
August 22, 2017 8:54 WSPC/103-M3AS 1750037

Mathematical Models and Methods in Applied Sciences
Vol. 27, No. 11 (2017) 1993–2030
c© World Scientific Publishing Company
DOI: 10.1142/S0218202517500373

Numerical approximations for a three-component
Cahn–Hilliard phase-field model based on the

invariant energy quadratization method

Xiaofeng Yang∗

Department of Mathematics, University of South Carolina,
Columbia, SC 29208, USA

xfyang@math.sc.edu

Jia Zhao∗

Department of Mathematics, University of South Carolina,
Columbia, SC 29208, USA

Department of Mathematics, University of North Carolina,
Chapel Hill, NC 29599, USA

zhaojia@email.unc.edu

Qi Wang

School of Materials Science and Engineering,
Nankai University, Tianjin, P. R. China

Department of Mathematics, University of South Carolina,
Columbia, SC 29208, USA

Beijing Computational Science Research Center,
Beijing, P. R. China
qwang@math.sc.edu

Jie Shen

Department of Mathematics, Purdue University,
West Lafayette, IN 47906, USA

shen7@math.purdue.edu

Received 19 October 2016
Revised 3 April 2017

Accepted 14 May 2017
Published 10 August 2017

Communicated by F. Brezzi

How to develop efficient numerical schemes while preserving energy stability at the dis-
crete level is challenging for the three-component Cahn–Hilliard phase-field model. In
this paper, we develop a set of first- and second-order temporal approximation schemes
based on a novel “Invariant Energy Quadratization” approach, where all nonlinear
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terms are treated semi-explicitly. Consequently, the resulting numerical schemes lead
to well-posed linear systems with a linear symmetric, positive definite at each time step.

We prove that the developed schemes are unconditionally energy stable and present var-
ious 2D and 3D numerical simulations to demonstrate the stability and the accuracy of
the schemes.

Keywords: Second-order; phase-field; Cahn–Hilliard; three-phase; unconditional energy
stability; invariant energy quadratization.

1. Introduction

The phase-field, or the diffuse-interface method, is an efficient and robust modeling
as well as computational approach to study free interface problems (cf. Refs. 1, 10,
12, 20, 23, 26, 27, 28, 32, 33, 36, 58, 62, 63, 67, 69, 70, and the references therein). Its
essential idea is to use one (or more) continuous phase-field variable(s) to describe
different phases in the multi-component system, and represents the interfaces by
thin, smooth transition layers. The constitutive equations for the phase-field vari-
ables can be derived from the energetic variational formalism, the governing system
of equations is thereby well-posed and thermodynamically consistent. Consequently,
one can carry out mathematical analyses to obtain the existence and uniqueness of
solutions in appropriate functional spaces, and to develop energy stable numerical
schemes.

For an immiscible two-phase system, the commonly used free energy for the
system consists of: (i) a double-well bulk part which promotes either of the two-
phases in the bulk, yielding a hydrophobic contribution to the free energy; and
(ii) a conformational capillary entropic term that promotes hydrophilic property
in the multi-phase material system. The competition between the hydrophilic and
hydrophobic part in the free energy enforces the coexistence of two distinctive
phases in the immiscible two-phase system. The corresponding binary system can
be modeled either by the Allen-Cahn equation (second-order) or the Cahn–Hilliard
equation (fourth-order). For both of these models, there have been many theor-
etical analysis, algorithm developments and numerical simulations available in the
literatures (cf. Refs. 1, 6, 7, 10, 15–19, 23, 24, 26, 28–30, 33–35, 37, 38, 44, 46, 48,
49, 51, 52, 54, 55, 59–61, 65 and 73).

The generalization from the two-phase system to multi-phase systems has been
studied by many researchers (cf. Refs. 2, 3, 5–7, 15, 16, 21, 22, 29–31 and 39).
Specifically, for the system with three-component, the general framework is to
adopt three-independent phase variables (c1, c2, c3) while imposing a hyperplane
link condition among the three variables (c1 + c2 + c3 = 1). The bulk part of the
free energy is simply a summation of the double-well potentials for each phase vari-
able.6,7,28 Moreover, in order to ensure the boundedness (from below) of the free
energy, especially for the total spreading case where some coefficients of the bulk
energy become negative, an extra sixth-order polynomial term is needed,6,7 which
couples the three-phase variables altogether.
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Numerically, it is challenging to develop efficient schemes while preserving the
energy stability to solve the three-component Cahn–Hilliard phase-field system,
since all three-phase variables are nonlinearly coupled. Although a variety of numer-
ical algorithms have been developed for it, most of the existing methods are either
first-order accurate in time, or energy unstable, or highly nonlinear, or even the
combinations of the above. We refer to Ref. 7 for a summary on recent advances
about the three-phase models and their numerical approximations. For the develop-
ment of numerical methods, we emphasize that the preservation of energy stability
laws is critical to capture the correct long-time dynamics of the system especially
for the preassigned grid size and time step. Furthermore, the energy-law preserving
schemes provide flexibility for dealing with stiffness issue in phase-field models.

For the binary phase-field model, it is well known that the simple fully implicit
or explicit scheme will induce quite severe stability conditions on the time step so
that they are not efficient in practice (cf. Refs. 18, 19, 44, 45 and 53). Such phe-
nomena appear in the computation of the three-component Cahn–Hilliard model as
well (cf. the numerical examples in Ref. 7). In particular, the authors of Ref. 7 con-
cluded that: (i) the fully implicit discretization of the sixth-order polynomial term
leads to convergence of the Newton linearization method only under very tiny time
step practically; (ii) it is an open problem about how to prove the existence and
convergence of the numerical solution for the fully implicit scheme theoretically for
the total spreading case; (iii) it is questionable to establish convex–concave decom-
position for the sixth-order polynomial term; and (iv) the semi-implicit scheme is
the best choice that the authors in Ref. 7 can obtain since it is unconditionally
energy stable for arbitrary time step, and the existence and the convergence can be
thereby proved. However, the semi-implicit schemes referred in Ref. 7 are nonlinear,
thus they require some efficient iterative solvers in the implementations.

The aim of this paper is to develop stable (unconditional energy stability) and
more efficient (linear) schemes to solve the three-component Cahn–Hilliard system.
Instead of using traditional discretization approaches like simple implicit, stabilized
explicit, convex splitting, or other various tricky Taylor expansions to discretize the
nonlinear potentials, we adopt the Invariant Energy Quadratization (IEQ) approach
that has been successfully applied in the context of other models in the authors’
other work (cf. Refs. 11, 24, 55, 59–61, 64, 72 and 73). However, the application
of IEQ method to the three-component Cahn–Hilliard model faces new challenges
due to the particular nonlinearities including the Lagrange multiplier term, and
the sixth-order polynomial potential. The essential idea of the IEQ method is to
transform the free energy into a quadratic form of a new variable via a change of
variables since the nonlinear potential is usually bounded from below. The new,
equivalent system still retains a similar energy dissipation law in terms of new
variables. For the time-continuous case, the energy law of the new reformulated
system is equivalent to the energy law of the original system. A great advantage
of such a reformulation is that all nonlinear terms can be treated semi-explicitly,
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which in turn leads to a linear system. Moreover, the resulting linear system is
symmetric positive definite, thus it can be solved efficiently with simple iterative
methods such as CG or other Krylov subspace methods. Using this new strategy, we
develop a series of linear and energy stable numerical schemes, without introducing
artificial stabilizers as in Refs. 44, 53, 65 and 68 or using convex splitting approach
(cf. Refs. 9, 17, 51 and 52).

In summary, the new numerical schemes that we develop in this paper possess
the following properties: (i) the schemes are accurate (first- and second-order in
time); (ii) they are unconditionally energy stable; and (iii) they are efficient and
easy to implement (leading to symmetric positive definite linear system at each time
step). To the best of our knowledge, the proposed schemes are the first such schemes
for solving the three-phase Cahn–Hilliard system that can have all these desired
properties. In addition, when the model is coupled with hydrodynamics (Navier–
Stokes), the proposed linearization strategies can be readily applied without any
essential difficulties.

The rest of the paper is organized as follows. In Sec. 2, we give a brief introduc-
tion of the three-component Cahn–Hilliard model. In Sec. 3, we construct numerical
schemes and prove their unconditional energy stability and symmetric positivity for
unique solvability in the time discrete case. In Sec. 4, we present various 2D and
3D numerical simulations to validate the accuracy and efficiency of the proposed
schemes. Finally, some concluding remarks are presented in Sec. 5.

2. Model System

We now give a brief introduction for the three-component Cahn–Hilliard phase-field
model proposed in Refs. 6 and 7. Let Ω be a smooth, open, bounded, connected
domain in R

d, d = 2, 3. Let ci (i = 1, 2, 3) be the ith phase-field variable which
represents the volume fraction of the ith component in the fluid mixture, i.e.

ci =

{
1 inside the ith component,

0 outside the ith component.
(2.1)

In the phase-field framework, a thin (of thickness ε) but smooth layer is used to
connect the interface that is between 0 and 1. The three unknowns c1, c2, c3 are
linked though the constraint

c1 + c2 + c3 = 1. (2.2)

This is the link condition for the vector C = (c1, c2, c3), where it belongs to the
hyperplane of

S = {C = (c1, c2, c3) ∈ R
3, c1 + c2 + c3 = 1}. (2.3)

In the two-phase model, the free energy of the mixture is as follows,

Ediph(c) =
∫

Ω

(
3
4
σε|∇c|2 + 12

σ

ε
c2(1 − c)2

)
dx, (2.4)
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where σ is the surface tension parameter, the first term contributes to the
hydrophilic type (tendency of mixing) of interactions between the materials and
the second part, the double-well bulk energy term represents the hydrophobic type
(tendency of separation) of interactions. As the consequence of the competition
between the two types of interactions, the equilibrium configuration will include a
diffuse interface with thickness proportional to parameter ε; and, as ε approaches
zero, we expect to recover the sharp interface separating the two different materials
(cf. for instance, Refs. 8, 14 and 66).

There exist several generalizations from the two-phase model to the three-phase
model (cf. Refs. 6, 7 and 30). In this paper, we adopt the approach used in Ref. 7,
where the free energy is defined as follows:

Etriph(c1, c2, c3) =
∫

Ω

(
3
8

3∑
i=1

Σiε|∇ci|2 +
12
ε

F (c1, c2, c3)

)
dx, (2.5)

where the coefficient of entropic terms Σi can be negative for some specific situa-
tions.

To be algebraically consistent with the two-phase system, the three-surface ten-
sion parameters σ12, σ13, σ23 should satisfy the following conditions:

Σi = σij + σik − σjk, i = 1, 2, 3. (2.6)

The nonlinear potential F (c1, c2, c3) is:

F = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3)

+ 3Λc2
1c

2
2c

2
3. (2.7)

Since c1, c2, c3 satisfy the hyperplane link condition (2.2), the free energy can be
rewritten as

F (c1, c2, c3) = F0(c1, c2, c3) + P (c1, c2, c3), (2.8)

where

F0(c1, c2, c3) =
Σ1

2
c2
1(1 − c1)2 +

Σ2

2
c2
2(1 − c2)2 +

Σ3

2
c2
3(1 − c3)2,

P (c1, c2, c3) = 3Λc2
1c

2
2c

2
3,

(2.9)

and Λ is a non-negative constant.
Here we denote ∂i as ∂ci . We also denote by (f(x), g(x)) =

∫
Ω f(x)g(x)dx the

L2-inner product of any two functions f(x) and g(x), and by ‖f‖ =
√

(f, f) the
L2-norm of the function f(x). We assume that the time evolution of ci is governed
by the gradient of the energy Etriph with respect to the H−1(Ω) gradient flow,
namely, the Cahn–Hilliard dynamics as follows:

cit =
M0

Σi
∆µi, (2.10)

µi = −3
4
εΣi∆ci +

12
ε

∂iF + βL, i = 1, 2, 3, (2.11)
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with the initial condition

ci|(t=0) = c0
i , i = 1, 2, 3, c0

1 + c0
2 + c0

3 = 1, (2.12)

where βL is the Lagrange multiplier to ensure the hyperplane link condition (2.2),
that can be derived as

βL = −4ΣT

ε

(
1

Σ1
∂1F +

1
Σ2

∂2F +
1

Σ3
∂3F

)
, (2.13)

with
3

ΣT
=

1
Σ1

+
1

Σ2
+

1
Σ3

. (2.14)

We consider in this paper either of the two type boundary conditions below:

(i) all variables are periodic, (2.15)

or (ii) ∂nci|∂Ω = ∇µi · n|∂Ω = 0, i = 1, 2, 3, (2.16)

where n is the unit outward normal of the boundary ∂Ω.
It is easily seen that the three chemical potentials (µ1, µ2, µ3) are linked through

the relation
µ1

Σ1
+

µ2

Σ2
+

µ3

Σ3
= 0. (2.17)

Remark 2.1. In the physical literature, the coefficient Σi is called the spreading
coefficient of phase i at the interface between phases j and k. Since Σi is determined
by the surface tensions σi,j , it might not be always positive. If Σi > 0, the spreading
is said to be “partial”, and if Σi < 0, it is called “total”.

The following lemmas hold (cf. Ref. 6):

Lemma 2.1. There exists a constant Σ > 0 such that:

Σ1|ξ1|2 + Σ2|ξ2|2 + Σ3|ξ3|2 ≥ Σ(|ξ1|2 + |ξ2|2 + |ξ3|2), ∀ ξ1 + ξ2 + ξ3 = 0,

(2.18)

if and only if the following condition holds:

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0, Σi + Σj > 0, ∀ i �= j. (2.19)

Lemma 2.2. Let σ12, σ13 and σ23 be three positive numbers and Σ1, Σ2 and Σ3

defined in (2.6). For any Λ > 0, the bulk free energy F (c1, c2, c3) defined in (2.8)
is bounded below if c1, c2, c3 is on the hyperplane S in 2D. Furthermore, the lower
bound only depends on Σ1, Σ2, Σ3 and Λ.

Remark 2.2. From Lemma 2.1, when (2.19) holds, the summation of the gradient
entropy term is bounded below since ∇(c1 + c2 + c3) = 0, i.e.

Σ1‖∇c1‖2 + Σ2‖∇c2‖2 + Σ3‖∇c3‖2 ≥ Σ(‖∇c1‖2 + ‖∇c2‖2 + ‖∇c3‖2) ≥ 0.

(2.20)

Remark 2.3. The bulk energy F (c1, c2, c3) defined in (2.8) has to be bounded
below in order to form a meaningful physical system. For partial spreading case
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(Σi > 0 ∀ i), one can drop the sixth-order polynomial term by assuming Λ = 0 since
F0(c1, c2, c3) ≥ 0 is naturally satisfied. For the total spreading case, Λ has to be
nonzero. Moreover, to ensure the non-negativity for F , Λ has to be large enough.

For 3D case, it is shown in Ref. 6 that the bulk energy F is bounded below when
P (c1, c2, c3) takes the following form:

P (c1, c2, c3) = 3Λc2
1c

2
2c

2
3(φα(c1) + φα(c2) + φα(c3)), (2.21)

where φα(x) = 1
(1+x2)α with 0 < α ≤ 8

17 .
Since (2.9) is commonly used in the literature (cf. Refs. 6 and 7), we adopt it

here for convenience. Nonetheless, it will be clear that the numerical schemes we
develop in this paper can deal with either (2.9) or (2.21) without any difficulties.

Remark 2.4. System (2.10)–(2.11) is equivalent to the following system with two-
order parameters, 

cit =
M0

Σi
∆µi,

µi = −3
4
εΣi∆ci +

12
ε

∂iF + βL, i = 1, 2,

c3 = 1 − c1 − c2,

µ3

Σ3
= −

(
µ1

Σ1
+

µ2

Σ2

)
.

(2.22)

We omit the detailed proof since it is quite similar to Theorem 3.1 in Sec. 3.

The model equation (2.10)–(2.11) obeys an energy dissipation law. More pre-
cisely, by taking the L2-inner product of (2.10) with −µi, and of (2.11) with cit,
and performing integration by parts, we obtain:

−(cit, µi) =
M0

Σi
‖∇µi‖2, (2.23)

(µi, cit) =
3
4
εΣi(∇ci, ∂t∇ci) +

12
ε

(∂iF, cit) + (βL, cit). (2.24)

Taking the summation of the two equalities for i = 1, 2, 3, and noticing that
(βL, (c1 + c2 + c3)t) = (βL, (1)t) = 0, we obtain the energy dissipative law:

d

dt
Etriph(c1, c2, c3) = −M0

(
1

Σ1
‖∇µ1‖2 +

1
Σ2

‖∇µ2‖2 +
1

Σ3
‖∇µ3‖2

)
. (2.25)

Since (µ1, µ2, µ3) satisfies condition (2.17), if (2.19) holds, we have

−M0

3∑
i=1

1
Σi

‖∇µi‖2 ≤ −M0Σ
3∑

i=1

‖∇µi‖2

Σ2
i

≤ 0. (2.26)

In other words, the energy Etriph(c1, c2, c3) decays and the decay rate is
−M0( 1

Σ1
‖∇µ1‖2 + 1

Σ2
‖∇µ2‖2 + 1

Σ3
‖∇µ3‖2).

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

19
93

-2
03

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/2
3/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 22, 2017 8:54 WSPC/103-M3AS 1750037

2000 X. Yang et al.

3. Numerical Schemes

We develop in this section a set of linear, first- and second-order, unconditionally
energy stable schemes for solving the three-component phase-field model (2.10)–
(2.11). To this end, the main challenges are how to discretize the following three
terms: (i) the nonlinear term associated with the double-well potential F0; (ii) the
sixth-order polynomial term P ; (iii) the Lagrange multiplier term βL, especially
when some Σi < 0 (total spreading).

We notice that for the two-phase Cahn–Hilliard model, the discretization of
the nonlinear, cubic polynomial term induced from the double-well potential had
been well studied (cf. Refs. 28, 33, 35, 38 and 50). In summary, there are two
commonly used techniques to discretize it in order to preserve the unconditional
energy stability. The first is the convex splitting approach,17,24,25,41,74,75 where the
convex part of the potential is treated implicitly and the concave part is treated
explicitly. The convex splitting approach is energy stable, however, it produces
nonlinear schemes, thus the implementations are often complicated with potentially
high computational costs.

The second technique is the stabilization approach10,34,37,42–44,46–49,53,54,56,57,65,

68,71 where the nonlinear term is treated explicitly. In order to preserve the
energy law, a linear stabilizing term has to be added, and the magnitude of that
term usually depends on the upper bound of the second-order derivative of the
Ginzburg–Landau double-well potential. The stabilizer approach leads purely to
linear schemes, thus it is easy to implement and solve. However, it appears that
second-order schemes based on the stabilization are only conditionally energy sta-
bility.44 On the other hand, the nonlinear potential may not satisfy the condition
required for the stabilization (the generalized maximum principle). A feasible rem-
edy is to make some reasonable revisions to the nonlinear potential outside the
physically accessible regions in order to obtain a finite bound, for example, the
quadratic order cut-off functions for the double-well potential (cf. Refs. 44 and 53).
Such method is particularly reliable for those models with the maximum principle.
However, if the maximum principle does not hold, modified nonlinear potentials
may lead to spurious solutions.

For the three-component Cahn–Hilliard model system, the above two approaches
cannot be easily applied. First of all, even though the convex–concave decomposition
can be applied to F0, it is not clear how to deal with the sixth-order polynomial
term.7 Second, it is uncertain whether the solution of the system satisfies a certain
maximum principle so the condition required for stabilization is not satisfied. Third,
unconditionally energy stable schemes are hardly obtained for both approaches if
second-order schemes are considered.

We aim to develop numerical schemes that are efficient (linear system), sta-
ble (unconditionally energy stable), and accurate (up to second-order in time). To
this end, we use the IEQ approach, without worrying about whether the continu-
ous/discrete maximum principle holds or a convexity/concavity splitting exists.
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3.1. Transformed system

Since F (c1, c2, c3) is always bounded below from Lemma 2.2 for 2D and Remark 2.3
for 3D, we can rewrite the free energy functional F (c1, c2, c3) in the following equiv-
alent form

F (c1, c2, c3) = (F (c1, c2, c3) + B) − B, (3.1)

where B is a constant to ensure F (c1, c2, c3) + B > 0. In addition, we define an
auxiliary function as follows,

U =
√

F (c1, c2, c3) + B. (3.2)

Then, the total free energy (2.5) can be rewritten as

Etriph(c1, c2, c3, U) =
∫

Ω

(
3∑

i=1

3
8
Σiε|∇ci|2 +

12
ε

U2

)
dx − 12

ε
B|Ω|. (3.3)

Thus, we can rewrite system (2.10)–(2.11) to the following equivalent form with
four unknowns (c1, c2, c3, U):

cit =
M0

Σi
∆µi, (3.4)

µi = −3
4
εΣi∆ci +

24
ε

Hi(c1, c2, c3)U + β(c1, c2, c3, U), i = 1, 2, 3, (3.5)

Ut = H1(c1, c2, c3)c1t + H2(c1, c2, c3)c2t + H3(c1, c2, c3)c3t, (3.6)

where 

H1(c1, c2, c3) =
δU

δc1
=

1
2

Σ1
2 (c1 − c2

1)(1 − 2c1) + 6Λc1c
2
2c

2
3√

F (c1, c2, c3) + B
,

H2(c1, c2, c3) =
δU

δc2
=

1
2

Σ2
2 (c2 − c2

2)(1 − 2c2) + 6Λc2
1c2c

2
3√

F (c1, c2, c3) + B
,

H3(c1, c2, c3) =
δU

δc3
=

1
2

Σ3
2 (c3 − c2

3)(1 − 2c3) + 6Λc2
1c

2
2c3√

F (c1, c2, c3) + B
,

β(c1, c2, c3, U) = −8
ε
ΣT U

3∑
i=1

1
Σi

Hi(c1, c2, c3).

(3.7)

The transformed system (3.4)–(3.6) in the variables (c1, c2, c3, U) form a closed
PDE system with the following initial conditions,{

ci(t = 0) = c0
i , i = 1, 2, 3,

U(t = 0) = U0 =
√

F (c0
1, c

0
2, c

0
3) + B.

(3.8)

Note that we do not need any boundary conditions for U since Eq. (3.6) for it is only
ordinary differential equation with respect to time, i.e. the boundary conditions of
the new system (3.4)–(3.6) are still (2.16).
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Remark 3.1. The system (3.4)–(3.6) is equivalent to the following two-order
parameter system 

cit =
M0

Σi
∆µi,

µi = −3
4
εΣi∆ci +

24
ε

HiU + β, i = 1, 2,

Ut = H1c1t + H2c2t + H3c3t,

(3.9)

with
c3 = 1 − c1 − c2,

µ3

Σ3
= −

(
µ1

Σ1
+

µ2

Σ2

)
.

(3.10)

Since the proof is quite similar to Theorem 3.1, we omit the details here.

We can easily obtain the energy law for the new system (3.4)–(3.6). Taking the
L2-inner product of (3.4) with −µi, of (3.5) with ∂tci, of (3.6) with − 24

ε U , taking
the summation for i = 1, 2, 3, and noticing that (β, ∂t(c1 + c2 + c3)) = 0 from
Remark 3.1, we obtain the energy dissipation law as follows:

d

dt
Etriph(c1, c2, c3, U) = −M0

(
1

Σ1
‖∇µ1‖2 +

1
Σ2

‖∇µ2‖2 +
1

Σ3
‖∇µ3‖2

)

≤−M0Σ
(‖∇µ1‖2

Σ2
1

+
‖∇µ2‖2

Σ2
2

+
‖∇µ3‖2

Σ2
3

)
≤ 0. (3.11)

Remark 3.2. The new transformed system (3.4)–(3.6) is equivalent to the original
system (2.10)–(2.11) since (3.2) can be obtained by integrating (3.6) with respect
to time. Therefore, the energy law (3.11) for the transformed system is exactly the
same as the energy law (2.25) for the original system. We emphasize that we will
develop energy stable numerical schemes for the new transformed system (3.4)–
(3.6). The proposed schemes will follow a discrete energy law corresponding to
(3.11) instead of the energy law for the original system (2.25).

3.2. First-order scheme

We now present the first-order time stepping scheme to solve the system (3.4)–
(3.6) where the time derivative is discretized based on the first-order backward
Euler method.

We fix the notations here. Let δt > 0 denote the time step size and set tn = n δt

for 0 ≤ n ≤ N with T = Nδt.
Assuming that (c1, c2, c3, U)n are already calculated, we compute (c1, c2, c3,

U)n+1 from the following temporal discrete system:

cn+1
i − cn

i

δt
=

M0

Σi
∆µn+1

i , (3.12)
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µn+1
i = −3

4
εΣi∆cn+1

i +
24
ε

Hn
i Un+1 + βn+1, i = 1, 2, 3, (3.13)

Un+1 − Un = Hn
1 (cn+1

1 − cn
1 ) + Hn

2 (cn+1
2 − cn

2 ) + Hn
3 (cn+1

3 − cn
3 ), (3.14)

where 

Hn
1 =

1
2

Σ1
2 (cn

1 − cn
1

2)(1 − 2cn
1 ) + 6Λcn

1 cn
2

2cn
3

2√
F (cn

1 , cn
2 , cn

3 ) + B
,

Hn
2 =

1
2

Σ2
2 (cn

2 − cn
2

2)(1 − 2cn
2 ) + 6Λcn

1
2cn

2 cn
3

2√
F (cn

1 , cn
2 , cn

3 ) + B
,

Hn
3 =

1
2

Σ3
2 (cn

3 − cn
3

2)(1 − 2cn
3 ) + 6Λcn

1
2cn

2
2cn

3√
F (cn

1 , cn
2 , cn

3 ) + B
,

βn+1 = −8
ε
ΣT

(
1
Σ1

Hn
1 +

1
Σ2

Hn
2 +

1
Σ3

Hn
3

)
Un+1.

(3.15)

The initial conditions are (3.8), and the boundary conditions are:

(i) all variables are periodic; or (ii) ∂ncn+1
i |∂Ω = ∇µn+1

i · n|∂Ω = 0,

i = 1, 2, 3. (3.16)

We immediately derive the following result which ensures the numerical solu-
tions satisfy the hyperplane condition (2.2).

Theorem 3.1. System of (3.12)–(3.14) is equivalent to the following scheme with
two-order parameters:

cn+1
i − cn

i

δt
=

M0

Σi
∆µn+1

i , (3.17)

µn+1
i = −3

4
εΣ1∆cn+1

i +
24
ε

Hn
i Un+1 + βn+1, i = 1, 2, (3.18)

Un+1 − Un = Hn
1 (cn+1

1 − cn
1 ) + Hn

2 (cn+1
2 − cn

2 ) + Hn
3 (cn+1

3 − cn
3 ), (3.19)

with

cn+1
3 = 1 − cn+1

1 − cn+1
2 , (3.20)

µn+1
3

Σ3
= −

(
µn+1

1

Σ1
+

µn+1
2

Σ2

)
. (3.21)

Proof. From (3.15), we can easily show that the following identity holds,

24
ε

(
Hn

1

Σ1
+

Hn
2

Σ2
+

Hn
3

Σ3

)
Un+1 + βn+1

(
1

Σ1
+

1
Σ2

+
1
Σ3

)
= 0. (3.22)
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• We first assume that (3.17)–(3.21) are satisfied, and derive (3.12)–(3.13). By
taking the summation of (3.17) for i = 1, 2, and applying (3.20) and (3.21), we
obtain

cn+1
3 − cn

3

δt
=

M0

Σ3
∆µn+1

3 . (3.23)

From (3.18), (3.20)–(3.22), we obtain

µn+1
3 = −Σ3

(
µn+1

1

Σ1
+

µn+1
2

Σ2

)
= −Σ3

(
−3

4
ε∆cn+1

1 − 3
4
ε∆cn+1

2 +
24
ε

(
Hn

1

Σ1
+

Hn
2

Σ2

)
Un+1

+ βn+1

(
1

Σ1
+

1
Σ2

))
=

3
4
εΣ3∆cn+1

3 +
24
ε

Hn
3 Un+1 + βn+1. (3.24)

• We then assume that (3.12)–(3.13) are satisfied and derive (3.17)–(3.21). By
taking the summation of (3.12) for i = 1, 2, 3, we derive

Sn+1 − Sn

δt
= M0∆Θn+1, (3.25)

where Sn = cn
1 + cn

2 + cn
3 and Θn+1 = 1

Σ1
µn+1

1 + 1
Σ2

µn+1
2 + 1

Σ3
µn+1

3 . From (3.13)
and (3.22), we derive

Θn+1 = −3
4
ε∆Sn+1. (3.26)

By taking the L2-inner product of (3.25) with −Θn+1, of (3.26) with Sn+1 −Sn,
and taking the summation of the two equalities above, we derive

3
8
ε(‖∇Sn+1‖2 − ‖∇Sn‖2 + ‖∇Sn+1 −∇Sn‖2) + δtM0‖∇Θn+1‖2 = 0. (3.27)

Since Sn =1, the left-hand side of (3.27) is a sum of non-negative terms, thus
∇Sn+1 = 0, and ∇Θn+1 = 0, i.e. the functions Sn+1 and Θn+1 are constants.
Then (3.26) leads to Θn+1 = 0, and (3.25) leads to Sn+1 = Sn =1. Thus, we obtain
(3.20). By dividing Σi for (3.13) and taking the summation of it for i = 1, 2, 3,
and applying (3.22) and (3.20), we obtain (3.21).

The most interesting property of the above scheme is that the nonlinear coef-
ficient Hi of the new variable U are treated explicitly, which can tremendously
speed up the computation in practice. More specifically, we can rewrite Eq. (3.14)
as follows:

Un+1 = Hn
1 cn+1

1 + Hn
2 cn+1

2 + Hn
3 cn+1

3 + Qn
1 , (3.28)

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

19
93

-2
03

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/2
3/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 22, 2017 8:54 WSPC/103-M3AS 1750037

Cahn–Hilliard phase-field model 2005

where Qn
1 = Un − Hn

1 cn
1 − Hn

2 cn
2 − Hn

3 cn
3 . Thus, the system (3.12)–(3.14) can be

rewritten as:

cn+1
i − cn

i

δt
=

M0

Σi
∆µn+1

i , (3.29)

µn+1
i = −3

4
εΣi∆cn+1

i +
24
ε

Hn
i (Hn

1 cn+1
1 + Hn

2 cn+1
2 + Hn

3 cn+1
3 )

+ β
n+1

+ gn
i , i = 1, 2, 3, (3.30)

where
β

n+1
= −8

ε
ΣT

(
1

Σ1
Hn

1 +
1

Σ2
Hn

2 +
1

Σ3
Hn

3

)
(Hn

1 cn+1
1 + Hn

2 cn+1
2 + Hn

3 cn+1
3 ),

gn
i =

24
ε

Hn
i Qn

1 − 8
ε
ΣT

(
1

Σ1
Hn

1 +
1

Σ2
Hn

2 +
1

Σ3
Hn

3

)
Qn

1 .

Theorem 3.2. Assuming (2.19), linear system (3.29)–(3.30) for the variable C =
(cn+1

1 , cn+1
2 , cn+1

3 )T is symmetric (self-adjoint) and positive definite.

Proof. Taking the L2-inner product of (3.29) with 1, we derive∫
Ω

cn+1
i dx =

∫
Ω

cn
i dx = · · · =

∫
Ω

c0
i dx. (3.31)

Let α0
i = 1

|Ω|
∫
Ω c0

i dx, γ0
i = 1

|Ω|
∫
Ω µn+1

i dx, and define

ĉ n+1
i = cn+1

i − α0
i , µ̂n+1

i = µn+1
i − γ0

i . (3.32)

Thus, from (3.29)–(3.30), (ĉn+1
i , µ̂n+1

i ) are the solutions for the following equations
with unknowns (Ci, µi),

Ci

M0δt
− 1

Σi
∆µi =

ĉn
i

M0δt
, (3.33)

µi + γ0
i = −3

4
εΣi∆Ci +

24
ε

Hn
i P (C1, C2, C3) + β̂(C1, C2, C3) + ĝ n

i , (3.34)

where
P (C1, C2, C3) = Hn

1 C1 + Hn
2 C2 + Hn

3 C3,

β̂(C1, C2, C3) = −8
ε
ΣT

(
1

Σ1
Hn

1 +
1
Σ2

Hn
2 +

1
Σ3

Hn
3

)
P (C1, C2, C3),

and gn
i includes all known terms in the nth step, and

C1 + C2 + C3 = 0,

∫
Ω

Cidx = 0,

∫
Ω

µidx = 0. (3.35)
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We define the inverse Laplace operator u (with
∫
Ω udx = 0) �→ v := ∆−1u by{

∆v = u,
∫
Ω

vdx = 0,

with the boundary conditions either (i) v is periodic; or (ii) ∂nv|∂Ω = 0.

(3.36)

Applying −∆−1 to (3.33) and using (3.34), we obtain

− Σi

M0δt
∆−1Ci − 3

4
εΣi∆Ci +

24
ε

Hn
i P (C1, C2, C3) + β̂(C1, C2, C3) − γ0

i

= −Σi∆−1 ĉn
i

M0δt
− ĝ n

i , i = 1, 2, 3. (3.37)

We consider the weak form of the above system, i.e. for any i = 1, 2, 3, Di ∈ H1(Ω)
with

∫
Ω Didx = 0 and

∑3
i=1 Di = 0, we have

− Σi

M0δt
(∆−1Ci, Di) +

3
4
εΣi(∇Ci,∇Di) +

24
ε

(Hn
i P, Di) + (β̂, Di)

=
(
−Σi∆−1 ĉn

i

M0δt
− ĝ n

i , Di

)
, i = 1, 2, 3. (3.38)

We express the above linear system (3.38) as (AC,D) = (b,D), where C =
(C1, C2, C3)T and D = (D1, D2, D3)T .

We can easily derive

(AC,D) = (C, AD), (3.39)

thus A is self-adjoint.
Moreover, from

∑3
i=1 Ci = 0, we have

(AC,C) =
1

M0δt
(Σ1(−∆−1C1, C1) + Σ2(−∆−1C2, C2) + Σ3(−∆−1C3, C3))

+
3
4
ε

3∑
i=1

Σi‖∇Ci‖2 +
24
ε
‖Hn

1 C1 + Hn
2 C2 + Hn

3 C3‖2. (3.40)

Let di = ∆−1Ci, i.e.

∆di = Ci,

∫
Ω

didx = 0, (3.41)

with periodic boundary conditions or ∂ndi|∂Ω = 0. Therefore, we have

(−∆−1Ci, Ci) = ‖∇di‖2. (3.42)

Furthermore, Z = d1 + d2 + d3 satisfies

∆Z = 0,

∫
Ω

Zdx = 0, (3.43)
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with periodic boundary conditions or ∂nZ|∂Ω = 0. Thus, Z = d1 + d2 + d3 = 0.
From (2.20), we derive

(AC,C) ≥ 1
M0δt

Σ(‖∇d1‖2 + ‖∇d2‖2 + ‖∇d3‖2)

+
3
4
Σε(‖∇C1‖2 + ‖∇C2‖2 + ‖∇C3‖2)

+
24
ε
‖Hn

1 C1 + Hn
2 C2 + Hn

3 C3‖2 ≥ 0, (3.44)

and (AC,C) = 0 if and only if C = 0. Thus, we conclude the theorem.

Remark 3.3. We can show the well-posedness of the linear system (AC,D) =
(b,D) from the Lax–Milgram theorem noticing that the linear operator A is
bounded and coercive in H1(Ω). We leave the detailed proof to the interested read-
ers since the proof is rather standard.

Remark 3.4. From Theorem 3.1, the linear system (3.12)–(3.14) with three
unknowns and the linear system (3.17)–(3.19) with two unknowns, are equivalent.
In our numerical tests, we find that the solutions of these two schemes are identical
up to the machine accuracy.

In practice, we directly solve the linear system (3.29)–(3.30) instead of using
the inverse Laplacian operator (−∆)−1 since it is a non-local operator and thus
it is not efficient to implement in physical space. Moreover, notice that the term
Hn

i (Hn
1 cn+1

1 +Hn
2 cn+1

2 +Hn
3 cn+1

3 ) in (3.30) will lead to a full matrix, therefore, we use
a preconditioned conjugate gradient (PCG) method with an optimal preconditioner
constructed by an approximate problem of (3.30) where Hn

i Hn
j is replaced by a

constant max∀x(Hn
i Hn

j ). In this way, the system (3.29)–(3.30) can be solved very
efficiently.

The stability result of the first-order scheme (3.12)–(3.14) is given below.

Theorem 3.3. When (2.19) holds, the first-order linear scheme given in (3.12)–
(3.14) is unconditionally energy stable, i.e. satisfies the following discrete energy
dissipation law:

1
δt

(En+1
1st − En

1st) ≤ −M0Σ
(‖∇µn+1

1 ‖2

Σ2
1

+
‖∇µn+1

2 ‖2

Σ2
2

+
‖∇µn+1

3 ‖2

Σ2
3

)
, (3.45)

where En
1st is defined by

En
1st =

3
8
Σ1ε‖∇cn

1‖2 +
3
8
Σ2ε‖∇cn

2‖2 +
3
8
Σ3ε‖∇cn

3‖2 +
12
ε
‖Un‖2 − 12

ε
B|Ω|.

(3.46)

Proof. Taking the L2-inner product of (3.12) with −δtµn+1
i , we obtain

−(cn+1
i − cn

i , µn+1
i ) = δt

M0

Σi
‖∇µn+1

i ‖2. (3.47)
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Taking the L2-inner product of (3.13) with cn+1
i − cn

i and applying the following
identities

2(a − b, a) = |a|2 − |b|2 + |a − b|2, (3.48)

we derive

(µn+1
i , cn+1

i − cn
i ) =

3
8
εΣi(‖∇cn+1

i ‖2 − ‖∇cn
i ‖2 + ‖∇cn+1

i −∇cn
i ‖2)

+
24
ε

(Hn
i Un+1, cn+1

i − cn
i ) + (βn+1, cn+1

i − cn
i ). (3.49)

Taking the L2-inner product of (3.14) with 24
ε Un+1, we obtain

12
ε

(‖Un+1‖2 − ‖Un‖2 + ‖Un+1 − Un‖2)

=
24
ε

(
(Hn

1 (cn+1
1 − cn

1 ), Un+1)(Hn
2 (cn+1

2 − cn
2 ), Un+1)

+ (Hn
3 (cn+1

3 − cn
3 ), Un+1)

)
. (3.50)

Combining (3.47), (3.49), taking the summation for i = 1, 2, 3 and using (3.50)
and (3.20), we have

3
8
ε

3∑
i=1

Σi(‖∇cn+1
i ‖2 − ‖∇cn

i ‖2) +
3
8
ε

3∑
i=1

Σi‖∇cn+1
i −∇cn

i ‖2

+
12
ε

(‖Un+1‖2 − ‖Un‖2)

= −M0

(
1

Σ1
‖∇µn+1

1 ‖2 +
1
Σ2

‖∇µn+1
2 ‖2 +

1
Σ3

‖∇µn+1
3 ‖2

)
≤ −M0Σ(‖∇µn+1

1 ‖2 + ‖∇µn+1
2 ‖2 + ‖∇µn+1

3 ‖2) ≤ 0, (3.51)

where the term associated with βn+1 vanishes since
∑3

i=1 cn+1
i =

∑3
i=1 cn

i = 1.
Noticing that

∑3
i=1 ∇(cn+1

i − cn
i ) = 0, we derive

3∑
i=1

(Σi‖∇cn+1
i −∇cn

i ‖2) ≥ Σ
3∑

i=1

(‖∇cn+1
i −∇cn

i ‖2) ≥ 0. (3.52)

Therefore, the desired result (3.45) is obtained after we drop this positive term.

Remark 3.5. We remark that the discrete energy E1st defined in (3.46) is bounded
below. Such property is particularly significant. Otherwise, energy stability does not
make any sense.

The essential idea of the IEQ method is to transform the complicated nonlinear
potentials into a simple quadratic form in terms of some new variables via a change
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of variables. Such a simple way of quadratization provides some great advantages.
First, the complicated nonlinear potential is transferred to a quadratic polynomial
form that is much easier to handle. Second, the derivative of the quadratic poly-
nomial is linear, which provides the fundamental support for linearization. Third,
the quadratic formulation in terms of new variables can automatically keep the
nonlinear potential bounded below. We notice that the convexity is required in the
convex splitting approach17; and the boundedness for the second-order derivative
is required in the stabilization approach.44,53 Compared with those two methods,
the IEQ method provides much more flexibilities to treat the complicated nonlin-
ear terms since the only request of it is that the nonlinear potential is bounded
below.

Meanwhile, the choice of new variables is not unique. For instance, for the
partial spreading case where Σi > 0, ∀ i, we can define four functions Û1, Û2, Û3, V

as follows:

Ûi = ci(1 − ci), i = 1, 2, 3,

V = c1c2c3.
(3.53)

Thus, the free energy becomes

E(Û1, Û2, Û3, V ) =
∫

Ω

(
3
8
Σ1ε|∇c1|2 +

3
8
Σ2ε|∇c2|2 +

3
8
Σ3ε|∇c3|2

+
12
ε

(
Σ1

2
Û2

1 +
Σ2

2
Û2

2 +
Σ3

2
Û2

3 + 3ΛV 2

))
dx. (3.54)

For this new definition of the free energy, one can carry out a similar analysis. The
details are left to the interested readers. However, we notice that this particular
transformation only works for the partial spreading case. For the total spreading
case, since for some i, Σi < 0, the energy defined in (3.54) may not be bounded
below. This is the particular reason why we define the new variable U in (3.2) in
this paper.

As it is shown, the IEQ approach is able to provide enough flexibilities to derive
the equivalent PDE system, which then leads to corresponding numerical schemes
with desired properties such as unconditional energy stability and linearity.

Remark 3.6. The proposed scheme follows the new energy dissipation law (3.11)
instead of the energy law for the originated system (2.25). For time-continuous case,
(3.11) and (2.25) are identical. For time-discrete case, the discrete energy law (3.45)
is the first-order approximation to the new energy law (3.11). Moreover, the discrete
energy functional En+1

1st is also the first-order approximation to E(φn+1) (defined in

(2.5)), since Un+1 is the first-order approximations to
√

F (cn+1
1 , cn+1

2 , cn+1
3 ) + B,

that can be observed from the following facts, heuristically. We rewrite (3.14) as
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follows:

Un+1 −
√

F (cn+1
1 , cn+1

2 , cn+1
3 ) + B = Un −

√
F (cn

1 , cn
2 , cn

3 ) + B + Rn+1, (3.55)

where Rn+1 = O(
∑3

i=1(c
n+1
i − cn

i )2). Since Rk = O(δt2) for 0 ≤ k ≤ n + 1 and
U0 =

√
F (c0

1, c
0
2, c

0
3) + B , then by mathematical induction we can easily get

Un+1 =
√

F (cn+1
1 , cn+1

2 , cn+1
3 ) + B + O(δt). (3.56)

3.3. Second-order scheme based on Crank–Nicolson

We now present a second-order time stepping scheme to solve the system (3.4)–(3.6).
Assuming that (c1, c2, c3, U)n and (c1, c2, c3, U)n−1 are already calculated, we

compute (c1, c2, c3, U)n+1 from the following temporal discrete system:

cit =
M0

Σi
∆µ

n+ 1
2

i , (3.57)

µ
n+ 1

2
i = −3

4
εΣi∆

cn+1
i + cn

i

2
+

24
ε

H
∗,n+ 1

2
i Un+ 1

2 + βn+ 1
2 , i = 1, 2, 3, (3.58)

Un+1 − Un = H
∗,n+ 1

2
1 (cn+1

1 − cn
1 ) + H

∗,n+ 1
2

2 (cn+1
2 − cn

2 )

+ H
∗,n+ 1

2
3 (cn+1

3 − cn
3 ), (3.59)

where8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Un+ 1
2 =

Un+1 + Un

2
,

c
∗,n+ 1

2
i =

3

2
cn
i − 1

2
cn−1
i ,

H
∗,n+ 1

2
1 =

1

2

Σ1
2

 
c
∗,n+ 1

2
1 −

„
c
∗,n+ 1

2
1

«2
!„

1 − 2c
∗,n+ 1

2
1

«
+ 6Λc

∗,n+ 1
2

1

„
c
∗,n+ 1

2
2

«2 „
c
∗,n+ 1

2
3

«2

s
F

„
c
∗,n+ 1

2
1 , c

∗,n+ 1
2

2 , c
∗,n+ 1

2
3

«
+ B

,

H
∗,n+ 1

2
2 =

1

2

Σ2
2

 
c
∗,n+ 1

2
2 −

„
c
∗,n+ 1

2
2

«2
!„

1 − 2c
∗,n+ 1

2
2

«
+ 6Λ

„
c
∗,n+ 1

2
1

«2

c
∗,n+ 1

2
2

„
c
∗,n+ 1

2
3

«2

s
F

„
c
∗,n+ 1

2
1 , c

∗,n+ 1
2

2 , c
∗,n+ 1

2
3

«
+ B

,

H
∗,n+ 1

2
3 =

1

2

Σ3
2

 
c
∗,n+ 1

2
3 −

„
c
∗,n+ 1

2
3

«2
!„

1 − 2c
∗,n+ 1

2
3

«
+ 6Λ

„
c
∗,n+ 1

2
1

«2„
c
∗,n+ 1

2
2

«2

c
∗,n+ 1

2
3s

F

„
c
∗,n+ 1

2
1 , c

∗,n+ 1
2

2 , c
∗,n+ 1

2
3

«
+ B

,

βn+ 1
2 = −8

ε
ΣT

„
1

Σ1
H

∗,n+ 1
2

1 +
1

Σ2
H

∗,n+ 1
2

2 +
1

Σ3
H

∗,n+ 1
2

3

«
Un+ 1

2 .

(3.60)
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The initial conditions are (3.8) and the boundary conditions are:

(i) all variables are periodic; or (ii) ∂ncn+1
i |∂Ω = ∇µ

n+ 1
2

i · n|∂Ω = 0,

i = 1, 2, 3. (3.61)

The following theorem ensures that the numerical solution (cn+1
1 , cn+1

2 , cn+1
3 )

always satisfies the hyperplane link condition (2.2).

Theorem 3.4. System (3.57)–(3.59) is equivalent to the following scheme with
two-order parameters:

cn+1
i − cn

i

δt
=

M0

Σi
∆µ

n+ 1
2

i , (3.62)

µ
n+ 1

2
i = −3

4
εΣi∆

cn+1
i + cn

i

2
+

24
ε

H
∗,n+ 1

2
i Un+ 1

2 + βn+ 1
2 , i = 1, 2, (3.63)

with

cn+1
3 = 1 − cn+1

1 − cn+1
2 , (3.64)

µ
n+ 1

2
3

Σ3
= −

(
µ

n+ 1
2

1

Σ1
+

µ
n+ 1

2
2

Σ2

)
. (3.65)

Proof. The proof is omitted here since it is similar to that in Theorem 3.1.

Similar to the first-order scheme, we can rewrite the system (3.59) as follows:

Un+1 + Un

2
=

1
2
H

∗,n+ 1
2

1 cn+1
1 +

1
2
H

∗,n+ 1
2

2 cn+1
2 +

1
2
H

∗,n+ 1
2

3 cn+1
3 + Qn

2 , (3.66)

where Qn
2 = Un− 1

2H
∗,n+ 1

2
1 cn

1 − 1
2H

∗,n+ 1
2

2 cn
2 − 1

2H
∗,n+ 1

2
3 cn

3 . Thus, the system (3.57)–
(3.59) can be rewritten as:

cn+1
i − cn

i

δt
=

M0

Σi
∆µ

n+ 1
2

i , (3.67)

µ
n+ 1

2
i = −3

8
εΣi∆cn+1

i +
12
ε

H
∗,n+ 1

2
i

(
H

∗,n+ 1
2

1 cn+1
1 + H

∗,n+ 1
2

2 cn+1
2

+ H
∗,n+ 1

2
3 cn+1

3

)
+ β

n+ 1
2 + hn

i , i = 1, 2, 3, (3.68)

where

β
n+ 1

2 = −4
ε
ΣT

3∑
i=1

1
Σi

H
∗,n+ 1

2
i

(
H

∗,n+ 1
2

1 cn+1
1 + H

∗,n+ 1
2

2 cn+1
2 + H

∗,n+ 1
2

3 cn+1
3

)
,

hn
i = −3

8
εΣi∆cn

i +
24
ε

H
∗,n+ 1

2
i Qn

2

− 8
ε
ΣT

(
1

Σ1
H

∗,n+ 1
2

1 +
1

Σ2
H

∗,n+ 1
2

2 +
1

Σ3
H

∗,n+ 1
2

3

)
Qn

2 .
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Theorem 3.5. The linear system given by (3.67) and (3.68) for variable Φ =
(cn+1

1 , cn+1
2 , cn+1

3 )T is self-adjoint and positive definite.

Proof. The proof is omitted here since it is similar to that of Theorem 3.2.

The stability result of the second-order Crank–Nicolson scheme (3.57)–(3.59) is
given below.

Theorem 3.6. Assuming (2.19), the second-order Crank–Nicolson scheme (3.57)–
(3.59) is unconditionally energy stable and satisfies the following discrete energy
dissipation law :

1
δt

(En+1
cn − En

cn) = −M0

(
1

Σ1

∥∥∥∇µ
n+ 1

2
1

∥∥∥2

+
1

Σ2

∥∥∥∇µ
n+ 1

2
2

∥∥∥2

+
1

Σ3

∥∥∥∇µ
n+ 1

2
3

∥∥∥2
)

≤ −M0Σ


∥∥∥∇µ

n+ 1
2

1

∥∥∥2

Σ2
1

+

∥∥∥∇µ
n+ 1

2
2

∥∥∥2

Σ2
2

+

∥∥∥∇µ
n+ 1

2
3

∥∥∥2

Σ2
3

, (3.69)

where En
cn that is defined by

En
cn =

3
8
Σ1ε‖∇cn

1‖2 +
3
8
Σ2ε‖∇cn

2‖2

+
3
8
Σ3ε‖∇cn

3‖2 +
12
ε
‖Un‖2 − 12

ε
B|Ω|. (3.70)

Proof. Taking the L2-inner product of (3.57) with −δtµn+1
i , we obtain

−
(
cn+1
i − cn

i , µ
n+ 1

2
i

)
= δt

M0

Σi

∥∥∥∇µ
n+ 1

2
i

∥∥∥2

. (3.71)

Taking the L2-inner product of (3.58) with cn+1
i − cn

i , we obtain(
µ

n+ 1
2

i , cn+1
i − cn

i

)
=

3
8
εΣi(‖∇cn+1

i ‖2 − ‖∇cn
i ‖2)

+
24
ε

(
H

∗,n+ 1
2

i Un+ 1
2 , cn+1

i − cn
i

)
+
(
βn+ 1

2 , cn+1
i − cn

i

)
. (3.72)

Taking the L2-inner product of (3.59) with 24
ε Un+ 1

2 , we obtain

24
ε

((
H

∗,n+ 1
2

1 (cn+1
1 − cn

1 ), Un+ 1
2

)
+
(
H

∗,n+ 1
2

2 (cn+1
2 − cn

2 ), Un+ 1
2

)
+
(
H

∗,n+ 1
2

3 (cn+1
3 − cn

3 ), Un+ 1
2

))
=

12
ε

(‖Un+1‖2 − ‖Un‖2). (3.73)
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Combining (3.71), (3.72) for i = 1, 2, 3 and (3.73), we derive

3
8
ε

3∑
i=1

Σi

(
‖∇cn+1

i ‖2 − ‖∇cn
i ‖2
)

+
12
ε

(
‖Un+1‖2 − ‖Un‖2

)

= −M0

(
1
Σ1

∥∥∥∇µ
n+ 1

2
1

∥∥∥2

+
1

Σ1

∥∥∥∇µ
n+ 1

2
1

∥∥∥2

+
1

Σ1

∥∥∥∇µ
n+ 1

2
1

∥∥∥2
)

≤ −M0Σ0


∥∥∥∇µ

n+ 1
2

1

∥∥∥2

Σ2
1

+

∥∥∥∇µ
n+ 1

2
2

∥∥∥2

Σ2
2

+

∥∥∥∇µ
n+ 1

2
3

∥∥∥2

Σ2
3

. (3.74)

Thus, we obtain the desired result (3.69).

3.4. Second-order BDF scheme

Now we develop another second-order scheme based on the Adam–Bashforth
approach (BDF2).

Assuming that (c1, c2, c3, U)n and (c1, c2, c3, U)n−1 are already calculated, we
compute (c1, c2, c3, U)n+1 from the following discrete system:

3cn+1
i − 4cn

i + cn−1
i

2δt
=

M0

Σi
∆µn+1

i , (3.75)

µn+1
i = −3

4
εΣi∆cn+1

i +
24
ε

H†,n+1
i Un+1 + βn+1, i = 1, 2, 3,

(3.76)

3Un+1 − 4Un + Un−1 = H†,n+1
1 (3cn+1

1 − 4cn
1 + cn−1

1 )

+ H†,n+1
2 (3cn+1

2 − 4cn
2 + cn−1

2 )

+ H†,n+1
3 (3cn+1

3 − 4cn
3 + cn−1

3 ), (3.77)

where 

c†i = 2cn
i − cn−1

i ,

H†,n+1
1 =

1
2

Σ1
2

(
c†1 − c†1

2
)
(1 − 2c†1) + 6Λc†1c

†
2

2
c†3

2√
F (c†1, c

†
2, c

†
3) + B

,

H†,n+1
2 =

1
2

Σ2
2

(
c†2 − c†2

2
)
(1 − 2c†2) + 6Λc†1

2
c†2c

†
3

2√
F (c†1, c

†
2, c

†
3) + B

,

H†,n+1
3 =

1
2

Σ3
2

(
c†3 − c†3

2
)
(1 − 2c†3) + 6Λc†1

2
c†2

2
c†3√

F (c†1, c
†
2, c

†
3) + B

,

βn+1 = −8
ε
ΣT

(
1

Σ1
H†,n+1

1 +
1

Σ2
H†,n+1

2 +
1

Σ3
H†,n+1

3

)
Un+1.

(3.78)
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The initial conditions are (3.8) and the boundary conditions are:

(i) all variables are periodic; (3.79)

or (ii) ∂ncn+1
i |∂Ω = ∇µn+1

i · n|∂Ω = 0, i = 1, 2, 3. (3.80)

Similar to the first-order scheme and the second-order Crank–Nicolson scheme,
the hyperplane link condition still holds for this scheme.

Theorem 3.7. System (3.75)–(3.77) is equivalent to the following scheme with
two-order parameters:

3cn+1
i − 4cn

i + cn−1
i

2δt
=

M0

Σi
∆µn+1

i , (3.81)

µn+1
i = −3

4
εΣi∆cn+1

i +
24
ε

H†,n+1
i Un+1 + βn+1, i = 1, 2, (3.82)

cn+1
3 = 1 − cn+1

1 − cn+1
2 , (3.83)

µn+1
3

Σ3
= −

(
µn+1

1

Σ1
+

µn+1
2

Σ2

)
. (3.84)

Proof. The proof is omitted here since it is similar to that of Theorem 3.1.

Similar to the two previous schemes, we can rewrite the system (3.77) as

Un+1 = H†,n+1
1 cn+1

1 + H†,n+1
2 cn+1

2 + H†,n+1
3 cn+1

3 + Qn
3 , (3.85)

where Qn
3 = U×,n+1−H†,n+1

1 c×,n+1
1 −H†,n+1

2 c×,n+1
2 −H†,n+1

3 c×,n+1
3 and S×,n+1 =

4Sn−Sn−1

3 for any variable S. Thus, the system (3.75)–(3.77) can be rewritten as:

3cn+1
i − 4cn

i + cn−1
i

2δt
=

M0

Σi
∆µn+1

i , (3.86)

µn+1
i = −3

4
εΣi∆cn+1

i +
24
ε

H†,n+1
i (H†,n+1

1 cn+1
1 + H†,n+1

2 cn+1
2

+ H†,n+1
3 cn+1

3 ) + β
n+1

+ fn
i , i = 1, 2, 3, (3.87)

where

β
n+1

= −8
ε
ΣT

(
1

Σ1
H†,n+1

1 +
1

Σ2
H†,n+1

2 +
1

Σ3
H†,n+1

3

)
× (H†,n+1

1 cn+1
1 + H†,n+1

2 cn+1
2 + H†,n+1

3 cn+1
3 ),

fn
i =

24
ε

H†,n+1
i Qn

3 − 8
ε
ΣT

(
1

Σ1
H†,n+1

1 +
1

Σ2
H†,n+1

2 +
1

Σ3
H†,n+1

3

)
Qn

3 .

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

19
93

-2
03

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/2
3/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 22, 2017 8:54 WSPC/103-M3AS 1750037

Cahn–Hilliard phase-field model 2015

Theorem 3.8. The linear system given by (3.86)–(3.87) for variable Φ = (cn+1
1 ,

cn+1
2 , cn+1

3 )T is self-adjoint and positive definite.

Proof. The proof is omitted here since it is similar to that of Theorem 3.2.

Theorem 3.9. The second-order scheme given by (3.75)–(3.77) is unconditionally
energy stable and satisfies the following discrete energy dissipation law :

1
δt

(En+1
bdf − En

bdf ) ≤ −M0

(
1

Σ1
‖∇µn+1

1 ‖2 +
1

Σ2
‖∇µn+1

2 ‖2 +
1

Σ3
‖∇µn+1

3 ‖2

)

≤ −M0Σ
(‖∇µn+1

1 ‖2

Σ2
1

+
‖∇µn+1

2 ‖2

Σ2
2

+
‖∇µn+1

3 ‖2

Σ2
3

)
, (3.88)

where En
bdf is defined by

En
bdf =

3
8
Σ1ε

(‖∇cn
1‖2

2
+

‖2∇cn
1 −∇cn−1

1 ‖2

2

)

+
3
8
Σ2ε

(‖∇cn
2‖2

2
+

‖2∇cn
2 −∇cn−1

2 ‖2

2

)

+
3
8
Σ3ε

(‖∇cn
3‖2

2
+

‖2∇cn
3 −∇cn−1

3 ‖2

2

)

+
12
ε

(‖Un‖2

2
+

‖2Un − Un−1‖2

2

)
− 12

ε
B|Ω|. (3.89)

Proof. Taking the L2-inner product of (3.75) with −2δtµn+1
i , we obtain

−(3cn+1
i − 4cn

i + cn−1
i , µn+1

i ) = 2δt
M0

Σi
‖∇µn+1

i ‖2. (3.90)

Taking the L2-inner product of (3.76) with 3cn+1
i − 4cn

i + cn−1
i , and applying the

following identity

2(3a − 4b + c, a) = |a|2 − |b|2 + |2a − b|2 − |2b − c|2 + |a − 2b + c|2, (3.91)

we derive

(µn+1
i , 3cn+1

i − 4cn
i + cn−1

i )

=
3
8
εΣi(‖∇cn+1

i ‖2 − ‖∇cn
i ‖2 + ‖2∇cn+1

i −∇cn
i ‖2 − ‖2∇cn

i −∇cn−1
i ‖2)

+
3
8
εΣi‖∇cn+1

i − 2∇cn
i + ∇cn−1

i ‖2

+
24
ε

(H†,n+1
i Un+1, 3cn+1

i − 4cn
i + cn−1

i )

+ (βn+1, 3cn+1
i − 4cn

i + cn−1
i ). (3.92)
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Taking the L2-inner product of (3.77) with 24
ε Un+1, we obtain

12
ε

(‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2

+ ‖Un+1 − 2Un + Un−1‖2)

=
24
ε

((H†,n+1
1 (3cn+1

1 − 4cn
1 + cn−1

1 ), Un+1)

+ (H†,n+1
2 (3cn+1

2 − 4cn
2 + cn−1

2 ), Un+1)

+ (H†,n+1
3 (3cn+1

3 − 4cn
3 + cn−1

3 ), Un+1)). (3.93)

Combining (3.90), (3.92) for i = 1, 2, 3 and (3.93), we derive

3
8
ε

3∑
i=1

Σi(‖∇cn+1
i ‖2 + ‖2∇cn+1

i −∇cn
i ‖2)

− 3
8
ε

3∑
i=1

Σi(‖∇cn
i ‖2 + ‖2∇cn

i −∇cn−1
i ‖2)

+
3
8
ε

3∑
i=1

Σi(‖∇cn+1
i − 2∇cn

i + ∇cn−1
i ‖2)

+
12
ε

(‖Un+1‖2 + ‖2Un+1 − Un‖2)

− 12
ε

(‖Un‖2 + ‖2Un − Un−1‖2) +
12
ε
‖Un+1 − 2Un + Un−1‖2

= −2δtM0

(
1

Σ1
‖∇µn+1

1 ‖2 +
1

Σ2
‖∇µn+1

2 ‖2 +
1

Σ3
‖∇µn+1

3 ‖2

)

≤ −2δtM0Σ
(‖∇µn+1

1 ‖2

Σ2
1

+
‖∇µn+1

2 ‖2

Σ2
2

+
‖∇µn+1

3 ‖2

Σ2
3

)
. (3.94)

Since
∑3

i=1(∇cn+1
i − 2∇cn

i + ∇cn−1
i ) = 0, from Lemma 2.1, we have

3∑
i=1

{Σi‖∇cn+1
i − 2∇cn

i + ∇cn−1
i ‖2}

≥ Σ
3∑

i=1

{‖∇cn+1
i − 2∇cn

i + ∇cn−1
i ‖2} ≥ 0. (3.95)

Therefore, we obtain (3.88) after we drop the unnecessary positive terms in (3.94).
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Remark 3.7. From formal Taylor expansion, we find(‖φn+1‖2 + ‖2φn+1 − φn‖2

2δt

)
−
(‖φn‖2 + ‖2φn − φn−1‖2

2δt

)
∼=
(‖φn+2‖2 − ‖φn‖2

2δt

)
+ O(δt2) ∼= d

dt
‖φ(tn+1)‖2 + O(δt2), (3.96)

and
‖φn+1 − 2φn + φn−1‖2

δt
∼= O(δt3) (3.97)

for any variable φ. Therefore, the discrete energy law (3.88) is a second-order
approximation of d

dtE
triph(φ) in (3.11).

4. Numerical Simulations

We present in this section several 2D and 3D numerical examples using the schemes
constructed in the previous section. The computational domain is Ω = (0, 1)d,

d = 2, 3. We use the central finite difference method to discretize the spatial deriva-
tives with 128d grid points in all simulations.

Unless otherwise explicitly specified, the default parameter values are:

ε = 0.03, B = 2, M0 = 10−6, Λ = 7. (4.1)

Remark 4.1. Parameter B is chosen to ensure that F (c1, c2, c3) + B is always
positive. For the partial spreading case, since Σi > 0, ∀ i = 1, 2, 3, we can choose
B = 0. For the total spreading case, we usually choose B large enough. But we
remark that the computed solutions are not sensitive with the choice of B.

4.1. Accuracy test

For convenience, we denote first-order scheme (3.12)–(3.14) by LS1, second-order
scheme (3.57)–(3.59) by LS2-CN, scheme (3.75)–(3.77) by LS2-BDF.

We set the initial condition as follows:

c3 =
1
2

(
1 + tanh

(
R − 0.15

ε

))
,

c1 =
1
2
(1 − c3)

(
1 + tanh

(
y − 0.5

ε

))
,

c2 = 1 − c1 − c3,

(4.2)

where R =
√

(x − 0.5)2 + (y − 0.5)2. Since the exact solutions are not known, we
compute the errors by adjacent time step. We present the summations of the L2-, L1-
and L∞-errors of the three-phase variables at t = 1 with different time step sizes in
Tables 1–3 for the three proposed schemes. We observe that schemes LS1, LS2-CN
and LS2-BDF asymptotically match the first-order and second-order accuracy in
time, respectively.
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Table 1. The L2-, L1-, L∞-numerical errors at t = 1 that are computed by the first-order
scheme LS1 using various temporal resolutions. The order parameters are of (4.1) and 1282

grid points are used to discretize the space.

Coarse δt Fine δt L2-Error Order L1-Error Order L∞-Error Order

0.01 0.005 7.120e-3 — 3.969e-1 — 3.950e-4 —

0.005 0.0025 3.816e-3 0.90 2.112e-1 0.91 2.067e-4 0.93

0.0025 0.00125 1.999e-3 0.93 1.101e-1 0.94 1.062e-4 0.96

0.00125 0.000625 1.028e-3 0.96 5.645e-2 0.96 5.395e-5 0.98

0.000625 0.0003125 5.225e-4 0.98 2.863e-2 0.98 2.719e-5 0.99

0.0003125 0.00015625 2.635e-4 0.99 1.442e-2 0.99 1.365e-5 0.99

0.00015625 0.000078125 1.323e-4 0.99 7.239e-3 0.99 6.842e-6 1.0

Table 2. The L2-, L1-, L∞-numerical errors at t = 1 that are computed by the sec-
ond-order scheme LS2-CN using various temporal resolutions. The order parameters are of
(4.1) and 1282 grid points are used to discretize the space.

Coarse δt Fine δt L2-Error Order L1-Error Order L∞-Error Order

0.01 0.005 3.636e-3 — 1.541e-1 — 2.460e-4 —

0.005 0.0025 1.205e-3 1.59 4.972e-2 1.63 9.311e-5 1.40

0.0025 0.00125 3.590e-4 1.75 1.453e-2 1.78 2.999e-5 1.63

0.00125 0.000625 9.936e-5 1.85 3.941e-3 1.88 8.653e-6 1.79

0.000625 0.0003125 2.626e-5 1.92 1.030e-3 1.93 2.336e-6 1.89

0.0003125 0.00015625 6.759e-6 1.96 2.636e-4 1.97 6.080e-7 1.94

0.00015625 0.000078125 1.715e-7 1.98 6.671e-5 1.98 1.551e-7 1.97

Table 3. The L2-, L1-, L∞-numerical errors at t = 1 that are computed by the sec-
ond-scheme LS2-BDF using various temporal resolutions. The order parameters are of
(4.1) and 1282 grid points are used to discretize the space.

Coarse δt Fine δt L2-Error Order L1-Error Order L∞-Error Order

0.01 0.005 6.368e-3 — 5.374e-1 — 5.018e-4 —

0.005 0.0025 2.584e-3 1.30 2.143e-1 1.33 1.811e-4 1.47

0.0025 0.00125 9.528e-4 1.44 7.588e-2 1.50 5.836e-5 1.63

0.00125 0.000625 3.172e-4 1.59 2.443e-2 1.64 2.244e-5 1.38

0.000625 0.0003125 9.641e-5 1.72 7.488e-3 1.71 7.170e-6 1.65

0.0003125 0.00015625 2.626e-5 1.88 2.095e-3 1.84 1.955e-6 1.87

0.00015625 0.000078125 7.012e-6 1.91 6.424e-4 1.70 5.099e-7 1.94

Fig. 1. Theoretical shape of the contact lens at the equilibrium between two stratified fluid
components.
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4.2. Liquid lens between two stratified fluids

We start by recomputing two examples presented in Figs. 11 and 19 in Ref. 7 using
the same parameter values as in Ref. 7 with the initial condition set as follows:

c0
1(x) =

1
2

(
1 + tanh

(
2
ε
min(|x| − 0.1, y)

))
,

c0
2(x) =

1
2

(
1 − tanh

(
2
ε
min(−|x| + 0.1, y)

))
,

c0
3(x) = 1 − c0

1(x) − c0
2(x).

(4.3)

The order parameters are ε = 10−2, M0 = 10−4. In Fig. 2, we set σ12 = 1, σ13 =
0.8, σ23 = 1.4, we observe that the partial spreading phenomena are qualitatively
consistent to Fig. 11 in Ref. 7. In Fig. 3, we set σ12 = 3, σ13 = 1, σ23 = 1, we observe
that the total spreading phenomena are qualitatively consistent to Fig. 16 in Ref. 7.
The energy evolution curves for these two simulations are shown in Fig. 4. The
quantitative differences between our energy curves presented in Fig. 4 and theirs in
Figs. 13 and 19 in Ref. 7 are possible due to the different orders of accuracy of the
schemes used: ours is second-order in time while theirs is first-order in time.

Next, we conduct simulations for the classical test case of a liquid lens that
is initially spherical, sitting at the interface between two other phases. For the

Fig. 2. (Color online) The dynamical behaviors of the liquid lens between two stratified fluids
for the partial spreading case. Snapshots are taken at t = 0.2, 2, 5. The initial condition is (4.3),

the surface tension parameters are σ12 = 1, σ13 = 0.8, σ23 = 1.4, the time step is δt = 10−4 and
the grid points are 1282. The color in black (upper half), white (lower half) and red circle (lens)
represent fluids I, II and III, respectively.

Fig. 3. (Color online) The dynamical behaviors of the liquid lens between two stratified fluids
for the total spreading case (no junction points). Snapshots are taken at t = 2, 30, 300. The initial
condition is (4.3), the surface tension parameters are σ12 = 3, σ13 = 1, σ23 = 1, the time step is

δt = 10−4, and the grid points are 1282. The color in black (upper half), white (lower half) and
red circle (lens) represent fluids I, II and III, respectively.
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(a) (b)

Fig. 4. Time evolution of the free energy functional for the partial spreading case and total
spreading case with initial condition (4.3). The surface tension parameters are: (a) σ12 = 1, σ13 =
0.8, σ23 = 1.4; (b) σ12 = 3, σ13 = 1, σ23 = 1.

accuracy reason, we always use the second-order scheme LS2-CN and take time
step δt = 0.001.

The equilibrium state in the limit ε → 0 can be computed analytically: the final
shape of the lens is the union of two pieces of circles, the contact angles being given
as a function of the three surface tensions by the Young’s relations as shown in
Fig. 1 (cf. Refs. 6, 28 and 40):

sin θ1

σ23
=

sin θ2

σ13
=

sin θ3

σ12
. (4.4)

We still use the initial condition in the previous example, as shown in the first
subfigure in Figs. 2–6, in which, the initial contact angles are θ1 = θ2 = π

2 and
θ3 = π.

We first simulate the case of partial spreading. In Fig. 2(a), we set the three
surface tension parameter values as σ12 = σ13 = σ23 = 1, we observe that the
three contact angles finally become 2π

3 for all, shown in the final subfigure of Fig. 2
because the surface tension force between each phase is the same, which is consistent
to the theoretical values of sharp interface from (4.4). In Fig. 2(b), we keep σ12 = 1
and decrease the other two parameter values as σ13 = σ23 = 0.6. From the contact
angle formulation (4.4), we have θ1 = θ2 > θ3, which is confirmed by the numerical
results shown in Fig. 2(b). We further vary the two surface tension parameter values
σ13 and σ23 to be 0.8 and 1.4, respectively while keeping σ12 = 1 in Fig. 5(c). After
the intermediate dynamical adjustment, the contact angles at equilibrium become
θ1 < θ3 < θ2, which is consistent to the formulation (4.4) as well.

We then simulate the case of total spreading (without a junction point) in Fig. 6.
We set the three surface tension parameter values as σ12 = 3, σ13 = 1, σ23 = 1.
From (4.4), the three contact angles can be computed as θ1 = θ2 = π and θ3 = 0,
that can be observed in Fig. 6(a), where the third fluid component c3 totally spreads
to a layer. For the final case, we set σ12 = 1, σ13 = 1, σ23 = 3. By (4.4), it can be
computed that the three contact angles at equilibrium are θ1 = 0, θ2 = θ3 = π,
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(a) (σ12; σ13; σ23) = (1; 1; 1).

(b) (σ12; σ13; σ23) = (1; 0.6; 0.6).

(c) (σ12; σ13; σ23) = (1; 0.8; 1.4).

Fig. 5. (Color online) The dynamical behaviors until the steady state of a liquid lens between
two stratified fluids for the partial spreading case, with three sets of different surface tension
parameters σ12, σ13, σ23, where the time step is δt = 0.001 and 1282 grid points are used. The
color in black (upper half), white (lower half) and red circle (lens) represent fluids I, II and III,
respectively.

which indicates that the first and third fluid components c1, c3 are totally spread,
and c2 stays inside the first fluid component, as shown in Fig. 6(b). We remark
that all numerical results are qualitatively consistent with the computation results
obtained in Refs. 6 and 30.

4.3. Spinodal decomposition in 2D

In this example, we study phase separation behavior, i.e. the so-called the spinodal
decomposition phenomenon. The process of the phase separation can be studied
by considering a homogeneous binary mixture, which is quenched into the unstable
part of its miscibility gap. In this case, the spinodal decomposition takes place,
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(a) (σ12; σ13; σ23) = (3; 1; 1).

(b) (σ12; σ13; σ23) = (1; 1; 3).

Fig. 6. (Color online) The dynamical behaviors until the steady state of a liquid lens between
two stratified fluids for the total spreading case (no junction points), with two sets of different
surface tension parameters σ12, σ13, σ23, where the time step is δt = 0.001 and 1282 grid points
are used. The color in black (upper half), white (lower half) and red circle (lens) represent fluids
I, II and III, respectively.

which manifests in the spontaneous growth of the concentration fluctuations that
leads the system from the homogeneous to the two phase state. Shortly after the
phase separation starts, the domains of the binary components are formed and the
interface between different phases can be specified.4,13,76 For the accuracy reason,
we use the second-order scheme LS2-CN and take the time step δt = 0.001.

The initial condition is taken as the randomly perturbed concentration field as
follows:

φi = 0.5 + 0.001 rand(x, y), ci|(t=0) =
φi

φ1 + φ2 + φ3
, i = 1, 2, 3, (4.5)

where the rand(x, y) is the random number in [−1, 1] which has a zero mean. To
label the three phases, we use pink, gray and yellow to represent phases I, II and
III respectively.

In Fig. 7, we conduct numerical simulations for the case of order parameters
σ12 = σ13 = σ23 = 1 as Fig. 2(a). We observe the phase separation behavior and
the final equilibrium solution t = 30,000 present a very regular shape where the
three contact angles are θ1 = θ2 = θ3 = 2π

3 . In Fig. 8 with the same initial condition,
we set the surface tension parameter values as σ12 = 1, σ13 = 0.8, σ23 = 1.4. The
final equilibrium solution after t = 30,000 shows three different contact angles that
obey θ1 < θ3 < θ2, consistent to the example Fig. 5(c). The total spreading case
is simulated in Fig. 9, in which we set the surface tension parameter values as
σ12 = 1, σ13 = 1, σ23 = 3. The final equilibrium solution after t = 30,000 presents
that not a junction point appears, similar to Fig. 6(b).
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Fig. 7. (Color online) The 2D dynamical evolution of the three-phase variables ci, i = 1, 2, 3 for
the partial spreading case, where order parameters are (σ12; σ13; σ23) = (1 : 1 : 1), the time step is
δt = 0.001 and 1282 grid points are used. Snapshots of the numerical approximation are taken at
t = 0, 1000, 2000, 5000, 10,000, 20,000, 25,000, 30,000. The color in pink, gray and yellow represents
the three phases I, II and III, respectively.

Fig. 8. (Color online) The 2D dynamical evolution of the three-phase variables ci, i = 1, 2, 3 for
the partial spreading case, where the order parameters are (σ12; σ13; σ23) = (1, 0.8, 1.4), the time
step is δt = 0.001 and 1282 grid points are used. Snapshots of the numerical approximation are
taken at t = 0, 1000, 2000, 5000, 10,000, 20,000, 25,000, 30,000. The color in pink, gray and yellow
represents the three phases I, II and III, respectively.

In Fig. 10, we present the evolution of the free energy functional for all three
cases. The energy curves show the decay with time that confirms that our algorithms
are unconditionally stable. In particular, we plot the time evolution of the free
energy with different time steps. It verifies that our numerical scheme predicts
accurate results with relative large time steps. The corresponding total CPU/GPU
time spent (in seconds) to calculate until tmax = 500 with various time steps δt =
10−2, 5 × 10−3, 2.5 × 10−3, 1.25 × 10−3 are listed in Table 4.
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Fig. 9. The 2D dynamical evolution of the three-phase variable ci for the total spreading case
(no junction points), where the order parameters are (σ12; σ13; σ23) = (1, 1, 3), the time step is

δt = 0.001 and 1282 grid points are used. Snapshots of the numerical approximation are taken at
t = 0, 1000, 2000, 5000, 10,000, 20,000, 25,000, 30,000. The color in pink, gray and yellow represents
the three phases I, II and III, respectively.

(a) (b)

Fig. 10. (a) Time evolution of the free energy functional using the algorithm LS2-CN using δt =
0.001 for the three-order parameter set of A : (σ12; σ13; σ23) = (1, 0.8, 1.4) (partial spreading), B :
(σ12; σ13; σ23) = (1, 1, 1) (partial spreading), and C : (σ12; σ13; σ23) = (1, 1, 3) (total spreading).
The x-axis is time, and y-axis is log10(total energy). (b) Time evolution of the free energy with
different time steps for Case B.

Table 4. Total CPU/GPU time (in seconds) with various
time steps to tmax = 500.

Time step δt 1e-2 5e-3 2.5e-3 1.25e-3

Total CPU/GPU time 464 s 732 s 1081 s 1608 s
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4.4. Spinodal decomposition in 3D

Finally, we present 3D simulations of phase separation dynamics using second-order
scheme LS2-CN and time step δt = 0.001. In order to be consistent with the 2D
case, the initial condition is set as follows:

φi = 0.5 + 0.001 rand(x, y, z), ci|(t=0) =
φi

φ1 + φ2 + φ3
, i = 1, 2, 3, (4.6)

where the rand(x, y, z) is the random number in [−1, 1] with a zero mean.

Fig. 11. The 3D dynamical evolution of the three-phase variables ci, i = 1, 2, 3 for the par-
tial spreading case, where the order parameters are (σ12; σ13; σ23) = (1 : 1 : 1) and time step is
δt = 0.001. 1283 grid points are used to discretize the space. Snapshots of the numerical approxi-
mation are taken at t = 50, 100, 200, 500, 750, 1000, 1500, 2000. The color in pink, gray and yellow
represents the three phases I, II and III, respectively.

Fig. 12. The 3D dynamical evolution of the three-phase variable ci, i = 1, 2, 3 for the partial
spreading case, where the order parameters are (σ12; σ13; σ23) = (1 : 0.8 : 1.4) and time step is
δt = 0.001. 1283 grid points are used to discretize the space. Snapshots of the numerical approxi-
mation are taken at t = 50, 100, 200, 500, 750, 1000, 1500, 2000. The color in pink, gray and yellow
represents the three phases I, II and III, respectively.
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Fig. 13. Time evolution of the free energy functional using the algorithm LS2-CN using δt = 0.001
for the three-order parameter set of A : (σ12; σ13; σ23) = (1, 0.8, 1.4) and B : (σ12; σ13; σ23) =
(1, 1, 1). The x-axis is time, and y-axis is log10(total energy).

Figure 11 shows the dynamical behavior of phase separation for three equal
surface tension parameter values σ12 = σ13 = σ23 = 1. In Fig. 12, we set the
surface tension parameter values as σ12 = 1, σ13 = 0.8, σ23 = 1.4. We observe that
the three components accumulate but with different contact angles, consistent to
the 2D case. In Fig. 13, we depict the evolution of the free energy functional, in
which the energy curves show decays with time.

5. Concluding Remarks

We develop in this paper several efficient time stepping schemes for a three-
component Cahn–Hilliard phase-field model that are linear and unconditionally
energy stable based on a novel IEQ approach. The proposed schemes bypass the
difficulties encountered in the convex splitting and the stabilized approach and
enjoy the following desirable properties: (i) accurate (up to second-order in time);
(ii) unconditionally energy stable; and (iii) easy to implement (one only solves linear
equations at each time step). Moreover, the resulting linear system at each time
step is symmetric, positive definite so that it can be efficiently solved by any Krylov
subspace methods with suitable (e.g. block-diagonal) pre-conditioners.

To the best of our knowledge, these new schemes are the first schemes that are
linear and unconditionally energy stable for the three-component Cahn–Hilliard
phase-field model. These schemes can be applied to the hydrodynamically coupled
three-phase model without essential difficulties. Although we considered only time
discretization in this study, it is expected that similar results can be established
for a large class of consistent finite-dimensional Galerkin approximations since the
proofs are all based on a variational formulation with all test functions in the same
space as the space of the trial functions.
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