
Journal of Computational Physics 498 (2024) 112638

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Energy-dissipative evolutionary deep operator neural networks
Jiahao Zhang a,1, Shiheng Zhang a,1, Jie Shen b,∗, Guang Lin a,c,∗

a Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA
b School of Mathematical Science, Eastern Institute of Technology, Ningbo, Zhejiang 315200, PR China
c School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2067, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Operator learning
Evolutionary neural networks
Energy dissipative
Parametric equation
Scalar auxiliary variable
Deep learning

Energy-Dissipative Evolutionary Deep Operator Neural Network is an operator learning neural
network. It is designed to seek numerical solutions for a class of partial differential equations
instead of a single partial differential equation, such as partial differential equations with different
parameters or different initial conditions. The network consists of two sub-networks, the Branch
net and the Trunk net. For an objective operator , the Branch net encodes different input
functions 𝑓 at a fixed number of sensors 𝑥𝑖, 𝑖 = 1, 2, ⋯ , 𝑚, and the Trunk net evaluates the
output function at any location. By minimizing the error between the evaluated output 𝑞 and
the expected output (𝑓)(𝑦) at the test point 𝑦, DeepONet generates a good approximation of
the operator . A key distinction in our methodology is the utilization of DeepONet for the
training of the initial state, which operates as a multi-parametric operator. Further, the evolution
of parameters in our model is facilitated by the Scalar Auxiliary Variable (SAV) method, leading
to a formulated iterative process for the parameter’s progression over time. The SAV approach is
adopted to preserve essential physical properties of PDEs, particularly the Energy Dissipation Law.
It introduces a kind of modified energy and establishes unconditional energy dissipation law in
the discrete level. By treating the parameters of the well-trained DeepONet as a representation of
the initial operator and evolving them by a dynamic system, our network can predict the accurate
solution at any further time, while the training data is only the initial state. In order to validate
the accuracy and efficiency of our neural networks, we provide numerical simulations of several
partial differential equations, including heat equations, parametric heat equations, Allen-Cahn
equations and a reaction–diffusion equation in three dimensions.

1. Introduction

Operator learning is a popular and challenging problem with potential applications across various disciplines. The opportunity
to learn an operator over a domain in Euclidean spaces [1] and Banach spaces [2] opens a new class of problems in neural network
design with generalized applicability. In application to solve partial differential equations (PDEs), operator learning has the potential
to predict accurate solutions for the PDEs by acquiring extensive prior knowledge [3–11]. In a recent paper [12], Lu, Jin, and
Karniadakis proposed an operator learning method with some deep operator networks, named as DeepONets. It is based on the
universal approximation theorem [13–15]. The goal of this neural network is to learn an operator instead of a single function. By

* Corresponding authors.
E-mail addresses: jshen@eitech.edu.cn (J. Shen), guanglin@purdue.edu (G. Lin).
Available online 22 November 2023
0021-9991/© 2023 Elsevier Inc. All rights reserved.

1 These two authors contributed equally to this work.

https://doi.org/10.1016/j.jcp.2023.112638
Received 2 April 2023; Received in revised form 26 September 2023; Accepted 12 November 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:jshen@eitech.edu.cn
mailto:guanglin@purdue.edu
https://doi.org/10.1016/j.jcp.2023.112638
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.112638&domain=pdf
https://doi.org/10.1016/j.jcp.2023.112638

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

denoting Ω =ℝ𝑙 × [0, 𝑇] and 𝑓 = 𝑓 (𝑥, 𝑡), we can define an operator  by taking 𝑓 as the input function, (𝑓) as the output function,
such that for any (𝑥, 𝑡) in Ω, (𝑓)(𝑥, 𝑡) ∈ℝ. DeepONet takes the discrete input function and approximates the operator by a network.

Before delving into our network, it is pertinent to revisit the architecture of DeepONet. In DeepONet, the term “sensors” refers
to specific finite locations within Ω, exemplified as {(𝑥1, 𝑡1), (𝑥2, 𝑡2), ⋯ , (𝑥𝑚, 𝑡𝑚)}. The DeepONet architecture is bifurcated into the
Branch net and the Trunk net. The Branch net undertakes the task of encoding the input function 𝑓 at these fixed sensors. The
resultant output from the Branch net comprises 𝑝 neurons, where each neuron is conceptualized as a scalar of the form 𝑏𝑘 =
𝑏𝑘(𝑓 (𝑥1, 𝑡1), 𝑓 (𝑥2, 𝑡2), ⋯ , 𝑓 (𝑥𝑚, 𝑡𝑚)) for 𝑘 = 1, 2, ⋯ , 𝑝. Conversely, the Trunk net encodes evaluation points denoted as {𝑦𝑗 ∈ Ω|𝑗 =
1, ⋯ , 𝑛}. Its output is also structured into 𝑝 neurons, with each neuron represented as a scalar: 𝑔𝑘 = 𝑔𝑘(𝑦1, 𝑦2, ⋯ , 𝑦𝑛) for 𝑘 = 1, 2, ⋯ , 𝑝.
It’s crucial to note that the neuron count in the final layers of both the Trunk and Branch nets is identical. This permits the DeepONet
output to be articulated as an inner product between the vectors (𝑏1, 𝑏2, ⋯ , 𝑏𝑝)𝑇 and (𝑔1, 𝑔2, ⋯ , 𝑔𝑝)𝑇 . Hence, the relation linking the
expected and evaluated outputs is delineated as (𝑓)(𝑦) ≈∑𝑝

𝑘=1 𝑏𝑘𝑔𝑘. DeepONet essentially stands as an embodiment of the Universal
Approximation Theorem for Operators, as expounded by Chen & Chen [16].

For any time-dependent PDE, the training data is the form of (𝑓, 𝑦, (𝑓)(𝑦)), where 𝑓 in the discrete form can be represented
as

(
𝑓 (𝑥1, 𝑡1), 𝑓 (𝑥2, 𝑡2),⋯ , 𝑓 (𝑥𝑚, 𝑡𝑚)

)𝑇
in the neural network. In the original paper, they used the classic FNN [17] as the baseline

model. For dynamic systems, various network architectures are used, including residual networks [18], convolutional NNs(CNNs) [19,
20], recurrent NNs(RNNs) [21], neural jump stochastic differential equations [22] and neural ordinary differential equations [23].
DeepONet effectively predicts solutions for a wide array of nonlinear ODEs and PDEs, encompassing systems such as simple dynamics,
gravity pendulum, and diffusion-reaction. Nonetheless, a significant challenge arises due to the need for generating training data at
each time step, making the network training computationally expensive. In many initial value problems, information about 𝑓 (𝑥, 𝑡) is
available only at 𝑡 = 0. This naturally prompts the question: Is it possible to learn an operator for a time-dependent PDE using solely the
initial input functions?

Inspired by the Evolutionary Deep Neural Network (EDNN) approach [24], it becomes more streamlined to learn an operator at
a fixed time rather than an operator governed by both spatial and time variables. Without loss of generality, in the context of initial
value problems, the time variable 𝑡 can be set to 0. Upon acquiring the operator corresponding to the initial time, a plethora of
traditional numerical methods become available for solution updating. Specifically, once the initial condition operator is proficiently
trained, the parameters of both the Branch net and the Trunk net can be interpreted as functions of the time variable, as depicted in
Fig. 1. Elaborating further for a specified initial value problem,⎧⎪⎨⎪⎩

𝜕𝑢

𝜕𝑡
= 𝑠(𝑢),

𝑢(𝑥,0) = 𝑢0(𝑥). 𝑥 ∈𝑋

(1)

If we denote an operator input 𝑓 which defines the dynamic of the initial condition 𝑢0, our objective is to approximate an operator
 ∶ 𝑓 ↦ (𝑓), where (𝑓)(𝑦) = 𝑢0(𝑦) for any 𝑦 ∈𝑋. Given sensors located at {𝑥1, 𝑥2, ⋯ , 𝑥𝑚}, the output from the Branch net can be
expressed as:

𝒃 = 𝒃(𝑓 (𝑥1), 𝑓 (𝑥2),… , 𝑓 (𝑥𝑚)) = 𝒃(𝑥1, 𝑥2,… , 𝑥𝑚1
;𝑊1),

where 𝑊1 denotes the parameters within the Branch net. Similarly, the output from the Trunk net can be articulated as:

𝒈 = 𝒈(𝑦;𝑊2),

with 𝑊2 being the parameters of the Trunk net. Upon satisfactory training, the parameters are interpreted as a function of 𝑡. Here,
𝑊1 and 𝑊2 from the initial DeepONet serve as the initial conditions for 𝑊1(𝑡) and 𝑊2(𝑡) respectively. Leveraging the architecture of
the unstacked DeepONet, the solution at the initial time 𝑡0 = 0 can be written as:

𝑢(𝑥, 𝑡0) ≈
𝑝∑

𝑘=1
𝑏𝑘𝑔𝑘 = 𝒃𝑇 𝒈. (2)

To approximate 𝑢(𝑥, 𝑡1), no additional data is required. The values of 𝑢(𝑥, 𝑡1) should align with parameters of 𝑊1(𝑡1) and 𝑊2(𝑡1).
Drawing inspiration from numerical solvers for PDEs, 𝑊1(𝑡1) and 𝑊2(𝑡1) can be readily obtained provided that 𝜕𝑊1

𝜕𝑡
and 𝜕𝑊2

𝜕𝑡
are

known. Using the chain rule, the time derivative of the solution 𝑢 can be expressed as:

𝜕𝑢

𝜕𝑡
= 𝜕𝑢

𝜕𝑊

𝜕𝑊

𝜕𝑡
, (3)

where 𝑊 encompasses both 𝑊1 and 𝑊2. The term 𝜕𝑊
𝜕𝑡

can be determined through a least squares problem. Upon obtaining 𝜕𝑊
𝜕𝑡

,
traditional time discretization schemes can be employed to compute 𝑊 𝑛+1 given 𝑊 𝑛.

The selection of the time discretization scheme varies based on the specific problem at hand. Common choices in evolutionary
networks include the Euler or Runge–Kutta methods. In the following, we will present the Energy-Dissipative Evolutionary Deep
Operator Neural Network (EDE-DeepONet) as Fig. 1, along with an unconditional energy dissipative approach for gradient flow
problems.

Many PDEs originate from fundamental physical principles, such as Newton’s Law, the Conservation Law, and the Energy Dis-
2

sipation Law. These principles are pivotal in various scientific and engineering domains, especially within materials science, where

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Fig. 1. Energy-Dissipative Evolutionary Deep Operator Neural Network. The yellow block represents input at sensors, and the blue block represents subnet-
works. The green blocks represent the output of the subnetworks and also the last layer of the DeepONet. The parameters in the well-trained DeepONet are
used as the initial state of the parameter evolution. The update formula can be obtained by solving the minimization problem. The solution 𝑢(𝑥, 𝑇) is de-
termined by the parameters at time 𝑇 . In the right minimization problem, the energy term 𝑟2 can be shown to be dissipative, i.e., (𝑟𝑛+1)2 ≤ (𝑟𝑛)2 , where
 (𝛾1, 𝛾2) = 1

2

‖‖‖‖∑𝑝

𝑘=1
𝜕𝑏𝑘(𝑊 𝑛

1)
𝜕𝑊 𝑛

1
𝛾1𝑔𝑘(𝑊 𝑛

2) +
∑𝑝

𝑘=1 𝑏𝑘(𝑊
𝑛

1)
𝜕𝑔𝑘 (𝑊 𝑛

2)
𝜕𝑊 𝑛

2
𝛾2 +

𝑟𝑛+1√
𝐸(𝑢𝑛)

 (𝑢𝑛)
‖‖‖‖22 .

gradient flows are frequently incorporated in mathematical modeling [25–32]. When seeking an approximation for the solution of a
specific PDE, ensuring adherence to these laws is crucial. We now turn our attention to a gradient flow problem,

𝜕𝑢

𝜕𝑡
= − 𝛿𝐸

𝛿𝑢
, (4)

where 𝐸 is a specific free energy functional and 𝛿𝐸
𝛿𝑢

is the functional derivative of 𝐸. In order to keep the energy dissipative of
the above gradient flow problem, we employed the scalar auxiliary variable (SAV) method [33] to formulate a necessary least
squares problem. This method introduces a kind of modified energy, ensuring that the unconditionally dissipative modified energy
dissipation law holds at each iteration. The SAV method, recognized for its robustness, ease of implementation, and accuracy, has
been effectively used to solve numerous PDEs. Integrating this method with neural networks paves the way for a harmonious fusion
of neural network models and foundational physical laws.

The objectives of this article are:

• Designing an operator learning neural network without data except the given information.
• Predicting solutions of parametric PDEs at any further time.
• Keeping energy dissipative property of a dynamic system.

Our main contributions are:

• Constructing an evolutionary operator learning neural network to solve PDEs.
• Solving a kind of PDEs with different parameters in a single neural network.
• Introducing the modified energy in the neural network and applying SAV algorithm to keep the unconditionally modified energy

dissipation law.
• Introducing an adaptive time stepping strategy and restart strategy in order to speed the training process.

The organization of this paper is as follows: In Section 2, we introduce the Evolutionary Deep Operator Neural Network for a given
PDE problem. In Section 3, we consider the physics law behind the gradient flow problem and apply the SAV method to obtain the
energy dissipation law. We propose the architecture of EDE-DeepONet. In Section 4, we present two adaptive time stepping strategies,
where the second one is called restart in some cases. In Section 5, we generally review the architecture of the EDE-DeepONet. In
Section 6, we implement our neural network to predict solutions of heat equations, parametric heat equations, Allen-Cahn equations
3

and a reaction–diffusion equation in three dimensions to show the numerical results. In Section 7, we give some concluding remarks.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

2. Evolutionary deep operator neural network

Consider the general form of a gradient flow problem given by

𝜕𝑢

𝜕𝑡
+ (𝑢) = 0,

𝑢(𝑥,0) = 𝑢0(𝑥), 𝑥 ∈𝑋 ⊆ℝ𝑙,

(5)

where there is a differentiable function 𝐹 , such that  (𝑢) = 𝐹 ′(𝑢). By denoting the free energy functional 𝐸[𝑢(𝑥, 𝑡)] = ∫
𝑋
𝐹 (𝑢(𝑥, 𝑡))d𝑥,

we obtain  (𝑢) = 𝛿𝐸

𝛿𝑢
.

The first step is to represent the initial condition operator using DeepONet.

2.1. Operator learning

For the gradient flow (5), we can define the initial condition operator  with the input function 𝑓 , such that

(𝑓) ∶ 𝑦↦ 𝑢0(𝑦), for any 𝑦 ∈𝑋. (6)

Sensors can be selected at the points {𝑥1, 𝑥2, ⋯ , 𝑥𝑚}. The data input to the DeepONet has the format (𝑓, 𝑦, (𝑓)(𝑦)). The Branch net ac-

cepts the vector
(
𝑓 (𝑥1), 𝑓 (𝑥2),⋯ , 𝑓 (𝑥𝑚)

)𝑇
as input, which numerically represents 𝑓 , and produces the output vector (𝑏1, 𝑏2, ⋯ , 𝑏𝑝)𝑇 .

Meanwhile, the Trunk net receives 𝑦 as input and outputs (𝑔1, 𝑔2, ⋯ , 𝑔𝑝)𝑇 . The DeepONet’s output at the test point 𝑦 can be articulated
as:

(𝑓)(𝑦) ≈
𝑝∑

𝑘=1
𝑏𝑘𝑔𝑘. (7)

As previously noted, we operate under the assumption that the initial condition operator is expertly trained. Our next step is to
determine the update rule for the parameters to facilitate the evolution of the neural network.

2.2. Parameters evolution within the neural network

Let the parameters of the Branch net be represented by 𝑊1 and those of the Trunk net by 𝑊2. Given that these parameters evolve
over time, both 𝑊1 and 𝑊2 can be considered functions of 𝑡. Using the chain rule of differentiation, we get

𝜕𝑢

𝜕𝑡
= 𝜕𝑢

𝜕𝑊1

𝜕𝑊1
𝜕𝑡

+ 𝜕𝑢

𝜕𝑊2

𝜕𝑊2
𝜕𝑡

. (8)

Considering that 𝑢 =
∑𝑝

𝑘=1 𝑏𝑘𝑔𝑘 =
∑𝑝

𝑘=1 𝑏𝑘(𝑊1(𝑡))𝑔𝑘(𝑊2(𝑡)), we can differentiate it with respect to 𝑡 to obtain:

𝜕𝑢

𝜕𝑡
=

𝑝∑
𝑘=1

(
𝜕𝑏𝑘(𝑊1(𝑡))
𝜕𝑊1(𝑡)

𝜕𝑊1(𝑡)
𝜕𝑡

𝑔𝑘(𝑊2(𝑡)) + 𝑏𝑘(𝑊1(𝑡))
𝜕𝑔𝑘(𝑊2(𝑡))
𝜕𝑊2(𝑡)

𝜕𝑊2(𝑡)
𝜕𝑡

)
.

Our goal is to determine 𝜕𝑊1(𝑡)
𝜕𝑡

and 𝜕𝑊2(𝑡)
𝜕𝑡

, which will guide the evolution of the network parameters. This can be achieved by
framing it as a minimization problem:[

𝜕𝑊1(𝑡)
𝜕𝑡

;
𝜕𝑊2(𝑡)
𝜕𝑡

]
= argmin  (𝛾1, 𝛾2), (9)

where

 (𝛾1, 𝛾2) =
1
2

‖‖‖‖‖
𝑝∑

𝑘=1

𝜕𝑏𝑘(𝑊1(𝑡))
𝜕𝑊1(𝑡)

𝛾1𝑔𝑘(𝑊2(𝑡)) +
𝑝∑

𝑘=1
𝑏𝑘(𝑊1(𝑡))

𝜕𝑔𝑘(𝑊2(𝑡))
𝜕𝑊2(𝑡)

𝛾2 + (𝑢)
‖‖‖‖‖
2

2

. (10)

In this article, the inner product (𝑎, 𝑏) is defined in the integral sense, (𝑎, 𝑏) = ∫
𝑋
𝑎(𝑥)𝑏(𝑥) d𝑥 and the 𝐿2 norm is defined as ‖𝑎‖22 = ∫

𝑋
|𝑎(𝑥)|2 d𝑥.

The minimization problem can be transformed into a linear system by the first-order optimal condition:

𝜕
𝜕𝛾1

= ∫
𝑋

(
𝑝∑

𝑘=1

𝜕𝑏𝑘(𝑊1(𝑡))
𝜕𝑊1(𝑡)

𝑔𝑘(𝑊2(𝑡))

)𝑇 (
𝛾1

𝑝∑
𝑘=1

𝜕𝑏𝑘(𝑊1(𝑡))
𝜕𝑊1(𝑡)

𝑔𝑘(𝑊2(𝑡)) +
𝑝∑

𝑘=1
𝑏𝑘(𝑊1(𝑡))

𝜕𝑔𝑘(𝑊2(𝑡))
𝜕𝑊2(𝑡)

𝛾2+ (𝑢)

)
d𝑥 = 0

𝜕
𝜕𝛾2

= ∫
𝑋

(
𝑝∑

𝑘=1
𝑏𝑘(𝑊1(𝑡))

𝜕𝑔𝑘(𝑊2(𝑡))
𝜕𝑊2(𝑡)

)𝑇 (
𝛾1

𝑝∑
𝑘=1

𝜕𝑏𝑘(𝑊1(𝑡))
𝜕𝑊1(𝑡)

𝑔𝑘(𝑊2(𝑡)) +
𝑝∑

𝑘=1
𝑏𝑘(𝑊1(𝑡))

𝜕𝑔𝑘(𝑊2(𝑡))
𝜕𝑊2(𝑡)

𝛾2+ (𝑢)

)
d𝑥 = 0

In this framework, the gradients with respect to 𝑊1(𝑡) and 𝑊2(𝑡) can be efficiently determined using automatic differentiation for
4

each time increment. Let’s denote the following:

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

(𝐉𝟏)𝑖𝑗1 =
𝑝∑

𝑘=1

𝜕𝑏𝑘(𝑊1(𝑡))

𝜕𝑊
𝑗1
1 (𝑡)

𝑔𝑖
𝑘
(𝑊2(𝑡)),

(𝐉𝟐)𝑖𝑗2 =
𝑝∑

𝑘=1
𝑏𝑘(𝑊1(𝑡))

𝜕𝑔𝑖
𝑘
(𝑊2(𝑡))

𝜕𝑊
𝑗2
2 (𝑡)

,

(𝐍)𝑖 = (
𝑢𝑖
)
,

where 𝑖 ranges from 1 to 𝑙, 𝑗1 from 1 to 𝑁𝑏
para, and 𝑗2 from 1 to 𝑁𝑡

para. Here, 𝑁𝑏
para denotes the total number of parameters in the

Branch net, and 𝑁𝑡
para represents the total number of parameters in the Trunk net. 𝐍 is the output of the DeepONet and is therefore

computationally accessible for any spatial location. The integrals mentioned earlier can be numerically approximated:

1|𝑋| ∫
𝑋

(
𝑝∑

𝑘=1

𝜕𝑏𝑘(𝑊1(𝑡))
𝜕𝑊1(𝑡)

𝑔𝑘(𝑊2(𝑡))

)𝑇 (
𝑝∑

𝑘=1

𝜕𝑏𝑘(𝑊1(𝑡))
𝜕𝑊1(𝑡)

𝑔𝑘(𝑊2(𝑡))

)
d𝑥 = lim

𝑁𝑥→∞
1
𝑁𝑥

𝐉𝐓𝟏 𝐉𝟏,

1|𝑋| ∫
𝑋

(
𝑝∑

𝑘=1
𝑏𝑘(𝑊1(𝑡))

𝜕𝑔𝑘(𝑊2(𝑡))
𝜕𝑊2(𝑡)

)𝑇 (
𝑝∑

𝑘=1
𝑏𝑘(𝑊1(𝑡))

𝜕𝑔𝑘(𝑊2(𝑡))
𝜕𝑊2(𝑡)

)
d𝑥 = lim

𝑁𝑥→∞
1
𝑁𝑥

𝐉𝐓𝟐 𝐉𝟐,

1|𝑋| ∫
𝑋

(
𝑝∑

𝑘=1

𝜕𝑏𝑘(𝑊1(𝑡))
𝜕𝑊1(𝑡)

𝑔𝑘(𝑊2(𝑡))

)𝑇

 (𝑢)d𝑥 = lim
𝑁𝑥→∞

1
𝑁𝑥

𝐉𝐓𝟏 𝐍,

where 𝑁𝑥 is the number of collocation points for numerical integrals. By denoting 𝛾𝑜𝑝𝑡
𝑖

as the optimal values of 𝛾𝑖, 𝑖 = 1, 2, the above
system can be reduced to

𝐉𝐓𝟏
(
𝛾
𝑜𝑝𝑡

1 𝐉𝟏 + 𝛾
𝑜𝑝𝑡

2 𝐉𝟐 +𝐍
)
= 0,

𝐉𝐓𝟐
(
𝛾
𝑜𝑝𝑡

1 𝐉𝟏 + 𝛾
𝑜𝑝𝑡

2 𝐉𝟐 +𝐍
)
= 0.

The feasible solutions of the above equations are the approximated time derivatives of 𝑊1(𝑡) and 𝑊2(𝑡).

𝑑𝑊1(𝑡)
𝑑𝑡

= 𝛾
𝑜𝑝𝑡

1 ,

𝑑𝑊2(𝑡)
𝑑𝑡

= 𝛾
𝑜𝑝𝑡

2 ,

where the initial conditions 𝑊 0
1 and 𝑊 0

2 can be determined by DeepONets for initial condition operators. The decoupled ODEs
represent the update rules within the neural networks. One straightforward approach to solving these ODEs is to use the explicit
Euler method:

𝑊 𝑛+1
1 −𝑊 𝑛

1
Δ𝑡

= 𝛾
𝑜𝑝𝑡

1 ,

𝑊 𝑛+1
2 −𝑊 𝑛

2
Δ𝑡

= 𝛾
𝑜𝑝𝑡

2 .

Consequently, the solution at the subsequent time step, 𝑢(𝑥, 𝑡𝑛+1), is given by:

𝑢(𝑥, 𝑡𝑛+1) =
𝑝∑

𝑘=1
𝑏𝑘(𝑊 𝑛+1

1)𝑔𝑘(𝑊 𝑛+1
2). (11)

3. Energy dissipative evolutionary deep operator neural network

Let’s revisit the problem at hand. The gradient flow problem is given by:

𝜕𝑢

𝜕𝑡
+ (𝑢) = 0,

𝑢(𝑥,0) = 𝑢0(𝑥),
(12)

where the energy functional is given by

𝐸[𝑢(𝑥, 𝑡)] = ∫
𝑋

𝐹 (𝑢(𝑥, 𝑡))d𝑥.

This energy functional is assumed to have a positive lower bound. Additionally,  (𝑢) can be expressed in terms of the variational
5

derivative of 𝐸(𝑢), that is,  (𝑢) = 𝛿𝐸

𝛿𝑢
.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Taking the inner product of the first equation of (12) with  (𝑢), we can derive the energy dissipation property of the system:

𝑑𝐸(𝑢)
𝑑𝑡

=
(
𝛿𝐸

𝛿𝑢
,
𝜕𝑢

𝜕𝑡

)
=
( (𝑢), 𝜕𝑢

𝜕𝑡

)
=−

( (𝑢), (𝑢)
) ≤ 0. (13)

However, it is usually hard for a numerical algorithm to be efficient as well as energy dissipative. Recently, the SAV approach [33]
was introduced to construct numerical schemes which is energy dissipative (with a modified energy), accurate, robust and easy to
implement. More precisely, assuming 𝐸[𝑢(𝑥)] > 0, it introduces a 𝑟(𝑡) =

√
𝐸[𝑢(𝑥, 𝑡)], and expands the gradient flow problem as

𝜕𝑢

𝜕𝑡
= − 𝑟√

𝐸(𝑢)
 (𝑢) ,

𝑑𝑟

𝑑𝑡
= 1

2
√
𝐸(𝑢)

( (𝑢) , 𝜕𝑢
𝜕𝑡

)
.

(14)

With 𝑟(0) =
√
𝐸[𝑢(𝑥,0)], the above system has a solution 𝑟(𝑡) ≡√

𝐸[𝑢(𝑥, 𝑡)] and 𝑢 being the solution of the original problem.
By setting 𝑢𝑛 =

∑𝑝

𝑘=1 𝑔𝑘𝑏𝑘, a first order scheme can be constructed as

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
= − 𝑟𝑛+1√

𝐸(𝑢𝑛)
 (𝑢𝑛)

𝑟𝑛+1 − 𝑟𝑛

Δ𝑡
= 1

2
√
𝐸(𝑢𝑛) ∫

𝑋

 (𝑢𝑛)𝑢
𝑛+1 − 𝑢𝑛

Δ𝑡
𝑑𝑥.

(15)

This is a coupled system of equations for (𝑟𝑛+1, 𝑢𝑛+1). But it can be easily decoupled as follows. Plugging the first equation into the
second one, we obtain:

𝑟𝑛+1 − 𝑟𝑛

Δ𝑡
= − 𝑟𝑛+1

2𝐸(𝑢𝑛)
‖‖ (𝑢𝑛)‖‖2 , (16)

which implies

𝑟𝑛+1 =
(
1 + Δ𝑡

2𝐸(𝑢𝑛)
‖‖ (𝑢𝑛)‖‖2)−1

𝑟𝑛 (17)

Theorem 3.1 (Discrete Energy Dissipation Law). With the modified energy define above, the scheme is unconditionally energy stable, i.e.

(𝑟𝑛+1)2 − (𝑟𝑛)2 ≤ 0. (18)

Proof 3.1. Taking the inner product of the first equation with 𝑟𝑛+1√
𝐸(𝑢𝑛)

 (𝑢𝑛) and the second equation with 2𝑟𝑛+1

(𝑟𝑛+1)2 − (𝑟𝑛)2 = 2𝑟𝑛+1(𝑟𝑛+1 − 𝑟𝑛) − (𝑟𝑛+1 − 𝑟𝑛)2

= Δ𝑡𝑟𝑛+1√
𝐸(𝑢𝑛) ∫

𝑋

 (𝑢𝑛)𝑢
𝑛+1 − 𝑢𝑛

Δ𝑡
𝑑𝑥− (𝑟𝑛+1 − 𝑟𝑛)2

= −Δ𝑡

(
𝑟𝑛+1√
𝐸(𝑢𝑛)

)2

∫
𝑋

 (𝑢𝑛) (𝑢𝑛)𝑑𝑥− (𝑟𝑛+1 − 𝑟𝑛)2

≤ 0

(19)

In order to maintain the modified energy dissipation law in the evolution neural network, we only need to replace  (𝑢𝑛) by
𝑟𝑛+1√
𝐸(𝑢𝑛)

 (𝑢𝑛) in section 2. The update rule of the neural network is

[
𝜕𝑊1(𝑡)
𝜕𝑡

;
𝜕𝑊2(𝑡)
𝜕𝑡

]
= argmin (𝛾1, 𝛾2), (20)

where

 (𝛾1, 𝛾2) =
1
2

‖‖‖‖‖‖
𝑝∑

𝑘=1

𝜕𝑏𝑘(𝑊 𝑛
1 (𝑡))

𝜕𝑊 𝑛
1 (𝑡)

𝛾1𝑔𝑘(𝑊 𝑛
2 (𝑡)) +

𝑝∑
𝑘=1

𝑏𝑘(𝑊 𝑛
1 (𝑡))

𝜕𝑔𝑘(𝑊 𝑛
2 (𝑡))

𝜕𝑊 𝑛
2 (𝑡)

𝛾2 +
𝑟𝑛+1√
𝐸(𝑢𝑛)

 (𝑢𝑛)
‖‖‖‖‖‖
2

2

. (21)
6

The corresponding linear system of the first order optimal condition is

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

𝐉𝐓𝟏

(
𝛾
𝑜𝑝𝑡

1 𝐉𝟏 + 𝛾
𝑜𝑝𝑡

2 𝐉𝟐 +
𝑟𝑛+1√
𝐸(𝑢𝑛)

𝐍
)

= 0,

𝐉𝐓𝟐

(
𝛾
𝑜𝑝𝑡

1 𝐉𝟏 + 𝛾
𝑜𝑝𝑡

2 𝐉𝟐 +
𝑟𝑛+1√
𝐸(𝑢𝑛)

𝐍
)

= 0.

(22)

After getting 𝛾𝑜𝑝𝑡1 and 𝛾𝑜𝑝𝑡2 , 𝑊 𝑛+1 can be obtained by the Forward Euler method:

𝑊 𝑛+1
1 =𝑊 𝑛

1 + 𝛾
𝑜𝑝𝑡

1 Δ𝑡,

𝑊 𝑛+1
2 =𝑊 𝑛

2 + 𝛾
𝑜𝑝𝑡

2 Δ𝑡.
(23)

Therefore, the solution for the next time step, 𝑢(𝑥, 𝑡𝑛+1), can be expressed as:

𝑢(𝑥, 𝑡𝑛+1) =
𝑝∑

𝑘=1
𝑏𝑘(𝑊 𝑛+1

1)𝑔𝑘(𝑊 𝑛+1
2). (24)

4. Adaptive time stepping strategy and restart strategy

A key benefit of an unconditionally stable scheme is the flexibility to employ an adaptive time step. Given that the coefficient of
𝑁 , represented by 𝑟𝑛+1√

𝐸(𝑢𝑛)
, should approximate 1, we can define 𝜉𝑛+1 = 𝑟𝑛+1√

𝐸(𝑢𝑛)
. If 𝜉 is near 1, a larger Δ𝑡 is permissible, whereas if 𝜉

diverges significantly from 1, a smaller Δ𝑡 is more appropriate. This leads us to the following straightforward adaptive time-stepping
approach:

Algorithm 1 Adaptive time stepping strategy.
1. Set the tolerance for 𝜉 as 𝜖0 and 𝜖1 , the initial time step Δ𝑡, the maximum time step Δ𝑡𝑚𝑎𝑥 and the minimum time step Δ𝑡𝑚𝑖𝑛
2. Compute 𝑢𝑛+1 .

3. Compute 𝜉𝑛+1 = 𝑟𝑛+1√
𝐸(𝑢𝑛)

.

4. If |1 − 𝜉𝑛+1| > 𝜖0 ,
Then Δ𝑡 =max(Δ𝑡𝑚𝑖𝑛, Δ𝑡∕2);

Else if |1 − 𝜉𝑛+1| < 𝜖1 ,
Then Δ𝑡 =min(Δ𝑡𝑚𝑎𝑥, 2Δ𝑡).

Go to Step 2.
5. Update time step Δ𝑡.

Another widely adopted approach to ensure that 𝑟𝑛+1 closely mirrors the original energy 𝐸(𝑢𝑛+1) involves resetting 𝑟𝑛+1 =𝐸(𝑢𝑛+1)
under certain conditions. The detailed algorithm is outlined below:

Algorithm 2 Restart strategy.
1. Set the tolerance for 𝜉 as 𝜖2 .
2. Compute 𝑢𝑛+1 .

3. Compute 𝜉𝑛+1 = 𝑟𝑛+1√
𝐸(𝑢𝑛)

.

4. If |1 − 𝜉𝑛+1| > 𝜖2 ,

Then 𝑟𝑛+1 =
√
𝐸(𝑢𝑛+1) and Go to Step 2.

5. Go to next iteration.

The choice for 𝜖0, 𝜖1 should be some small tolerance, usually 10−1 and 10−3. The choices for Δ𝑡𝑚𝑎𝑥 and Δ𝑡𝑚𝑖𝑛 are quite dependent
on Δ𝑡, usually Δ𝑡𝑚𝑎𝑥 = 103 × Δ𝑡 and Δ𝑡𝑚𝑖𝑛 = 10−3 × Δ𝑡. In Algorithm 2, we usually take 𝜖2 as 2 × 10−2.

5. Algorithm for EDE-DeepONet

A methodical approach to solving time-dependent PDEs with EDE-DeepONet is delineated in Algorithm 3.

6. Numerical experiments

In this section, we utilize EDE-DeepONet to solve heat equations, parametric heat equations, Allen-Cahn equations, and reaction-
7

diffusion equations, demonstrating its efficacy and accuracy.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Algorithm 3 Energy-Dissipative Evolutionary Deep Operator Neural Networks (EDE-DeepONet).
1. Initialization: Prepare input data samples in the form of (𝑓, 𝑦, (𝑓)(𝑦)), where 𝑓 is the operator input defining the dynamic of the initial condition. Each input
function 𝑓 is crafted using the same sensor locations {𝑥1, 𝑥2, ⋯ , 𝑥𝑚}.
2. DeepONet Training:

a. Input (𝑓 (𝑥1), 𝑓 (𝑥2), ⋯ , 𝑓 (𝑥𝑚))𝑇 into the Branch net and 𝑦 into the Trunk net.
b. Compute the output of the DeepONet and denote it as 𝑞.
c. Adjust the parameters in the DeepONet by minimizing the mean squared error: 1|𝑌 | ∑𝑦∈𝑌 ‖(𝑓)(𝑦) − 𝑞‖2 . Denote the parameters in the well-trained Branch net

and Trunk net as 𝑊 0
1 and 𝑊 0

2 .
3. Parameter Evolution:

a. Using the well-trained DeepONet, solve the system of equations (22) to derive
[
𝜕𝑊1(𝑡)
𝜕𝑡

; 𝜕𝑊2(𝑡)
𝜕𝑡

]
.

b. Given that the parameters 𝑊 0
1 and 𝑊 0

2 are known, compute new parameters 𝑊 𝑛

1 and 𝑊 𝑛

2 using equations (23) iteratively.
4. Output: Compute the solution at time 𝑡𝑛 using DeepONet by 𝑢(𝑥, 𝑡𝑛) =

∑𝑝

𝑘=1 𝑏𝑘(𝑊
𝑛

1)𝑔𝑘(𝑊
𝑛

2).

Table 1

The mean squared error of the heat equation: The initial input function is
𝑢0(𝑥) = 𝑎 sin (𝜋𝑥).

Error T = 0.025 T = 0.05 T = 0.075 T = 0.1

a = 1.0 1.47 × 10−5 1.33 × 10−5 1.32 × 10−5 1.29 × 10−5
a = 1.5 5.11 × 10−6 7.05 × 10−6 8.48 × 10−6 9.81 × 10−6
a = 1.8 1.46 × 10−5 1.69 × 10−5 1.79 × 10−5 1.83 × 10−5
a = 2.5 2.20 × 10−4 1.34 × 10−4 6.02 × 10−5 1.72 × 10−5

6.1. Example 1: simple heat equations

To demonstrate the accuracy of EDE-DeepONet, we begin by considering the simple heat equation with various initial conditions
for which we already possess exact solutions.

A one-dimensional heat equation system can be described by the following partial differential equation (PDE):

𝑢𝑡 = 𝑢𝑥𝑥,

𝑢(𝑥,0) = 𝑢0,

𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0.

Using the method of separation of variables, we can derive the solution to the heat equation. If we set 𝑢0(𝑥) = 𝑎 sin(𝜋𝑥), the
solution is given by 𝑢(𝑥, 𝑡) = 𝑎 sin(𝜋𝑥)𝑒−𝜋2𝑡, where 𝑎 ∈ [1, 2]. The corresponding energy can be calculated as 𝐸(𝑢) = ∫ 2

0
1
2 |𝑢𝑥|2𝑑𝑥 ≈

Δ𝑥(
∑𝑛

𝑖=1
1
2 |𝑢𝑥(𝑥𝑖)|2).

To generate initial data samples, we choose 51 points uniformly from the interval [0, 2) for 𝑥 and 50 random values of 𝑎 from
[1, 2]. The time step for updating the parameters in the neural network is 2.5 × 104, and the number of iteration steps is 400. We
compare the solutions for different values of 𝑎, where 𝑎 = 1.0, 1.5, 1.8, and 2.5. Even though 𝑎 = 2.5 is outside the range of training
data, the model performs well. We calculate the mean squared error for different 𝑎 as shown in Table 1. In this article, the mean
squared error is defined as 𝑒(𝑢, ̂𝑢) = 1

𝑁

∑𝑁

𝑘=1(𝑢(𝑥𝑘) − 𝑢̂(𝑥𝑘))2, where 𝑢 is the solution obtained by EDE-DeepONet, and 𝑢̂ is the reference
solution.

To illustrate the relationship between the modified energy and the original energy, we compare 𝑟2 and 𝐸 at each step (see Fig. 2).
Both energies are dissipative in EDE-DeepONet, except when the restart strategy is applied. The restart strategy is used to make 𝑟2
approach 𝐸. The modified energy is initialized when the restart strategy is applied. The restart strategy was triggered on the 370th
step to realign the modified energy with the real energy. After that, they followed the same trajectory again. It is evident that the
modified energy approaches the original energy both before and after the restart strategy being applied.

In Fig. 3, we provide a comparison between the exact solution and the solution obtained by EDE-DeepONet. From this analysis
of the simple heat equation, we conclude that EDE-DeepONet accurately predicts the solution of the PDE. Most importantly, EDE-
DeepONet can predict the solution not only within the training subset range but also beyond it. For instance, we tested with 𝑎 = 2.5
while 𝑎 was in the range [1, 2] during training. EDE-DeepONet demonstrates good accuracy compared to the exact solution, as shown
in Fig. 3 and Table 1.

6.2. Example 2: parametric heat equations

In Example 1, we considered different initial conditions as our inputs. In Example 2, we will tackle parametric heat equations.
A one-dimensional parametric heat equation can be described as:

𝑢𝑡 = 𝑐𝑢𝑥𝑥,

𝑢(𝑥,0) = sin(𝜋𝑥),
8

𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Fig. 2. Energy comparison for the heat equation: This figure showcases the comparison between the modified and original energies during the training of EDE-
DeepONet. Each iteration corresponds to one forward step of the PDE’s numerical solution with a timestep, Δ𝑡 = 2.5 × 10−4 . Notably, in EDE-DeepONet, both energy
forms are dissipative, with the sole exception of the restart strategy implemented. This strategy ensures that 𝑟2 converges towards 𝐸. Specifically, the modified energy
is reset at the 370th step. It’s crucial to observe the alignment of the modified and original energies along the same trajectory both before and after this pivotal 370th
step.

Fig. 3. The heat equation: The solution with 4 different initial input functions 𝑢0(𝑥) = 𝑎 sin(𝜋𝑥). The curve represents the solution obtained by the EDE-DeepONet,
and xxx represents the reference solution. The training parameter 𝑎 is in the range of [1, 2), so we give three examples in this range. We also present the case out of
the range. It also shows accuracy in Fig. 3d.

This PDE is more complex than the one in Example 1 because the parameter 𝑐 is embedded within the equation. Traditional
numerical schemes require multiple runs to handle cases with different parameters, as they essentially represent distinct equations.
In contrast, EDE-DeepONet only needs to be trained once. We choose the training range of 𝑐 as [1, 2) and select 51 points for 𝑥 and
𝑐 in a manner similar to Example 1. To incorporate the parameter 𝑐 into the initial state, we can compute the solution after a small
9

time step using traditional methods. This approach allows us to obtain various initial states corresponding to different values of 𝑐.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Fig. 4. Energy comparison for the parametric heat equation: We present the modified energy and original energy when training EDE-DeepONet. Each iteration step
represents one forward step of the PDE’s numerical solution with Δ𝑡 = 2.5 × 10−4 . These types of PDEs are inherently complex, necessitating multiple restarts during
the training phase. While the original energy consistently diminishes, the modified energy effectively approximates it.

Table 2

The mean squared error of the parametric heat equation.

Error T = 0.025 T = 0.05 T = 0.075 T = 0.1

c = 1.2 1.30 × 10−5 1.43 × 10−5 1.35 × 10−5 1.20 × 10−5
c = 1.5 1.35 × 10−5 1.27 × 10−5 9.80 × 10−6 7.80 × 10−6
c = 1.8 1.17 × 10−5 1.03 × 10−5 7.88 × 10−5 1.83 × 10−5
c = 2.5 2.20 × 10−4 1.34 × 10−4 6.02 × 10−5 7.08 × 10−6

First, we compare the modified energy with the original energy, as shown in Fig. 4. The energy differs from the first example
because it depends on the parameter 𝑐. To represent the energy of the system, we compute the average energy across different values
of 𝑐. This case is more complex than the first one, requiring more restarts during training. Although the modified energy oscillates
when the restart strategy is used, it consistently decreases after each restart.

Second, we present the mean squared error between the solution obtained by EDE-DeepONet and the reference solution in Table 2.
The reference solution can be obtained explicitly using the variable separation method, and the error is defined in the same way as
in Example 1.

Third, we provide a comparison between our solution and the reference solution in Fig. 5. Similar to Example 1, we predict
the solution for values of 𝑐 outside the range of [1, 2], and all results demonstrate excellent accuracy. Therefore, EDE-DeepONet is
capable of solving parametric PDEs effectively.

6.3. Example 3: Allen-Cahn equations

We will now demonstrate results for a PDE with a more complex energy. The Allen-Cahn equation is developed to describe phase
separation processes. Originally formulated for materials science, it has found applications in representing moving interfaces within
phase-field models in fluid dynamics. The Allen-Cahn equation can be considered as a gradient flow in 𝐿2 with a specific energy. We
will discuss both the one-dimensional case and two-dimensional case as follows:

6.3.1. One-dimensional case

(a) Various initial conditions:
We will begin with the one-dimensional Allen-Cahn equation, which can be described by the following equations:

𝑢𝑡 = 𝑢𝑥𝑥 − 𝑔(𝑢),

𝑢(𝑥,0) =
3∑

𝑗=1
𝑎𝑗 sin(𝑗𝜋𝑥) +

3∑
𝑗=1

𝑏𝑗 cos(𝑗𝜋𝑥)
10

with periodic boundary conditions. The corresponding Ginzburg–Landau free energy is defined as:

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Fig. 5. The parametric heat equation: The solution with 4 different parameters 𝑐. The curve represents the solution obtained by the EDE-DeepONet and xxx represents
the reference solution. The training parameter 𝑐 is in the range of [1, 2), so we give 3 examples in this range. We also present the case out of the range in Fig. 5d.

Table 3

The mean squared error of the one-dimensional Allen-Cahn equation with the initial
input function 𝑢0(𝑥) =

∑3
𝑗=1 𝑎𝑗𝑠𝑖𝑛(𝑗𝜋𝑥) +

∑3
𝑗=1 𝑏𝑗𝑐𝑜𝑠(𝑗𝜋𝑥).

𝑎1 , 𝑎2 , 𝑎3, 𝑏1 , 𝑏2, 𝑏3 T = 0.02 T = 0.04 T = 0.06

0.07, 0.03, 0.06, 0.13, 0.03, 0.09 2.93 × 10−4 1.67 × 10−3 2.11 × 10−3
0.03, 0.06, 0.08, 0.06, 0.08, 0.08 2.90 × 10−4 4.62 × 10−4 1.59 × 10−4
0.18, 0.01, 0.01, 0.02, 0.04, 0.14 2.36 × 10−4 1.02 × 10−3 1.09 × 10−3

𝐸[𝑢] =

1

∫
0

1
2
|𝑢𝑥|2𝑑𝑥+ 𝑥=1

∫
𝑥=0

𝐺(𝑢)𝑑𝑥.

Here, we have 𝐺(𝑢) = 1
4𝜖2 (𝑢

2 − 1)2 and 𝑔(𝑢) =𝐺′(𝑢) = 1
𝜖2
𝑢(𝑢2 − 1), with 𝜖 = 0.1. The parameter 𝜖 influences the width of the jump in

the steady state.
In our EDE-DeepONet configuration, we define Δ𝑡 as 5 × 10−4 and choose a spatial point count, 𝑁𝑥, of 201. The initial input

functions are crafted as linear combinations of sin(𝑗𝜋𝑥) and cos(𝑗𝜋𝑥), where 𝑗 = 1, 2, 3. The parameters 𝑎𝑗 and 𝑏𝑗 are drawn from a
uniform distribution spanning [0, 1]6. They are then normalized such that

∑
𝑎𝑖 +

∑
𝑏𝑖 = 0.4, a measure to prevent the initial input

function’s amplitude from becoming excessively large. A comparison between the modified and original energies can be observed in
Fig. 6. Notably, the modified energy closely follows the trajectory of the original, even when presented in this intricate form.

Subsequently, we compared the solutions derived using EDE-DeepONet, incorporating three distinct sets of randomly generated
𝑎𝑗 , 𝑏𝑗 parameters, with the benchmark solution ascertained through the traditional numerical SAV method. This comparison is
illustrated in Fig. 7. The associated errors are tabulated in Table 3. In this table, the first column showcases the specific 𝑎𝑗 values
and the second column showcases the 𝑏𝑗 values. Both 𝑎𝑗 and 𝑏𝑗 are rounded to two decimal places for clarity.

This example underscores the versatility of EDE-DeepONet in managing PDEs equipped with a plethora of initial input functions
anchored to a given basis function. Such flexibility offers the potential to probe into any initial state, granted an ample selection of
basis functions is at our disposal.
(b) Various thickness of the interface:

Heuristically, 𝜖 represents the thickness of the interface in the phase separation process. Obtaining a sharp interface as 𝜖→ 0 with
time evolution is a key aspect. The theoretical and numerical analysis of this limit plays a crucial role in understanding the equation,
11

as discussed in [34,35].

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Fig. 6. The one-dimensional Allen-Cahn Equation: The figure displays both the modified and original energies during network training. Each iteration corresponds to
a single forward step in the numerical solution of the PDE, with a time increment of Δ𝑡 = 5 × 10−4 . Notably, the modified energy closely mirrors the trends observed
in the original energy.

Fig. 7. One-dimensional Allen-Cahn equation with different initial states 𝑢0(𝑥) =
∑3

𝑗=1 𝑎𝑗𝑠𝑖𝑛(𝑗𝜋𝑥) +
∑3

𝑗=1 𝑏𝑗𝑐𝑜𝑠(𝑗𝜋𝑥): The coefficients are ran-
domly chosen as (𝑎1, 𝑎2 , 𝑎3 , 𝑏1, 𝑏2 , 𝑏3)1 = (0.07, 0.03, 0.06, 0.13, 0.03, 0.09), (𝑎1 , 𝑎2 , 𝑎3, 𝑏1 , 𝑏2, 𝑏3)2 = (0.03, 0.06, 0.08, 0.06, 0.08, 0.08), (𝑎1 , 𝑎2, 𝑎3 , 𝑏1, 𝑏2 , 𝑏3)3 =
(0.18, 0.01, 0.01, 0.02, 0.04, 0.14). The curve represents the reference solutions obtained by SAV method, and xxx represents the solutions generated by EDE-
12

DeepONet. We compared the solutions at 𝑇 = 0.02, 𝑇 = 0.04, 𝑇 = 0.06.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Fig. 8. One dimensional Allen-Cahn equation: Solutions with different thickness of the interface at the same final time. The curve represents the solution obtained by
EDE-DeepONet. xxx represents the reference solution.

In this scenario, we treat 𝜖 as a training parameter, and the problem can be described as follows:

𝑢𝑡 = 𝑢𝑥𝑥 −
1
𝜖2

(𝑢3 − 𝑢),

𝑢(−1, 𝑡) = 𝑢(1, 𝑡) = 0.

The initial states 𝑢(𝑥, 𝑡0; 𝜖) are obtained by spectral methods for a few steps with the initial input function 𝑢(𝑥, 0) = 0.4 sin (𝜋𝑥).
The training sample is generated based on the numerical solution of 𝑢(𝑥, 0.02; 𝜖). We randomly select 50 different values of 𝜖 from
the range [0.1, 0.2]. The learning rate is set to Δ𝑡 = 10−4, and an adaptive time-stepping strategy is applied. We obtain the predicted
solution after 400 iterations for different 𝜖. The rest of the settings remain the same as in the previous example.

The solutions obtained for different 𝜖 values are presented in Fig. 8. As 𝜖 decreases, the interface becomes sharper. Additionally,
it’s important to note that the training parameter range is limited to (0.1, 0.2), yet EDE-DeepONet is capable of predicting solutions
beyond this range. EDE-DeepONet demonstrates its ability to track the limit of 𝜖 in a single training process, a task that traditional
numerical methods often struggle with.

6.3.2. Two-dimensional case

The two-dimensional case of the Allen-Cahn equation introduces even greater complexity. The problem can be described as
follows:

𝑢𝑡 =Δ𝑢− 𝑔(𝑢),

𝑢(𝑥, 𝑦,0) = 𝑎 sin(𝜋𝑥) sin(𝜋𝑦),

𝑢(−1, 𝑦, 𝑡) = 𝑢(1, 𝑦, 𝑡) = 𝑢(𝑥,−1, 𝑡) = 𝑢(𝑥,1, 𝑡) = 0.

The corresponding Ginzburg–Landau free energy 𝐸[𝑢] can be defined as:

𝐸[𝑢] =

1

∫
−1

1

∫
−1

1
2
(|𝑢𝑥|2 + |𝑢𝑦|2)𝑑𝑥𝑑𝑦+ 1

∫
−1

1

∫
−1

𝐺(𝑢)𝑑𝑥𝑑𝑦.

Here, 𝐺(𝑢) = 1
4𝜖2 (𝑢

2−1)2 and 𝑔(𝑢) =𝐺′(𝑢) = 1
𝜖2
𝑢(𝑢2−1). Typically, 𝜖 is set to 0.1. During the training process, we use Δ𝑡 = 1 ×10−4,

employ a grid with 201 × 201 spatial points, and select 20 training parameters 𝑎 in the range of (0.05, 0.35). The selection of 𝑎 and 𝑥
is performed in the same manner as in example 1. We compare the solutions with 𝑎 = 0.08, 0.2, 0.32 and 0.5, where 𝑎 = 0.5 is out of
the training range. The mean squared error is shown in the Table 4.

In Fig. 9, we assess the performance of both EDE-DeepONet and E-DeepONet. The latter is identical to EDE-DeepONet but lacks
the support of SAV. The figure provides a comparative visual analysis of the solutions. In the figure, the top panel (Figs. 9a-9d)
depicts the solutions produced via the EDE-DeepONet algorithm. The middle panel (Figs. 9e-9h) showcases the canonical reference
solutions. The bottom panel (Figs. 9i-9l) offers the solutions produced via the E-DeepONet algorithm. Across all panels, the initial
13

input function is consistently 𝑢0(𝑥, 𝑦) = 0.08 sin (𝜋𝑥) sin (𝜋𝑦), facilitating a standardized comparison at 𝑇 = 0.02, 0.04, and 0.06.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Table 4

The mean squared error of the two-dimensional Allen-
Cahn equation: The initial input function is 𝑢0(𝑥, 𝑦) =
𝑎 sin (𝜋𝑥) sin (𝜋𝑦).

Error T = 0.02 T = 0.04 T = 0.06

a = 0.08 2.37 × 10−5 2.46 × 10−4 1.06 × 10−3
a = 0.2 5.71 × 10−5 3.41 × 10−4 1.34 × 10−3
a = 0.32 9.57 × 10−5 3.27 × 10−4 1.32 × 10−3
a = 0.5 4.46 × 10−4 8.62 × 10−4 1.53 × 10−3

Fig. 9. Two-dimensional Allen-Cahn equation: Figs. 9a-9d display the solutions obtained by the EDE-DeepONet. Figs. 9e-9h showcase the reference solutions, while
Figs. 9i-9l represent another set of reference solutions. The initial input function is given by 𝑢0(𝑥, 𝑦) = 0.08 sin (𝜋𝑥) sin (𝜋𝑦). Solutions are compared at 𝑇 = 0.02, 0.04,
and 0.06. EDE-DeepONet approximates the reference solution closely, but the E-DeepONet, without the aid of SAV, struggles to approximate the reference solution
over extended periods.

As evident from the visual data, the EDE-DeepONet provides a commendable approximation to the reference solution. In contrast,
E-DeepONet, when bereft of the support from SAV, visibly lags in its approximation prowess, especially over more extended periods.

In Fig. 10, we present the solution derived from EDE-DeepONet for 𝑎 = 0.5 alongside its corresponding reference solution. Intrigu-
ingly, while 𝑎 = 0.5 falls outside the training domain, EDE-DeepONet retains its adeptness in closely mirroring the exact solution.
This performance highlights its strong generalization, making the training process more efficient.

6.4. Example 4: reaction-diffusion equations in three dimensions

Consider a three-dimensional reaction-diffusion system described by:

𝑢𝑡 =Δ𝑢− 𝑔(𝑢),

𝑢(𝑥, 𝑦, 𝑧,0) = 𝑎 sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧),

𝑢 = 0 on 𝜕𝑋 (Dirichlet boundary conditions),
14

where 𝑋 = [−1, 1]3.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Fig. 10. Two-dimensional Allen-Cahn equation: Fig. 10a-Fig. 10d is the solution obtained by the EDE-DeepONet. Fig. 10f-Fig. 10h represents the reference solution of
the two-dimensional Allen-Cahn equation with initial input function 𝑢0(𝑥, 𝑦) = 0.5 sin (𝜋𝑥) sin (𝜋𝑦). We compare the solutions at 𝑇 = 0.02, 0.04, 0.06.

Table 5

The mean squared error of the three-dimensional reaction-
diffusion equations.

Error T = 0.02 T = 0.04 T = 0.06

a = 0.4 1.39 × 10−7 2.13 × 10−7 2.21 × 10−7
a = 0.6 3.05 × 10−9 6.24 × 10−8 1.47 × 10−7
a = 0.8 7.10 × 10−9 1.21 × 10−7 2.58 × 10−7

For testing purposes, we adopt an exact solution given by:

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑎𝑒−10𝑡 sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧),

and the nonlinear term can be deduced as:

𝑔(𝑢) = (10 − 3𝜋2)𝑢.

For our simulations, we uniformly select 30 training samples of 𝑎 in the interval (0.5, 1) and utilize a computational grid
comprising 51 × 51 × 51 spatial points. Leveraging the exact solution, we generate an error table for values 𝑎 = 0.4, 0.6, 0.8 as
presented in Table 5. The visual representation of the predicted solution and the exact solution with 𝑎 = 0.8 at 𝑇 = 0.06 is depicted
in Fig. 11. Furthermore, EDE-DeepONet demonstrates its accuracy and capability in accurately solving PDEs even in complex three-
dimensional scenarios. Its efficiency stands out, especially when handling higher-dimensional problems. The visualization of these
solutions, as seen in the slices at varying 𝑧 values, provides insight into the spatial distribution and behavior of the underlying system.
The ability to achieve such accuracy in three-dimensional environments underscores the potential of EDE-DeepONet as a powerful
tool for solving intricate reaction-diffusion equations.

7. Concluding remarks

In this paper, we present a novel neural network architecture, EDE-DeepONet, designed for solving parametric partial differen-
tial equations (PDEs) under varying initial conditions, all while preserving the energy dissipative nature of dynamic systems. Our
approach incorporates the energy dissipative law of dynamic systems into the DeepONet framework. We also introduce two critical
strategies: an adaptive time-stepping strategy and a restart strategy. Through our experiments, we demonstrate that both strategies
contribute significantly to maintaining the modified energy’s proximity to the original energy during the evolution of the network.

To mitigate the computational cost associated with training the DeepONet and keep physical properties of the dynamic system, we
employ the Scalar Auxiliary Variable (SAV) method to evolve the EDE-DeepONet. This success paves the way for more exploration.
For instance, extending our approach to address general Wasserstein gradient flow problems is a promising direction.

While our work currently employs a basic DeepONet architecture, more advanced neural network architectures are compatible
with our methodology. These advanced architectures hold the potential to further enhance the accuracy and capabilities of EDE-
15

DeepONet.

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

Fig. 11. Three-dimensional Reaction-Diffusion Equations: The figure displays the solution obtained using EDE-DeepONet and the reference solution at 𝑇 = 0.06 with
𝑎 = 0.8. Two cross-sectional slices are depicted at 𝑧 =−0.6 and 𝑧 = 0.0.

CRediT authorship contribution statement

J. Z. and S. Z. conceived the mathematical models, implemented the methods, designed the numerical experiments, interpreted
the results, and wrote the paper. G.L. and J. S. edited and reviewed the final manuscript. All the authors gave their final approval for
publication.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

SJ and SZ gratefully acknowledge the support of NSF DMS-1720442, NSFC 11971407 and AFOSR FA9550-20-1-0309. GL and ZZ
gratefully acknowledge the support of the National Science Foundation (DMS-2053746, DMS-2134209, ECCS-2328241, and OAC-
2311848), and U.S. Department of Energy (DOE) Office of Science Advanced Scientific Computing Research program DE-SC0021142,
DE-SC0023161, and the Uncertainty Quantification for Multifidelity Operator Learning (MOLUcQ) project (Project No. 81739), and
DOE – Fusion Energy Science, under grant number: DE-SC0024583.

References

[1] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: learning maps between function spaces, arXiv
preprint, arXiv :2108 .08481, 2021.

[2] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: graph kernel network for partial differential equations,
arXiv preprint, arXiv :2003 .03485, 2020.

[3] Y. Khoo, J. Lu, L. Ying, Solving parametric pde problems with artificial neural networks, Eur. J. Appl. Math. 32 (2021) 421–435.
[4] K. Bhattacharya, B. Hosseini, N.B. Kovachki, A.M. Stuart, Model reduction and neural networks for parametric pdes, arXiv preprint, arXiv :2005 .03180, 2020.
16

[5] N.H. Nelsen, A.M. Stuart, The random feature model for input-output maps between banach spaces, SIAM J. Sci. Comput. 43 (2021) A3212–A3243.

http://refhub.elsevier.com/S0021-9991(23)00733-7/bibE0C3FF938B6B129349D415B6CE7DD807s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibE0C3FF938B6B129349D415B6CE7DD807s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibCA53A6D9B42A06F67E96232B81B64C1As1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibCA53A6D9B42A06F67E96232B81B64C1As1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib92251C92346A2B74A293501EC1712363s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib2BCF8E33B8A347902F55E71335AAD2A9s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibF484711FC398CECCEE4D4B5CD0145B75s1

Journal of Computational Physics 498 (2024) 112638J. Zhang, S. Zhang, J. Shen et al.

[6] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential equations,
arXiv preprint, arXiv :2010 .08895, 2020.

[7] R.G. Patel, N.A. Trask, M.A. Wood, E.C. Cyr, A physics-informed operator regression framework for extracting data-driven continuum models, Comput. Methods
Appl. Mech. Eng. 373 (2021) 113500.

[8] J.A. Opschoor, C. Schwab, J. Zech, Deep learning in high dimension: Relu network expression rates for bayesian pde inversion, SAM Research Report 2020,
2020.

[9] C. Schwab, J. Zech, Deep learning in high dimension: neural network expression rates for generalized polynomial chaos expansions in uq, Anal. Appl. 17 (2019)
19–55.

[10] T. O’Leary-Roseberry, U. Villa, P. Chen, O. Ghattas, Derivative-informed projected neural networks for high-dimensional parametric maps governed by pdes,
Comput. Methods Appl. Mech. Eng. 388 (2022) 114199.

[11] K. Wu, D. Xiu, Data-driven deep learning of partial differential equations in modal space, J. Comput. Phys. 408 (2020) 109307.
[12] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators, Nat.

Mach. Intell. 3 (2021) 218–229.
[13] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (1989) 303–314.
[14] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4 (1991) 251–257.
[15] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359–366.
[16] T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical

systems, IEEE Trans. Neural Netw. 6 (1995) 911–917.
[17] M. Raissi, P. Perdikaris, G.E. Karniadakis, Multistep neural networks for data-driven discovery of nonlinear dynamical systems, arXiv preprint, arXiv :1801 .01236,

2018.
[18] T. Qin, Z. Chen, J.D. Jakeman, D. Xiu, Deep learning of parameterized equations with applications to uncertainty quantification, Int. J. Uncertain. Quantificat.

11 (2021).
[19] N. Winovich, K. Ramani, G. Lin, Convpde-uq: convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations

on varied domains, J. Comput. Phys. 394 (2019) 263–279.
[20] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification

without labeled data, J. Comput. Phys. 394 (2019) 56–81.
[21] J. del Águila Ferrandis, M.S. Triantafyllou, C. Chryssostomidis, G.E. Karniadakis, Learning functionals via lstm neural networks for predicting vessel dynamics

in extreme sea states, Proc. R. Soc. A 477 (2021) 20190897.
[22] J. Jia, A.R. Benson, Neural jump stochastic differential equations, Adv. Neural Inf. Process. Syst. 32 (2019).
[23] T. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, in: Advances in Neural Information Processing Systems, La Jolla,

2018.
[24] Y. Du, T.A. Zaki, Evolutional deep neural network, Phys. Rev. E 104 (2021) 045303.
[25] S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979)

1085–1095.
[26] D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech. 30 (1998) 139–165.
[27] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258–267.
[28] M. Doi, S.F. Edwards, S.F. Edwards, The Theory of Polymer Dynamics, vol. 73, Oxford University Press, 1988.
[29] K. Elder, M. Katakowski, M. Haataja, M. Grant, Modeling elasticity in crystal growth, Phys. Rev. Lett. 88 (2002) 245701.
[30] M.E. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci. 6 (1996)

815–831.
[31] F.M. Leslie, Theory of Flow Phenomena in Liquid Crystals, Advances in Liquid Crystals, vol. 4, Elsevier, 1979, pp. 1–81.
[32] P. Yue, J.J. Feng, C. Liu, J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech. 515 (2004) 293–317.
[33] J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (sav) approach for gradient flows, J. Comput. Phys. 353 (2018) 407–416.
[34] G. Caginalp, X. Chen, Convergence of the phase field model to its sharp interface limits, Eur. J. Appl. Math. 9 (1998) 417–445.
17

[35] X. Chen, G. Caginalp, C. Eck, A rapidly converging phase field model, Discrete Contin. Dyn. Syst. 15 (2006) 1017.

http://refhub.elsevier.com/S0021-9991(23)00733-7/bibFDE60BE1F87D6EAE6208A390FE5D3BCAs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibFDE60BE1F87D6EAE6208A390FE5D3BCAs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibB8D43A5672EA4686F4C77AED0A7A54C6s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibB8D43A5672EA4686F4C77AED0A7A54C6s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib814436B5EACBEDC815A4BB3A6B77E8BDs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib814436B5EACBEDC815A4BB3A6B77E8BDs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib4944B88F99755E719881FF0C114B571Ds1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib4944B88F99755E719881FF0C114B571Ds1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibFACC0A2CECB3997C736E4CA31ADDD28Fs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibFACC0A2CECB3997C736E4CA31ADDD28Fs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib8850E36376096D70AD1F7A292E54A964s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib81EAB26E706334F3E737F5ACF5A3AE3Fs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib81EAB26E706334F3E737F5ACF5A3AE3Fs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib7C1BC1F9205D66540C060701CBACD75Es1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib3D18AD99387A5EA460CDBB72AF2DE656s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibB552F98C7E0C024B25FE654A214EE2E1s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib416C0D44B734EC69AF1AE9CCE05D9AFFs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib416C0D44B734EC69AF1AE9CCE05D9AFFs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibEB92122173254BACDD0406F7261EDC76s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibEB92122173254BACDD0406F7261EDC76s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibDA9F99BCE8B606E18B44685FE2AD6F21s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibDA9F99BCE8B606E18B44685FE2AD6F21s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibAE68814A784E30A334D0CE617C947117s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibAE68814A784E30A334D0CE617C947117s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib550B14C47EE0FFF4D29F46BD984105CDs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib550B14C47EE0FFF4D29F46BD984105CDs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib9B3AD10A33F00EEA19E5BAD5FA83E3B6s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibE725F91B7A89804375A5C20C352C85ABs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib86B9D32B08252422A778E7FE8223C250s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib86B9D32B08252422A778E7FE8223C250s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib0FC6BBB4FA5249808945A47657074E17s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibCE7506BCB187974EA9640575E1435357s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibED0C9A898F09A9D92E74DFC0034F2AD4s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib81B8F49E23F0262956AEECDFDC3EAC76s1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib197155963E0328D2A50BD094DEBD87CFs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib197155963E0328D2A50BD094DEBD87CFs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib734BC6B191A46A0E23ECC503534161CCs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibFFE621E899FA159249E320A05481498As1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib310792414D9E8F9E345206BCAE8A437Cs1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bibA3806712B28CAB93587229D6EBD7913Ds1
http://refhub.elsevier.com/S0021-9991(23)00733-7/bib5558405E9BAE3E782D7A7C62D99E4D4Cs1

	Energy-dissipative evolutionary deep operator neural networks
	1 Introduction
	2 Evolutionary deep operator neural network
	2.1 Operator learning
	2.2 Parameters evolution within the neural network

	3 Energy dissipative evolutionary deep operator neural network
	4 Adaptive time stepping strategy and restart strategy
	5 Algorithm for EDE-DeepONet
	6 Numerical experiments
	6.1 Example 1: simple heat equations
	6.2 Example 2: parametric heat equations
	6.3 Example 3: Allen-Cahn equations
	6.3.1 One-dimensional case
	6.3.2 Two-dimensional case

	6.4 Example 4: reaction-diffusion equations in three dimensions

	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

