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Abstract. We introduce novel entropy-dissipative numerical schemes for a class of kinetic equa-
tions, leveraging the recently introduced scalar auxiliary variable (SAV) approach. Both first and
second order schemes are constructed. Since the positivity of the solution is closely related to entropy,
we also propose positivity-preserving versions of these schemes to ensure robustness, which include
a scheme specially designed for the Boltzmann equation and a more general scheme using Lagrange
multipliers. The accuracy and provable entropy-dissipation properties of the proposed schemes are
validated for both the Boltzmann equation and the Landau equation through extensive numerical
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1. Introduction. We are interested in structure-preserving discretizations to
the prototype kinetic equation1 given by

\partial tf =Q(f),(1.1)

where f = f(t, v) is the probability density function of time t\geq 0 and velocity v \in \BbbR d,
and Q(f) is the collision operator modeling particle collisions. Depending on the
application, Q(f) can take various forms, but they generally satisfy the following
common properties:

\bullet conservation of mass, momentum, and energy:\int 
\BbbR d

Q(f)dv=

\int 
\BbbR d

Q(f)v dv=

\int 
\BbbR d

Q(f)| v| 2 dv= 0,(1.2)

\bullet Boltzmann's H-theorem: \int 
\BbbR d

Q(f) log f dv\leq 0,(1.3)

and the equality sign holds if and only if f becomes the Maxwellian:

M =
\rho 

(2\pi T )d/2
exp

\biggl( 
 - | v - u| 2

2T

\biggr) 
,(1.4)
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1Many kinetic equations also depend on the spatial variable x. In this work, we restrict ourselves
to the spatially homogeneous case, that is, f(t, x, v) is assumed to be homogeneous in the x direction.
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A3442 SHIHENG ZHANG, JIE SHEN, AND JINGWEI HU

where the density \rho , bulk velocity u, and temperature T are defined as

\rho =

\int 
\BbbR d

f dv, u=
1

\rho 

\int 
\BbbR d

fv dv, T =
1

d\rho 

\int 
\BbbR d

f | v - u| 2 dv.(1.5)

Using these properties, one can easily show that the solution to (1.1) satisfies

d

dt

\int 
\BbbR d

f(1, v, | v| 2)T dv=

\int 
\BbbR d

\partial tf(1, v, | v| 2)T dv=

\int 
\BbbR d

Q(f)(1, v, | v| 2)T dv= 0,(1.6)

hence \rho , u, and T remain as constant; furthermore,

d

dt

\int 
\BbbR d

f log f dv=

\int 
\BbbR d

\partial tf(log f + 1)dv=

\int 
\BbbR d

Q(f)(log f + 1)dv\leq 0,(1.7)

hence the entropy
\int 
\BbbR d f log f dv decays over time.

A large class of kinetic equations falls into the form of (1.1), including the Boltz-
mann equation [6], the Landau equation [18], and their simplified versions such as the
Bhatnagar--Gross--Krook (BGK) model [3], the ellipsoidal-statistical BGK (ES-BGK)
model [16], and the kinetic Fokker--Planck model [33], to name a few. In particular,
the Boltzmann collision operator that describes neutral particle collisions is given by

QB(f)(v) =

\int 
\BbbR d

\int 
Sd - 1

B(v - v\ast , \sigma )[f(v
\prime )f(v\prime \ast ) - f(v)f(v\ast )] d\sigma dv\ast ,(1.8)

where \sigma is a vector varying over the unit sphere Sd - 1 (d\geq 2), (v, v\ast ) and (v\prime , v\prime \ast ) are
the velocity pairs before and after a collision, related by

v\prime =
v+ v\ast 

2
+

| v - v\ast | 
2

\sigma , v\prime \ast =
v+ v\ast 

2
 - | v - v\ast | 

2
\sigma ,(1.9)

and the collision kernel B assumes the form

B(v - v\ast , \sigma ) =CB | v - v\ast | \gamma b(cos\theta ), cos\theta =
\sigma \cdot (v - v\ast )

| v - v\ast | 
,  - d< \gamma \leq 1.(1.10)

On the other hand, the Landau collision operator that describes charged particle
collisions is given by

QL(f)(v) =\nabla v \cdot 
\int 
\BbbR d

A(v - v\ast )[f(v\ast )\nabla vf(v) - f(v)\nabla v\ast f(v\ast )] dv\ast ,(1.11)

where the collision kernel A is a d\times d positive semidefinite matrix given by

A(v - v\ast ) =CL| v - v\ast | \gamma (| v - v\ast | 2Id  - (v - v\ast )\otimes (v - v\ast )),  - d\leq \gamma \leq 1.(1.12)

When numerically solving (1.1), it is desirable to have a time discretization scheme
that captures the entropy-decay structure (1.7) at the discrete level. We first note
that this can be easily achieved via the backward Euler scheme:

fn+1  - fn

\Delta t
=Q(fn+1),(1.13)

which implies\int 
\BbbR d

fn+1 log fn+1 dv - 
\int 
\BbbR d

fn log fn+1 dv=\Delta t

\int 
\BbbR d

Q(fn+1) log fn+1 dv\leq 0,(1.14)
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3443

hence \int 
\BbbR d

fn+1 log fn+1 dv\leq 
\int 
\BbbR d

fn log fn+1 dv\leq 
\int 
\BbbR d

fn log fn dv,(1.15)

where the last inequality is due to Jensen's inequality. However, the backward Euler
scheme can be extremely difficult to implement for the Boltzmann equation and Lan-
dau equation due to their nonlocal and nonlinear collision operators. On the other
hand, the forward Euler scheme applied to (1.1), although simple to implement, gen-
erally cannot preserve the entropy-decay structure.2

Motivated by the above discussion, our goal in this work is to design entropy-
dissipative schemes for general kinetic equations (1.1) that are as easily implementable
as the forward Euler. This presents a significant challenge, primarily due to the in-
herent complexity of the collision operator which precludes the application of some
well-known strategies to achieve energy stability (a property similar to entropy dissi-
pation), such as convex splitting [11, 12, 27]. Recently, the scalar auxiliary variable
(SAV) method [29] has emerged as a successful approach in various domains, notably
within the contexts of gradient flows [28, 30, 7, 21]. The method has subsequently
been extended to solve a variety of complex problems, such as the Schr\"odinger equa-
tion [1], Navier--Stokes equations [19], and Wasserstein gradient flows [35]. Given the
simplicity and efficiency of the SAV method, it has also prompted extensive research
beyond solving PDEs, including optimization [20, 36] and machine learning [23, 34].

This paper proposes a novel strategy to develop entropy-dissipative schemes for
kinetic equations (1.1) leveraging the SAV approach. Both first and second order
schemes are constructed. Since the positivity of the solution is closely related to
entropy (as log f is not even defined for negative f), we also propose positivity-
preserving versions of these schemes to ensure robustness, which include a scheme
specially designed for the Boltzmann equation and a more general scheme using La-
grange multipliers [17, 15, 13, 2]. This latter approach has recently been applied to
parabolic problems to address challenges in preserving positivity and mass conserva-
tion, as demonstrated in [31, 8].

Finally, we mention that our main focus of this work is regarding the time dis-
cretization. To simplify the presentation, we keep the velocity variable v as continuous
in the following discussion. However, it should be understood that a discretization
method for the collision operator is employed and we assume that this method satisfies
the following properties:

\bullet it assumes a truncation in the velocity domain: v \in \Omega instead of \BbbR d;
\bullet it preserves mass, momentum and energy in \Omega as in (1.2);
\bullet it satisfies the H-theorem in \Omega as in (1.3).

There exist such methods in the literature, for example, the discrete velocity methods
for the Boltzmann collision operator [10] and the Landau collision operator [9] satisfy
the above assumptions. The Fourier spectral methods for the Boltzmann collision
operator [25, 24, 14] and the Landau collision operator [26] coupled with the entropy
fix [5] can also satisfy the above assumptions, except for momentum and energy
conservation.

The rest of this paper is organized as follows. Section 2 introduces the entropy-
dissipative SAV schemes. These schemes can achieve entropy dissipation but the
positivity of the solution is not guaranteed. Subsequently, section 3 presents a

2There are some exceptions: e.g., the forward Euler for the Boltzmann equation with Maxwell
collision kernel (i.e., \gamma = 0 in (1.10)) is readily entropy-dissipative, as proved in [32].
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A3444 SHIHENG ZHANG, JIE SHEN, AND JINGWEI HU

positivity-preserving and entropy-dissipative SAV scheme, tailored specifically for
the Boltzmann equation. Section 4 introduces positivity-preserving and entropy-
dissipative SAV schemes applicable to a broader class of kinetic equations. Section 5
provides a summary of the numerical schemes proposed in this paper along with their
corresponding properties, and presents extensive numerical examples for the Boltz-
mann equation and Landau equation to demonstrate the performance of the proposed
schemes. Some concluding remarks are given in section 6.

2. Entropy-dissipative SAV schemes. We define H(t) =
\int 
\Omega 
f log f dv + C,

where C is a constant chosen such that H(t)\geq Hmin > 0 for all t\geq 0. Since entropy
decreases toward a minimum (when f becomes the Maxwellian M), the lower bound
of

\int 
\Omega 
f log f dv is directly computable (i.e.,

\int 
\Omega 
M logM dv). Hence determining the

constant C is not difficult. We then introduce a scalar auxiliary variable (SAV) r:

r=
\surd 
H,

and rewrite (1.1) equivalently as

\partial tf =
r\surd 
H

Q(f),(2.1)

dr

dt
=

1

2
\surd 
H

\int 
\Omega 

log f\partial tf dv,(2.2)

where the second equation is derived by differentiating r with respect to t and applying
conservation of mass.

2.1. A first order scheme. A first order numerical scheme, SAV-1st, for (2.1)
and (2.2) can be obtained as follows:

fn+1  - fn

\Delta t
=

rn+1

\surd 
Hn

Q(fn),(2.3)

rn+1  - rn

\Delta t
=

1

2
\surd 
Hn

\int 
\Omega 

log fn f
n+1  - fn

\Delta t
dv,(2.4)

where Hn = H(fn) =
\int 
\Omega 
fn log fn dv + C > 0, and r0 =

\surd 
H0. Note that in general

rn \not =
\surd 
Hn for n > 0. This scheme is easy to implement. One can determine rn+1 by

plugging (2.3) into (2.4) and then compute fn+1 using (2.3).

Theorem 2.1. The scheme (2.3) and (2.4), SAV- 1st, satisfies the following prop-
erties: for all time steps n\geq 0 and step size \Delta t > 0,

\bullet it conserves mass, momentum, and energy:\int 
\Omega 

fn+1(1, v, | v| 2)T dv=

\int 
\Omega 

fn(1, v, | v| 2)T dv;

\bullet it satisfies a modified entropy dissipation law:

\~Hn+1  - \~Hn = - (rn+1  - rn)2 +
\Delta t(rn+1)2

Hn

\int 
\Omega 

Q(fn) log fn dv\leq 0,

where \~Hn = (rn)2.

Proof. Conservation of mass, momentum, and energy can be easily shown by
multiplying (2.3) by (1, v, | v| 2)T and integrating in v, and using that\int 

\Omega 

Q(fn)(1, v, | v| 2)T dv= 0.
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3445

To show the entropy dissipation, we can multiply (2.3) by rn+1
\surd 
Hn

log fn and inte-

grate in v, and multiply (2.4) by 2rn+1 to obtain

rn+1

\surd 
Hn

\int 
\Omega 

log fn f
n+1  - fn

\Delta t
dv=

(rn+1)2

Hn

\int 
\Omega 

Q(fn) log fn dv,

2rn+1(rn+1  - rn)

\Delta t
=

rn+1

\surd 
Hn

\int 
\Omega 

log fn f
n+1  - fn

\Delta t
dv.

Combining these two equations together, we have

2rn+1(rn+1  - rn)

\Delta t
=

(rn+1)2

Hn

\int 
\Omega 

Q(fn) log fn dv.

Noting the identity

2rn+1(rn+1  - rn) = (rn+1)2  - (rn)2 + (rn+1  - rn)2,(2.5)

we then have

(rn+1)2  - (rn)2 + (rn+1  - rn)2 =
\Delta t(rn+1)2

Hn

\int 
\Omega 

Q(fn) log fn dv\leq 0.

2.2. A second order scheme. A second order numerical scheme, SAV-2nd, for
(2.1) and (2.2) can be constructed by extending the second order backward differen-
tiation formula (BDF) as follows:

3fn+1  - 4fn + fn - 1

2\Delta t
=

rn+1

\surd 
Hn+1,\ast 

Q(fn+1,\ast ),(2.6)

3rn+1  - 4rn + rn - 1

2\Delta t
=

1

2
\surd 
Hn+1,\ast 

\int 
\Omega 

log fn+1,\ast 3f
n+1  - 4fn + fn - 1

2\Delta t
dv,(2.7)

where r0 =
\surd 
H0 and r1, f1 are obtained by the first order scheme SAV-1st. Further,

Hn+1,\ast represents H(fn+1,\ast ), where fn+1,\ast is an explicit approximation of f(tn+1)
with an order of accuracy \scrO (\Delta t2). For example, the Adams--Bashforth extrapolation
[4] can be employed for this purpose:

fn+1,\ast = 2fn  - fn - 1.

Theorem 2.2. The scheme (2.6) and (2.7), SAV- 2nd, satisfies the following prop-
erties: for all time steps n\geq 0 and step size \Delta t > 0,

\bullet it conserves mass, momentum, and energy:\int 
\Omega 

fn+1(1, v, | v| 2)T dv=

\int 
\Omega 

fn(1, v, | v| 2)T dv;

\bullet it satisfies a modified entropy dissipation law:

\~Hn+1  - \~Hn = - 1

2
(rn+1  - 2rn + rn - 1)2

+
\Delta t(rn+1)2

Hn+1,\ast 

\int 
\Omega 

Q(fn+1,\ast ) log fn+1,\ast dv\leq 0,

where \~Hn = 1
2 (r

n)2 + 1
2 (2r

n  - rn - 1)2.
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A3446 SHIHENG ZHANG, JIE SHEN, AND JINGWEI HU

Proof. Conservation of mass, momentum, and energy can be easily shown by
multiplying (2.6) by (1, v, | v| 2)T and integrating in v, and using that\int 

\Omega 

Q(fn+1,\ast )(1, v, | v| 2)T dv= 0.

To show the entropy dissipation, we multiply (2.6) by rn+1
\surd 
Hn+1,\ast log f

n+1,\ast and

integrate in v, multiply (2.7) by 2rn+1 to obtain

2rn(3rn+1  - 4rn + rn - 1)

2\Delta t
=

(rn+1)2

Hn+1,\ast 

\int 
\Omega 

Q(fn+1,\ast ) log fn+1,\ast dv\leq 0.

Using the identity

2rn+1(3rn+1  - 4rn + rn - 1) = (rn+1)2 + (2rn+1  - rn)2 + (rn+1  - 2rn + rn - 1)2

 - (rn)2  - (2rn  - rn - 1)2,
(2.8)

we obtain the desired inequality.

Remark 2.3. A second order scheme based on the Crank--Nicolson method can
also be constructed:

fn+1  - fn

\Delta t
=

rn+1 + rn

2
\surd 
Hn+1/2,\ast 

Q(fn+1/2,\ast ),(2.9)

rn+1  - rn

\Delta t
=

1

2
\surd 
Hn+1/2,\ast 

\int 
\Omega 

log fn+1/2,\ast f
n+1  - fn

\Delta t
dv,(2.10)

where fn+1/2,\ast represents any explicit \scrO (\Delta t2) approximation to f(tn+1/2). This
scheme satisfies the same properties as Theorem 2.2, except that the entropy dissipa-
tion has a different form:

(rn+1)2  - (rn)2 =
\Delta t(rn+1 + rn)2

4Hn+1/2,\ast 

\int 
\Omega 

Q(fn+1/2,\ast ) log fn+1/2,\ast dv\leq 0.

3. A positivity-preserving and entropy-dissipative SAV scheme for the
Boltzmann equation. Since f is the probability density function, so it should satisfy
f \geq 0. In this section, we use the Boltzmann collision operator (1.8) as an example
to show how to modify the scheme SAV-1st in the last section to preserve positivity.
First note that we can write QB(f) as

QB(f) =Q+
B(f) - Q - 

B(f)f,(3.1)

with

Q+
B(f)(v) =

\int 
\Omega 

\int 
Sd - 1

B(v - v\ast , \sigma )f(v
\prime )f(v\prime \ast )d\sigma dv\ast \geq 0,(3.2)

Q - 
B(f)(v) =

\int 
\Omega 

\int 
Sd - 1

B(v - v\ast , \sigma )f(v\ast )d\sigma dv\ast \geq 0.(3.3)

We propose a first order stabilized scheme with positivity-preserving property, SAV-
1st-P-B, as follows

fn+1  - fn

\Delta t
=

rn+1

\surd 
Hn

QB(f
n) + \beta fn  - \beta fn+1,(3.4)

rn+1  - rn

\Delta t
=

1

2
\surd 
Hn

\int 
\Omega 

log fn f
n+1  - fn

\Delta t
dv,(3.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3447

where the constant \beta is a stabilizing constant, chosen such that \beta \geq r0\surd 
H\mathrm{m}\mathrm{i}\mathrm{n}

maxQ - 
B(f)

\geq 0. The definition of Q - 
B(f) implies that

Q - 
B(f)\leq \rho max

v,v\ast \in \Omega 

\int 
Sd - 1

B(v - v\ast , \sigma )d\sigma .

Since \rho remains constant and the velocity domain has been truncated, the upper
bound of Q - 

B(f) is not difficult to obtain.

Theorem 3.1. The scheme (3.4) and (3.5), SAV- 1st-P-B, satisfies the following
properties: for all time step n\geq 0 and step size \Delta t > 0,

\bullet it preserves the positivity of the solution, i.e., fn \geq 0, provided initially f0 \geq 0;
\bullet it conserves mass, momentum, and energy:\int 

\Omega 

fn+1(1, v, | v| 2)T dv=

\int 
\Omega 

fn(1, v, | v| 2)T dv;

\bullet it satisfies a modified entropy dissipation law:

\~Hn+1  - \~Hn = - (rn+1  - rn)2 +
\Delta t(rn+1)2

(1 + \beta \Delta t)Hn

\int 
\Omega 

QB(f
n) log fn dv\leq 0,

where \~Hn = (rn)2.

Proof. To show the positivity of fn, we first rewrite the (3.4) as

fn+1  - fn

\Delta t
=

rn+1

\surd 
Hn

\bigl( 
Q+

B(f
n) - Q - 

B(f
n)fn

\bigr) 
+ \beta fn  - \beta fn+1

=
rn+1

\surd 
Hn

Q+
B(f

n) +

\biggl( 
\beta  - rn+1

\surd 
Hn

Q - 
B(f

n)

\biggr) 
fn  - \beta fn+1,

(3.6)

hence,

(1 +\Delta t\beta )fn+1 =\Delta t
rn+1

\surd 
Hn

Q+
B(f

n) +

\biggl( 
1 +\Delta t

\biggl( 
\beta  - rn+1

\surd 
Hn

Q - 
B(f

n)

\biggr) \biggr) 
fn.(3.7)

Rewriting (3.4) alternatively as\biggl( 
1

\Delta t
+ \beta 

\biggr) \bigl( 
fn+1  - fn

\bigr) 
=

rn+1

\surd 
Hn

QB(f
n),(3.8)

and plugging (3.8) into (3.5), we can obtain:

rn+1 =

\biggl( 
1 - \Delta t

2Hn(1 +\Delta t\beta )

\int 
\Omega 

QB(f
n) log fn dv

\biggr)  - 1

rn.(3.9)

Since Hn > 0, 1+\Delta t\beta > 0, and
\int 
QB(f

n) log fn dv\leq 0 (H-theorem), the second term
in the parentheses above is non-negative. Therefore, the entire term in the parentheses
is \geq 1. This implies that 0\leq rn+1 \leq rn. By the choice of \beta , we guarantee that

\beta \geq r0\surd 
Hmin

maxQ - 
B(f)\geq 

rn+1

\surd 
Hn

Q - 
B(f

n).

Using this in (3.7), we see that fn+1 \geq 0 if fn \geq 0.
Conservation of mass, momentum, and energy is immediate by multiplying (3.4)

by (1, v, | v| 2)T and integrating in v.
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A3448 SHIHENG ZHANG, JIE SHEN, AND JINGWEI HU

To show the entropy dissipation, we can multiply (3.8) by rn+1
\surd 
Hn

log fn and inte-

grate in v, and multiply (3.5) by 2rn+1 to obtain\biggl( 
1

\Delta t
+ \beta 

\biggr) 
rn+1

\surd 
Hn

\int 
\Omega 

log fn
\bigl( 
fn+1  - fn

\bigr) 
dv=

(rn+1)2

Hn

\int 
\Omega 

QB(f
n) log fn dv,

2rn+1(rn+1  - rn)

\Delta t
=

rn+1

\surd 
Hn

\int 
\Omega 

log fn f
n+1  - fn

\Delta t
dv.

Combining the two equations together, we have

2rn+1(rn+1  - rn) =

\biggl( 
1

\Delta t
+ \beta 

\biggr)  - 1
(rn+1)2

Hn

\int 
\Omega 

QB(f
n) log fn dv.

Using the identity (2.5) together with \beta \geq 0, we have

(rn+1)2  - (rn)2 + (rn+1  - rn)2 =

\biggl( 
1

\Delta t
+ \beta 

\biggr)  - 1
(rn+1)2

Hn

\int 
\Omega 

QB(f
n) log fn dv\leq 0.

4. Positivity-preserving schemes for general kinetic equations. The
scheme introduced in section 3 is designed for the Boltzmann equation and is lim-
ited to first order. In this section, we construct positivity-preserving and entropy-
dissipative SAV schemes that work for general kinetic equations (1.1), leveraging the
optimization techniques. We will achieve this in two steps. The first version focuses
on restoring the positivity without mass conservation; and the second version can
achieve both positivity and mass conservation.

4.1. Positivity-preserving schemes without mass conservation.

4.1.1. A first order scheme. To guarantee that f remains positive, we intro-
duce a Lagrange multiplier function, \lambda (t, v), and consider the extended system with
the Karush--Kuhn--Tucker (KKT) conditions:

\partial tf  - Q(f) = \lambda ,(4.1)

\lambda \geq 0, f \geq 0, \lambda f = 0.(4.2)

A first order operator splitting scheme [8] with SAV and Lagrange multiplier, SAV-
1st-L, is given as follows:

Step 1 (prediction): solve \~fn+1 from

\~fn+1  - fn

\Delta t
=

rn+1

\surd 
Hn

Q(fn),(4.3)

rn+1  - rn

\Delta t
=

1

2
\surd 
Hn

\int 
\Omega 

log fn
\~fn+1  - fn

\Delta t
dv.(4.4)

Step 2 (correction): solve (fn+1, \lambda n+1) from

fn+1(v) - \~fn+1(v)

\Delta t
= \lambda n+1(v),(4.5)

\lambda n+1(v)\geq 0, fn+1(v)\geq 0, \lambda n+1(v)fn+1(v) = 0.(4.6)
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3449

The equations in the prediction step is the same as the scheme SAV-1st, hence
can be solved directly and enjoy the entropy-decay property. A notable characteristic
of the equations in the correction step is their solvability on a point-wise basis, as
described below:

\bigl( 
fn+1(v), \lambda n+1(v)

\bigr) 
=

\left\{   
\Bigl( 
\~fn+1(v),0

\Bigr) 
if \~fn+1(v)\geq 0\Bigl( 

0, - \~fn+1(v)
\Delta t

\Bigr) 
otherwise

, \forall v \in \Omega .(4.7)

Theorem 4.1. The scheme (4.3)--(4.6), SAV- 1st-L, satisfies the following prop-
erties: for all time steps n\geq 0 and step size \Delta t > 0,

\bullet it preserves the positivity of the solution, i.e., fn \geq 0;
\bullet it satisfies a modified entropy dissipation law:

\~Hn+1  - \~Hn = - (rn+1  - rn)2 +
\Delta t(rn+1)2

Hn

\int 
\Omega 

Q(fn) log fn dv\leq 0,

where \~Hn = (rn)2.

Proof. It is clear that fn \geq 0 for all n. As for the modified entropy dissipation, it
can be established following a similar approach to that detailed in Theorem 2.1.

Remark 4.2. We can also require that the solution is bounded away from 0 for a
prescribed \epsilon by substituting the optimality condition (4.6) with

\lambda n+1(v)\geq 0, fn+1(v)\geq \epsilon , \lambda n+1(v)(fn+1(v) - \epsilon ) = 0.(4.8)

4.1.2. A second order scheme. A second order scheme with SAV and La-
grange multiplier, SAV-2nd-L, can also be constructed with the second order BDF
and Adams--Bashforth extrapolation:

Step 1 (prediction): solve \~fn+1 from

3 \~fn+1  - 4fn + fn - 1

2\Delta t
=

rn+1

\surd 
Hn+1,\ast 

Q(fn+1,\ast ),(4.9)

3rn+1  - 4rn + rn - 1

2\Delta t
=

1

2
\surd 
Hn+1,\ast 

\int 
\Omega 

log fn+1,\ast 3
\~fn+1  - 4fn + fn - 1

2\Delta t
dv.(4.10)

Step 2 (correction): solve (fn+1, \lambda n+1) from

3fn+1(v) - 3 \~fn+1(v)

2\Delta t
= \lambda n+1(v),(4.11)

\lambda n+1(v)\geq 0, fn+1(v)\geq 0, \lambda n+1(v)fn+1(v) = 0.(4.12)

Note that the Adams--Bashforth extrapolation can not preserve positivity, we need to
modify it with

fn+1,\ast =

\Biggl\{ 
2fn  - fn - 1, if fn \geq fn - 1,

1
2/fn - 1/fn - 1 , otherwise.

(4.13)

The steps (4.11) to (4.12) can be solved in a similar way as in the first order case:

\bigl( 
fn+1(v), \lambda n+1(v)

\bigr) 
=

\left\{   
\Bigl( 
\~fn+1(v),0

\Bigr) 
if \~fn+1(v)\geq 0\Bigl( 

0, - 3 \~fn+1(v)
2\Delta t

\Bigr) 
otherwise

, \forall v \in \Omega .(4.14)
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A3450 SHIHENG ZHANG, JIE SHEN, AND JINGWEI HU

Theorem 4.3. The scheme (4.9)--(4.12), SAV- 2nd-L, satisfies the following prop-
erties: for all time steps n\geq 0 and step size \Delta t > 0,

\bullet it preserves the positivity of the solution, i.e., fn \geq 0;
\bullet it satisfies a modified entropy dissipation law:

\~Hn+1  - \~Hn = - 1

2
(rn+1  - 2rn + rn - 1)2

+
\Delta t(rn+1)2

Hn+1,\ast 

\int 
\Omega 

Q(fn+1,\ast ) log fn+1,\ast dv\leq 0,

where \~Hn = 1
2 (r

n)2 + 1
2 (2r

n  - rn - 1)2.

Proof. It is clear that fn \geq 0 for all n. The proof for the modified entropy
dissipation follows from a similar approach to that detailed in Theorem 2.2.

Remark 4.4. We note that while a second-order Crank--Nicolson SAV scheme was
introduced in Remark 2.3, extending it to achieve positivity preservation using the
Lagrange multiplier approach presented in this section poses a significant challenge.
The Crank--Nicolson method is centered at tn+1/2, meaning that a consistent Lagrange
multiplier correction would naturally enforce positivity at an intermediate stage like
fn+1/2,\ast . However, ensuring fn+1/2,\ast \geq 0 does not guarantee that the final solution
fn+1 will be non-negative. For this reason, our second-order positivity-preserving
schemes are based on the BDF method.

4.2. Positivity-preserving schemes with mass conservation. The correc-
tion steps (4.7) and (4.14) are equivalent to the cutoff strategy [22], which similarly
encounter issues with mass conservation. For instance, we observe from (4.5) that\int 

\Omega 

fn+1(v)dv - 
\int 
\Omega 

\~fn+1(v)dv=

\int 
\Omega 

\Delta t\lambda n+1(v)dv\geq 0,

which suggests an increase in mass.
To enforce the mass conservation, we introduce an additional Lagrange multiplier,

\xi n+1, which is independent of the velocity variable. This new multiplier aims to ensure
mass conservation during the correction step. A first order scheme that preserves
positivity and mass conservation, SAV-1st-LM, is given as follows:

Step 1 (prediction): solve \~fn+1 from

\~fn+1  - fn

\Delta t
=

rn+1

\surd 
Hn

Q(fn),(4.15)

rn+1  - rn

\Delta t
=

1

2
\surd 
Hn

\int 
\Omega 

log fn
\~fn+1  - fn

\Delta t
dv.(4.16)

Step 2 (correction): solve (fn+1, \lambda n+1, \xi n+1) from

fn+1(v) - \~fn+1(v)

\Delta t
= \lambda n+1(v) + \xi n+1,(4.17)

\lambda n+1(v)\geq 0, fn+1(v)\geq 0, \lambda n+1(v)fn+1(v) = 0,(4.18) \int 
\Omega 

fn+1(v)dv=

\int 
\Omega 

fn(v)dv.(4.19)

In order to solve the correction step, we rewrite (4.17) in the following equivalent
form

fn+1(v) - 
\Bigl( 
\~fn+1(v) +\Delta t\xi n+1

\Bigr) 
\Delta t

= \lambda n+1(v).(4.20)
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3451

Hence, assuming \xi n+1 is known, (4.18) and (4.20) can be solved point-wise similarly
as in the previous subsection:

\bigl( 
fn+1(v), \lambda n+1(v)

\bigr) 
=

\left\{   
\Bigl( 
\~fn+1(v) +\Delta t\xi n+1,0

\Bigr) 
if \~fn+1(v) +\Delta t\xi n+1 \geq 0\Bigl( 

0, - \~fn+1(v)+\Delta t\xi n+1

\Delta t

\Bigr) 
otherwise

, \forall v \in \Omega .

(4.21)

It remains to determine \xi n+1. We find from (4.19) and (4.20) that\int 
\Omega 

\~fn+1 +\Delta t\xi n+1 dv=

\int 
\Omega 

fn dv - 
\int 
\Omega 

\Delta t\lambda n+1 dv,

which, thanks to (4.21), can be rewritten as\int 
v\in \Omega s.t. 0< \~fn+1(v)+\Delta t\xi n+1

\~fn+1 +\Delta t\xi n+1 dv=

\int 
\Omega 

fn dv.(4.22)

Hence, \xi n+1 is a solution to the nonlinear algebraic equation

F (\xi ) =

\int 
v\in \Omega s.t. 0< \~fn+1(v)+\Delta t\xi 

\~fn+1 +\Delta t\xi dv - 
\int 
\Omega 

fn dv= 0.(4.23)

Since F \prime (\xi ) may not exist and is difficult to compute if it exists, instead of the Newton
iteration, we can use the following secant method:

\xi k+1 = \xi k  - 
F (\xi k) (\xi k  - \xi k - 1)

F (\xi k) - F (\xi k - 1)
.(4.24)

Since \xi n+1 is an approximation to zero, and it can be shown that \xi n+1 \leq 0 if we add
(4.17) to (4.15) and take the integration, we can choose \xi 0 = 0 and \xi 1 =  - O(\Delta t).
Once \xi n+1 is known, we can update

\bigl( 
fn+1(v), \lambda n+1(v)

\bigr) 
with (4.21).

A second order scheme, SAV-2nd-LM, can be constructed as follows:
Step 1 (prediction): solve \~fn+1 from

3 \~fn+1  - 4fn + fn - 1

2\Delta t
=

rn+1

\surd 
Hn+1,\ast 

Q(fn+1,\ast ),(4.25)

3rn+1  - 4rn + rn - 1

2\Delta t
=

1

2
\surd 
Hn+1,\ast 

\int 
\Omega 

log fn+1,\ast 3
\~fn+1  - 4fn + fn - 1

2\Delta t
dv.(4.26)

Step 2 (correction): solve
\bigl( 
fn+1, \lambda n+1, \xi n+1

\bigr) 
from

3fn+1(v) - 3 \~fn+1(v)

2\Delta t
= \lambda n+1(v) + \xi n+1,(4.27)

\lambda n+1(v)\geq 0, fn+1(v)\geq 0, \lambda n+1(v)fn+1(v) = 0,(4.28) \int 
\Omega 

fn+1(v)dv=

\int 
\Omega 

fn(v)dv,(4.29)

where

fn+1,\ast =

\Biggl\{ 
2fn  - fn - 1, if fn \geq fn - 1,

1
2/fn - 1/fn - 1 , otherwise.

(4.30)
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A3452 SHIHENG ZHANG, JIE SHEN, AND JINGWEI HU

The first order scheme (4.15)--(4.19), SAV-1st-LM, and the second order scheme
(4.25)--(4.29), SAV-2nd-LM, satisfy the same properties as in Theorem 4.1 and Theo-
rem 4.3, respectively. In addition, they both conserve mass:\int 

\Omega 

fn+1 dv=

\int 
\Omega 

fn dv.

Remark 4.5. The schemes introduced above only conserve mass. While con-
servation of momentum and energy could, in principle, be achieved by introducing
additional Lagrange multipliers, this approach would lead to a coupled nonlinear sys-
tem for the Lagrange multipliers, and complicate the solution process. Therefore, we
do not pursue momentum and energy conservation here.

5. Numerical examples. In this section, we present several numerical results
to demonstrate the properties of the proposed schemes.

For readers' convenience, we first provide a summary on the properties of the
proposed numerical schemes in this paper. In Table 1, ``Conservation"" refers to con-
servation of mass, momentum, and energy (unless otherwise specified); ``modified
entropy"" could take different forms for different schemes; whenever a second order
scheme is indicated, it means that the scheme satisfies the same properties as the first
order scheme in the same row.

In our numerical experiments below, we focus our attention on the Boltzmann
collision operator (1.8) and the Landau collision operator (1.11). For velocity domain
discretization, we employ the Fourier spectral methods [24, 26] for these operators.
Although the Fourier spectral methods do not strictly satisfy the three conditions
listed in the Introduction, their high accuracy ensures that the error from velocity
discretization is negligible compared to that from time discretization, allowing us to
conduct a meaningful validation of the proposed schemes. For all of the following
tests, we assume the two-dimensional velocity domain \Omega = [ - L,L)2 and use N = 64
Fourier modes in each dimension. The model specific parameters are chosen as

\bullet Boltzmann: collision kernel B = 1
2\pi ,L= (3

\surd 
2 + 1)S/2;

\bullet Landau: collision kernel A= 1
16 (| v - v\ast | 2I2  - (v - v\ast )\otimes (v - v\ast )),L= 2S.

The value of S will be specified in each test.
For all SAV-based schemes in the following, we set the constant C = 10 to ensure

that H(f) =
\int 
\Omega 
f log f dv +C > 0. For sav-1st-LM and sav-2nd-LM, our implemen-

tation ensures that fn \geq \epsilon = 10 - 16, as described in (4.8), to maintain well-defined
logarithmic term, log fn, throughout the computational process. To clarify the ter-
minology used in the following numerical experiments, we recall the definitions of the

Table 1
Properties of the proposed schemes.

Scheme Conservation Modified Positivity Second Order
entropy decay

SAV-1st yes yes no SAV-2nd

(2.3) and (2.4) (2.6) and (2.7)

SAV-1st-P-B

(3.4) and (3.5) yes yes yes no
only for Boltzmann

SAV-1st-L no yes yes SAV-2nd-L

(4.3)--(4.6) (4.9)--(4.12)

SAV-1st-LM only mass yes yes SAV-2nd-LM

(4.15)--(4.19) (4.25)--(4.29)
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3453

entropies. The modified entropy for the SAV-based schemes is (rn)2 for first order
schemes and 1

2 (r
n)2 + 1

2 (r
n  - rn - 1)2 for second order schemes. The actual entropy

at time tn is Hn = H(fn), where fn is the numerical solution. The entropy of the
analytical solution at time tn is H(f(tn)), with f(tn) being the analytical solution.

5.1. Test case 1: BKW solution. The BKW solution is one of the few ana-
lytical solutions for the Boltzmann/Landau equation. When d= 2, it is given by

f(t, v) =
1

2\pi K
exp

\biggl( 
 - | v| 2

2K

\biggr) \biggl( 
2K  - 1

K
+

1 - K

2K2
| v| 2

\biggr) 
, K = 1 - exp( - t/8)/2.(5.1)

We take t0 = 0.5 as the initial time and set S = 3.3. Note that the same solution
works for both Boltzmann and Landau for the aforementioned collision kernels.

5.1.1. Convergence tests. We first perform a convergence analysis to assess
the order of the SAV-1st, SAV-2nd, SAV-1st-LM, and SAV-2nd-LM schemes. We mea-
sure the relative L\infty error between the numerical solution and the analytic solution
at the final time tend = 0.6.

For the Boltzmann equation, time step sizes are set to \Delta t = \{ 0.02,0.01,0.005,
0.0025\} , while for the Landau equation, much smaller steps of \Delta t = \{ 0.002,0.001,
0.0005,0.00025\} are used. The results for the Boltzmann equation are shown in Fig-
ures 1a and 1b, and those for the Landau equation are shown in Figures 1c and 1d.
The first and second order convergence are clearly observed.

Note that the time steps for the Landau equation in Figures 1c and 1d are
chosen to be small enough such that the positivity correction (hence mass conser-
vation correction) is never triggered in SAV-1st-LM and SAV-2nd-LM. To further
demonstrate the strength of these schemes, we choose larger time step sizes of \Delta t =
\{ 0.02,0.01,0.005,0.0025\} and rerun the same test. The results are shown in Figures 1e
and 1f. In this case, SAV-1st and SAV-2nd result in negative values, causing the sim-
ulation to fail. In contrast, SAV-1st-LM and SAV-2nd-LM execute successfully and
still demonstrate the expected convergence rates, highlighting their robustness under
challenging conditions.

5.1.2. Conservation properties. To examine the conservation properties of
the SAV-1st-LM and SAV-2nd-LM schemes, we plot in Figure 2 the evolution of the
absolute errors in the conserved moments: mass

\int 
\Omega 
f dv, momentum (first component)\int 

\Omega 
fv1 dv, and energy

\int 
\Omega 
f | v| 2 dv, relative to their initial values. This test is performed

for the Landau equation with larger time step sizes \Delta t= \{ 0.02,0.01,0.005,0.0025\} .
The top panels, Figure 2a and 2b, show the error in mass. For all tested time

step sizes, the errors remain at the level of machine precision, fluctuating around
10 - 14. This confirms that the Lagrange multiplier approach rigorously enforces mass
conservation throughout the simulation, as intended by the scheme's design. Although
the schemes do not explicitly enforce momentum and energy conservation, Figure 2c
and 2d and Figure 2e and 2f also demonstrate excellent conservation properties.

5.1.3. Entropy evolution. We then focus on the entropy evolution of the
schemes SAV-1st-LM and SAV-2nd-LM for both the Boltzmann equation and Landau
equation.

Figure 3 showcases the results for the Boltzmann equation. The top four figures
are obtained using SAV-1st-LM, while the bottom four figures are obtained using
SAV-2nd-LM. These figures demonstrate that both methods accurately predict the
solution, with the actual entropy closely matching the analytical entropy across all
time steps. For larger time step sizes, the modified entropy exhibits a faster decay
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A3454 SHIHENG ZHANG, JIE SHEN, AND JINGWEI HU

Fig. 1. Convergence tests of the SAV- 1st, SAV- 2nd, SAV- 1st-LM, and SAV- 2nd-LM schemes for
the Boltzmann equation and Landau equation.

compared to the actual entropy, but the actual entropy consistently aligns closely
with the entropy of the analytical solution. In fact, for all the results presented,
the positivity and mass conservation correction is never triggered, so the results are
equivalent to those obtained by SAV-1st and SAV-2nd.
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3455

Fig. 2. Time evolution of the errors in mass, momentum, and energy of the SAV- 1st-LM (left
column) and SAV- 2nd-LM (right column) schemes for the Landau equation with different time step
sizes.

Figure 4 showcases the results for the Landau equation. The top four figures
are obtained using SAV-1st-LM, while the bottom four figures are obtained using
SAV-2nd-LM. It is noteworthy that whenever the modified entropy deviates from the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) f at tend = 10.5 with Δt = 0.2. (b) Entropy evolution with Δt = 0.2.

(c) Entropy evolution with Δt = 0.05. (d) Entropy evolution with Δt = 0.01.

(e) f at tend = 10.5 with Δt = 0.2. (f) Entropy evolution with Δt = 0.2.

(g) Entropy evolution with Δt = 0.05. (h) Entropy evolution with Δt = 0.01.

Fig. 3. Solution profiles and entropy evolution for the Boltzmann equation with different time
step sizes. Top four figures: SAV- 1st-LM. Bottom four figures: SAV- 2nd-LM.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3457

(a) f at tend = 10.5 with Δt = 0.0041. (b) Entropy evolution with Δt = 0.0041.

(c) Entropy evolution with Δt = 0.003. (d) Entropy evolution with Δt = 0.001.

(e) f at tend = 10.5 with Δt = 0.0035. (f) Entropy evolution with Δt = 0.0035.

(g) Entropy evolution with Δt = 0.003. (h) Entropy evolution with Δt = 0.001.

Fig. 4. Solution profiles and entropy evolution for the Landau equation with different time step
sizes. Top four figures: SAV-1st-LM. Bottom fourfigures: SAV-2nd-LM.
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actual entropy, it often indicates that the positivity and mass conservation correction
is triggered, in which case SAV-1st and SAV-2nd will fail. For larger time step sizes,
the modified entropy decays faster than the actual entropy, but the actual entropy
always matches closely the analytical entropy.

Generally speaking, when using the SAV schemes with a sufficiently small time
step size, the modified entropy will closely match the actual entropy. For larger time
step sizes, the modified entropy is likely to decay at a faster rate than the actual
entropy. This accelerated decay of the modified entropy contributes to stabilizing
the scheme, enabling the actual entropy generated by the SAV schemes to closely
approximate the true entropy.

5.1.4. Positivity-preserving SAV scheme for the Boltzmann equation.
We now examine the performance of the first order positivity-preserving SAV scheme,
SAV-1st-P-B, for solving the Boltzmann equation.

For this scheme to be positive, the parameter \beta is required to be larger than
r0\surd 
H\mathrm{m}\mathrm{i}\mathrm{n}

maxQ - 
B(f), where r0 = 2.6898,

\surd 
Hmin \approx 2.6780, and maxQ - 

B(f) = 1 in the
BKW test. Therefore, \beta is chosen as 1.1, 5, 10, and 100. We first perform a conver-
gence test using time step sizes of \Delta t = 0.2,0.1,0.05,and 0.025. For each time step
size, we run the solution to tend = 2.5 and evaluate the relative L\infty error between the
numerical solution and the analytical one. The results are shown in Figure 5a, from
which we observe the expected first order convergence. It is also clear that larger \beta 
results in larger error in magnitude. So in practice, \beta should be chosen as close as
possible to the required lower bound. We then fix the time step size \Delta t= 0.025 and
plot the entropy evolution for different values of \beta in Figure 5b. The modified entropy
always matches well the actual entropy. However, larger \beta results in larger deviation
from the analytical entropy, so the proper choice of \beta is also critical to obtain a correct
entropy dissipation rate.

5.2. Test case 2. In this test, we consider the following initial condition

f0(v) =
\rho 1

2\pi T1
exp

\biggl( 
 - | v - V1| 2

2T1

\biggr) 
+

\rho 2
2\pi T2

exp

\biggl( 
 - | v - V2| 2

2T2

\biggr) 
,(5.2)

with \rho 1 = \rho 2 = 1/2, T1 = T2 = 1, and V1 = ( - 1,2), V2 = (3, - 3). For the Boltzmann
equation, S is set to 5; and for the Landau equation, S is set to 7.5. For this initial
condition, we don't know the analytical solution, but we do know that the solution
will relax to the Maxwellian after a long time.

In Figure 6, we illustrate the evolution of the distribution function for both the
Boltzmann equation (with \Delta t = 0.01) and Landau equation (with \Delta t = 0.002) from
initial time t0 = 0 to final time tend = 10, computed using SAV-2nd-LM. The expected
trend of the solution is observed. In Figure 7, we compared the modified entropy
against the actual entropy obtained. The results demonstrate a consistent alignment
between the modified and actual entropy, highlighting the ability of the proposed
scheme to capture the entropy dissipation structure.

Furthermore, we examine the conservation properties of the SAV-2nd-LM scheme.
For both the Boltzmann and Landau equations, we plot in Figure 8 the evolution of
the absolute errors in mass, momentum (first component) and energy relative to their
initial values. The results clearly show that mass is conserved to machine precision.
In contrast, momentum and energy are not as well conserved over the long term, as
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3459

Fig. 5. Convergence test and entropy evolution of the SAV-1st-P-B scheme.

the scheme does not strictly enforce them. If desired, they can be preserved using a
similar strategy as mentioned in Remark 4.5.

6. Conclusions. We developed novel numerical schemes to tackle the dual chal-
lenge of enabling entropy dissipation and preserving positivity for general kinetic
equations, leveraging the recently introduced SAV approach. Both the first order

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) Boltzmann, t = 0. (b) Boltzmann, tend = 10.

(c) Landau, t = 0. (d) Landau, tend = 10.

Fig. 6. Initial (t = 0) and final (tend = 10) solution profiles, computed using the SAV- 2nd-LM

scheme. Top row: Boltzmann equation (\Delta t= 0.01). Bottom row: Landau equation (\Delta t= 0.002).

(a) Boltzmann equation. (b) Landau equation.

Fig. 7. Entropy evolution computed using the SAV- 2nd-LM scheme. The plots show the agree-
ment between the modified SAV entropy and the actual entropy for both the Boltzmann (\Delta t= 0.01)
and Landau (\Delta t= 0.002) equations.

and second order schemes were constructed. We applied the proposed schemes to
the nonlinear Boltzmann equation and Landau equation, which are among the most
challenging kinetic equations, and presented convincing numerical results which

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ENTROPY-DISSIPATIVE SCHEMES FOR KINETIC EQUATIONS A3461

(a) Mass error (Boltzmann). (b) Mass error (Landau).

(c) Momentum error (Boltzmann). (d) Momentum error (Landau).

(e) Energy error (Boltzmann). (f) Energy error (Landau).

Fig. 8. Time evolution of the errors in mass, momentum, and energy of the SAV- 2nd-LM

scheme. The left column shows results for the Boltzmann equation (with \Delta t= 0.01), and the right
column shows results for the Landau equation (with \Delta t= 0.002).

showed that the proposed schemes are both robust and efficient. Future work in-
cludes the extension of these schemes to treat the spatially inhomogeneous kinetic
equations.
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