Journal of Scientific Computing (2025) 104:105
https://doi.org/10.1007/510915-025-03015-8

®

Check for
updates

A Decoupled Structure Preserving Scheme for the
Poisson-Nernst-Planck Navier-Stokes Equations and its Error
Analysis

Ziyao Yu' . Jie Shen? . Changyou Wang' - Qing Cheng?

Received: 1 January 2025 / Revised: 16 June 2025 / Accepted: 27 July 2025 /
Published online: 9 August 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

We consider in this paper numerical approximations for the Poisson-Nernst-Planck-Navier-
Stokes (PNP-NS) system. We propose a decoupled semi-discrete and fully discrete scheme
that enjoys the nice properties of positivity preserving, mass conserving, and unconditionally
energy stability. Then, we establish the well-posedness and regularity for the initial and
(periodic) boundary value problem of the PNP-NS system under suitable assumptions on the
initial data, and carry out a rigorous convergence analysis for the fully discretized scheme.
We also present some numerical results to validate the positivity preserving property and the
accuracy for our decoupled numerical scheme.

Keywords Error analysis - PNP-NS system - Unique Solvability - Structure-preserving -
Positivity-preserving

1 Introduction

In this paper, we consider a time-dependent system that describes the electrodiffusion of ions
in an isothermal, incompressible, and viscous Newtonian fluid. Such a system is called the
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Poisson-Nernst-Planck-Navier-Stokes (PNP-NS) system [10, 19, 26], which has many appli-
cations in biological membrane channels and electrochemical systems. In recent years, this
model is widely used to describe electro-chemical and fluid-mechanical transport through-
out the cellular environment which includes a range of spatial and temporal scales for many
applications. A large number of dedicated applications are possible with this set of equations
as for example semiconductors, electrokinetic flows in electrophysiology, drug delivery into
biomembranes, and many others, see [4, 6, 25]. By normalizing all relevant coefficients, the
Poisson-Nernst-Planck-Navier-Stokes (PNP-NS) system is given by

P+ @-V)p=V-(Vp+pVy), (1.1)
ng+@-Vyn=V-(Vn—nVy), (1.2)
—eAY =p —n, (1.3)
W+ @-Vyu—Au+ VP = -V (p —n), (1.4)
V-u=0, (1.5)

where u and P denote the velocity field of the fluid and the pressure function, respectively.
In (1.1) and (1.2), the variables p and n represent the concentration functions of positive
and negative ions in the fluid, respectively, ¢ is the electric potential, and the parameter ¢
represents the dielectric permittivity. The system (1.1)-(1.5) is subjected to a set of initial
and boundary conditions, which will be specified later.

There has been considerable interest in the mathematical analysis of the PNP-NS sys-
tem. For example, Schmuck [25] established the global existence of weak solutions in three
dimensions under the blocking boundary condition for (p, n) and the zero Neumann bound-
ary condition for ¥; Gong-Wang-Zhang [10] established the existence and partial regularity
of suitable weak solutions in three dimensions under the zero Neumann boundary condition
for p, n, and ¥; Constantin-Ignatova [5] proved the global existence and stability result
in two dimensions, with the blocking and selective boundary conditions for (p, n) and the
Dirichlet boundary condition for . We emphasize that the solutions of the PNP-NS system
are positive (n, p > 0), mass-conserving, and energy-dissipative.

In recent years, a large effort has been devoted to constructing positivity-preserving
schemes for various problems in different areas [1, 8, 1618, 21, 27, 30, 31]. There are
also quite a few numerical investigations on the PNP-NS system (1.1)-(1.5). It was shown in
[9] that it is important for numerical schemes to maintain mass conservation. Prohl-Schmuck
proposed in [24] a coupled fully implicit first-order scheme with a finite-element method
in space for the PNP-NS system and studied its convergence. Additionally, a first-order
time-stepping method was proposed in [22] with spectral method discretization in space.
Several structure-preserving numerical methods have been proposed for the PNP equations,
for example, [2, 3, 7, 9, 14, 15, 19, 20, 23, 28]. However, there appears to be no scheme
available in the literature for the PNP-NS system (1.1)-(1.5) that enjoys the properties of
unique solvability, mass- and positivity-preserving, and energy stability.

In this paper, we propose a decoupled, mass- and positivity-preserving, and uncondition-
ally energy-stable scheme for the PNP-NS system and carry out a rigorous error analysis.
The main contributions of this paper include:

e We propose a totally decoupled, mass- and positivity-preserving, and unconditionally
energy-stable scheme for the PNP-NS system by combining the following techniques:

— Rewriting the PNP system as a Wasserstein gradient flow and using the technique
introduced in [28] to preserve positivity and energy stability for the PNP system;
— Using a projection-type method [11-13] to decouple the velocity and pressure;
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— Introducing an extra O(At) term as in [29], which allows us to treat the convective
term in the PNP equations explicitly while maintaining stability.

e We derive the existence and regularity results of the PNP-NS system (1.1)-(1.5) with
periodic boundary conditions under suitable assumptions on the initial data.

e To carry out an error analysis, it is necessary to have L° bounds for n and p, which are
not available through energy stability. We use an approach similar to [19] to derive these
bounds by introducing a high-order asymptotic expansion for both the PNP equations
and the Navier-Stokes equations.

This paper is organized as follows: In Section 2, we construct a semi-discrete (in time)
scheme, followed by a fully discrete scheme with a generic spatial discretization, and prove
that it preserves mass and positivity, and is unconditionally energy stable. In Section 3, we
establish the well-posedness and regularity of the PNP-NS system under periodic boundary
conditions. An error analysis of the fully discretized scheme is carried out in Section 4. Some
numerical results are provided in Section 5.

2 A Decoupled Numerical Scheme and Its Properties

Let 2 be a bounded domain in R?. We consider the time discretization of the PNP-NS system
(1.1)-(1.5) subjected to either

e Block boundary condition: the non-slip boundary condition for u, the homogeneous
Neumann boundary condition for (¢, In p + i, Inn — ), i.e., all the fluxes vanish on
the boundary of :

ujpo =0, V¢ b|,o=(p+pVy) - -b|,o=(n—nVy) |, =0, (2.1)

e Periodic boundary condition: the periodic boundary conditions for all variables,

along with the initial condition:
(u, p,n)(x,y,0) = @™, p'", n'")(x, y), for (x,y) € Q. 2.2)

For either (2.1) or the periodic boundary conditions, one observes that the mass of ions is
conserved, i.e.,

/p(x,t)dx:/ p(x,0)dx, /n(x,t)dx:fn(x,O)dx, Vi € [0, T].
Q Q Q Q

Another essential property of the PNP-NS system (1.1)-(1.5) is the following energy dissi-
pation law:

d
S Epnw = _/ (IVul®> + pIVul* + n|Vv|?) dx, (2.3)
Q

where u = In p + ¢ and v = Inn — ¢ are chemical potentials of the PNP-NS system, and
E is the total energy given by

& 1
E(p,n,u) = / <p(1np = D4nnn =1+ VY + 5|u|2> dx.
Q
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2.1 Time Discretization

We first consider the time discretization. For simplicity, we choose the dielectric permittivity
to be ¢ = 1. In order to construct an efficient time discretization scheme, we first rewrite the
right-hand side of equation (1.4) as

—Vy(p—n) =—(pVu+nVv) +V(p +n),

and introduce a modified pressure ¢ = P — p —n. Then, the PNP-NS system (1.1)-(1.5) can
be reformulated as

pr+@-V)p=V-(pVp), (2.4)
n4+@-Vn=V-(nVy), 2.5)
—AYy =p—n, (2.6)
w+ u-Vyu—Au+ Ve = —(pVu +nVv), 2.7
V-u=0. (2.3)

Let X = HY(Q), W = {v e HY(Q) : v|sq = 0} under Block boundary condition and
W = H'(w) under Periodic boundary condition, and U = {q € L3(Q) : fQ g dx = 0}. Fol-
lowing some of the ideas in [19, 28, 29], we construct a first-order time discretization scheme
as follows: for any given (p™, n,u™, ¢™) with fQ(p’" —n")dx =0, (p™,n™) > 0and
V-u” =0in Q, we compute (p" !, p"Hl ymtl gt wrtl gmFly in three steps:

e Step 1: Solve (p"+!, n*t1) € X x X from

pm+l _ pm
TV =Y+ 2Atp™) V), 2.9)
nm+l L
A +V.- 3" =V -n"1+ 2Azn’”)Vv’"+‘), (2.10)
_ Awm-'rl — pm+1 _nm+1. (211)

where
Mm+1 —1In pm+1 + wm-&-l and vm+1 —1In nm+1 _ wm-ﬁ-l.

e Step 2: Solve ! € W? from

~m+1

“Tl—llm+(un1 . V)ﬁm-H — AR 4 Vo =— (pmV,LLm'H + n’"Vv’""'l) (2.12)

e Step 3: Solve (" *!, ¢ty € W2 x U from
m+1 _ mm+1

- Atu + V(" — ™) =0, (2.13)

V"t = 0. (2.14)

The first step involves solving a coupled nonlinear system for (p”*!, n™+1 y™+1) which
can be formulated as a minimization problem for a convex functional, see [28] and also
Theorem 2.2. The second step solves a Poisson-type equation for ”+!. And the third step
is equivalent to solving

m+1l _ m _L Cpmtl
Ap ") = sz TR (2.15)
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along with either (¢"*! — ¢™) - 17| a2 = 0 or the periodic boundary condition, and
um-‘r] =ﬁm+1 _ Atv(¢m+] _¢M) (216)
Thus, the scheme (2.9)-(2.14) can be efficiently implemented.

Remark 1 The first step can be rewritten as:

pm+l _ pm
TV M) =V (p"vuth,
nm+l L

— VM) =V (" vy th,

where
uf':p —u" — ZAIPmVMm-H,

u” =u" = 2Am" vyt

This is similar to the decoupling technique introduced by [29].

2.2 Fully Discretized Scheme

In this subsection, we shall consider a generic spatial discretization for (2.9)-(2.14). Let £
be a set of mesh points or collocation points in Q. Note that £y should not include the points
on the part of the boundary where a Dirichlet (or essential) boundary condition is prescribed,
while it should include the points on the part of the boundary where a Neumann or mixed
(or non-essential) boundary condition is prescribed.

We consider a Galerkin-type discretization with finite elements, spectral methods, or
finite differences with summation-by-parts in a subspace Xy C X, and define a discrete
inner product, i.e., numerical integration, on ¥y = {z} in Q:

(,v) = Y 0u@)v(), @2.17)

FD)Y,

where we require that the weights w; > 0. We also denote the induced norm by |u| =

(u, u)%. For finite element methods, the sum should be understood as » g7 > . c7x)»
where 7 is a given triangulation. We assume that there is a unique function v (x) satisfying
Yz (z)) = 8, forz,z/ € Ty.

Let X, Wy, and Uy be suitable subspaces of X, W, and U, respectively. For example,
if we consider a Legendre spectral method, we can choose Xy = {v € Py,v € H'(Q)},
Wy ={vePy,ve HO1 ()} and Uy = {v € Py_z, v € LE(Q) : fQ vdx = 0}. Py repre-
sents the polynomials with degree less than or equal to N. For convenience, we choose the
Fourier spectral method to make the error analysis, and we shall define the corresponding

spaces Xy, Wy, and Uy in the next section. We define the discrete gradient and divergence
N N
operators as following: ifuy = Y uxy,then Vuy = Y ur Vi. Without loss of generality,
k=0 k=0

N N
we define the discrete divergence operator in 2D, If uy = (uy, vy) = (D urde, Y. vkVi)s
k=0 k=0

N
then V-uy = Y (updidr + vk dy ¥k ). Here ¢ and v are polynomial basis functions with

k=0
degree less than or equal to k.
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Then, a fully discretized version of (2.9)-(2.14) for the PNP-NS system (2.4)-(2.8) is as
follows:

Given (piy, n'y, uly, #%) € Xn x Xy x WI%, x Uy, with ply, n’j; > 0in 2, (pN—nN, 1) =
0,and V - u’}'\’, = 0in €2, we proceed as follows:

e Step 1: Solve (pmJrl n'K,H) € Xy x Xy from
pm+1 —pn
(o ow) = (PR Vo) + (R (4 280 Vil Vo) =0, Yoy € Xy,
(2.18)
pntl _m
<¥, un) — (il Vo) + (0 (L4 2Am) VRt Voy) =0, Yoy € Xy,
(2.19)
(Vyntt voy) = (et =it uy), Yoy € Xy, (2.20)
where
Ml[?\l/Jrl In p%Jrl + WX;+17 v[n\}+l 1nnm+l merl. (2.21)
e Step 2: Solve U ~m+1 € W3 from
ﬁm+1 m
<W, wy) + (- VIR wy) + (VAR Vuy) + (VeR, wy),
PRV VRt wy) =0, Ywy € W3, (2.22)
e Step 3: Solve (um+1 er]) € W2 x Uy from
um+l _ ﬁm+1 |
(S ow) + (V@R = g, ) =0, vy € X3, (2.23)
Wyt Vay) =0, gy € Uy. (2.24)

We shall show below that the nonlinear system (2.18)-(2.20) in Step 1 can be interpreted
as a minimization of a convex functional. In Step 2, we only need to solve a Poisson-type
equation for uer and Step 3 is a discrete Darcy system which can be reduced to a discrete

Poisson equation for ¢>m+1 — ¢y - Hence, the above scheme can be efficiently solved.

2.3 Properties of the Numerical Scheme

We show below that our decoupled numerical scheme (2.18)-(2.24) enjoys four properties:
mass conservation, unique solvability, positivity-preserving, and unconditional energy sta-
bility.

Before proceeding to the proof, for any discrete positive function M(z) > 0 for all
z € Xy, we introduce the operator L : Xy — Xy defined by

(LM SN, oN) = MV fn, Voy), Yy, oy € Xn. (2.25)

The operator £ o4 is invertible on the space Xy = { feXyl({f,1)= 0}, so we can define
the inverse operator EX/II Xy — X ~ and the induced norm

Il = VN L fn). Vv € Xn.
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If M(z) = 1forall z € Xy, then we have

Lm(fn) =—Afy and |Ifnl-1.0 =/ (fn, (=) 7' fn), Vfnv € Xn.

Lemma 2.1 Suppose fy € Xy and M > My, then we have the estimate:

1L g v lloe < anNn

where C depends only on 2.

Proof Denoteuy = L;,ll fv € Xy.From (2.25) and using the Poincaré-Wirtinger inequality,
we have

Mol|Vuy |* < (MVuy, Vuy) = (fx.un) < Il fnlllun |l < ClLAVIIVay],

and applying the Nikolskii’s inequality, we have
CN
lunlloo = CEDN flullz = CEQON[|Vun|| < VOIIfNII,

where C depends only on €. O

Theorem 2.2 Given (pN,nN,uN,Q’)N) € Xy x Xy X W2 x Uy, with pi(z), n'y(z) > 0
forallz € Ty, (py —n'y,1) =0, and V - uy =0in Q then the scheme (2.18)-(2.24)
enjoys the following properties:

(1) Mass Conservation:

m+1 1) -i-l7 1>

(Py (PN 1), (ny = (ny, 1).
(2) Unique Solvability: The scheme (2.18)-(2.23) has a unique solution
(pm+l m+1 ur]c-&—l m+1) € Xy x Xy % WN x Uy.

(3) Positivity Preserving: The unique solution (perl %H u%“ m+1) satisfies
putl@), ntt (@) > 0, vze Zy.

(4) Unconditional Energy Stability:

1
At((E(p"’+1>+E(n'"“)+ IVt + || up 2 4+ ||V¢"’“||)

1 1 At?
—(E(pR) + E(m'y) + f||vw;3||2 + 5||u§c||2 + —uw;’&uz))
F VAR (pRIVET 2 1)+ (vt )

+—||V(¢f'"+‘ ok +—||u’"+l it

1 mtl  m 2 m+1 2
—||V
+2A laly uly || + || (BN — ol
< —lvayty? <pN|wm+‘|2 1) — (Vo2 1).
where the energy is defined by
E(vy) = (uvn(Invy — 1), 1),

for any function vy € Xy.
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Proof (1) Mass Conservation: This follows directly by choosing the test function vy = 1
in the equations (2.18) and (2.19).

(2) Unique Solvability and Positivity Preserving: The numerical solution {p/u ", n'v )
of (2.18)-(2.20) is obtained through the minimization of the discrete energy functional:

1
Tk i) = 5 (1 = PRI + liny = I1% )
N> TN 2At N N L‘/[);{Z](]-FZA)‘])%) N N En’;'l,<1+2mn';',>
+ (V- (PRuf) Py 1) + (V- fuiniy, 1)
1
+ Py ply = D, D+ (nny = 1D, 1) + Spk = nil2 0,
over the admissible space

Iy ={ownn) € X310 < py(@), i@ < My, YzeSn, (. 1) = v, 1) = fol22l}.

where
Bo = — (Pl 1) = — (1)
= — y = — Ny,
T el T e
is the average of pY; (and ny), and
_ BolIN?

M
N 873

Below we show uniqueness, solvability, and positivity for scheme (2.18)-(2.23) by suit-
able modifications of [19] and [28].

Firstly, we observe that every term in the functional J(py, ny) is strictly convex or
linear with respect to the variables (py, ny) over the admissible space ?N. To show the
existence of a unique minimizer of J(py, ny) over )A’N, we proceed as follows. For a
sufficiently small 0 < § < fp, whose value is to be determined later, we define

Yns={(pn.nn) € I 18 < py@. ny@ = My =5, vz e Zy).

Since Yy, s is a compact subset of )% N, there exists a minimizer (p}“\,, ny) € Yy of
J(pn,nn) over Yy 5. Next, we need to show that (p}, n}y) lies in the interior of Yy s,
provided § > 0 is chosen to be sufficiently small.

Suppose the contrary that for an arbitrarily small §, the minimizer of J(py, ny) occurs
at the boundary of Yy s, i.e., (py. n"]‘\,) € dYy s for all 6 > 0. For simplicity, we only
consider the case that there exists a point (xg, yo) € Xy such that p;‘v (x0, yo) = & (the
other case can be handled similarly). Notice that there exists another point (x1, y;) #
(x0, yo) and (x1, y1) € Xy such that py, (x1, y1) = maxxesy pj(X) > Bo. Now we can
choose the test function ¥y as Yy = ¢go,yo) (x,y)— qbgl’yl)(x, y), where qbgo’yo)(x, y)
and ¢g1, yp (¥, y) are Lagrange polynomials satisfying the following property: for all
(x,y) € Xy

¢](\;COY}'0)(X, y) = 5()60’):0) (x7 y)$
¢1(\’]”’y1)(x, ¥) = 8y (X, ¥)s

where 8y, y,) (x, ¥) and 8y, y,)(x, y) are the Kronecker delta functions. Since (p}“\,, n}‘v)
is the minimizer and (py + s¥n, n}y) € Yy s for s > 0 small, we have

iJ(Pji/ +syn,ny)|  =0.
ds s=0
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Direct computations imply
. 1
=0 At
+ [V Rt dx+ (87 B = ). ).
* (2.26)

d -1
%J(p}k\/ + S'(/st I’l}kv) (Ep'/(;(lJrZAtp;G)(p;kV - P%), 1;01\’) + (ln P}ﬁ/s WN)

Plugging ¢y = ¢1(\);°’y°)(x, y) — ¢](\),”’y')(x, y) into (2.26), we obtain

*
Py (X0, Y0) mm "m
—In{ ———— ] =V (pyuy)(x0, y0) — V- (pyup)(x1, y1)

(mwxl,y]) NN NN

+ =)k — P o, v0) — (AT Pl — PH@rL v

1 —1 * m —1 * m
 ar (Cotsznmm P = PRIG0.30) = L o (PR = PG D))
2.27)

It is readily seen that

* (x0, 8
~ n<in< 0 yo)) _— (7)
Py (X1, y1) Bo
and

|V - (pRu) (xo, yo) = V- (Pru) (x1, yD | < 2[V - (PR [loo-
Furthermore, using Lemma 2.1, we obtain

[(=A)" (py = P (x0, y0) — (=) L (phy — PRI (x1, y1)| < 2CNMy,
and

—1 —1
|2t amnpy (PR = PRDG030) = £33 1oy (PR — PRIGE1 )|

<2CN-——Mn

Mingey, p%(z) !
Substituting the inequalities derived above into (2.27), we obtain

My
At - minges, pY(2)

)
0<In (F) +2CN (MN+

) )+2IIV “(Pyup) llso- (2.28)

This is impossible for any fixed N and At, since we can choose § > 0 to be sufficiently
small. This implies that the absolute minimum of J(py, ny) over Yy s can only occur
at an interior point of Yy s, provided § > 0 is chosen to be sufficiently small. Since
J(pn, ny) is smooth, we conclude that there exists a solution (py, ny) € I?N such that

J(py +son,ny +s¥n) =0, Y(éy, ¥n) € Xy x Xy.

ds|,_g

Thus, (p;‘\,, n*N) is a positive solution of the modified discrete PNP-NSE system (2.18)-
(2.20). The uniqueness of posjtive solutions to (2.18)-(2.20) follows from the strict
convexity of J(pn,ny) over Yy. The existence and uniqueness of {u%Jrl , (j)%“} can

be easily observed from (2.22)-(2.24).
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(3) Unconditional Energy Stability: We first derive the energy inequality for (2.18)-(2.20).

Taking the test function vy = M%H in (2.18) and vy = v'"“ in (2.19), we have

2
)

2
Vv%“‘ , 1>

p I p
N N m+1 m—+1 m+1
—_— ll’l + p ’V/,L
< At PN W > < N

nerl nm
4 (N A lnnm'"1 }'\'}H +<n’1(’,

<pr}(}u% —JAf (pN) V,LLm_H V,LLm+l>
+ (i = 280 POV, VU, (2.29)

From the convexity of the function x(Inx — 1) for x > 0, we know

m+1

p Py 1
<W In ptty > m(< e (i plt! —1>,1>—<px(1np%—1),1>),
(2.30)
'ttt pm 1
(W Innthy > E<< M At — 1), 1) — (R (nn - 1), 1)).
(2.31)
Applying a(a — b) = %(a2 — b + (a — b)?) and the fact that
(P =l ity = vyt 2,
we have
1 m m-+1
pm+ —p I’l _n
(= = N _ N = Nyl = <||wm“||2— IVy?
+||V<w’“H Y. (2.32)
Combining (2.29), (2.30), (2.31) with (2.32) we obtain
1 1
~ ((E( MY+ E@Eth + ||vw’"“|| )—(E<p%)+E<n%>+5||wxn2))
+E||V(w’"“ Y+ <pN|W"’“|2 1) + (| Vot 2, 1)
N 2.33
||~’"+1 il + ||V<¢'”+‘ ol
—||Vu%“|| <pN|W"“|2 1) — (% Vot 1),

Now we derive the energy inequality for (2.22)-(2.24). Taking the test function vy =
m“ in (2.22), vy = u%ﬂ in (2.23), we have

~m+1 ~m+1 m+1 m ~m+1
— u + —-u + [Vl +(V
ZAt(” 1% = [ lI* + [y A+ I + (Vo )(2'34)

= (PRt gyl gl
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and
—(n w2 — et 4 et —aeth? = o, (2.35)
where we have used (2.24) that yields
ol = 1 .
(- vyt ety = 5 (k. Via a3 =o,
and

To estimate the term (Vgy,, ﬁ%”) in (2.34), we take the test function vy = V¢y in

(2.23), and obtain

(ay Vo) = (||V¢’"“|| IVORIP + IV = giI?).  236)

Combining (2.34), (2.35) with (2.36), we have

1 - 1 1 ~ 1
E(” w2 — e et — e 4 et —at )
ar m+12 2 m+1 N ~m+1,2 (2.37)
;2 (||V¢ I = VORI + V(T — ¢ l®) + Ivay |
(pNV,LLm+l+nNVUm+] ~1]$+]>.
Combining (2.33) with (2.37), we have
1
N ((E( m+1)+E(nm+l)+f||V1/fm+l||2 ” m+l||2+7||v¢m+l” )
m m 1 m 2 2 A
—(E(p{) + E(y) + SIVeRl f|| MIE+ —||V¢N|| %)
+||V~’"“|| +PNIVRRT, 1> (e VRt 1) (2.38)
I v/ m+1 m = ~m+1 2
+2At|| (Wt — g +2At”u ay
~m+1 m-+1 my 2
— —|Vv
+2At|| u|? ;2 || @n =l
< —|vayt? <pN|wm+‘|2 1) — (R VoRt 2 ).
This yields the energy inequality for (2.18)-(2.23).
O

3 Well-posedness and Regularity

In this section, we shall establish the well-posedness and regularity of the PNP-NS system.
For simplicity, we shall focus on periodic boundary conditions , for which the regularity of
the solution can be determined by the regularity of the initial conditions. More precisely, we
set Q = (0, 277)? and assume that

(p,n, g, w2, y) = (p,n, ¥, (0, y), ye(,2n);

(p,n,¥,u)(x,2m) = (p,n, ¥,uw)(x,0), x e (0,2m). G-
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Theorem 3.1 Let @ = (0, 27)%, and assume the initial conditions (p'™™, n'™) € L™ () N

W24(Q), with r = 2q > 4, are positive and satisfy / (pi" —n"™ydx =0, and the velocity
Q

ul” € WO1 (2, R?) is divergence-free. Then there exists a unique global strong solution

of (1.1)—(1.5) with the initial condition (2.2) and the periodic boundary condition (3.1).

Moreover, there exists a constant C, depending on & and the initial energy E(p™, n'", u'"),
1p™ s, ™ \lzr, and |[W™|| 2 such that

sup lplier@ <Cr,  sup In@llr) < Cry sup Y Dllw2r gy < Cr.

0<t<oo 0<r<oo 0<t<oo

Furthermore,

sup [lpliLe) + sup pW g (@)

0<t<oo 0<t<oo

<C, sup [[n@lre@ + sup In@llgig < C,

0<t<oo 0<t<oo

and the velocity field u satisfies

T
”u”Loc(O T; H'(Q)) +A ”u(t)”%.ﬂ(gz) dt S CT7

for any 0 < T < oo, where C depends on initial energy, ||pi”||Lr(Q), ||ni”||Lr(Q), and
[l g1 (-

Proof A similar result for blocking boundary conditions has been obtained by Constantin
and Ignatova [5]. Their argument remains applicable for periodic boundary conditions, which
will be sketched here for completeness. For the full proof, refer to [5].

Step 1: Firstly, we have

1l Lo xpo.ry < CE(p™, n'™, i), (3.2)

which is a direct application of Lemma 1 in [5], following the same proof for periodic
boundary conditions.

Step 2: We aim to show p > Oand n > 0 in 2 x [0, T']. To see this, let F : R — R be a
nonnegative, C 2_convex function such that F(r) = 0 for¢ > 0, and F(¢) > 0 forr < 0, and

F'()1* < CF(t), VteR.
Multiplying (1.1) by F’(p) and integrating over €2, using the periodic boundary conditions
and integration by parts, we obtain that / u-VF(p)dx = —/ V-uF(p)dx =0, and
Q Q

hence

& [ = —/ F'(0) [IVpP + pVy - Vp] dx.,
t Q

which, combined with the Cauchy-Schwarz inequality |pVi - Vp| < % IVp|?+ % PEVY 2,
yields

d 1 1
o Fwax =3 [ Fonvplar s [ Foptveran 63
dt Q 2 Q 2 Q

From the properties of F, we have

F dx < = V¥ |2 F(p)dx.
dl‘ (p)dx || 1//”L (Q)/Q (p)dx
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By the Gronwall inequality and / F(pi”) dx = 0, we conclude that / F(p)dx =0, and

Q Q
hence F(p) = 0, which yields that p > 0in Q x [0, T']. Similarly, » > 0in Q2 x [0, T'].
Step 3: We aim to estimate the local uniform bound for ||(p, n)|| L) Because of the
energy dissipation law (2.3), we have

T T
/ /p|V1n(pe"’)|2dxdr=/ fp|vm2dxdzsE(pl",n’",W")éF.
0 Q 0 Q

Using (3.2) in Step 1, we know that the auxiliary function
4

A

p

T r1
/ / Z|\Vpl*dxdr <TeCT.
0 QP

From the mass conservation property and (3.2), we have

/ pe? dx < eCF/ P dx.
Q Q

Combining the previous two equations, for any #g € [0, T] and T € [0, T — 1], we have

o+t )
/ ”\/E”HI(Q) dt <" <F+‘L'/ " dx).
1 Q

0

pe

satisfies the estimate

Thus, from the Sobolev embedding ||\/;||Lr(g) < ”\/;”HI(Q) for any r € [1, 00), applying
(3.2) again, we have the local uniform estimate for || p|l 7 (q)

o+t .
/ IpllLr @ dr < CreCT (F + T/ p" dx) , (3.4)
10 Q

where C, depends on r. Similar estimates hold for n.
Step 4: Now we can estimate the global bound for ||(p, n) |17 (). To do this, taking F(p) =
r(rl—_l)p’ in (3.3), we obtain

1 d
r(r—1)dt

Similar estimates hold for n:

1 d . 1 s o 1 /
— = dx < —= | Va2 dx + < ||Vl " dx.
r(r—l)dt/Qm' x < 2/QI nln x+2|| VllL=@) anl x

From the regularity of the Poisson equation, we know that

r 1 2. r=2 1 r
Ipl"dx < —= | |Vpl"p"~"dx + =|IV¥lLe | |pl”dx.
Q 2 Ja 2 Q

Cr C,
IVl Loo(@) < ?llp —nllrr@ < . (Ilpllzr ) + Inllir @) -
From here we obtain
1 d 1 s C, 1
— — A< —— Vpl2p 72 +|Vnl*n 7% dx + —~ Al A,, 3.5
r(r— 1) dr r= 2/9(| pl'p +|Vn|'n )x+2€r r (3.5)

where A, = ||p||rL,(Q) + IInII’L,(Q). From (3.4), we have
o+t 1 . .
/ Al dt < CefT <r + ‘L’/ P+ n’”dx) L, (3.6)
1o Q
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Combining this with (3.5), we obtain

Aty +7) < Ar(i)e /e, 3.7)
Now we cover the interval [0, T] with fixed time step intervals {(t, tx + %) | k € N}.
From (3.6), for any k, there exists some t* € [ty — %, tx] such that A,% @™ <TI; 2
max (%F*, (||pi” lr @) + ||I’lin||LV(Q))%), which, combining with (3.7) and [#, tx + %] C
[t*, t* + 7], yields

sup  A,(1) < T,
el ii+3%1

for a slightly different I';. Notice that the right-hand side only depends on initial energy I',
initial ion mass fQ pi” + ni"dx, g, and r; it is independent of time 7. We can extend the
estimate to the entire time interval by an induction argument, and from the regularity of the
Poisson equation obtain the global bound

sup [pM L,  sup n@Ollr@. sup 1Y Olwerg < C), (3.3)

0<t<oo 0<t<oo 0<t<oo

where C* depends on r, ¢, initial energy, initial ion mass, I p" Iy (), lni" 7 (). Returning
to (3.5), we know that

o+t
/ / (IVpI*p" 2 +|Vn|*n""2) dxdt < T, (3.9)

for some I'; depending on I'* and 7.
Step 5: Now we are ready to estimate ||p, n|lz>(g). Multiplying (1.1) by —Ap and
integrating, we have

1 2
= —||AP||iz(Q) +1IVpllLa@) (||VW||L4(Q) + ||U||L4(sz)) APl )
+lplps @AY L2 1API L2 () (3.10)

We have a global bound for [| Vi || L4y, | PllL4(q) 1AV [ L4 () from (3.8). And from energy
law (2.3), we know that max;¢[o, 7] ||u(t)||L2(Q) and fo ||Vu||L2(Q)
energy I'. Hence, we have the uniform bound for [[u .40, 71x )

dt are bounded by initial

T T
4
/0 lullds g dr < /0 Cllul2, g I Vull2 g dt

= C max. (175 / IVull}2 g, di
<Cr2.
Applying these bounds to (3.10), we have
VDI + 18P < TIVPI 2.
dr L2(®) LX(Q) LX(Q)

Applying the local uniform bound for ”Vp”L?LZ(Q) from (3.9) with r = 2, we cover the
interval [0, T'] with fixed time step intervals {(#, tx + %) | k € N}. With a similar argument
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as in Step 4, we have

sup IVpllp2 = Tw,

0<t<T

and for any [tg, to + t] C [0, T']

o+t )
[ 18ptg dr <1

0
Hence, we have the local uniform bound of || p|| 7> (q)

o+t

o+t
f lpllLe(@) dt < / Ipll g2y dt < T (3.11)
fo

0]

1

Now, multiplying (1.1) by p"~" and integrating over €2, we have

1d

ai |7 dx-—(r—l)/|Vp|2pr 2dx+/Vp vy p' ldx-‘r/AI//p dx,
p

<1 /Q Yoy 2 dx + L NI

1AV lo@ Pl )

1
200 — 1)

Therefore, for any ¢ > ty we have

1 1 2
5 IV¥ 5000y HIAY I oo dt
POl < ||P(to)||U(sz)€f’°(2( b =@ t (9)) .

Taking the limit as r — 0o, we obtain

A 00 d
1Py < Ilp(o)lzoe(yelo 1AV 1= @t

Combining || p|| L (q) local uniform estimate (3.11) and cover interval [0, 7] with fixed time
step intervals {(#, &x + 5) | k € N}, with a similar induction argument as in Step 4, we have

sup [[p()llLe@) < I'e.

0<t<T

Since the forcing term in (1.4) is in L%($2), from the energy inequality (1.1) and on the
standard estimates on non-stationary Navier-Stokes equation, we have

T
2 2
”u”Loo(O,T;Hl(Q)) +/0 ”u(t)”HZ(Q) dt f CT,
where C depends on the initial energy and other constants. This completes the proof. ]

Corollary 3.1.1 (Maximum principle) Assuming p'" > 8p, n'" > §, for some 8p,8n > 0,
then we have p > §,,n > 8, on Q2 x [0, T].

Proof This proof follows from the positivity proof for (p, n) in Theorem 3.1. O

Next we derive the higher order regularity for the global strong solutions obtained in
Theorem 3.1 when the initial data (p'", n'"*, u'") is assumed to have higher regularity.
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Theorem 3.2 Suppose, in addition, that the initial data satisfies (p™, n'" wi™y e H¥"H1(Q)x
HXM+L(Q) x H* Q) for m > 0. Then the solution (p, n,w) obtained in Theorem 3.1
satisfies

m+1
D @f py ofn, 9f w20, 7 w22k )
k=0

< C(T, ”pln”Hz”H'l(Q)’ ||nm||H2m+1(sz)’ ||um||H2m+1(Q))-

Proof The proof proceeds by induction on m. The case m = 0 was proved in Theorem 3.1.
Assume the theorem holds for some non-negative integer m, and suppose the initial data
satisfies

(pin, nin’ uin) c H2m+3(9) x H2m+3(9) X H2m+3 (Q)
We can verify that

(3tkpin’ 3tknin’ 3[kuin) c H2m—2k+3(9) % H2m—2k+3(9) x H2m—2k+3(9)’ Vi=1,....m+1.
(3.12)

Now set p == 0" ' p, it := 0" 'n, @ := 9"+, and ¥ := 9" *'y. Differentiating the
system (1.1)—(1.5) with respect to "+ we find that (5, 71, @) satisfies the following system:

pe—Ap=V- (" (pVy — pw), (3.13)
iy — Aft = V- (3" (=n VY — nw)) (3.14)
—eAY = -7, (3.15)
i, — A= 3" (=VP — (u-V)u—Vy(p—n), (3.16)
V.id=0. 3.17)

Step 1: Multiply equation (3.13) by p and integrate over 2. Observing that there are no
boundary term contributions due to the periodic boundary condition, we obtain

1d . - -
3 N0y = IVl + [ 0 (pV% = pu) - Vi,

IA

1 1
=3 1VBITa@) + S 107 (VY = pwllTa g
Applying the induction hypothesis, we have

18" 1 (pVyr — pwll 200.7:12(52))

< pl2o,7: 2y I VY — allLeeo,1:09)

+ (||V¢||L2(0,T;L2(Q)) + ||ﬁ||L2(0,T;L2(Q))) PNl oo, 7; L (92))

m
k 1—k
+ 18 Pl 2@ 13 VY = w2 0,7: 000
k=1 (3.18)

~n2 ~n2 ~ 2
=< c (”P”Lz(o,T;Lz(g)) + ||n||L2(O,T;L2(Q)) + ”u||L2(O,T;L2(Q)))
m
k k+1 +1—k
+ Z 19, Pll 2o, 7: 10 @9 P2, w10 197" (VY =Wl 20,7 5292
k=1

<C.
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Here C depends on T and the initial data and we used the estimate: for any function f
Il e piir = CUSN 2 g 19 fll 211 - (3.19)

Therefore, from the initial condition (3.12), we have

T
sup 115Dl 20 + f IV 511226, dr < C. (3.20)
0<t<T
Similarly, we obtain
r 2
sup 10 lzzio)+ [ IVl q)dr < C. (321)
0<t<T

Multiplying (3.16) by @ and integrating over €2, we have

1d -
3 8l gy =~V g, = [ 0! (- Vut Vi =) .

Applying the Ladyzhenskaya inequality and the induction hypothesis, we estimate

T
/ [a,'”“ ((u-V)u) - ddx dt
0 Q
T m . X
7/ [(ﬁ-V)ﬁ-u+Z(8,ju-V)ﬁ-a,'"+1_judxdt
0 Q N
J=1

T m
= ~ j +1—j -
< /0 161 4y Ml oy I VRN 2 it + D 110wl zoe g 19" w2 1V 2
j=1

T
- 172 12 1/2 3/2

< a5 o hall 5 ) IVull 5 o IVals
/0 2@ "2 @) L2(Q) L (sz)

J m+1—j
+ Z 18/ wll 2 0,7: 2@ 18 Wl o0, 7222
=

| Y
= 5 IVElL2 0 7,120y + €

where C depends on T and the initial data. We also have

||azm+l (Vyr(p —n)) ||L2(0,T;L2(Q)) <C.

Combining these estimates, we obtain

T
sup ()12, + / Va2, g, df < C. (3.22)

0<t<T

Step 2: Multiply (3.13) by A p and integrate over 2 to obtain
1d
+1 ~
SVl g = 18I g + / (O (VY — pw) - Apdx

QnAﬁniz(m + 5||v (@ VY = pw) 72
Using estimates similar to (3.18) and the results (3.20), (3.21), and (3.22), we verify that

1V - (@3 (pVY = pw) 17200 7120 = C-
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Combining these inequalities with the initial condition (3.12), we obtain
2 ! 2
sup IV sy + [ 18RI g di = C. (3:23)
0<t<T L2 0 L@
Analogously, we have
2 ’ 2
sup ||sz(t)||L2(Q) +f llAﬁlle(Q) dt < C. (3.24)
0<t<T 0

Multiplying (3.16) by At and integrating over €2, we obtain

1 ~12 ~02 m—+1 ~
EE”VHHLZ(Q) = _”Au”LZ(Q) - a[ ((ll : V)u + VW(P - l’l)) - Audx
Q

IA

|
— S IATIT) + 197 (- V)W 72 + 197 (VY (p = m) 2.
Applying the Ladyzhenskaya inequality and induction estimates, we have

T
1 S0 2
197+ (- V)w ll 20,722 < fo 18174 g I VUl T )
+ ||“||L2(0.T;L°°(Q))”Vﬁ”Lw(o.T;LZ(Q))

m
J m+1—j m+2—j
+ Z 107 wll 220, 7, 2 (2)) 19 ullz20,7; 20 119 ullz20,7;22(0))
j=1
<C.

Therefore, with the initial condition (3.12), we have
2 ’ 2
sup |V, g, + / |82, di < C. (3.25)
0<t<T 0
Using estimates (3.23), (3.24), and (3.25) in equations (3.13), (3.14), and (3.16), we verify
that
19:Pll20,7: 22 N0:efillz20,7:22(0))>  N19r@IlL20,7.12(02)) = C-

This completes the proof. O

4 Error Analysis

In this section, we will carry out a detailed error analysis for the positivity-preserving scheme
(2.18)-(2.24) under the periodic boundary condition (3.1), for which the scheme (2.18)-(2.24)
can be made more specific as follows:

. . . 2mi 2w j ..
We denote the Fourier collocation points as Xy = { Xi = Vi =T 0<i,j

<N — 1]. Then the discrete inner product for two functions u, v is defined by

(,v) = Y wau()v(),

zeXy

27 \?
where w, = (W) is the quadrature weight in 2D.
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. . . 1
We also introduce the corresponding induced discrete norm by ||u| = (u, u)? for any
function u. We define the discrete Fourier space

Xy := span {eik"

x€2N,OS|kISN—1},

and set Wy = Uy = Xy.

Let (p, n, u) be the exact solution of the system (1.1)-(1.5) with initial condition (2.2).
Denote (p™, n™, u™, ¢") as the Lz-orthogonal projections of (p, n, u, ¢) at time m At onto
Xy x Xy x X% x Xy, ie.,

pm = l'[Np(mAt), n" = HNn(mAt)v
u” =Tlyu@mAr), ¢" =Tngp(mAr),

and set
Y =Ty [ " =] " =Ty [Inp™ + 9], v =Ty [Ina" —y"].

In order to establish the error analysis for the pressure correction scheme of the Navier-
Stokes equations (2.22)-(2.24), we need to introduce an intermediate function Ryu"t! ¢
X 12\,, defined by

<um+l _ RNum+1

A ; UN> +(V(¢" ! — ™), vn) =0, Yoy € X3.

We define the error functions by
m m m m m m m m m
e, =p" — Dy, € =n" —ny, &, =9" -y,
m __ m ~m m __ ..m m m __ m m
eg = Ryu” —uy, e =u" —uy, ey =¢" — oy
The main result of this section is

Theorem 4.1 Assume the initial data (p™, n, u’") € H*7(Q) x H*t7(Q) x H*t7(Q), for

. . 1
some k > 2, and p™,n"™ > &g for some 8y > 0. Then, provided At and N are sufficiently

1
small, under the refinement requirement At < C v’ we have the following error estimate
for the scheme (2.18)-(2.24):

el + e | + llet | + Ar|[ Vel |

m 2
+ (ArZ (Ve 12+ 1veh 17 + IIVef]Hz)) =c(ar+nN7),

=1
for all positive integers m such that mAt < T, where C is independent of At and N.

To prove this theorem, it is vital to establish a uniform strictly positive lower bound for the
numerical solution ( p%“, n%“), analogous to the strictly positive lower bound property of
continuous solutions (p, n) described in Corollary 3.1.1. Recall that we established upper
and lower bounds for ( p%“, n%“) in Theorem 2.2; however, the lower bound implied in
(2.28) depends on the norms of previous step solutions, and is insufficient to establish a
uniform strictly positive lower bound for ( p%“, n’z(‘,H) for arbitrary m. To overcome this
difficulty, we use an approach similar to [19]. In Section 4.1, by assuming sufficient regularity
of the PNP-NS system solution, we establish the procedure of building supplementary fields

with high-order local truncation errors through Lemma 4.2. With Lemma 4.3, we perform a
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rough error analysis that gives the minimum order required of the error terms to establish the
lower bound for the numerical solution ( p%H s n";ﬁl). In Section 4.3, with Theorem 4.4, we
conduct a refined error analysis, recover the assumption in Lemma 4.3, and prove the error
estimates for the supplementary fields built in Lemma 4.2. Thus, Theorem 4.1 is a direct
combination of Theorem 3.2 and Theorem 4.4; the proof will be presented in Section 4.3.

4.1 Arough error analysis

Assume that the solution of PNP-NS system is smooth enough. Then applying Tylor expan-
sion to the system, one obtains

m+1 __

At

m+1 _ m
n n m,.m m m m+1 m+1
(T, vy) — (n"a", Vo) + (n" (1 + 2Atn™)Vv ,Vuy) =1, (vn), Yoy € Xn,
(V" Vo) — (p" T =™t uy) =0, Yoy € Xy,

R m+1 _ om
<%, )+ (" - V) RyU™ ) + (VR Vo) + (V™ vy)
+ (VT v uy) = ' (o), Yoy € X3,

um-%—l _ RNum-H
(—— )+ (V@ —¢™),on) =0, Yoy € X%,

(u"’“,VUN) =0, VUN € XN,

m

P LoN) = (P, Von) + (p" (14 2A1p™) V", Voy) = o) (o), Yon € X,

( )4

we have the following local truncation error (see more computation details in Appendix (A.1)
- (A3)):

m+1
Tn

).L,gwrl(vN) -L—l;”Jrl(vN)’ < Cy(At + Nik)”vN”H',

, (vn)|,

where Cy depends only on regularity of (p, n, ¥, u, ¢).
High-Order Consistent analysis. As stated above, we only have a first-order truncation

error in time for n”*! and p”*!, which is insufficient to establish a priori strictly positive

lower bound for the numerical solution (pﬁJrl , n','\’,Jr1 ). Using the technique similar to [19], we

will construct the supplementary fields (p, 71, W, QVS, n, v, 1/7), providing sufficient regularity
for the solution (p, n, u, ¢), a higher order O(AP +N—%) consistency local truncation error
will be established.

Lemma4.2 Let (p,n,u) be the solution of the PNP-NS system (1.1)-(1.5) satisfying the
following properties:

(1) The ionic concentrations are strictly positive
p.n=é >0,
(2) The solution satisfies

(0p, dfn, 8fu) € L™(0, T; L*(R)), (3] p, 7 n, 7w) € L0, T; H1(Q)), (k > 2),
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we can construct correction functions (par.is Nari, Uari, Pari)(i = 1, 2) depending only
on (p,n,u, ¢), such that the supplementary fields (p, n,a, ¢, [t, V, V), defined by

P=Dp+Atpas + AP parn, i =n+ Atnagy + At’na o,
U =u+Arua, + AtPupn, ¢ =+ Atpar1 + APPar o,
Y= (—A)_i(ﬁ — ), §

=Inp+y, v=Inn— 1,

4.1)

has higher order consistency truncation error as defined in (4.5)-(4.9)
15 )l 1E T ow)l 150 )] < CUADY + N7 llnll g

Moreover, with At, N chosen small enough, we have

(1) The
supplementary functions are strictly positive:

p,ii >85>0, 4.2)

(2) The
supplementary functions satisfy

(p, i, ) € L%, T, Wh™). 4.3)

The detail of constructing (p, 72, 4, qE, n, v, 1}) in Lemma 4.2 will be given in the
Appendix.

Now we start to make an error analysis for the scheme (2.18)-(2.24) by analyzing its
truncation error for supplementary fields (p, 72, u, (;3, v, 1/7) Denote the error functions
by

Smo__ sm m Smo__ »m m Smo__ 5 “m — 5m
ep =P — PN € =n —ny, e, —,LL ,LL =V —UN,
sm sm

- J y . 44
=y" — Yy, érou = RyU" —uy, & =u" —uN, e¢:¢m . @4

Denote by (p™, i, ", ¢™) the L2-orthogonal projection of (j, 7, @i, $) at time m At
onto Xy X Xy x Xy 2 x Xn. We have the expression for the consistency truncation error
(Tp, Ty, Tu) for the rnodiﬁed functions:

ﬁm+1 _ ﬁm

(T on) = (", Vo) + (5 280 M VT Vo) = £ ),
4.5)

ﬁ’"'H —_pm

(> vw) = (", Vo) + (i M4 2At™) VI Vo) = £ (),
(4.6)

(VY oy = (T — oy, 4.7)

R um+1 ﬁm . . o

<”T,vm+< V)RNWH oy + (VRYWHY, Voy) + (Vé™, vy)

+ (Pt vyt o) = 1 (o), (4.8)
ﬁm+l _ RNﬁnH»l . .
— ot (V(g" T — ™), uy) =0, (4.9)

where

[Zm+1 _ HN(IH vm—+1 1}m+1); ﬁm-&-l — HN(ln ﬁm-&-l _ ¢m+l)-
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Subtracting (2.18)-(2.23) from (4.5)-(4.9), we have

sm+1 __ sm
ep e,v ~1 M m..m
(T’U ) — (p"a" — pyuly, Voy)
= —(F" A+ 2A VR — pR (L 4+ 2A1pR) Vi Von) + £ (o), (4.10)
ém+l Em
(HT, vy) — (A" — n'l'\’,u%, Vuy)

— (A" (14 2868 VI — w2 (14 28105 VRt Vo) + 27 (uy), 4.11)
(veytl vuy) = @t -t on), (4.12)
érn+1_é‘m
(o) o (V)R — - VB o) (VEREL Vo) + (V8] uy)

= —(p"VA"T AV uy) + PRVt a VRt oy) + 8 o), (4.13)
ém-H Em+1
(M o) + (V@ = &) o) = 0. (4.14)
@+ Vy) =0. (4.15)

To simplify the presentation, we rewrite the third term in (4.10) as

— (P" (A28t VA" — pR L+ 281p3) Vit Vo)
—(P"(1 4 2A: PV — pN(l~|—2AtpN)V,u,m+l Vouy)
— (PN (I +2Atp\ )V g - py(+ ZAtpN)V,u, VvN)
—(@ (14 2A8(p" + PNV Vo) — <pN(1+2AtpN)vem+ Vuy).

Rewrite the second term of (4.10) into
— (p"™a" — pyuly, Vuy)
—(p"a" — pyu™, Voy) — (pyu” — pyuy, Voy)

= —(€,u", Vuy) — (péy, Von).
Similarly, for the third and second term of (4.11), we have
— (A" (A 280" VI a1 4 28 VI Vo)
— (@™ (1 4+ 2A1 (7™ + nN))Wm“, Von) — (0% (1 4+ 2Atn) Vet Vo),
and
— (n"™a"™ — nyuly, Voy)
= —(enu"™, Voy) — (nyen, Voy).
For the Navier-Stokes equation, in (4.13), we have
(@" - V)Ryu" ! — @y - gt vy)
= (" - V)Ryw" ! — - V)Rya" ! vy)
+ (@ - )Ry — @R - vyag T vy)
= (@ - VIRNE"T! un) + (Ul - VIERTL ),
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and

(vmvﬂm+l+nmvvm+l vy )+<PNVMm+1+n%VV%+1,UN)
=PV 4 AV un) + (pR VT e v o)
( vm+l+nmvvm+l vy )+< V/Lm+l+n’1'\1,Vv%“,vN)
—(

“’”VM’”'H + evam+ ,UN) — (pNVeZ'H + n"lf,VEf)"H, N ).

Collecting all previous equations, the error equations (4.16)-(4.21) could be rewritten as

sm+1 _ sm
el’ el’ um 4 m m sm
A UN ) — <epu s VvN> — (pNeIJ s VUN>
- <é;’ (1 4+ 2A1(5" + piy) Vi, VvN>

— (i (14241 p) VRt Vo) + £ (), (4.16)

elTJrl_errtn _[gmsm _|,msm
SN (erma™, Vuy) — (nvés, Voy)

= — (& (1 +2At (™ + n})) V"t Voy)

— (% (1 + 24t n'y) VEIT, Voy) + 2 (), (4.17)
(vayet, Vo) = (eptt — gt uy)), (4.18)
ér;et+l _ ém
<N“At vN>+<< VRN ) + (W - IR o)
+ (w’;;j, VvN> + (Vég% vN>
= —(gpvim !+ Vit uy)
— (PR Vet 4+ ngvert oy ) + 12 (o), (4.19)
em+1 er]ngl
u Nu vm—+1 > _
<At, >+<V( — &, o) =0, (4.20)
(ertt, Vo) =0. @21

To finish the error analysis, we will need Lemma 4.3 below.

Lemma 4.3 Under the same assumption and procedure as in Lemma 4.2, we build sup-
plementary fields (p,n,q, ¢), for the numerical error defined in (4.4), assume that for
2 <o < 3,2 < B < k the error estimate holds for the m-th step, i.e.

o 1
18712 < Ar® + (ﬁ)ﬂ, 4.22)
o 1
€2 < Ar® + (—)ﬁ, (4.23)
emls < A + (—)ﬁ (4.24)
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under the linear refinement requirement At < C %, we have the following L°°-estimate for
the (m + 1)-th step, i.e.

1
187+ oo C(At“’z + (—)f”),
N
1
185 oo = € (A2 4 ()P2),
N
where C is independent of At, N, and

Proof First, from Lemma 4.2, we can construct (p, 72, @) that satisfies (4.2) (4.3). To obtain
the bound of ply, n’y, IVpX oo, VA lloo, given the a priori estimate (4.22), a direct
application of inverse inequalities implies

1810 = CNIZ Iz = (A 4+ (),

1V&) oo = CN1IE oo < € (A2 + (N)H),

where we used At < C%. Similarly, we have
o _ 1 o5
16 e = € (A1 4 (7).
y _ I g
1VE o = € (A2 4+ ()72).

Provided Art, % are sufficiently small, we have
8*
. . 0
€ lloos 1€ lloo < -,

T2 (4.25)

8*
“m “m 0
||V€p lloo> ||V€n loo < 2

where 85‘ > 0 is a small constant.
Combining (4.25) with the regularity of (p,#n) as in (4.3), we obtain bounds for

PNy, Vo, Vi

6* ) . . . . *
> = min " = &0 < Py < 15" lloo + 1} oo < M + (4.26)
8* . . . . *
EO <mina” — [|ef |oo < 0% < 11" loo + 1€ oo < M + ?0 (4.27)
y y )
VPN lloo < IVP" lloo + IVER oo < M + ?0 (4.28)
m ~m 86
VAN lloo < IVii" loo + IV oo < M + — 5 (4.29)
Takin, = ¢" 1l in (4. sm+1 _ 1. sm+1 m+1 vm+1
guUN = in (4.16), using the equality ¢;/™" =Inp —1In +e 7, we
obtain the left hand side of (4.16):
| om L o
LHS, = A—f(e?“,lnp lnpm+l)+A—t(eZq+l,e$+l)
(4.30)

L(vm vm+l) (vm m mym vvm—H)

vy €y, e e,u” + pyey,

@ Springer



Journal of Scientific Computing (2025) 104:105 Page 250f45 105

and the right hand side of (4.16):

RHS, = —(&7 (1+2At(p™ + p)) Vit vertt)

5 5 5 4.31)
- /Q PR+ 28tp0) [ VEH Pdx + E @,
Similarly taking vy = éf)"“ in (4.17), we obtain
1 1
LHS, = E(Ef{‘“,lnﬁ’"“ —Innthy — E(én'"“,é’g“)
| (4.32)
- emrly —@mam 4 nlen, venthy,
and
RHS, = — (&7 (1 + 2AtG™ +n'y)) Vimth, verth)
y y y (4.33)
- /Qn%(l + 2An") | VEMH 2dx + gL em ),
From the monotonicity of In x for x > 0, we obtain that
@+ pm = phyth = (T = it — I pi ) > 0, (4.34)
Emr ™t —npth = - it — et > 0. (4.35)
From (4.18), we have
@t =gt @ty = vertr = o. (4.36)
Combining (4.30), (4.32), (4.34), (4.35) with (4.36), we have
LHS, + LHS,
1
> =@ Gth (e a4 pyey, verth 4.37)
— (@M 4 e, vemthy,
Summing up (4.31) and (4.33) and using (4.37), we have
/Q PR+ 28I VETT 2 4 (1 + 24007 | Ve 2dx
< — @7 (L+280(5™ + piy) VT venth)
— (@ (14200 + ")) vl vem T (4.38)

1
+ (8 G @ ) + @ e Va4 e 4 niyey, veytt
Using the L* bound of pY, ny; in (4.26) and (4.27), we have
/Q PR+ 2AtpIOIVENT 2 nly (1 4+ 2AtmR) Ve Pdx

83 . .
> UV + Ve, (4.39)
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Applying Holder and Young’s inequalities, for the second term in (4.38), we have
— (@ (L4 2A1 (" + pi)) Vim T venth
< I+ 281" + pidlleolEp TV o IVEL T
4M + 85 + DI VA" oI VE | (4.40)

IA

o2
el

A

851 4C
0 wm+1)2
> guw,"] "+

and for the third term in (4.38),
— (@ (1 +2A1G™ +n'f)) V™, verth
< 114 281G + i) oo ISP VY™ T |0 | VET
< (4M + 85+ DIV o ver T (4.41)

— v n
28 5

)

where C = (4M + 85 + D> (IVA" I3, + V3™ 13,). Note that by (4.3), |itl] e 1.0
and [[V]|; coyy1.00 are bounded.
t X
Using Holder and Young’s inequalities, we derive

—(<“’” anthy 4@y, arthy)

<||V“'"+1||2+||V“'"+1||>+— SR IR + 18 5) (4.42)

. } 4 §
f(uw:z“nz +Iverth® + ——(M &N+ 123

70
28
*
<0
- 28
Using the bound of || p}y lloo from (4.26), and the bound of ||ii" ||, from (4.3), we obtain
@, venth + (phey, venrth

p
m+1 ~m “m m “m
Ve, 7 U™ loclley | + | Py lloc lley 1D (4.43)

IA

IA

8 . 4C .
30 IVEHIE + S A1 + 181
0

Similarly, we obtain
(@, verth) + (e, verth

=< IV A" oo I+ iyl 125 1) (4.44)
8*

I/\

||V“’““|| + 0f(||éz“||2+||é::’||2>.
From Lemma 4.2, we have
<f;1“,é,'7“>+<f,§"“,éc"“><C<Az + N g +||“’"+‘||H1>
< 50§<||Vé;’+1||2 HIVETH + = 5 2+ N2
(4.45)
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where the positive constant C in (4.45) is independent of Af and N.
Plugging (4.39)-(4.45) into (4.38), we have

& §
°<||Ve’”+‘|| +[Ivert?
. 4 .
< 8—*<|| ol [ )+——<|| S P o) (4.46)
0
4c . . 4 _
+ %(Ile;ﬁllz + e * + 2||e;”||2> + %(C(Aﬁ + N2,

Combing (4.46) with assumption (4.22), (4.23), (4.24), we derive

A+ (3P

Iverty, veptt) < €
At

, (4.47)

where C depends only on 8%, pt1, am+! mtl gm+l independent of Af, %

Now taking the test function vy = ég”l — EZ‘ in (4.16), we have

1
At
< Il0"ey + ped Ve el

+l1é (1+2Ar(p + PVE"T + pR (L + 28 VeIV @t = Enll
+CAP £ NTHVErt -

1 smyp2
—lleytt =

s(nﬁmnwné;’:n+||p%||oo||ér||+||(1+zm< +PIOVE" sl (4.48)
+ PR A+ 28t P o IVER T 4+ C(AF + N*k))nV(“’"“ "l
< N(Mﬁmnooné I+ 1PR oo 121+ 11+ 288 (5™ + pADVA™ o €0

+ 1PN A+ 2850 o IVEL T + C (AP + N~ k))ll“’"“ el

where we have used the inverse inequality
V@t —emi < Nt —enyl.
Combining (4.26), (4.47) with (4.48), we have

I&ntt — &l < CNAt(E) |+ Iepll + IVt + ar + N7
At + NP
< czvm% (4.49)
< C(A 4 NP,

where we have used At < C% in (4.49).
Finally, using the triangle inequality and the inverse inequality, we have

187 < el + 18yt — e < cart 4 NP,
187+ oo < NIIERH | < C(A1*72 + NPT,
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Similarly, we can derive the bound for &+

”em—H” <C(Ata 1+N ﬁ+1)
||em+1”00 < C(At()é 2+N ,3+2)

This completes the proof of the lemma. O

4.2 A Refined Error Analysis

Firstly, for error terms as defined in (4.4), we provide following equations

V(ln ﬁm-‘rl —In p%+l) — — (V“m-i-l VWH—IVIH “m-‘rl) (450)
PN
V(ln ~“m-+1 —In m+l) _ (va+l VWH‘IVln ‘-‘I’l’l-‘rl) (451)
nm+]
N
Equation (4.50) could be derived as
V(ll’l ﬁm+1 —1In p%-‘rl)

Vﬁerl me+1

I;m+1 p117$+1
p%‘i’l Vﬁm+1 vp%+l
p%-H pmtl - p%-ﬁ-l )
1 l;m+1 B éZH_l m+1 m+1
= p%+l( l\;m_'_l Vp VpN )
1
— o (va—H "m-‘r]Vln vm+])
Pn

And equation (4.51) could be established similarly.
Now we proceed to a refined error analysis. The main result is

Theorem 4.4 Under the same assumption and procedure as in Lemma 4.2, we can build
supplementary fields (p, i, a, ¢3), provided At and % sufficiently small and under the linear
refinement requirement At < L for the numerical error between numerical solution from
scheme (2.18)-(2.23) and supplementary fields (p, 1, Q, ¢) as defined in (4.4), we have

ey Il + 1€y [T + lleg | + Arlvegl

m

o 1

+ Ci (ALY (IVE P + V&P + Ve, 1)
=1

< Cie (A8 + N7,

for all positive integer m, such that mAt < T, where Ca* , C(S2
that are independent of the choice of At, N.

M are posmve constants

Proof The proof of Theorem 4.4 is divided into two steps:

e Step 1: Assume that the rough estimate (4.22)-(4.24) is true for all the m < m*, where
m*At < T, we will obtain an error estimate for the (m + 1)-th time step as (4.79);
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e Step 2: Recover the rough estimate (4.22)-(4.24) for the (m™* + 1)-th time step.

Step 1: A refined error analysis with a prior assumption.
First, from the choice of initial data:

PY =TnpG,0) =% nQ =Ty, 0 =i 5 =Tyy(,0) =y°
u) = Iyu,0) =1, ¢f =Tne(,0) = ¢°,

we have

Assume (4.22)-(4.24) hold for the m-th time step with @ = 14—1, B =k— Z Then by
Lemma 4.3, we have

k 1 9 33
sl O(ALT 4 (—)kT) < 20
el ™ lloo = C( +(N) )_2,

8
o

where 85 > 0 is sufficiently small. Since p, 72 are also bounded, we obtain

1
18 o < C(ALT + (N)"*% <

8% L. . Sk
> < min 5" =18 oo < PR < 15" oo + 185 Moo < M+ 22, (452)
8 5%
— = min 5 — 8 oo < mg < I oo + 187 oo < M+ 22 453)

Now we proceed to the proof, which is divided into two steps.
(i) Estimate of (4.16)-(4.18):
Taking the test function vy = é;‘“ in (4.16), we obtain

VAL A el ) R Lt )
= (@u", eyt + (pher. veyth
— (@420 (F" + RV, Vet (@.54)
— (ph (L +2Atppyventt venth
+ (rl',”H, eZ‘H).

sm+1 __ ~sm+1

Using ¢;;™" =1Inp —1In p Ty éf'/j'H and (4.50) we have

— (PR +2apRy Vet et
—(PR L+ 281V (In T — 10 pREh ety — (pR 1+ 2a1p7 )Vém“ vemth

— _<pN(1 + 2AtpN) Vém+l7 Vém+l) _ (pN(l + ZAI"pN) vm+lv1n sm+1 Vém+l) (4.55)
m+1 p p m+1 p
PN PN
—(pha +2AtpN)Vem+1 vemtl).
Using the bounds of pY and p"“rl given in (4.26), (4.52), we have
PRl +2A1pR) _ y o y
— (Ve Vet < - WA Ive+hy2. (4.56)
Py
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For the last two terms in (4.54), and the right hand side terms in (4.55), applying Holder and
Young’s inequalities and the properties in (4.52), (4.26), we have
||ﬁ'"||oo||ém||||Vé’"+1 I+ ||p loollZy Ve, i

18 4M + 268
<% pygmtly2 L T 200 pam 2 2y (4.57)
Sgam4e Ve T (™ 131512 + PNy 1)

18
< __ Y
= 82M + 5

A

> 12 wm 2 om 2
IVEHE + Cor s (12213 + 10 13).

(@ (L + 201 (p" + pyn Vit ventt
< IU42At 3" + P llso IV o 12 IV ER T
*
. A
T 82M + 8

(4.58)
IVET? + Car 12 12,

(p%(l —tnilAtpl )VZL_‘—IVIH vm+1 vvm—H)
Py
Pyl +2AtplY) v pmtl
< N el e el

mEven T (4.59)

1 &
< - V"WH—] C vm+1 ,
82M+6*” I+ Car.s 15017

and
(PR +2atpRyveytt vertt
< 1PN A+ 280 o IVES I VE T
*
<
=16 2M+8*
18

P V~m+1 C vm+l vm—+1,2 ,
< 162M+8*” I+ Cwm.s3(lle, 1>+ 1%

IVERT2 + Ca s IVER |12 (4.60)

where we have used the elliptic estimate from (4.18) to get
IVE > < cagpt > + 1ey ).

From Lemma 4.2, we have

vm+l(vm+l) C(A[ + N~ )”vm+1”

1§ (4.61)

< L% et 2 4 C (AR 4 NEY2
< 162M+8(’§” €y I+ Cu sz (A +N7T)

Plugging (4.55), (4.56), (4.57), (4.58), (4.59), (4.60), (4.61) into (4.54), we obtain

IA

1 vm—+1 sm+1 vm 1 8(>)k vm+1,2
— (17 =12y 1> + 11ey PP+ S s VET

2At 22M + 55 F (4.62)
< Corss (1517 + 125 17 + 18512 + 1817 + (A + N7H?).
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Similarly, taking vy = &7 in (4.17), we obtain
8 5
O [vertty?

——UE P =1 1P+ 1yt =) + 5
2A1 " " " " 22M 4+ 85 (4.63)
< Corsy (18712 + 123112 + 1T P + 18P + (A + NTH?).
(ii) Estimate of (4.19)-(4.21).
Taking vy = & F 1 in (4.19) yields
[P 3 . 3
a7 kvl = NI + Ny — &%)
+ (@ VIRNE"TL G+ IVER TP+ (VEp D) 4.64)
= —(@ vt Ervymt aptly — (pr Vet 4 ayvertt et
vm+1 ym+1
+ (T ERyu )
where we have used (2.24) to obtain
(W} - VIR0 € ) = 0.
Taking the test function vy = %(éT'H + E’;el;,rli) in (4.20), we obtain
1 . . 1 . . .
Ty T2 = IRl + S (V@™ = &), e ) = 0. (4.65)
Summing (4.64) with (4.65), we have
[P . . .
ooy (IET P = 1812 + ey — &%)
om+1 om+l |y sm+1
() (VE™ +2D:¢rin)  (4.66)

1
Sl smetl 2
m m )+ ”VeRNu” + 5

+ (@ - IRy ER
= — @Vt Ervymt gt — (prvertt +afvertt dtl
vm+1 ym+1
+(T T ERu)-
For the second term in (4.66), we have
(@ VRN &t
= — (@ - V)Rt Ryw" )
. . . 4.67
< & NIV RN E™ oo 67
1 o 1 o o
< ZIVERa I+ IR 1201,
Taking the test function vy = V(ég”rl + EZ;) in (4.20), we obtain
(4.68)

(V@ e, et = Ar(IVERH P — Ve |17).
For the first and second term on the right hand side of (4.66), we have

(AR LR ]
o o - o om+1
< UVE" ool 1T+ 195" lsollEy D1 (4.69)

“m+1

1
) 12 um 2 cm12 ) gm 2
= llegyull JrZ(IIVM'"+ I 1% + IV IS len %),
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and

< “m+1
(p%v m+1+nmvem+l e’Iri’Jru)

_ ( ’"V(ln vm—+1

—In [7 vm+l) érlgl;—;) < V(ln ~m+1 —In nr]r\l[+l vm+l) érlgl;—:(z‘. 70)
— < '"V(ln ~m—+1 —In pm+l) E%;;) (nNV(ln vm+l —In m+l) ul]?;;i)
+ (Pl — ) VETTL R,

Consider the first two terms on right-hand side of (4.70) and apply (4.50) (4.51), we have

|< mV(ln vm+1 lnpm+l) vm+l>|

eRNll
= Py vvm+1 smtly Py oty I ! vm+1>
=\ ' €Ryu mt1 6p np €Ryu
PN N
Py sm+1 ) sm+1 1y agmetypsmaty 7D
< I leollVey e %Null +I— m+1 ||oo||V1nPer ||oo||eer I11eR
Py

RNll”
Pn
*

IA

1 . o y
gaat 5 Ve IP 181D + Cop w1

eRNll

and

. 1% . )
RV an A" I, L1 < gogr s VAP + 12 P)

+1
+Cs;, MRy 112

4.72)
Using the estimate (4.2), for the final term in (4.70), we obtain

(P — Ve &Rl

< (1PF oo + 103 o) IVER IR I @73
< CUIPR oo + Iy o) NER I+ 1 D IR TS

eRNu”
om41 wm+1 sm+1
< &P+ 18P + CormlER I

Combining all these estimates (4.70)-(4.73), we have

l(p mVém'H—i-aném'H ém+l

L)
k

< 42M+8*(IIV“’”“II2+IIV””‘“II ) + Cor (115 + 1875 + 187

RNll ”2)

4.74)
From Lemma 4.2, we have

<f;”“,éﬂ“><cw + NI

om+1 3 —k2 4.75)
||V RNu||2+C(At + N7~
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Plugging (4.67), (4.68), (4.69), (4.74), (4.75) into (4.66), we obtain

(||“’”“|| —||é:,"||2+||é7§;d S+ APIVET 2 — A VER )

*
C42M +8*
< Corm (15 17 + 11>+ 1017 + 1217 + 12y 1%)

+ Cyp mERTalIP + CAr + N2,

sm-+1
*IIVm &

RNll

sm+1 sm+1
S (Ve 2+ Vet 4.76)

Now taking the test function vy = V(e’"“ ég’) in (4.20), and combining (4.65), we have

IEptai? = 12 + A v et - e, 4.77)

RNu

Plugging (4.77) into (4.76), we obtain

—(M“’”*‘n — 1012 + 12hs = 212+ AR VER2 — A2 |VE )
1 8* 1 1
_ Sm+ vm—&- sm+
||v SRt — 42M+8*<||v I+ [ver %) 4.78)
< Corm (180 12 + 1717 + 111> + 1212 + ey 11?

et + AR |VETT I + ACRVER |1P) + C(AP + NTH

Step 2: Recovery of the induction assumption (4.22)-(4.24) for the (m* + 1)-step.
A summation of (4.62) (4.63) (4.78) leads to

oy (G2 1812 + 18P + A veg 2

o 2 ym2
— 112 = 1212 — e ? — Ay

om—+1 o om+1 _ sm 2 om+1 om 2
+ =2 4 et — g +||e';;;u &)

1 & 4.79)

0 sm—+1 um+l “m+1
- Ve Ve Ve
+42M+8*(” 1%+ 1) + || RN“II

< Cse (18517 + 12511 + 112117 +||“'"“|| + [l ?
e + AP |VETT I + APVER |1P) + Copm (AP + N2,

Note that from the induction assumption in Step 1, the above inequality holds forall m < m*,
where m*Ar < T. An application of discrete Gronwall’s inequality implies

om*+1 om*+1 om*+1 m* 41
1+ 12 e+ A Ve
m*+1 1
1 ol 12 2 1
+ Cie (A1 Y (IVE I + V8, I + 1V, o 1))?
=1
2 —k
< Coe (AP + N75),
« s C2
S5 M> S8 M
order error estlmate for p, 1, 1/Vf, u and are able to recover our induction assumption (4.22)-

(4.24) with « = 4 , p=k— % and At, % chosen small enough. This completes the proof
of Theorem 4.4. O

where C! are positive constants, independent of Az, N. Then we obtain higher
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4.3 Proof of Theorem 4.1

Now we are ready to prove our main result Theorem 4.1 , which is a direct combination of
Theorem 3.2 and Theorem 4.1.

Proof Given pi”, ni" > 8o for some §y > 0, from Corollary 3.1.1, we have solution p, n > &g
inQ x [0, T].
Also from Theorem 3.2 and (3.19), we have

||8 p”LooLZ(QX[O T]) ~ ||8, p||L2H1(Q>< 0, T)”at Pl2n- L@Qx[0,T]) = <C(T, |p ””HS(Q))

||8 p”Loon+l(QX[0 T ~ ||8t P||L2Hk+2(g2x 0,7 )||3, P||L2Hk(sz><[o Ty = <C(T, ||I7 ||Hk+7(Q))-

Similar results hold for (n, u). Then given (p'", ", u'™) € H**7(Q)x H*7(Q) x H**7(Q)
with k£ > 2, we have

@} p, d'n, o) € L0, T, LA()), (87 p, 8°n, 97u) € L0, T, H*'(Q)), (k = 2).

Hence assumptions in Lemma A.1 are satisfied, and Theorem 4.4 follows.
From the error term definition (4) (4.4), we have

m __ sm m 2. m
e, =€, — AtpA, | — At Paros
ey =& — A}, | — APn'}, (4.80)
eﬁl = EIT - Atqu 1 - Ar? qu 2-

From the construction process in the appendix, the modification functions (pas.i, nas,i, WAz,i)
(i = 1,2) have sufficient regularity. Combining Theorem 4.4 with (4.80), Theorem 4.1 is
proved. O

5 Numerical Examples
In this section, we present numerical experiments to validate the stability, positivity, and

accuracy of our numerical schemes. We consider periodic boundary conditions and implement
the Fourier spectral method in 2 = [0, 22

5.1 Accuracy Test

To verify the accuracy and convergence rate of our numerical scheme, we introduce an
artificial exact solution by adding external forces to the PNP-NS system, formulated as

pr+@-V)p=V-(Vp+pVy)+ fp,
n+@-Vyn=V-(Vn—nVy) + fu,

—eAY = p —n,
u+@-Vyu—Au+ VP =—-Vy(p —n)+ fu,
V.-u=0,
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Table 1 L2 errors and convergence orders for the numerical solutions of p, ¥, u, and

At L2 error in p Order L2 error in v

Order LZ%errorinu Order L2 error iny  Order

x 1072 1.01x 1072 —

x 1072 511x 1073 098
x1072 257x 1073 099
x1072  129x 1073 1.00
x 1072 6.46 x 1074 1.00
x 1072 323 x107* 1.00

00l— = BI—

O —
m“‘ m‘—'

424 x 1073 -

2.15x 1073 0.98
1.08 x 1073 0.99
5.45x107%  0.99
273 x 107 1.00
137 x 1074 1.00

6.33 x 107%
3.17 x 1074
1.59 x 1074
7.93 x 1077
3.97 x 1072
1.98 x 1072

1.00
1.00
1.00
1.00
1.00

121x107%2 -

6.13x 1073 0.9
3.08x 1073 0.99
154 x 1073 1.00
773 x 107*  1.00
3.87x 107%  1.00

where we set ¢ = 1 and the source terms f,, f,, and fy are determined from the exact

solutions

p(x,y,t) = 1.1 4 cos(x) cos(y) sin(z),

n(x,y,t) = 1.1 —cos(x) cos(y) cos(?),

u(x,y, ) = <

sinz(x) sin(2y) sin(t)
— sin(2x) sin? (y) cos(t)

P(x,y,t) = cos(x)cos(y)sin(t),

).

defined in the domain  x [0, T'] = [0, 27]* x [0, T]. We use N = 64 Fourier modes with
different time steps Ar. Using scheme (2.18)—(2.24), we compute the L? errors between
the numerical solutions and the exact solutions. The results are shown in Table 1, where
first-order convergence rates are observed for the different variables.

5.2 Property Test

We also perform numerical simulations to test the mass-conserving and positivity-preserving
properties of our scheme. The positivity-preserving scheme is applied to solve the following

PNP-NS system:

prt+@-V)p=V-(Vp+ pVy),
n—@-Vn=V.-(Vn—-nVy),

—eAYy =p—n,
w+@-Vyu+ VP — Au=—«Vy(p —n),
V.u=0.

(5.1)

We set the parameters in (5.1) to be ¢ = 1 and « = 1000, with the initial data given by

p(x,y,0) =14 10° — tanh (2((x — 0.87)* + (v — 0.87)* — (0.271)°)) ,
n(x,y,0) =1+107° —tanh (2((x — 1.27)* + (y — 1.27)* — (0.21)%)),

u(x,y,0) = (8) .

The initial condition indicates that the positive and negative ions accumulate in two regions
centered at (0.87, 0.87) and (1.27, 1.27), respectively.
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Fig. 1 Snapshots of p — n and velocity field u at times 7 = 0.005, 0.025, 0.05, 0.075, 0.1, and 1.
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With time step Ar = 10~%, in Figure 1, we plot the profiles of p —n and the velocity field u
attimes 7 = 0.005, 0.025, 0.05, 0.075, 0.1, and 1. We observe that the positive and negative
ions move toward each other and drag the fluid along with them. Later, the outflowing fluid
between them prevents the ions from approaching each other further and carries the ions
toward the corners. At the end of the computation, the fluid becomes almost electro-neutral.

We also examine the energy dissipation of the system in Figure 2(left), where the system
energy is shown to be dissipative as we have proved. We plot the mass change for positive
and negative ions in Figure 2(middle), showing that the mass of ions is preserved within
machine precision. We also plot the minimum and maximum of (p, n) in Figure 2(right),
demonstrating that the ionic concentrations remain positive throughout the simulation.

6 Concluding Remarks

In this paper, we mainly consider numerical approximations for the PNP-NS system. Firstly,
we give the results of unique solvability and regularity for the solution of PNP-NS system
with suitable assumptions on initial conditions. To efficiently solve this coupled system, we
propose a decoupled, mass-conserving, positivity-preserving and energy stable scheme which
can also be unique solvable. Furthermore, we also carry out a rigorous error analysis for the
fully discretized scheme, and derive optimal convergence results. The error analysis mainly
depends on the L bounds for the numerical solutions n and p, which are obtained by using
a high-order asymptotic expansion for the PNP-NS system combing with a mathematical
induction technique. We also present some numerical examples to validate the accuracy and
stability of our decoupled scheme.
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Fig.2 Left: Total energy of the PNP-NS system. Middle: Change of mass for (p, n). Right: Lower and upper
bounds of (p, n).

Appendix A. Appendix
A.1 High order correction

Lemma A.1 Let (p, n, u) be the solution of the PNP-NS system (1.1)-(1.5) which satisfies the
Sfollowing properties:

(1) The ionic concentrations are strictly positive
p,n=é >0,
(2) The solution satisfies
@} p, afn, du) € L0, T; L2(Q)), (3} p, 33n, 3}u) € L0, T; H*1(Q)) (k = 2),
then we can construct

correction functions (Pas,is NAri> UAzi» §ar,i)(@ = 1, 2) depending only on (p, n,u, ¥)
such that the
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supplementary fields (p, ii, @, ¢, fi, v, V) (defined by (4.1)) has higher order consistency
truncation error(as defined in (4.5)-(4.9)):

[ wn) ] ET w)l 1E8 T )] < CAP + N5 lun g

Moreover, with At, % chosen small enough, we have
(1) The supplementary functions are strictly positive
p,ii >85>0,
(2) The supplementary functions satisfy
(p. i, W) € L®0, T, Wh™).

Proof Let (p™,n™,u™, ¢™) be the L>-orthogonal projection of continuous solution
(p,n,u,p)(mAt) onto Xy x Xy X X%v X X, as defined in (4). From Taylor expansion,
the local truncation error may be written into two parts, time discretization error and spatial
discretization error, we have

pm+l _ pm
<T7 o) — (p"™u™, Vo) + (p™(1 + 2A1p™) V™ Vuy)
—(Atf T+ AR T+ OAP) + gt ow), (A1)
m+1 _ .m
n n m,.m m m m+1
<T’ vy) — ("u™, Voy) + (0™ (1 + 2At™) V" Vo)
—(ALf A AP T OAP) + gt up), (A2)
R m+1 _
<¥’ un) + (@ - V)Ryu" ! vy ) + (VRyu™ ! Voy) + (Vo™ vy)
+ (pmv/’bm-i_] +nmvvm+1’ UN) <Atfm+1 + At fm+1 +O(Al )+gm+1 >

(A.3)

where (f}"; mil f;’fi+1 fu m+1) i=1,2 are the temporal part of truncation error and (g"”rl gt

l’l"“) are the spatial part of the truncation error. From Taylor expansion, we can compute

2
fra= %8871) + V- @ (pw) — V- ((dp —2pH)V(In p + ),
1 82
fa1= 252" + V- (3 (n) — V- (31 —2nH)V(Inn — ¥)),
1 92
Ju1 = 29 Su+ ou-vVu+ 0, pV(np + ) +0,nV(nn — ¢);
193 1 92 1 92
fra=—g35P =5V Gz(pw)+ V- ((E@p —4po,p)V(np +v))
193 1 92 1 92
2= —88?’1 5 : (87(”11)) +V. ((Eﬁ" —4ndn)V(lnn — 1/’))
193 1 92
fu2 = B 332" Vu— (u-V)Vo¢p — AV )
92 1 92
~ 5% —pV(np+y) — X7 —nV(nn — )
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and

&y on) SN pll e + lpull e+ 1PV An p 4+ )| ) (0 + DAL oy [ g1
(&t ow) S Nl g+ lnuall g+ 12V nn — 9) o) ((m + DAL oyl g,
(gt on) S NIl e + Q- Voul e + [Vl e+ VY] e
+ pVnp+9) +nVnn — ¥l ge) ((m + DAL oy g1
Applying the regularity assumption (2), we have

O fp1 € L0, T; LA()), 9 fp.1 € L0, T3 H* (),

37 fu1 € L0, T: L2(R)), & fa1 € L0, T; H* (), (A4)

02 fu1 € L0, T5 LX), 8 fu1 € L0, T; H* (@),

@t on), gt o), (et on) S N ow g

With those (f),1, fa,1, fu,1), we construct and solve the leading order temporal correction
function (pas.1, nar,1, UAr 1, @Ar,1) from the following equation:

dpart =V - (pVEEL L yai )+ paci Vin p + )
=V (parau+ puar1) — fpa, (A.5)
nAt,1
dnar1 =V - (mV( Ant = Yar) +nar1V(nn — )
= V. (nar 1w+ nuag ) — fal, (A.6)
=AY a1 = Parl — Nags (A7)
Ouar,1 = Aupr 1 — Voa1 — (- Viup, 1 — (uar1 - Vu
1
- pV(—pi)’ + VA1) — paraVnp + )
nAL,1
—nV( . —VYar1) —naVdnn —¥) — fur, (A8)
V-upa =0, (A.9)

subject to the periodic boundary condition and zero initial condition. The PDE system (A.5)-
(A.9) is very similar to the PNP-NS system (1.1)-(1.5), and the existence of solution could
be established similarly. Moreover, given the regularity of (p, n, u, ¢) and (fp.1, fu,1, fu,1)
in (A.4), the solution satisfies
(07 pac1, 9 nant, 9 uann) € L¥O, T, L (Q)), (37 pac1, 9nar1,
dup,1) € L0, T, H*1()). (A.10)

The discretization of the above system implies that

m+1l _ m
(—fpitow) = <17N’1A7tpm’l, un) = (PR, ™ + p"uR, 1, Vo)
m m pgtﬂl m+1
+(p" (1 +2Atp )V(perl + ¥R

+ PR (L4 240"V (I p"+ 4y, Vo)
—(Atfr gt oA, vy), (A.11)

PAt, PAt,1

@ Springer



105 Page 40 of 45 Journal of Scientific Computing (2025) 104:105

nm+11 n'’m .
+1 At At,
(= ow) = v (n'A; 0" +n"uy, 1, Voy)

m m nrglj_ll m-H
(" (1 28"V (T — YD

+ 1%, (1+2Atm™" )V(lnn’”+l — "t Voy)

— (ALl gt + o), u), (A.12)
Ryu™H —um
( fl',flfrl, UN) = (%, uN) + (VRNu’gtJfll, Voy) + (VR 1. vn)
+ (( V)RNuAt 1 + (uAt 1° V)Ie[\]l,lm+l7 UN)
pm+1
Ar,1
+(p"V( mt+1 + WAntJ,rll) + PR Vi p" 4yt )
m+1
LYNS|
+ (n"V( m:—l ‘/’Z;rll) 0l V™t — gt )
— (ALfrtl gt + 0, uy), (A.13)
(V¥Ri1: Von) = (P10 — War1s UN D, (A.14)
(u'ﬁt!],VvN) =0. (AIS)

where (fpa, 1.1 faari 15 fuari1) @0d (€py, 1> 8nasy s ua,.y) are the temporal part and spatial
part of the truncation error, from Taylor expansion, we have

1 92 PArl
Spanin = 332 Pan + V- (3(pariu+ puae)) — V- (3 p — 2p*)V( A

-V ((B,p —4parap)V(np + W))

+¥ar)

82
Jnania = 23 a1+ Ve (at(”At,lu"‘nuAt,l))—V' ((3,n— )
V- ((0n — 4np,im)V(nn — )
192
Juaii1 = 291 “3UArl + (0w - Viups 1 + (drupas,1 - Viu
PAt,1
+ 9PV 4 Yan) + 8 para Vi p + 9)
¥)
and

(g;?,zl,,p uv) S N0 par ook + IPar 1l Lo st + 1PV YAzl oo i
Hpac1Vplleege + I fp1ll oo ge) lowll 1,

(g:,nZ} L UN) S N_k(”atnAt,lHLtOOHk + ||”At,1||L§>°Hk+l + ||”V1pAz,l||L,°°Hk
HPar1Vplpepe + ”fp,l”L[oon)“UNHHIH

(guhr o) S NTE(I9manllzeo e + IVUAr 1 oo gt + 1V ar 1l
Hlar1 - Vull oo g + 1@ - Viuay 1l oo g
HIpVarillge + ||PA1,1VWAt,1||L§>CHk
HinVarillpo e + Inas i Véaill oo ge + ”fu,l“Lchk)”vN”Hl-
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From the regularity result in (A.4) and (A.10), we have
(g3l ow)s (g3 ow)s (g ow) S N low g
Combining (A.1)-(A.3) and (A.11)-(A.13) leads to the second order temporal local truncation

error for py = Ty (p+ Atpar1), ity = Hy(n+ Atna, 1), i = Hy 4 Araps), 1 =
My (¢ + Atdar1):

p'm+l ﬁm
<1T1 un) — (BT, Vo) + (B (1 + 241 pTH VAT, Vo)
(AP fI 4+ O(AP) + O(NTH), v), (A.16)
vm+1 _ ﬁm
(4 ~ Loy = G0, Vo) + 0L+ 28080 VI Vo)
—(A2 [+ O(AP) + O(NTH), vy), (A.17)
R um+1 _ﬁ y . .
<%, on) + (@] VRyE vy + (VRYE ™, Vo) + (V] vy)
+ (P AVt uy) = —(Ar f’”+]+(’)(At )+ ONT, vy), (A.18)
where
Y1 = In[(=A) " (B — ],
fi1 = Dy (n py + ¥p), ¥ = Ny (nsiy — Y1),
and

fo2= o2+ foaa +V-pariuar) = V- Cppar1VQn p + v))
1 1
— v (VAL 4 v (pa VAL 4y,

fiv2=fa2+ fua1 V- (nariuan1) — V- @2nna 1 V(inn — )
nAz1 NAL

— V- V(=) = V- (a1 V( —¥)),
Ji2 = fu2+ fum,l,l + (uar1 - Viuar g
pv((ZALLy?)
nAt, 1) ).

Since (par,1, nar,1) are bounded, we may choose At, % so small that py, 7, > 5—0 > 0.
And (f’"+1 f’”+] fm+l) are the temporal projection of functions (f3, 2, fi, 2, fi, 2) onto
Xy x Xy X X2 . From (2) (A.10) we have

B f3,.20 O firy .25 0 fay.2) € L, T5 L)), (f3,.2 fir.2s fay.2) € L0, T3 H*T1(Q)).
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Similarly, the next order temporal correction function (pa;,2, nar,2, Uar,2, Par,2) s given by
the following system:

0 par2 =

— V- (pas2ur + PluAt,Z) = fp1.25 (A.19)
dnaa =V - V(2 — )

=V (narpn +1uar2) = fiiy 2, (A.20)

— AYar2 = Par2 — a2, (A21)
druar2 = Auar2 — Voarz — @1 - Viuaez — (aar2 - V)i

- plwpli’ +¥ar2) — paraV(in iy + )

—naaVniy —¥1) = fi 2, (A22)

Va2 =0. (A.23)

subject to the periodic boundary condition and zero initial condition. Then we have

(02 para, 3 nar2, 07uar2) € L2, T, LX(R)),
(3 Par2s nara, duar2) € L0, T, H*1(Q)).

The discretization of the above system implies that

pm+1 p
(s o) = (PR EREE ) — (pl i+ U, o, Vo)
m+1
P+ 288 YV vﬁ’fl +yrt

]
+ PR (L 4At V(I pyH 4+ g, Vo)

+O(A1) + O(NH, (A24)
nm+1 n'm
(— >_<%tm,vm—<n’&,2ﬁﬁ” + R, 5, Vo)
nm+l
+ 0 (1+2At“'”)V(v21+21 YD)

n
+ %, (L 4ATV (In it — g, Voy)

+ O(At) + O(N™ ), (A.25)
RNum+2l —u” )
(= f;’fgl, uN) = (%, vy) + (VRNUX,SI, Vun) + (Vo3 2 vN)
(@] - VRN + R, - VIRV )
m—+1

. INY) .
+(pI'V( V,,,;l F YR + RV P g uy)
D
m+1

o N y
+ VT — VR R VT =g, o)
m
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+ O(A1) + O(N75), (A.26)
(VYR 2. V) = (PR, 2 — Ny 20 UN), (A.27)
(u, 5, Von) = 0. (A.28)

Finally, a combination of (AL 16)-(A.18) and (A.24)-(A.26) yields the third order temporal
truncation error for (p, 7, a, ¢):

l;m-&-l _ p’m

(T ow) = (5", Vo) + (5 (L 280" VT, Vo) = 1 ),
ﬁm+1 —_pm

(> ow) — ("0, Vo) + (3" (1 + 2Atn™) V™ Vuy) = " (uy),
R sm+1 _ mm .
(¥» uy) 4 (@™ - V)RNUE" L, vy) + (VRyE™ !, Voy) + (V™ vy)

+ (ﬁmVﬂm-H +ﬁmV1v1m+1, uN) = T|:n+1(UN)’
where
2 wn), 1 o), B o) < CAP + N9 oy [l
Since (par,2.nas,2) are bounded, we may find At, % so small that p, 77 > & £ T > 0.
Moreover, given the regularity of (pas.i, nasi, War,i) (@ = 1,2), we have
(.7t w) € L0, T, W ().
O

Remark 2 Since we set the initial data of our modified solution to be the same as the initial
data of the exact solution, i.e. (p,n, 4, @)(-,t = 0) = (I p, Hyn, Myu, Myep)(-, t =0),
we will assume trivial initial data

(PAtis NALi WAL Pari) (1 =0) =0, (A.29)
fori =1,2in (A.5)-(A.9) and (A.19)-(A.23).
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