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Efficient and accurate numerical schemes, based on the scalar auxiliary variable (SAV) 
approach, are proposed to find the ground state solutions of one- and multi-component 
Bose-Einstein Condensates (BECs). Two types of SAV schemes are proposed: the first is 
based on the original SAV scheme for the imaginary time gradient flow of BECs which 
is accurate for the dynamic evolution; the second is a modified SAV scheme based on 
the normalized imaginary time gradient flow and leads to fast convergence towards the 
steady state solutions. Detailed numerical comparison with existing methods based on 
projection to the constrained space indicates that the modified SAV schemes are more 
efficient, particularly for the multi-component BECs.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The Bose-Einstein condensation (BEC) has attracted vast interests and has been extensively studied since its first ex-
perimental realization [2]. Numerous numerical methods are developed to compute their ground state solutions which are 
minimizers of the free energy of the BEC system, including Runge–Kutta spectral method [16], Gauss–Seidel-type methods 
[11], finite element method by directly minimizing the energy functional [10], regularized Newton method [23], pre-
conditioned nonlinear conjugate gradient method [3], the normalized imaginary time gradient flow method [5,8,13], and 
normalized imaginary time gradient flow method with attractive–repulsive splitting [17]. In particular, the methods based 
on a normalized imaginary time gradient flow have been very popular thanks to its simplicity and efficiency. It is observed 
in [8] that the most efficient scheme based on normalized imaginary time gradient flow is the linearized backward-Euler 
scheme with a projection to enforce the norm conservation. While the projection step is simple to implement in the 
one-component case, it becomes much more complicated for multi-component BECs [5,7]. So there is a need to find an 
alternative method to deal with multi-component BECs.
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Recently, an interesting method, the so called scalar auxiliary variable (SAV) approach, is proposed for solving a large 
class of gradient flows (cf. [19–21]). The method has several distinct advantages over other approaches so it is natural to 
apply the SAV approach to the imaginary time gradient flow for computing ground state solutions for BECs. However, several 
issues arise: (i) the SAV approach does not have a mechanism to enforce additional constraints imposed on the gradient 
flow; (ii) the SAV approach has proven to be effective to simulate the dynamics of gradient flows, would it be still effective 
for computing the steady state solutions of gradient flows?

The main purpose of this paper is to construct efficient schemes based on the SAV approach for the imaginary time 
gradient flow of one- and multi-component BECs, with or without normalization. In order to deal with the norm constraint, 
we adapt the SAV approach with an additional penalty term in the free energy to enforce the norm constraint, thus avoiding 
the complicated projection onto the constrained subspace in the multi-component cases. Two types of SAV schemes are 
proposed: the first is based on the original SAV scheme for the imaginary time gradient flow of BECs which is accurate for 
the dynamic evolution but may converge slowly towards stationary solutions; the second is a modified SAV scheme based 
on the normalized imaginary time gradient flow and leads to fast convergence towards stationary solutions. Both schemes 
require solving only linear elliptic problems with time independent coefficients or even constant coefficients at each time 
step, so they are very efficient and easy to implement.

The rest of the paper is organized as follows. In Section 2, we describe the SAV schemes for the imaginary time gradient 
flow of one-dimensional BECs. While these SAV schemes possess nice energy diminishing properties, they are not very 
efficient for computing the stationary solutions. Then, we consider in section 3 the modified SAV schemes for the normalized 
imaginary time gradient flow, which are very effective for computing the stationary solutions. In Section 4, we extend the 
results in Sections 2 and 3 to multi-component BECs. Some conclusions are given in Section 5.

2. The SAV approach for imaginary time gradient flow for one-component BECs

Let � = Rd (d = 1, 2, 3), and (·, ·) be the inner product in L2(Rd). Given a nonlinear potential function F (φ), e.g., 
F (φ) = β

2 φ2, and a positive definite operator L: Lφ = (− 1
2 � + V (x))φ with V (x) ≥ 0. We consider the one-component BEC 

system with the free energy

E(φ) = 1

2
(φ,Lφ) + 1

2

∫
�

F (|φ|2)dx, (2.1)

subject to the constraint∫
�

|φ(x)|2 dx = 1.

The ground states of one-component BECs are the minimizers of the above free energy. A common approach is to solve the 
minimization problem by finding the stationary solutions for the following imaginary time gradient flow:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt = −δE(φ)

δφ
= −Lφ − F ′(|φ|2)φ, x ∈ �, t > 0,

lim|x|→∞φ(x, t) = 0, t ≥ 0,

∫
�

|φ(x, t)|2 dx = 1, t ≥ 0.

(2.2)

We shall adopt the SAV approach coupled with a penalty term which has proven to be effective to enforce volume and 
surface area constraints in the phase-field vesicle membrane model [12]. More precisely, we consider the penalized energy

Ê(φ) = 1

2
(φ,Lφ) + 1

2

∫
�

F (|φ|2)dx + 1

4ε

⎛
⎝∫

�

|φ|2 dx − 1

⎞
⎠2

, (2.3)

where ε � 1, and the corresponding gradient flow

φt = −δ Ê(φ)

δφ
= −(Lφ + F ′(|φ|2)φ + 1

ε
(|φ|2 − 1)φ). (2.4)

We first reformulate it by introducing two scalar auxiliary variables:

u =
√√√√∫

�

F (|φ|2)dx + C0 (C0 ≥ 0), v =
∫
�

|φ|2 dx − 1.
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Then, we can rewrite (2.4) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt = −(Lφ + u
δu

δφ
+ 1

2ε
v

δv

δφ
),

ut =
∫
�

δu

δφ
φtdx,

vt =
∫
�

δv

δφ
φtdx,

(2.5)

where

δu

δφ
= 1

2
√∫

�
F (|φ|2)dx + C0

F ′(|φ|2)2φ,
δv

δφ
= 2φ. (2.6)

Since we are interested in the steady state solution of (2.5), we consider the following first-order SAV scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+1 − φn

τ
= −Lφn+1 − un+1 · δu

δφ
(φn) − 1

2ε
vn+1 δv

δφ
(φn),

un+1 − un

τ
=

∫
�

δu

δφ
(φn)

φn+1 − φn

τ
dx,

vn+1 − vn

τ
=

∫
�

δv

δφ
(φn)

φn+1 − φn

τ
dx.

(2.7)

Taking the inner product of the first equation of (2.7) with φn+1 − φn , and multiplying the second and third equation with 
un+1 and 1

2ε vn+1, respectively, we obtain immediately the following:

Theorem 2.1. The scheme (2.7) is unconditionally energy diminishing in the sense that

Ẽ(φn+1, un+1, vn+1) − Ẽ(φn, un, vn) = − 2

τ
‖φn+1 − φn‖2

−
[
(L(φn+1 − φn),φn+1 − φn) + (un+1 − un)2 + 1

2ε
(vn+1 − vn)2

]
,

where ̃E(φ, u, v) is the modified energy, which is defined as

Ẽ(φ, u, v) = (Lφ,φ) + u2 + 1

2ε
v2.

Next we show that the scheme (2.7) can be efficiently solved. Indeed, we can write it as a matrix system⎛
⎝ I + τL ∗ ∗

∗ 1 0
∗ 0 1

⎞
⎠

⎛
⎝φn+1

un+1

vn+1

⎞
⎠ = b̄n,

where I is the identity operator, ∗ represents the terms with non-constant coefficients, b̄n includes only the terms from 
previous time steps. We can first solve (un+1, vn+1)t using a block Gaussian elimination, which requires solving two systems 
of the form⎧⎨

⎩
(I + τL)ψ = g(x), x ∈ �, t > 0,

lim|x|→∞ψ(x) = 0, t ≥ 0.
(2.8)

With (un+1, vn+1)t known, we can obtain φn+1 by solving one more system in the above form.
Several remarks are in order:

• At each time step, we need to solve the equation (2.8) where the variable coefficient V (x) does not change from one 
step to another. Therefore, one can pre-factorize the system matrix once and use it for every time step. This is a main 
advantage of the current approach compared with existing approaches such as the backward Euler finite difference 
method (BEFD) in [8].
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Table 1
Iteration numbers and energies with different τ .

τ K (TSSP) Eβ (TSSP) K (BEFD) Eβ (BEFD) K (SAV1) Eβ (SAV1) K (SAV2) Eβ (SAV2)

10−1 44 6.402150 40 6.075935 61 10.84403 29 21.03350
10−2 258 6.081956 195 6.075947 263 6.403377 230 6.217449
10−3 1532 6.076198 1474 6.076074 1519 6.108345 1465 6.077424
10−4 11318 6.077412 11299 6.077382 11315 6.080623 11292 6.077404

• One may use a different energy splitting in the SAV approach, e.g., put the potential term together with the nonlin-
ear term F ′(|φ|2)φ. The corresponding SAV scheme will still be unconditionally energy diminishing. However, it only 
requires solving (2.8) with L = −� which is a problem with constant coefficient so that it can be solved even more 
efficiently by fast Poisson solvers. But it may also require smaller time steps to obtain accurate approximations.

• In all our computations, to avoid artificial domain truncation, we use a Hermite-spectral method [18] to solve the 
problem (2.8) in the whole space.

A second-order SAV scheme based on BDF2 can also be constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3φn+1 − 4φn + φn−1

2τ
= −Lφn+1 − un+1 δu

δφ
(φ̃n+1) − 1

2ε
vn+1 δv

δφ
(φ̃n+1),

3un+1 − 4un + un−1 =
∫
�

δu

δφ
(φ̃n+1) · (3φn+1 − 4φn + φn−1)dx,

(3vn+1 − 4vn + vn−1) =
∫
�

δv

δφ
(φ̃n+1)(3φn+1 − 4φn + φn−1)dx,

(2.9)

where φ̃n+1 = 2φn − φn−1. It is easy to show that the scheme (2.9) is also unconditionally energy diminishing (cf. [21]).

2.1. Numerical results

We first compare the iteration number K and energy Eβ(ϕ) = 2E(ϕ) of the SAV discretization (2.7) (SAV1) and (2.9)
(SAV2) with those by the time-splitting sine-spectral method (TSSP) and BEFD used in [8]. We set

V (x) = x2

2
, β = 60, φ0(x) = e−x2/2

(π)1/4
.

For the TSSP method and BEFD method, the domain is truncated as (−8, 8) and then divided into N = 512 equal intervals. 
The corresponding mesh size and mesh points are

hx = 1

32
, xi = −8 + i · hx, i = 0,1, · · · , N.

For the SAV schemes, we set ε = 10−8, and use a Hermite spectral method with N = 256 Hermite-gauss points.

The stopping criterion for the steady state solution is 
∣∣∣Eβ(φn) − Eβ(φn+1)

∣∣∣ < 10−6.

The computational results are listed in Table 1. We observe from the table that BEFD is the most efficient and accurate, 
SAV1 and SAV2 become comparable only with very small time steps. The performance of SAV1 and SAV2 are comparable 
with SAV2 being slightly better than SAV1.

We also plot in Fig. 1 the evolution of the original energy Eβ(φ) and the modified energy Ẽ(φ, u, v) by SAV1 with 
different time step. We observe that both energies are diminishing, although one can only prove that the modified energy is 
diminishing, and they all reach steady at approximately t = 1 with different time steps. The errors of norm conservation, i.e., 
values of |‖φ‖2 − 1|, at the steady states with τ = 0.01, 0.001, 0.0001 are 0.0319, 0.0032, 3.1943 × 10−4, respectively. These 
results are consistent with the fact that the SAV scheme SAV1 is a first-order scheme for the time-dependent problem (2.2).

It is clear from the above results that the SAV schemes SAV1 and SAV2 are not competitive compared with BEFD for 
computing the ground state of BECs. This is because that the SAV schemes SAV1 and SAV2 are designed to simulate the 
dynamics of (2.2), without special acceleration to find stationary solutions.

3. The modified SAV approach for normalized imaginary time gradient flow for one-component BECs

The time-splitting sine-spectral method (TS) and backward Euler finite difference method (BE) in [8] are discretizations 
of the following normalized imaginary time gradient flow [1,8,13]: Given τ and set tk = kτ for all k ≥ 0, solve
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Fig. 1. Evolution of original and modified energies by the scheme SAV1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φt = −δE(φ)

δφ
= −Lφ − F ′(|φ|2)φ, x ∈ �, tn < t < tn+1, ∀n ≥ 0,

lim|x|→∞φ(x, t) = 0, t ≥ 0,

φ(x, tn+1) := φ(x, t+
n+1) = φ(x, t−

n+1)

‖φ(·, t−
n+1)‖

, x ∈ �, ∀n ≥ 0.

(3.1)

Bao and Du considered in [8] different time discretizations for (3.1), and concluded that the backward-Euler finite-difference 
(BEFD) and the time-splitting sine-spectral (TSSP) methods are the most effective. In particular, the backward-Euler finite-
difference (BEFD) scheme is based on the following semi-implicit scheme for (3.1):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φn+1∗ − φn

τ
= −Lφn+1∗ − F ′(

∣∣φn
∣∣2

)φn+1∗ ,

φn+1 = φn+1∗
‖φn+1∗ ‖ .

(3.2)

The above scheme is linear but involves different variable coefficients at each time step.

3.1. Modified SAV schemes

In order to improve the performance of the SAV schemes SAV1, we propose the following modified SAV scheme (MSAV1) 
which is a first-order discretization of (3.1):

• Solve (φn+1, ̃un+1, ̃vn+1) from

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+1 − φn

τ
= −Lφn+1 − ũn+1 · δu

δφ
(φn) − 1

2ε
ṽn+1 δv

δφ
(φn),

ũn+1 − un

τ
=

∫
�

δu

δφ
(φn)

φn+1 − φn

τ
dx,

ṽn+1 − vn

τ
=

∫
�

δv

δφ
(φn)

φn+1 − φn

τ
dx.

(3.3)

• Update un+1 and vn+1 via

un+1 =
√√√√∫

�

F (
∣∣φn+1

∣∣2
)dx, vn+1 =

∫
�

∣∣φn+1
∣∣2

dx − 1. (3.4)

Similarly, a modified second-order SAV scheme (MSAV2) is:
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Table 2
Iteration numbers and energies of the modified SAV schemes with different τ .

τ K (MSAV1) Eβ (MSAV1) K (MSAV2) Eβ (MSAV2)

10−1 41 6.075943 840 6.651923
10−2 195 6.075956 180 6.075955
10−3 1474 6.076084 1463 6.076082
10−4 11301 6.077390 11292 6.077390

• Solve (φn+1, ̃un+1, ̃vn+1) from⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3φn+1 − 4φn + φn−1

2τ
= −Lφn+1 − ũn+1 δu

δφ
(φ̃n+1) − 1

2ε
ṽn+1 δv

δφ
(φ̃n+1),

3ũn+1 − 4un + un−1 =
∫
�

δu

δφ
(φ̃n+1) · (3φn+1 − 4φn + φn−1)dx,

(3ṽn+1 − 4vn + vn−1) =
∫
�

δv

δφ
(φ̃n+1)(3φn+1 − 4φn + φn−1)dx,

(3.5)

• Update un+1 and vn+1 via (3.4).

Note that the first step of the modified schemes MSAV1 and MSAV2 is simply the original SAV schemes SAV1 and SAV2, 
respectively. We derive immediately from Theorem 2.1 that

Corollary 3.1. For the scheme (3.3), we have

Ẽ(φn+1, ũn+1, ṽn+1) − Ẽ(φn, un, vn) = − 2

τ
‖φn+1 − φn‖2

−
[
(L(φn+1 − φn),φn+1 − φn) + (ũn+1 − un)2 + 1

2ε
(ṽn+1 − vn)2

]
,

where ̃E(φ, u, v) is the modified energy defined as

Ẽ(φ, u, v) = (Lφ,φ) + u2 + 1

2ε
v2.

Remark 3.1. The above result does not imply that the scheme (3.3)-(3.4) is energy diminishing, since we can not prove 
Ẽ(φn+1, un+1,

vn+1) − Ẽ(φn, un, vn) ≤ 0.
Similar result holds for the second-order scheme (3.5)-(3.4).

Table 2 shows the computational results using these two modified schemes. The computational parameters are the same 
as in Table 1 for the schemes (2.7) and (2.9). We observe that the performance of MSAV1 is essentially the same as BEFD, 
and that MSAV2 also improved significantly over SAV2. However, our modified schemes only involve, at each time step, 
solving linear differential equation of the type (2.8). On the other hand, the BEFD scheme involves solving a linear problem 
with different variable coefficients at each time step. So our MSAV1 scheme is computationally more efficient than the BEFD 
scheme (3.2).

We also plot in Fig. 2 the evolution of the original energy Eβ(φ) and modified energy Ẽ(φ, u, v) by the modified scheme 
MSAV1 with different time step. Note that the two energies diminish and stay together at all times, and reach steady state 
quickly. As for the L2-norm conservation, the values of |‖φ‖2 − 1| at the steady states with τ = 0.01, 0.001, 0.0001 are 
9.4566 × 10−8, 1.0014 × 10−7, 1.0107 × 10−7 which are much smaller than those given by SAV1. Therefore, we shall always 
use MSAV1 for the rest of the computation.

Table 3 list the required iteration number by the MSAV1 scheme with different time step τ and penalty parameter ε. We 
observe that the required iteration number is not sensitive with ε. However, the required iteration number grows linearly 
as we decrease the time step. Therefore, the scheme is more efficient with larger time steps.

Next, we examine how the L2-norm is preserved with different ε and β .

To fix the idea, we take φ0(x) = 1
π1/4 e−x2/2, V (x) = x2

2 , τ = 0.001. Then

• choose β = 10, 60, 100, and let ε vary from 10−9 to 10−1. The results are shown in the left of Fig. 3.
• choose ε = 10−9, 10−8, 10−7, 10−6, and let β vary from 100 to 104. The results are shown in the right of Fig. 3.
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Fig. 2. Evolution of original and modified energies by the MSAV1 scheme.

Table 3
Iteration numbers with different τ and ε.

τ�ε 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3

0.1 39 38 41 41 41 41 40 34
0.01 180 195 195 195 195 195 193 174
0.001 1440 1472 1474 1475 1475 1474 1468 1404
0.0001 11253 11296 11301 11300 11300 11298 11274 11035

Fig. 3. Left:
∣∣‖φ(x)‖2 − 1

∣∣ Vs. ε; Right:
∣∣‖φ(x)‖2 − 1

∣∣ Vs. β .

Table 4
Maximum errors max |φg − φε | with different ε and β . In this table, the stopping criterion for the steady state 
solution is max

∣∣∣φn
ε − φn+1

ε

∣∣∣ < 10−9.

ε�β 1 10 100 500 1000 1500

10−6 6.0903e-07 1.0957e-06 4.2453e-06 1.3014e-05 2.1087e-05 2.8347e-05
10−5 2.5104e-06 8.5500e-06 4.1057e-05 1.2907e-04 2.1009e-04 2.8229e-04
10−4 2.7257e-05 8.3442e-05 4.0891e-04 0.0013 0.0021 0.0028
10−3 2.7569e-04 8.3184e-04 0.0041 0.0126 0.0204 0.0265
10−2 0.0028 0.0082 0.0384 0.0967 0.1210 0.1314
10−1 0.0274 0.0736 0.2083 0.2345 0.2251 0.2168

It is clear seen from the figures that the value of 
∣∣‖φ‖2 − 1

∣∣ depends linearly on ε and β . In particular, ε should be 
proportionally decreased as β increases to preserve the accuracy on L2-norm conservation.

Next, we make a detailed comparison between the numerical ground state φε via the SAV scheme (MSAV1) and the exact 
ground state φg as ε → 0. The results are listed in Table 4. We observe that the accuracy improves linearly as ε decreases, 
i.e., max |φg − φε| ≈ O (ε) for any given β .

3.2. Ground state solution and first excited state solution in one-dimension

In order to further validate the scheme MSAV1, we use it to compute the ground state solution and first excited state 
solution of a well studied case.
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Fig. 4. Left: Ground state solution for β = 0, 3.1371, 12.5484, 31.371, 62.742, 156.855, 313.71, 627.42, 1254.8 (with decreasing peak). Right: Energy 
evolution Eβ(φ) for different β .

Fig. 5. First excited state solution φ1(x) for β = 0, 3.1371, 12.5484, 31.371, 62.742, 156.855, 313.71, 627.42, 1254.8 (with decreasing peak).

Example 3.1. Ground state solutions of BECs with harmonic oscillator potential

V (x) = x2

2 , φ0(x) = 1
π1/4 e−x2/2, x ∈ R.

The numerical parameters in the computation are

N = 256, ε = 10−8 τ = 0.001.

We show in Fig. 4 the ground state solution φg(x) and energy evolution for different β . The results are in good qualitative 
agreement with those obtained by directly minimizing the energy functional [10] and the TS method in [8].

The scheme can also be used to compute the first excited state solution of BECs.

Example 3.2. First excited state solutions of BECs with harmonic oscillator potential

V (x) = x2

2
, φ0(x) =

√
2

π1/4
xe−x2/2, x ∈ R.

We still take the discretization parameters to be N = 256, ε = 10−8, τ = 0.001. Fig. 5 shows the first excited state solution 
φ1(x) with different β . The results are in good agreement with those computed in [10] and [8].

In order to make a quantitative comparison, we compute the chemical potential and the energy of the ground state 
solution and the first excited state solution. Given φ, the chemical potential μ can be computed by

μ = μβ(φ) =
∫
�

[
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 + β|φ(x)|4

]
dx

= Eβ(φ) +
∫
�

β

2
|φ(x)|4dx.

Let φg and φ1 be the ground state solution and the first excited state solution, respectively. We set xrms = ‖xφ1‖L2(�) be the 
radius mean square of φ1(x), Eβ(φg) and Eβ(φ1) be the corresponding energy, and μg = μβ(φg) and μ1 = μβ(φ1). Table 5
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Table 5
Chemical potentials and energies of the first excited state solution and the ground state solution.

β xrms Eβ (φg ) Eβ (φ1)
Eβ (φ1)

Eβ (φg )
μg μ1

μ1
μg

0 1.2247 0.5000 1.5000 3.0000 0.5000 1.5000 3.0000
3.1371 1.3132 1.0441 1.9414 1.8594 1.5285 2.3589 1.5433
12.5484 1.5413 2.2330 3.0377 1.3604 3.5997 4.3470 1.2076
31.371 1.8619 3.9810 4.7437 1.1916 6.5563 7.2836 1.1109
62.742 2.2239 6.2570 6.9997 1.1187 10.3735 11.0930 1.0694
156.855 2.8958 11.4645 12.1912 1.0634 19.0750 19.7887 1.0374
313.71 3.5835 18.1710 18.8909 1.0396 30.2642 30.9773 1.0236
627.42 4.4657 28.8253 29.5433 1.0249 48.0297 48.7501 1.0150
1254.8 5.5811 45.7431 46.4368 1.0152 76.2325 76.8884 1.0086

shows the computational results. It is observed that this table agrees quantitatively with the Table 4.3 in [8]. In particular, 
we have

lim
β→∞

Eβ(φ1)

Eβ(φg)
= 1, lim

β→∞
μ1

μg
= 1.

3.3. Ground state solution of BECs in two-dimension

Since the SAV schemes only involving solving equations of the type (2.8), so implementation in multi-dimensions is 
straightforward. We now apply the MSAV1 scheme to compute the ground state solutions of BECs in two-dimension. We 
take the initial condition to be

φ0(x, y) = (γxγy)
1/4

π1/2
e−(γ 2

x x2+γ 2
y y2)/2,

with two different potential functions:

• Case 1. A harmonic oscillator potential [8–10,14]

V (x, y) = 1

2
(γ 2

x x2 + γ 2
y y2).

• Case 2. A harmonic oscillator potential and a potential of a stirrer corresponding to a far-blue detuned Gaussian laser 
beam [8,15]

V (x, y) = 1

2
(γ 2

x x2 + γ 2
y y2) + ω0e−δ((x−r0)2+y2),

and the parameters are γx = 1, γy = 4, and β = 200 in Case 1 and γx = 1, γy = 1, ω0 = 4, δ = r0 = 1, and β = 200 in Case 2. 
We then solve the problem with the numerical parameters N = 128, ε = 10−8, τ = 0.01. We plot the ground state solutions 
of both cases in Fig. 6. Moreover, the chemical potential and energy corresponding to these ground states are

• Case 1: xrms = 2.2812, yrms = 0.6096, Eβ(φg) = 11.1560, μg = 16.3002.
• Case 2: xrms = 1.6978, yrms = 1.7169, Eβ(φg) = 5.8506, μg = 8.3189.

These results are also in excellent agreement with those reported in [8].

4. Multi-component BECs

To fix the idea, we shall only consider two-component BECs. The method presented below can be straightforwardly 
extended to deal with multi-component BECs [5].

We consider the two-component (pseudo spin-1/2) BEC system with Josephson junction [4,22] whose free energy is 
given by

E(φ1, φ2) =
∫
�

(
1

2
|∇φ1|2 + 1

2
∇φ2|2) + V 1(x)|φ1|2 + V 2(x)|φ2|2)dx + E0(φ1, φ2), (4.1)

where

E0(φ1, φ2) =
∫ [

1

2
β11|φ1|4 + 1

2
β22|φ2|4 + β12|φ1|2|φ2|2 + λφ1φ2 + δ

2
(|φ1|2 − |φ2|2)

]
dx, (4.2)
�
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Fig. 6. Ground state solutions in the 2-D case.

subject to the constraint∫
�

|φ1(x, t)|2 dx +
∫
�

|φ2(x, t)|2 dx = 1, t ≥ 0. (4.3)

In the above, the unknown functions (φ1, φ2) are the macroscopic wave function corresponding to the spin-up and spin-
down components, V i(x) (i = 1, 2) are two external trapping potentials, λ is the effective Rabi frequency, δ is the Raman 
transition constant, βi j (i, j = 1, 2) are related to the s-wave scattering lengths between i-th and j-th components (positive 
for repulsive interaction and negative for attractive interaction).

4.1. SAV schemes for the imaginary time gradient flow

To minimize the above free energy, one can also use the corresponding imaginary time gradient flow:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂φ1

∂t
=

(
1

2
� − V 1(x) − δ

2
− (β11|φ1|2 + β12|φ2|2)

)
φ1 − λ

2
φ2, x ∈ �, t > 0,

∂φ2

∂t
=

(
1

2
� − V 2(x) + δ

2
− (β12|φ1|2 + β22|φ2|2)

)
φ2 − λ

2
φ1, x ∈ �, t > 0,

(4.4)

with the constraint (4.3).
As in the one-component case, we introduce two SAVs

u = √
E0(φ1, φ2) + C0, v =

∫
�

|φ1(x, t)|2 dx +
∫
�

|φ2(x, t)|2 dx − 1,

where C0 is a constant such that E0(φ1, φ2) + C0 > 0. Then, we can rewrite the problem (4.4)-(4.3) as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ1

∂t
=

(
1

2
� − V 1(x)

)
φ1 − u

δu

δφ1
− 1

2ε
v

δv

δφ1
,

∂φ2

∂t
=

(
1

2
� − V 2(x)

)
φ2 − u

δu

δφ2
− 1

2ε
v

δv

δφ2
,

∂u

∂t
=

∫
�

(
δu

δφ1

∂φ1

∂t
+ δu

δφ2

∂φ2

∂t
)dx,

∂v

∂t
=

∫
�

(
δv

δφ1

∂φ1

∂t
+ δv

δφ2

∂φ2

∂t
)dx,

(4.5)

where
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δu

δφ1
= 1

2
√
E0(φ1, φ2)

[(β11|φ1|2 + β12|φ2|2)2φ1 + λφ2 + δφ1],
δu

δφ2
= 1

2
√
E0(φ1, φ2)

[(β12|φ1|2 + β22|φ2|2)2φ2 + λφ1 − δφ2],
δv

δφ1
= 2φ1,

δv

δφ2
= 2φ2.

Then, a first-order SAV scheme for (4.5) is

φn+1
1 − φn

1

τ
=

(
1

2
� − V 1(x)

)
φn+1

1 − rn
11un+1 − 1

2ε
rn

12 vn+1, (4.6a)

φn+1
2 − φn

2

τ
=

(
1

2
� − V 2(x)

)
φn+1

2 − rn
21un+1 − 1

2ε
rn

22 vn+1, (4.6b)

un+1 − un =
∫
�

(rn
11 · (φn+1

1 − φn
1) + rn

21 · (φn+1
2 − φn

2))dx, (4.6c)

vn+1 − vn =
∫
�

(rn
12 · (φn+1

1 − φn
1) + rn

22 · (φn+1
2 − φn

2))dx, (4.6d)

where

rn
11 = δu

δφ1
(φn

1, φn
2), rn

12 = δv
δφ1

(φn
1, φn

2),

rn
21 = δu

δφ2
(φn

1, φn
2), rn

22 = δv
δφ2

(φn
1, φn

2).

Theorem 4.1. The SAV scheme (4.6) is unconditionally energy diminishing in the sense that

Ẽ(φn+1
1 , φn+1

2 , un+1, vn+1) − Ẽ(φn
1, φn

2, un, vn) = − 2

τ
‖φn+1

1 − φn
1‖2 − 2

τ
‖φn+1

2 − φn
2‖2

− Ẽ(φn+1
1 − φn

1, φn+1
2 − φn

2, un+1 − un, vn+1 − vn),

where Ẽ(φ1, φ2, u, v) is the modified energy

Ẽ(φ1, φ2, u, v) =
∫
�

2∑
j=1

(
1

2
|∇φ j|2 + V j|φ j|2

)
dx + u2 + 1

2ε
v2.

Proof. Taking the inner products of (4.6a) and (4.6b) with φn+1
1 −φn

1 and φn+1
2 −φn

2 respectively, and multiplying (4.6c) and 
(4.6d) with un+1 and 1

2ε vn+1, respectively, we obtain

1

τ
‖φn+1

1 − φn
1‖2 + 1

τ
‖φn+1

2 − φn
2‖2 = −un+1(un+1 − un) − 1

2ε
vn+1(vn+1 − vn)

+
(

(
1

2
� − V 1(x))φn+1

1 , φn+1
1 − φn

1

)
+

(
(

1

2
� − V 1(x))φn+1

2 , φn+1
2 − φn

2

)
.

Using the identity 2(b − a, b) = |b|2 − |a|2 + |b − a|2, the above equation can be rewritten as

1

2
Ẽ(φn+1

1 , φn+1
2 , un+1, vn+1) − 1

2
Ẽ(φn

1, φn
2, un, vn) = − 1

τ
‖φn+1

1 − φn
1‖2 − 1

τ
‖φn+1

2 − φn
2‖2

− 1

2
Ẽ(φn+1

1 − φn
1, φn+1

2 − φn
2, un+1 − un, vn+1 − vn),

which implies the desired result. �
One can also easily construct second-order unconditionally energy diminishing SAV schemes based on Crank-Nicolson or 

BDF2.
As in the one-component case, the scheme (4.6) can also be efficiently implemented. To this end, we write scheme (4.6)

as a matrix system
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Fig. 7. Evolution of original and modified energies by SAV1 with β = 100 and λ = −2.

⎛
⎜⎜⎝

I + τL1 0 ∗ ∗
0 I + τL2 ∗ ∗
∗ ∗ 1 0
∗ ∗ 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

φn+1
1

φn+1
2

un+1

vn+1

⎞
⎟⎟⎠ = b̄n,

where I is the identity operator, Liψ := ( 1
2 � − V i(x))ψ (i = 1, 2), ∗ represents the terms with non-constant coefficients, 

b̄n includes only the terms from previous time steps. We can first solve (un+1, vn+1)t using a block Gaussian elimination, 
which requires solving two decoupled systems of the form (i = 1, 2):⎧⎨

⎩
(I + τLi)ψi(x) = gi(x), x ∈ �, t > 0,

lim|x|→∞ψi(x) = 0, t ≥ 0.
(4.7)

With (un+1, vn+1)t known, we can obtain φn+1 by solving one more system in the above form. Hence, the solution proce-
dures of the SAV schemes for the one- and two-component BECs are essentially the same. No extra efforts are needed for 
the two-component BECs.

4.2. Numerical results with the SAV scheme (4.6)

First, we use the SAV scheme (4.6) to compute the ground state of the following example.

Example 4.1. Let V 1(x) = V 2(x) = x2

2 , δ = 0, and β11 : β12 : β22 = (1 : 0.94 : 0.97)β with β to be specified. The initial condi-
tions are taken to be

φ0
1(x) = φ0

2(x) = 1

π1/4
√

2
e−x2/2.

The numerical parameters are ε = 10−8, τ = 0.01 and N = 512. We show in Fig. 7 evolutions of the original energy E
and modified energy Ẽ with different time step by the scheme (4.6). We observe that both energies are diminishing, but 
they are only close for τ very small. On the other hand, the values of |‖φ1‖2 + ‖φ2‖2 − 1| at τ = 0.01, 0.001, 0.0001 are 
0.0569, 0.0057, 5.7008 × 10−4 so the convergence of L2-norm is also very slow. These results indicate that, similar to the 
one-component case, the scheme (4.8) is not very efficient for computing the ground state solutions for the two-component 
BECs. See also Table 6 for the required iteration numbers to reach the steady state and the energy at the steady state.

4.3. SAV schemes for the normalized imaginary time gradient flow

While it is easy to project the approximate solution to satisfy the norm constraint in the one-component case, it becomes 
much harder to do so for the two-component BECs [7]. However, the penalized SAV approach can still be easily applied to 
deal with the constraints for multi-component BECs.

As for the one-component case, we propose to use the following modified SAV scheme for (4.5):

• Solve φn+1
1 and φn+1

2 from the following equations

φn+1
1 − φn

1 =
[

1
� − V 1(x) − δ

]
φn+1

1 − rn
11ũn+1 + 1

rn
12 ṽn+1, (4.8a)
τ 2 2 2ε
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Fig. 8. Evolution of original and modified energies by modified SAV1 with β = 100 and λ = −2.

φn+1
2 − φn

2

τ
=

[
1

2
� − V 2(x) + δ

2

]
φn+1

2 − rn
21ũn+1 + 1

2ε
rn

22 ṽn+1, (4.8b)

ũn+1 − un =
∫
�

(rn
11(φ

n+1
1 − φn

1) + rn
21(φ

n+1
2 − φn

2))dx, (4.8c)

ṽn+1 − vn =
∫
�

(rn
12(φ

n+1
1 − φn

1) + rn
22(φ

n+1
2 − φn

2))dx. (4.8d)

• Update un+1 and vn+1 via

un+1 =
√
E0(φ

n+1
1 , φn+1

2 ), (4.9a)

vn+1 =
∫
�

∣∣∣φn+1
1 (x, t)

∣∣∣2
dx +

∫
�

∣∣∣φn+1
2 (x, t)

∣∣∣2
dx − 1. (4.9b)

Note that the first step (4.8) is exactly the scheme (4.6). So the modified SAV scheme merely adds an update for un+1 and 
vn+1 using the original energy and L2-norm constraint at each time step. We derive immediately from Theorem 4.1 the 
following:

Corollary 4.1. For the scheme (4.8), we have

Ẽ(φn+1
1 , φn+1

2 , ũn+1, ṽn+1) − Ẽ(φn
1, φn

2, un, vn) = − 2

τ
‖φn+1

1 − φn
1‖2 − 2

τ
‖φn+1

2 − φn
2‖2

−Ẽ(φn+1
1 − φn

1, φn+1
2 − φn

2, ũn+1 − un, ṽn+1 − vn),

where Ẽ(φ1, φ2, u, v) is the modified energy

Ẽ(φ1, φ2, u, v) =
∫
�

2∑
j=1

(
1

2
|∇φ j|2 + V j|φ j|2

)
dx + u2 + 1

2ε
v2.

4.4. Numerical results using the modified SAV scheme (4.8)-(4.9)

We plot in Fig. 8 evolutions of the original energy E and modified energy Ẽ with different time step by the modified 
SAV scheme (4.8)-(4.9), and observe that the two energies stay close for all time steps and they converge to steady state 
quickly. The corresponding errors of L2-norm conservation |‖φ1‖2 + ‖φ2‖2 − 1| at τ = 0.01, 0.001, 0.0001 are respectively 
1.2410 × 10−7, 1.2726 × 10−7, 1.2813 × 10−7, which are independent of τ . These results indicate that the modified SAV 
scheme (4.8) is very effective for computing the ground states of two-component BECs and conserves the L2-norm well.

We list in Table 6 the required iteration numbers to reach the steady state and the energy at the steady state for both 
schemes SAV1 and MSAV1, and observe that the scheme MSAV1 is also very efficient and accurate in computing the ground 
state solutions of two-component BECs.

Next, we examine how the ground state depends on λ and β . Fig. 9 shows the ground state solutions with β = 100 and 
different λ ≤ 0. We observe that as λ decreases, φ1 and φ2 are getting closer and eventually converge towards each other 
as λ → −∞. Fig. 10 shows the ground state solutions with λ = −2 and different β . We observe that as β increases, φ1 and 
φ2 are farther apart from each other.

Next, we consider the following example with highly oscillatory potentials:
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Fig. 9. Ground state solution with β = 100 and different λ.

Fig. 10. Ground state solution with λ = −2 and different β .
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Table 6
Iteration number and energy of SAV1 and MSAV1 with different τ for the case β = 100 and 
λ = −2 of the two-component BECs.

τ K (MSAV1) E(MSAV1) K (SAV1) E(SAV1)

10−2 196 7.293210 284 8.055077
10−3 1461 7.293328 1555 7.366530
10−4 11396 7.294530 11429 7.301847

Fig. 11. Ground state solution with β = 100 and different λ.

Example 4.2. Let V 1(x) = V 2(x) = x2

2 + 24 cos2(x), δ = 0, and β11 : β12 : β22 = (1.03 : 1 : 0.97)β . The initial conditions are 
taken to be

φ0
1(x) = φ0

2(x) = 1

π1/4
√

2
e−x2/2.

We still use the same numerical parameters ε = 10−8, τ = 0.01 and N = 512.
We plot in Fig. 11 the ground state solutions with β = 100 and different λ ≤ 0, and in Fig. 12 the ground state solutions 

with λ = −2 and different β . We observe similar behaviors as in the previous example as we decrease λ and increase β . 
These results are in full agreement with those in [6,7].

5. Concluding remarks

We constructed efficient and accurate schemes, based on the SAV approach coupled with a penalty term to enforce the 
norm constraint, for the imaginary time gradient flows of one- and multi-component BECs, with or without normalization, 
and applied them to compute stationary solutions of one- and two-component BECs. The SAV schemes without normaliza-
tion are accurate for the dynamic evolution but may converge slowly towards stationary solutions, while the SAV schemes 
with normalization lead to fast convergence towards stationary solutions. Both schemes require solving only linear elliptic 
problems with time independent coefficients (or even constant coefficients if the potential term is treated explicitly) at each 
time step, and do not require projection onto the constrained subspace, so they are very efficient and easy to implement. 
These schemes also preserve the energy diminishing properties of the corresponding imaginary time gradient flows with or 
without normalization.
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Fig. 12. Ground state solution with λ = −2 and different β .

Ample numerical results are presented to validate our schemes and detailed comparisons are made with existing schemes 
to show their efficiency. Although we have only considered ground state solutions of BECs, the general approach presented 
in this paper can also be used to other minimization problems that can be reformulated as finding steady state solutions of 
imaginary time gradient flows.
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