two regions
centered at (0.8π, 0.8π) and (1.2π, 1.2π), respectively.
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Fig. 1 Snapshots of p − n and velocity field u at times T = 0.005, 0.025, 0.05, 0.075, 0.1, and 1.

With time step�t = 10−4, in Figure 1, we plot the profiles of p−n and the velocity field u
at times T = 0.005, 0.025, 0.05, 0.075, 0.1, and 1. We observe that the positive and negative
ions move toward each other and drag the fluid along with them. Later, the outflowing fluid
between them prevents the ions from approaching each other further and carries the ions
toward the corners. At the end of the computation, the fluid becomes almost electro-neutral.

We also examine the energy dissipation of the system in Figure 2(left), where the system
energy is shown to be dissipative as we have proved. We plot the mass change for positive
and negative ions in Figure 2(middle), showing that the mass of ions is preserved within
machine precision. We also plot the minimum and maximum of (p, n) in Figure 2(right),
demonstrating that the ionic concentrations remain positive throughout the simulation.

6 Concluding Remarks

In this paper, we mainly consider numerical approximations for the PNP-NS system. Firstly,
we give the results of unique solvability and regularity for the solution of PNP-NS system
with suitable assumptions on initial conditions. To efficiently solve this coupled system, we
propose a decoupled,mass-conserving, positivity-preserving and energy stable schemewhich
can also be unique solvable. Furthermore, we also carry out a rigorous error analysis for the
fully discretized scheme, and derive optimal convergence results. The error analysis mainly
depends on the L∞ bounds for the numerical solutions n and p, which are obtained by using
a high-order asymptotic expansion for the PNP-NS system combing with a mathematical
induction technique. We also present some numerical examples to validate the accuracy and
stability of our decoupled scheme.
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Fig. 2 Left: Total energy of the PNP-NS system. Middle: Change of mass for (p, n). Right: Lower and upper
bounds of (p, n).

Appendix A. Appendix

A.1 High order correction

Lemma A.1 Let (p, n,u) be the solution of the PNP-NS system (1.1)-(1.5)which satisfies the
following properties:

(1) The ionic concentrations are strictly positive

p, n ≥ δ0 > 0,

(2) The solution satisfies

(∂4t p, ∂
4
t n, ∂4t u) ∈ L∞(0, T ; L2(�)), (∂3t p, ∂

3
t n, ∂3t u) ∈ L∞(0, T ; Hk+1(�)) (k ≥ 2),

then we can construct
correction functions (p�t,i , n�t,i ,u�t,i , φ�t,i )(i = 1, 2) depending only on (p, n,u, ψ)

such that the
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supplementary fields ( p̆, n̆, ŭ, φ̆, μ̆, ν̆, ψ̆) (defined by (4.1)) has higher order consistency
truncation error(as defined in (4.5)-(4.9)):

|τ̆m+1
p (vN )|, |τ̆m+1

n (vN )|, |τ̆m+1
u (vN )| ≤ C(�t3 + N−k)‖vN‖H1 .

Moreover, with �t, 1
N chosen small enough, we have

(1) The supplementary functions are strictly positive

p̆, n̆ ≥ δ∗
0 > 0,

(2) The supplementary functions satisfy

( p̆, n̆, ŭ) ∈ L∞(0, T ,W 1,∞).

Proof Let (pm, nm,um, φm) be the L2-orthogonal projection of continuous solution
(p, n,u, φ)(m�t) onto XN × XN × X2

N × XN , as defined in (4). From Taylor expansion,
the local truncation error may be written into two parts, time discretization error and spatial
discretization error, we have

〈 p
m+1 − pm

�t
, vN 〉 − 〈pmum,∇vN 〉 + 〈pm(1 + 2�tpm)∇μm+1,∇vN 〉

= −〈�t f m+1
p,1 + �t2 f m+1

p,2 + O(�t3) + gm+1
p , vN 〉, (A.1)

〈n
m+1 − nm

�t
, vN 〉 − 〈nmum,∇vN 〉 + 〈nm(1 + 2�tnm)∇νm+1,∇vN 〉

= −〈�t f m+1
n,1 + �t2 f m+1

n,2 + O(�t3) + gm+1
n , vN 〉, (A.2)

〈 RNum+1 − um

�t
, vN 〉 + 〈(um · ∇)RNum+1, vN 〉 + 〈∇RNum+1,∇vN 〉 + 〈∇φm, vN 〉

+ 〈pm∇μm+1 + nm∇νm+1, vN 〉 = −〈�t f m+1
u,1 + �t2 f m+1

u,2 + O(�t3) + gm+1
u , vN 〉,

(A.3)

where ( f m+1
p,i , f m+1

n,i , f m+1
u,i )i=1,2 are the temporal part of truncation error and (gm+1

p , gm+1
n ,

gm+1
u ) are the spatial part of the truncation error. From Taylor expansion, we can compute

f p,1 = 1

2

∂2

∂t2
p + ∇ · (∂t (pu)) − ∇ · ((∂t p − 2p2)∇(ln p + ψ)),

fn,1 = 1

2

∂2

∂t2
n + ∇ · (∂t (nu)) − ∇ · ((∂t n − 2n2)∇(ln n − ψ)),

fu,1 = 1

2

∂2

∂t2
u + ∂tu · ∇u + ∂t p∇(ln p + ψ) + ∂t n∇(ln n − ψ);

f p,2 = −1

6

∂3

∂t3
p − 1

2
∇ · (

∂2

∂t2
(pu)) + ∇ · (

(
1

2

∂2

∂t2
p − 4p∂t p)∇(ln p + ψ)

)

fn,2 = −1

6

∂3

∂t3
n − 1

2
∇ · (

∂2

∂t2
(nu)) + ∇ · (

(
1

2

∂2

∂t2
n − 4n∂t n)∇(ln n − ψ)

)

fu,2 = −1

6

∂3

∂t3
u − 1

2

∂2

∂t2
u · ∇u − (u · ∇)∇∂tφ − �(∇∂tφ)

− 1

2

∂2

∂t2
p∇(ln p + ψ) − 1

2

∂2

∂t2
n∇(ln n − ψ)
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and

〈gm+1
p , vN 〉 � N−k(‖pt‖Hk + ‖pu‖Hk + ‖p∇(ln p + ψ)‖Hk )

(

(m + 1)�t
)‖vN‖H1 ,

〈gm+1
n , vN 〉 � N−k(‖nt‖Hk + ‖nu‖Hk + ‖n∇(ln n − ψ)‖Hk )

(

(m + 1)�t
)‖vN‖H1 ,

〈gm+1
u , vN 〉 � N−k(‖ut‖Hk + ‖(u · ∇)u‖Hk + ‖∇u‖Hk + ‖∇ψ‖Hk

+ ‖p∇(ln p + ψ) + n∇(ln n − ψ‖Hk

)(

(m + 1)�t
)‖vN‖H1 .

Applying the regularity assumption (2), we have

∂2t f p,1 ∈ L∞(0, T ; L2(�)), ∂t f p,1 ∈ L∞(0, T ; Hk+1(�)),

∂2t fn,1 ∈ L∞(0, T ; L2(�)), ∂t fn,1 ∈ L∞(0, T ; Hk+1(�)),

∂2t fu,1 ∈ L∞(0, T ; L2(�)), ∂t fu,1 ∈ L∞(0, T ; Hk+1(�)),

(A.4)

〈gm+1
p,1 , vN 〉, 〈gm+1

n,1 , vN 〉, 〈gm+1
u,1 , vN 〉 � N−k‖vN‖H1 .

With those ( f p,1, fn,1, fu,1), we construct and solve the leading order temporal correction
function (p�t,1, n�t,1,u�t,1, φ�t,1) from the following equation:

∂t p�t,1 = ∇ · (p∇(
p�t,1

p
+ ψ�t,1) + p�t,1∇(ln p + ψ))

− ∇ · (p�t,1u + pu�t,1) − f p,1, (A.5)

∂t n�t,1 = ∇ · (n∇(
n�t,1

n
− ψ�t,1) + n�t,1∇(ln n − ψ))

− ∇ · (n�t,1u + nu�t,1) − fn,1, (A.6)

−�ψ�t,1 = p�t,1 − n�t,1, (A.7)

∂tu�t,1 = �u�t,1 − ∇φ�t,1 − (u · ∇)u�t,1 − (u�t,1 · ∇)u

− p∇(
p�t,1

p
+ ψ�t,1) − p�t,1∇(ln p + ψ)

− n∇(
n�t,1

n
− ψ�t,1) − n�t,1∇(ln n − ψ) − fu,1, (A.8)

∇ · u�t,1 = 0, (A.9)

subject to the periodic boundary condition and zero initial condition. The PDE system (A.5)-
(A.9) is very similar to the PNP-NS system (1.1)-(1.5), and the existence of solution could
be established similarly. Moreover, given the regularity of (p, n,u, φ) and ( f p,1, fn,1, fu,1)

in (A.4), the solution satisfies

(∂3t p�t,1, ∂
3
t n�t,1, ∂

3
t u�t,1) ∈ L∞(0, T , L2(�)), (∂2t p�t,1, ∂

2
t n�t,1,

∂2t u�t,1) ∈ L∞(0, T , Hk+1(�)). (A.10)

The discretization of the above system implies that

〈− f m+1
p,1 , vN 〉 = 〈 p

m+1
�t,1 − pm�t,1

�t
, vN 〉 − 〈pm�t,1u

m + pmum�t,1,∇vN 〉

+ 〈pm(1 + 2�tpm)∇(
pm+1
�t,1

pm+1 + ψm+1
�t,1 )

+ pm�t,1(1 + 2�tpm)∇(ln pm+1 + ψm+1),∇vN 〉
− 〈�t f m+1

p�t,1,1
+ gm+1

p�t,1
+ O(�t2), vN 〉, (A.11)
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〈− f m+1
n,1 , vN 〉 = 〈n

m+1
�t,1 − nm�t,1

�t
, vN 〉 − 〈nm�t,1u

m + nmum�t,1,∇vN 〉

+ 〈nm(1 + 2�tnm)∇(
nm+1

�t,1

nm+1 − ψm+1
�t,1 )

+ nm�t,1(1 + 2�tnm)∇(ln nm+1 − ψm+1),∇vN 〉
− 〈�t f m+1

n�t,1,1
+ gm+1

n�t,1
+ O(�t2), vN 〉, (A.12)

〈− f m+1
u,1 , vN 〉 = 〈 RNu

m+1
�t,1 − um�t,1

�t
, vN 〉 + 〈∇RNu

m+1
�t,1 ,∇vN 〉 + 〈∇φm

�t,1, vN 〉
+ 〈(um · ∇)RNu

m+1
�t,1 + (um�t,1 · ∇)RNum+1, vN 〉

+ 〈pm∇(
pm+1
�t,1

pm+1 + ψm+1
�t,1 ) + pm�t,1∇(ln pm+1 + ψm+1), vN 〉

+ 〈nm∇(
nm+1

�t,1

nm+1 − ψm+1
�t,1 ) + nm�t,1∇(ln nm+1 − ψm+1), vN 〉

− 〈�t f m+1
u�t,1,1

+ gm+1
u�t,1

+ O(�t2), vN 〉, (A.13)

〈∇ψm
�t,1,∇vN 〉 = 〈pm�t,1 − nm�t,1, vN 〉, (A.14)

〈um�t,1,∇vN 〉 = 0. (A.15)

where ( f p�t,1,1, fn�t,1,1, fu�t,1,1) and (gp�t,1 , gn�t,1 , gu�t,1) are the temporal part and spatial
part of the truncation error, from Taylor expansion, we have

f p�t,1,1 = 1

2

∂2

∂t2
p�t,1 + ∇ · (

∂t (p�t,1u + pu�t,1)
) − ∇ · (

(∂t p − 2p2)∇(
p�t,1

p
+ ψ�t,1)

)

− ∇ · (

(∂t p − 4p�t,1 p)∇(ln p + ψ)
)

fn�t,1,1 = 1

2

∂2

∂t2
n�t,1 + ∇ · (

∂t (n�t,1u + nu�t,1)
) − ∇ · (

(∂t n − 2n2)∇(
n�t,1

n
− ψ�t,1)

)

− ∇ · (

(∂t n − 4n�t,1n)∇(ln n − ψ)
)

fu�t,1,1 = 1

2

∂2

∂t2
u�t,1 + (∂tu · ∇)u�t,1 + (∂tu�t,1 · ∇)u

+ ∂t p∇(
p�t,1

p
+ ψ�t,1) + ∂t p�t,1∇(ln p + ψ)

+ ∂t n∇(
n�t,1

n
− ψ�t,1) + ∂t n�t,1∇(ln n − ψ)

and

〈gm+1
p,�t,1, vN 〉 � N−k

(‖∂t p�t,1‖L∞
t Hk + ‖p�t,1‖L∞

t Hk+1 + ‖p∇ψ�t,1‖L∞
t Hk

+‖p�t,1∇ p‖L∞
t Hk + ‖ f p,1‖L∞

t Hk

)‖vN‖H1 ,

〈gm+1
n,�t,1, vN 〉 � N−k

(‖∂t n�t,1‖L∞
t Hk + ‖n�t,1‖L∞

t Hk+1 + ‖n∇ψ�t,1‖L∞
t Hk

+‖p�t,1∇ p‖L∞
t Hk + ‖ f p,1‖L∞

t Hk

)‖vN‖H1 ,

〈gm+1
u,�t,1, vN 〉 � N−k

(‖∂tu�t,1‖L∞
t Hk + ‖∇u�t,1‖L∞

t Hk + ‖∇ψ�t,1‖L∞
t Hk

+‖(u�t,1 · ∇)u‖L∞
t Hk + ‖(u · ∇)u�t,1‖L∞

t Hk

+‖p∇ψ�t,1‖Hk + ‖p�t,1∇ψ�t,1‖L∞
t Hk

+‖n∇ψ�t,1‖L∞
t Hk + ‖n�t,1∇ψ�t,1‖L∞

t Hk + ‖ fu,1‖L∞
t Hk

)‖vN‖H1 .
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From the regularity result in (A.4) and (A.10), we have

〈gm+1
p,2 , vN 〉, 〈gm+1

n,2 , vN 〉, 〈gm+1
u,2 , vN 〉 � N−k‖vN‖H1 .

Combining (A.1)-(A.3) and (A.11)-(A.13) leads to the second order temporal local truncation
error for p̆1 = �N (p+�tp�t,1), n̆1 = �N (n+�tn�t,1), ŭ1 = �N (u+�tu�t,1), φ̆1 =
�N (φ + �tφ�t,1):

〈 p̆
m+1
1 − p̆m1

�t
, vN 〉 − 〈 p̆m1 ŭm1 ,∇vN 〉 + 〈 p̆m1 (1 + 2�t p̆m1 )∇μ̆m+1

1 ,∇vN 〉
= −〈�t2 f m+1

p̆1,2
+ O(�t3) + O(N−k), vN 〉, (A.16)

〈 n̆
m+1
1 − n̆m1

�t
, vN 〉 − 〈n̆m1 ŭm1 ,∇vN 〉 + 〈n̆m1 (1 + 2�t n̆m1 )∇ν̆m+1

1 ,∇vN 〉
= −〈�t2 f m+1

n̆1,2
+ O(�t3) + O(N−k), vN 〉, (A.17)

〈 RN ŭ
m+1
1 − ŭm1
�t

, vN 〉 + 〈(ŭm1 · ∇)RN ŭ
m+1
1 , vN 〉 + 〈∇RN ŭ

m+1
1 ,∇vN 〉 + 〈∇φ̆m

1 , vN 〉
+ 〈 p̆m1 ∇μ̆m+1

1 + n̆m1 ∇ν̆m+1
1 , vN 〉 = −〈�t2 f m+1

ŭ1,2
+ O(�t3) + O(N−k), vN 〉, (A.18)

where

ψ̆1 = �N [(−�)−1( p̆1 − n̆1)],
μ̆1 = �N (ln p̆1 + ψ̆1), ν̆1 = �N (ln n̆1 − ψ̆1),

and

f p̆1,2 = f p,2 + f p�t,1,1 + ∇ · (p�t,1u�t,1) − ∇ · (2pp�t,1∇(ln p + ψ))

− ∇ · (p∇(
p�t,1

p
)2) + ∇ · (p�t,1∇(

p�t,1

p
+ ψ)),

fn̆1,2 = fn,2 + fn�t,1,1 + ∇ · (n�t,1u�t,1) − ∇ · (2nn�t,1∇(ln n − ψ))

− ∇ · (n∇(
n�t,1

n
)2) − ∇ · (n�t,1∇(

n�t,1

n
− ψ)),

fŭ1,2 = fu,2 + fu�t,1,1 + (u�t,1 · ∇)u�t,1

+ p�t,1∇(
p�t,1

p
+ ψ�t,1) − p∇((

p�t,1

p
)2)

+ n�t,1∇(
n�t,1

n
− ψ�t,1) − n∇((

n�t,1

n
)2).

Since (p�t,1, n�t,1) are bounded, we may choose �t, 1
N so small that p̆1, n̆1 > δ0

2 > 0.

And ( f m+1
p̆1,2

, f m+1
n̆1,2

, f m+1
ŭ1,2

) are the temporal projection of functions ( f p̆1,2, fn̆1,2, fŭ1,2) onto

XN × XN × X2
N . From (2) (A.10) we have

(∂t f p̆1,2, ∂t fn̆1,2, ∂t fŭ1,2) ∈ L∞(0, T ; L2(�)), ( f p̆1,2, fn̆1,2, fŭ1,2) ∈ L∞(0, T ; Hk+1(�)).
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Similarly, the next order temporal correction function (p�t,2, n�t,2,u�t,2, φ�t,2) is given by
the following system:

∂t p�t,2 = ∇ · ( p̆1∇(
p�t,2

p̆1
+ ψ�t,2) + p�t,2∇(ln p̆1 + ψ̆1))

− ∇ · (p�t,2ŭ1 + p̆1u�t,2) − f p̆1,2, (A.19)

∂t n�t,2 = ∇ · (n̆1∇(
n�t,2

n̆1
− ψ�t,2) + n�t,2∇(ln n̆1 − ψ̆1))

− ∇ · (n�t,2ŭ1 + n̆1u�t,2) − fn̆1,2, (A.20)

− �ψ�t,2 = p�t,2 − n�t,2, (A.21)

∂tu�t,2 = �u�t,2 − ∇φ�t,2 − (ŭ1 · ∇)u�t,2 − (u�t,2 · ∇)ŭ1

− p̆1∇(
p�t,2

p̆1
+ ψ�t,2) − p�t,2∇(ln p̆1 + ψ̆1)

− n̆1∇(
n�t,2

n̆1
− ψ�t,2) − n�t,2∇(ln n̆1 − ψ̆1) − fŭ1,2, (A.22)

∇ · ŭ�t,2 = 0. (A.23)

subject to the periodic boundary condition and zero initial condition. Then we have

(∂2t p�t,2, ∂
2
t n�t,2, ∂

2
t u�t,2) ∈ L∞(0, T , L2(�)),

(∂t p�t,2, ∂t n�t,2, ∂tu�t,2) ∈ L∞(0, T , Hk+1(�)).

The discretization of the above system implies that

〈− f m+1
p̆1,2

, vN 〉 = 〈 p
m+1
�t,2 − pm�t,2

�t
, vN 〉 − 〈pm�t,2ŭ

m
1 + p̆m1 u

m
�t,2,∇vN 〉

+ 〈 p̆m1 (1 + 2�t p̆m1 )∇(
pm+1
�t,2

p̆m+1
1

+ ψm+1
�t,2 )

+ pm�t,2(1 + 4�t p̆m1 )∇(ln p̆m+1
1 + ψ̆m+1

1 ),∇vN 〉
+ O(�t) + O(N−k), (A.24)

〈− f m+1
n̆1,2

, vN 〉 = 〈n
m+1
�t,2 − nm�t,2

�t
, vN 〉 − 〈nm�t,2ŭ

m
1 + n̆m1 u

m
�t,2,∇vN 〉

+ 〈n̆m1 (1 + 2�t n̆m1 )∇(
nm+1

�t,2

n̆m+1
1

− ψm+1
�t,2 )

+ nm�t,2(1 + 4�t n̆m1 )∇(ln n̆m+1
1 − ψ̆m+1

1 ),∇vN 〉
+ O(�t) + O(N−k), (A.25)

〈− f m+1
ŭ1,2

, vN 〉 = 〈 RNu
m+1
�t,2 − um�t,2

�t
, vN 〉 + 〈∇RNu

m+1
�t,2 ,∇vN 〉 + 〈∇φm

�t,2, vN 〉
+ 〈(ŭm1 · ∇)RNu

m+1
�t,2 + (um�t,2 · ∇)RN ŭ

m+1
1 , vN 〉

+ 〈 p̆m1 ∇(
pm+1
�t,2

p̆m+1
1

+ ψm+1
�t,2 ) + pm�t,2∇(ln p̆m+1

1 + ψ̆m+1
1 ), vN 〉

+ 〈n̆m1 ∇(
nm+1

�t,2

n̆m+1
1

− ψm+1
�t,2 ) + nm�t,2∇(ln n̆m+1

1 − ψ̆m+1
1 ), vN 〉
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+ O(�t) + O(N−k), (A.26)

〈∇ψm
�t,2,∇vN 〉 = 〈pm�t,2 − nm�t,2, vN 〉, (A.27)

〈um�t,2,∇vN 〉 = 0. (A.28)

Finally, a combination of (A.16)-(A.18) and (A.24)-(A.26) yields the third order temporal
truncation error for ( p̆, n̆, ŭ, φ̆):

〈 p̆
m+1 − p̆m

�t
, vN 〉 − 〈 p̆m ŭm,∇vN 〉 + 〈 p̆m(1 + 2�t p̆m)∇μ̆m+1,∇vN 〉 = τm+1

p (vN ),

〈 n̆
m+1 − n̆m

�t
, vN 〉 − 〈n̆m ŭm,∇vN 〉 + 〈n̆m(1 + 2�tnm)∇ν̆m+1,∇vN 〉 = τm+1

n (vN ),

〈 RN ŭm+1 − ŭm

�t
, vN 〉 + 〈(ŭm · ∇)RN ŭm+1, vN 〉 + 〈∇RN ŭm+1,∇vN 〉 + 〈∇φ̆m, vN 〉

+ 〈 p̆m∇μ̆m+1 + n̆m∇ν̆m+1, vN 〉 = τm+1
u (vN ),

where

τ̆m+1
p (vN ), τ̆m+1

n (vN ), τ̆m+1
u (vN ) ≤ C(�t3 + N−k)‖vN‖H1 .

Since (p�t,2, n�t,2) are bounded, we may find �t, 1
N so small that p̆, n̆ > δ∗

0 � δ0
4 > 0.

Moreover, given the regularity of (p�t,i , n�t,i ,u�t,i )(i = 1, 2), we have

( p̆, n̆, ŭ) ∈ L∞(0, T ,W 1,∞(�)).

��
Remark 2 Since we set the initial data of our modified solution to be the same as the initial
data of the exact solution, i.e. ( p̆, n̆, ŭ, φ̆)(·, t = 0) = (�N p,�Nn,�Nu,�Nφ)(·, t = 0),
we will assume trivial initial data

(p�t,i , n�t,i ,u�t,i , φ�t,i )(·, t = 0) = 0, (A.29)

for i = 1, 2 in (A.5)-(A.9) and (A.19)-(A.23).
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