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Abstract. Stability analyses and error estimates are carried out for a num-
ber of commonly used numerical schemes for the Allen-Cahn and Cahn-Hilliard
equations. It is shown that all the schemes we considered are either uncondi-
tionally energy stable, or conditionally energy stable with reasonable stability
conditions in the semi-discretized versions. Error estimates for selected schemes
with a spectral-Galerkin approximation are also derived. The stability analyses
and error estimates are based on a weak formulation thus the results can be
easily extended to other spatial discretizations, such as Galerkin finite element
methods, which are based on a weak formulation.

1. Introduction. We consider in this paper numerical schemes for solving the
Allen-Cahn equation















ut − ∆u+
1

ε2
f(u) = 0, (x, t) ∈ Ω × (0, T ],

∂nu|∂Ω = 0,

u|t=0 = u0;

(1.1)

and the Cahn-Hilliard equation






















ut − ∆(−∆u+
1

ε2
f(u)) = 0, (x, t) ∈ Ω × (0, T ],

∂nu|∂Ω = 0, ∂n(∆u − 1

ε2
f(u))|∂Ω = 0,

u|t=0 = u0.

(1.2)

In the above, Ω ⊂ Rd (d = 2, 3) is a bounded domain, n is the outward normal,
f(u) = F ′(u) with F (u) being a given energy potential. An important feature of the
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Allen-Cahn and Cahn-Hilliard equations is that they can be viewed as the gradient
flow of the Liapunov energy functional

E(u) :=

∫

Ω

(

1

2
|∇u|2 +

1

ε2
F (u)

)

dx (1.3)

in L2 and H−1, respectively. More precisely, by taking the inner product of (1.1)
with −∆u+ 1

ε2 f(u), we immediately find the following energy law for (1.1):

∂

∂t
E(u(t)) = −

∫

Ω

| − ∆u+
1

ε2
f(u)|2dx; (1.4)

and similarly, the energy law for (1.2) is

∂

∂t
E(u(t)) = −

∫

Ω

|∇(−∆u+
1

ε2
f(u))|2dx. (1.5)

The Allen-Cahn equation was originally introduced by Allen and Cahn in [1] to
describe the motion of anti-phase boundaries in crystalline solids. In this context, u
represents the concentration of one of the two metallic components of the alloy and
the parameter ε represents the interfacial width, which is small compared to the
characteristic length of the laboratory scale. The homogenous Neumann boundary
condition implies that no mass loss occurs across the boundary walls. On the other
hand, the Cahn-Hilliard equation was introduced by Cahn and Hilliard in [4] to
describe the complicated phase separation and coarsening phenomena in a solid.
The two boundary conditions also imply that none of the mixture can pass through
the boundary walls.

Nowadays, the Allen-Cahn and Cahn-Hilliard equations have been widely used
in many complicated moving interface problems in materials science and fluid dy-
namics through a phase-field approach (cf., for instance, [19, 7, 2, 6, 17, 27, 25, 9]).
Therefore, it is very important to develop accurate and efficient numerical schemes
to solve the Allen-Cahn and Cahn-Hilliard equations. Since an essential feature of
the Allen-Cahn and Cahn-Hilliard equations are that they satisfy the energy laws
(1.4) and (1.5) respectively, it is important to design efficient and accurate numer-
ical schemes that satisfy a corresponding discrete energy law, or in other words,
energy stable.

In this paper, we shall restrict our attention to potential function F (u) whose
derivative f(u) = F ′(u) satisfies the following condition: there exists a constant L
such that

max
u∈R

|f ′(u)| ≤ L. (1.6)

We note that this condition is satisfied by many physically relevant potentials by
restricting the growth of F (u) to be quadratic for |u| ≥M . Consider, for example,
the Ginzburg-Landau double-well potential F (u) = 1

4 (u2−1)2 which has been widely
used. However, its quartic growth at infinity introduces various technical difficulties
in the analysis and approximation of Allen-Cahn and Cahn-Hilliard equations. Since
it is well-known that the Allen-Cahn equation satisfies the maximum principle, we
can truncate F (u) to quadratic growth outside of the interval [−M,M ] without
affecting the solution if the maximum norm of the initial condition u0 is bounded
by M . While the Cahn-Hilliard equation does not satisfy the maximum principle, it
has been shown that in [3] that for a truncated potential F (u) with quadratic growth
at infinities, the maximum norm of the solution for the Cahn-Hilliard equation is
bounded. Therefore, it has been a common practice (cf. [15, 8]) to consider the
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Allen-Cahn and Cahn-Hilliard equations with a truncated double-well potential
F (u). More precisely, for a given M , we can replace F (u) = 1

4 (u2 − 1)2 by

F̃ (u) =











3M2
−1

2 u2 − 2M3u+ 1
4 (3M4 + 1), u > M

1
4 (u2 − 1)2, u ∈ [−M,M ]
3M2

−1
2 u2 + 2M3u+ 1

4 (3M4 + 1), u < −M
, (1.7)

and replace f(u) = (u2 − 1)u by F̃ ′(u) which is

f̃(u) = F̃ ′(u) =











(3M2 − 1)u− 2M3, u > M

(u2 − 1)u, u ∈ [−M,M ]

(3M2 − 1)u+ 2M3, u < −M
. (1.8)

It is then obvious that there exists L such that (1.6) is satisfied with f replaced by

f̃ .
It is well known that explicit schemes usually lead to very severe time step re-

strictions and do not satisfy a discrete energy law. So we shall focus our attention
on semi-implicit (or linearly implicit) and fully implicit schemes. The advantage of
semi-implicit schemes are that only an elliptic equation with constant coefficients
needs to be solved at each time step, making it easy to implement and remarkably
efficient when fast elliptic solvers are available. However, the semi-implicit schemes
usually have larger truncation errors and require smaller time steps than fully im-
plicit schemes. On the other hand, one can easily design an implicit scheme that
satisfies an energy law, has smaller truncation errors and better stability property.
But it requires solving a nonlinear equation at each time step. Our first objective
is to design stabilized semi-implicit schemes that satisfy an energy law, and fully or
partially alleviate the restriction on time steps.

There have been a large body of work on numerical analysis of Allen-Cahn and
Cahn-Hilliard equations (cf. [10, 11, 12, 26, 13, 15, 28, 8] and the references
therein). Most of the analysis are for finite element/finite difference methods or
Fourier-spectral method with periodic boundary conditions. Very few work has
been devoted to the analysis of non-periodic spectral methods, even though they
have been widely used in practice. This is partly due to some technical difficulties
related to the “non-optimal” inverse inequalities of the spectral methods, making
it difficult to handle nonlinear terms optimally. However, thanks to the Lipschitz
property of the modified potential. The nonlinear terms can now be easily handled.
Thus, the second purpose of this paper is to derive optimal error estimates for fully
discretized schemes with a spectral-Galerkin method in space. We shall also demon-
strate, through error estimates, why spectral methods are particularly suitable for
interface problems governed by Allen-Cahn and Cahn-Hilliard equations.

The rest of the paper is organized as follows. In Section 2, we consider the
Allen-Cahn equation and show that a number of commonly used time discretization
schemes are energy stable. We also establish error estimates for two fully discretized
schemes with a spectral-Galerkin approximation in space. In section 3, we consider
the Cahn-Hilliard equations and carry out the corresponding stability and error
analysis. We make a few remarks about the generalization and interpretation of
our analysis and present some numerical results in Section 4.

2. Allen-Cahn equation. We consider in this section the numerical analysis of a
few commonly used schemes for the Allen-Cahn equation (1.1).
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We first introduce some notations which will be used throughout the paper. We
use Hm(Ω) and ‖ · ‖m (m = 0,±1, · · · ) to denote the standard Sobolev spaces and
their norms, respectively. In particular, the norm and inner product of L2(Ω) =
H0(Ω) are denoted by ‖ · ‖0 and (·, ·) respectively. We also denote the L∞(Ω) by
‖ · ‖∞.

2.1. Stability analysis. We show in this subsection that several commonly used
time discretization schemes are energy stable under reasonable assumptions.

2.1.1. First-order semi-implicit schemes. We consider first the usual first-order semi-
implicit method

1

δt
(un+1 − un, ψ) + (∇un+1,∇ψ) +

1

ε2
(f(un), ψ) = 0, ∀ψ ∈ H1(Ω). (2.1)

Lemma 2.1. Under the condition

δt ≤ 2ε2

L
, (2.2)

the following energy law holds

E(un+1) ≤ E(un), ∀n ≥ 0.

Proof. Taking ψ = un+1 − un in (2.1) and using the identity

(a− b, 2a) = |a|2 − |b|2 + |a− b|2, (2.3)

we find

1

δt
‖un+1 − un‖2

0 +
1

2
(‖∇un+1‖2

0 − ‖∇un‖2
0 + ‖∇(un+1 − un)‖2

0)

+
1

ε2
(f(un), un+1 − un) = 0. (2.4)

For the last term in (2.4), we use the Taylor expansion

F (un+1) − F (un) = f(un)(un+1 − un) +
f ′(ξn)

2
(un+1 − un)2. (2.5)

Therefore, by using (1.6), we find

1

δt
‖un+1 − un‖2

0 +
1

2
(‖∇un+1‖2

0 − ‖∇un‖2
0 + ‖∇(un+1 − un)‖2

0)

+
1

ε2
(F (un+1) − F (un), 1)

=
1

2ε2
(f ′(ξn)(un+1 − un), un+1 − un) ≤ L

2ε2
‖un+1 − un‖2

0,

which implies the desired results.

The above lemma indicates that the first-order semi-implicit scheme satisfies a
discrete energy law under the condition (2.2). While the condition (2.2) appears
to be quite restrictive when ε << 1, a condition such as δt ∼ ε2 is in fact needed
for any scheme to be convergent. Nevertheless, This condition can be removed by
introducing a stabilizing term as we show below.

The stabilized first-order semi-implicit method reads

(
1

δt
+
S

ε2
)(un+1 − un, ψ) + (∇un+1,∇ψ) +

1

ε2
(f(un), ψ) = 0, ∀ψ ∈ H1(Ω), (2.6)
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where S is a stabilizing parameter to be specified.
The stabilizing term S

ε2 (un+1−un) introduces an extra consistency error of order
Sδt
ε2 ut(ξn). We note that this error is of the same order as the error introduced by

the explicit treatment of the nonlinear term which is, 1
ε2 (f(u(tn+1)) − f(u(tn))) =

δt
ε2ut(ηn). Therefore, the stabilized semi-implicit scheme (2.6) is of the same order
of accuracy, in terms of δt and ε, as the semi-implicit scheme (2.1). However, we
have the following result for the stabilized scheme.

Lemma 2.2. For S ≥ L
2 , the stabilized scheme (2.6) is unconditionally stable and

the following energy law holds for any δt:

E(un+1) ≤ E(un), ∀n ≥ 0. (2.7)

Proof. Taking ψ = un+1 − un in (2.6), we obtain

(
1

δt
+
S

ε2
)‖un+1 − un‖2

0 +
1

2
(‖∇un+1‖2

0 − ‖∇un‖2
0 + ‖∇un+1 −∇un‖2

0)

+
1

ε2
(f(un), un+1 − un) = 0.

(2.8)

Using again the Taylor expansion (2.5) and (1.6), we find

(f(un), un+1 − un) ≥ (F (un+1) − F (un), 1) − L

2
(un+1 − un, un+1 − un). (2.9)

We can then conclude from (2.8) and (2.9).

Remark 2.1. The scheme (2.6) can also be viewed as a linearized convex splitting
scheme (cf. [11]). One can also design other unconditionally stable schemes with
energy law by using the convex splitting approach (cf. [11, 22, 14]). Note that
the stabilizing technique has also been considered in [23] for an epitaxial growth
model. However, their stability proof is based on assuming the boundedness of the
numerical solution which can not be verified a priori. In fact, by using a similar
argument as above (see also Lemma 3.2 for the Cahn-Hilliard equation below), we
can prove that the stabilized scheme for the epitaxial growth model consider in [23]
satisfies an energy law and is also unconditionally stable.

2.1.2. Second-order semi-implicit and implicit schemes. A second-order semi-
implicit scheme based on the second-order BDF and Adam-Bashforth is as follows:

1

2δt
(3un+1 − 4un + un−1, ψ) + (∇un+1,∇ψ)

+
1

ε2
(2f(un) − f(un−1), ψ) = 0, ∀ψ ∈ H1(Ω). (2.10)

Its stabilized version reads:

1

2δt
(3un+1 − 4un + un−1, ψ) +

S

ε2
(un+1 − 2un + un−1, ψ) + (∇un+1,∇ψ)

+
1

ε2
(2f(un) − f(un−1), ψ) = 0, ∀ψ ∈ H1(Ω).

(2.11)

The stabilizing term S
ε2 (un+1−2un+un−1) introduces an extra consistency error

of order Sδt2

ε2 utt(ξn) which is of the same order as the error introduced by replacing

f(un+1) with 2f(un) − f(un−1). Therefore, the stabilized semi-implicit scheme
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(2.11) is of the same order of accuracy, in terms of δt and ε, as the semi-implicit
scheme (2.10).

The stability results for the scheme (2.10) and its stabilized version (2.11) are
shown below.

Lemma 2.3. Under the condition

δt ≤ 2ε2

3L
, (2.12)

the solution of the scheme (2.11) with S ≥ 0 satisfies

E(un+1) + (
1

4δt
+
S + L

2ε2
)‖un+1 − un‖2

0

≤E(un) + (
1

4δt
+
S + L

2ε2
)‖un − un−1‖2

0, ∀n ≥ 1. (2.13)

Proof. To simplify the notation, we denote δun+1 = un+1 − un and δ2un+1 =
un+1 − 2un + un−1.

Taking ψ = 2δt(un+1 − un) in (2.11), we compute each term in the resultant
equation as follows:

(3un+1 − 4un + un−1, un+1 − un) = (2(un+1 − un) + δ2un+1, un+1 − un)

=2‖un+1 − un‖2
0 +

1

2
(‖un+1 − un‖2

0 − ‖un − un−1‖2
0 + ‖δ2un+1‖2

0).
(2.14)

2Sδt

ε2
(un+1−2un+un−1, un+1−un) =

Sδt

ε2
(‖un+1−un‖2

0−‖un−un−1‖2
0+‖δ2un+1‖2

0).

(2.15)
From the Taylor expansion (2.5),

2δt

ε2
(f(un), un+1−un) =

2δt

ε2
(F (un+1)−F (un), 1)+

δt

ε2
(f ′(ξn)(un+1−un), un+1−un);

(2.16)
On the other hand,

2δt

ε2
(f(un) − f(un−1), un+1 − un) =

2δt

ε2
(f ′(ξn−1)(un − un−1), un+1 − un). (2.17)

Combining the above relations together and using (1.6), we arrive at

2‖un+1 − un‖2
0 + (

1

2
+
Sδt

ε2
)(‖un+1 − un‖2

0 − ‖un − un−1‖2
0 + ‖δ2un+1‖2

0)

+
2δt

ε2
(F (un+1) − F (un), 1) + δt(‖∇un+1‖2

0 − ‖∇un‖2
0 + ‖∇(un+1 − un)‖2

0)

≤Lδt
ε2

(‖un+1 − un‖2
0 + 2‖un+1 − un‖0‖un − un−1‖0)

≤Lδt
ε2

(2‖un+1 − un‖2
0 + ‖un − un−1‖2

0)

(2.18)

Under the condition (2.12), we have 2− 2Lδt
ε2 ≥ Lδt

ε2 . Therefore, after dropping some
unnecessary terms, we can rearrange the above relation to

(
1

2
+

(S + L)δt

ε2
)(‖un+1 − un‖2

0 − ‖un − un−1‖2
0) + 2δt(E(un+1) − E(un)) ≤ 0,
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which implies (2.13).

Remark 2.2. The above lemma is valid for all S ≥ 0 which include in particular the
usual second-order semi-implicit scheme (S = 0). The stability condition (2.12) is
only slightly more restrictive than the condition (2.2) for the first-order semi-implicit
scheme (2.1).

Unlike in the first-order case, we were unable to show theoretically that the
stabilized scheme (2.11) with S > 0 has better stability than (2.10), which is (2.11)
with S = 0. However, ample numerical evidences indicate that the stabilized version
(2.11) with a suitable S allows much large time steps than that is allowed by the
unstabilized version (2.10) (cf. [18]).

Next, we shall consider a second-order implicit scheme.
It is well-known that the usual second-order implicit Crank-Nicolson scheme does

not satisfy an energy law. In order to construct a second-order implicit scheme
which satisfies an energy law, we follow the idea in [10] (see also [8]) to introduce
the following approximation to f(u):

f̃(u, v) =







F (u) − F (v)

u− v
if u 6= v

f(u) if u = v
, (2.19)

and consider the following (modified) Crank-Nicolson scheme

(
un+1 − un

δt
, ψ) + (∇un+1 + un

2
,∇ψ) +

1

ε2
(f̃(un+1, un), ψ) = 0, ∀ψ ∈ H1(Ω).(2.20)

It is clear that the above scheme is of second-order accurate, but it can also be

easily seen that its dominate truncation error is of order Sδt2

ε2 utt(ξn), which is of

the same order, in terms of δt and ε, as that of (2.11). Taking ψ = un+1 − un, one
immediately obtains the following result:

Lemma 2.4. The scheme (2.20) is unconditionally stable and its solution satisfies

E(un+1) ≤ E(un), ∀n ≥ 0. (2.21)

While the scheme is unconditionally stable, but at each time step, one has to
solve a nonlinear system for which the existence and uniqueness of the solution can
only be proved under a condition δt ≤ Cε2 for certain constant C > 0. This latter
result can be proved by using a similar approach as in [8]. We leave the detail to
the interested reader.

2.2. Error analysis. In this subsection, we shall adopt a spectral-Galerkin approx-
imation for the spacial variables, and establish error estimates for the fully discrete
versions of the first-order stabilized scheme and second-order implicit scheme.

We now introduce some notations and basic approximation results for the spectral
approximations. We denote by YN the space of polynomials of degree ≤ N in each
direction, and by ΠN the usual L2-projection operator in YN , namely

(ΠNv − v, ψ) = 0, ∀ψ ∈ YN , (2.22)

and we define a projection operator Π1
N : H1(Ω) → YN by

(∇(Π1
Nv − v),∇ψ) = 0, (Π1

Nv − v, 1) = 0, ∀ψ ∈ YN . (2.23)

It is well known (cf. [16, 5]) that the following estimates hold:

‖u− ΠNu‖0 . N−m‖u‖m ∀u ∈ Hm(Ω), m ≥ 0; (2.24)
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‖u− Π1
Nu‖k . Nk−m‖u‖m, k = 0, 1; ∀u ∈ Hm(Ω), m ≥ 1. (2.25)

2.2.1. First-order stabilized scheme. The spectral-Galerkin method for the first-
order stabilized scheme (2.6) reads: Given u0

N = ΠNu0, for n ≥ 0, find un+1
N ∈ YN

such that

(
1

δt
+
S

ε2
)(un+1

N − un
N , ψN ) + (∇un+1

N ,∇ψN ) +
1

ε2
(f(un

N ), ψN ) = 0, ∀ψN ∈ YN .

(2.26)
Let us denote

ẽn+1
N = Π1

Nu(t
n+1) − un+1

N , ên+1
N = u(tn+1) − Π1

Nu(t
n+1),

en+1
N = u(tn+1) − un+1

N = ẽn+1
N + ên+1

N .
(2.27)

We also denote

Rn+1 :=
u(tn+1) − u(tn)

δt
− ut(t

n+1). (2.28)

By using the Taylor expansion with integral residuals and the Cauchy-Schwarz
inequality, we derive easily

‖Rn+1‖2
s ≤ 1

δt2
‖
∫ tn+1

tn

(t− tn)utt(t)dt‖2
s ≤ δt

3

∫ tn+1

tn

‖utt(t)‖2
sdt, s = −1, 0.

(2.29)

Theorem 2.1. Given T > 0. We assume that, for some m ≥ 1, u ∈ C(0, T ;Hm(Ω)),
ut ∈ L2(0, T ;Hm(Ω)) and utt ∈ L2(0, T ;H−1(Ω)). Then, for S > L

2 , the solution
of (2.26) satisfies

E(un+1
N ) ≤ E(un

N ) (2.30)

and the following error estimate holds:

‖u(tk) − uk
N‖0

≤C(ε, T )(K1(u, ε)δt+K2(u, ε)N
−m), ∀0 ≤ k ≤ T

δt
,

(

δt

k
∑

n=0

‖u(tn+1) − un+1
N ‖2

0

)

1
2

≤C(ε, T )(K1(u, ε)δt+K2(u, ε)N
1−m), ∀0 ≤ k ≤ T

δt
,

(2.31)

where

C(ε, T ) ∼ exp(T/ε2);

K1(u, ε) = ‖utt‖L2(0,T ;H−1) +
1

ε
‖ut‖L2(0,T ;L2);

K2(u, ε) = ‖u0‖m + (ε+
δt

ε
)‖ut‖L2(0,T ;Hm) +

1

ε
‖u‖C(0,T ;Hm).

Proof. It is clear that the proof of Lemma 2.2 is also valid for the fully discrete
scheme (2.26). Thus (2.30) holds for S > L

2 . Next we proceed to error estimates.
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Subtracting (2.26) from (1.1) at tn+1, we find

((
1

δt
+
S

ε2
)(ẽn+1

N − ẽn
N ), ψN ) + (∇ẽn+1

N ,∇ψN )

= (Rn+1, ψN ) + (
1

δt
+
S

ε2
)
(

(Π1
N − I)(u(tn+1) − u(tn)), ψN

)

+
S

ε2
(u(tn+1) − u(tn), ψN ) +

1

ε2
(f(un

N) − f(u(tn+1)), ψN ).

(2.32)

Taking ψ = 2δtẽn+1
N , we derive

(1 +
Sδt

ε2
)(‖ẽn+1

N ‖2
0 − ‖ẽn+1

N ‖2
0 + ‖ẽn+1

N − ẽn
N‖2

0) + 2δt‖∇ẽn+1
N ‖2

0

≤ 2δt‖Rn+1‖−1‖ẽn+1
N ‖1

+ (2 +
2Sδt

ε2
)‖(I − Π1

N )(u(tn+1) − u(tn))‖0‖ẽn+1
N ‖0

+
2Sδt

ε2
‖u(tn+1) − u(tn)‖0‖ẽn+1

N ‖0

+
2δt

ε2
‖f(un

N) − f(u(tn+1))‖0‖ẽn+1
N ‖0 := I + II + III + IV.

(2.33)

Using the Cauchy-Schwarz inequality and Young’s inequality, the first three terms
can be easily estimated as follows:

I ≤ C0δt‖Rn+1‖2
−1 + δt‖∇ẽn+1

N ‖2
0;

II ≤ (ε2 +
S2δt2

ε2
)

∫ tn+1

tn

‖(I − Π1
N )ut(t)‖2

0dt+
2δt

ε2
‖ẽn+1

N ‖2
0;

III ≤ S2δt2

ε2

∫ tn+1

tn

‖ut(t)‖2
0dt+

δt

ε2
‖ẽn+1

N ‖2
0.

For the fourth term IV, we use (1.6) to derive

‖f(un
N) − f(u(tn+1))‖0 ≤ ‖f(un

N) − f(un+1
N )‖0 + ‖f(un+1

N ) − f(u(tn+1))‖0

≤ L‖un
N − un+1

N ‖0 + L(‖ẽn+1
N ‖0 + ‖ên+1

N ‖0)

≤ L(‖ẽn+1
N − ẽn

N‖0 + ‖(I − Π1
N )(u(tn+1) − u(tn))‖0

+ ‖u(tn+1) − u(tn)‖0) + L(‖ẽn+1
N ‖0 + ‖ên+1

N ‖0).

(2.34)

Therefore,

IV ≤ Lδt

ε2
‖ẽn+1

N − ẽn
N‖2

0 +
Lδt2

ε2

∫ tn+1

tn

‖(I − Π1
N )ut(t)‖2

0dt

+
Lδt2

ε2

∫ tn+1

tn

‖ut(t)‖2
0dt+

Lδt

ε2
(‖ên+1

N ‖2
0 + C1‖ẽn+1

N ‖2
0).

(2.35)

Combining the above inequalities into (2.33), we arrive at

‖ẽn+1
N ‖2

0 − ‖ẽn+1
N ‖2

0 + ‖ẽn+1
N − ẽn

N‖2
0 + δt‖∇ẽn+1

N ‖2
0

≤ C0δt‖Rn+1‖2
−1 +

C2δt

ε2
‖ẽn+1

N ‖2
0 +

Lδt

ε2
‖ên+1

N ‖2
0

+ (ε2 +
C3δt

2

ε2
)

∫ tn+1

tn

‖(I − Π1
N )ut(t)‖2

0dt+
C3δt

2

ε2

∫ tn+1

tn

‖ut(t)‖2
0dt.
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Summing up the above inequality for n = 0, 1, · · · , k (k ≤ T
δt + 1), dropping some

unnecessary terms and observing (2.29)), we find

‖ẽk+1
N ‖2

0 − ‖ẽ0N‖2
0 + δt

k
∑

n=0

‖∇ẽn+1
N ‖2

0

≤δt2
(

‖utt‖2
L2(0,T ;H−1) +

C3

ε2
‖ut‖2

L2(0,T ;L2)

)

+ (ε2 +
C3δt

2

ε2
)‖(I − Π1

N )ut‖2
L2(0,T ;L2) +

L

ε2
‖(I − Π1

N )u‖2
C(0,T ;L2)

+
C2δt

ε2

k
∑

n=0

‖ẽk+1
N ‖2

0.

Applying the discrete Gronwall lemma to the above inequality, We can then con-
clude by using the triangular inequality ‖u(tn) − un

N‖i ≤ ‖ẽn
N‖i + ‖ên

N‖i (i = 0, 1),
and the approximation results (2.24) and (2.25).

Remark 2.3. We note that the bound on constant C(ε, T ) results from the discrete
Gronwall lemma. While it is possible to improve this bound to polynomial order
in terms of ε−1 as is done in [12, 13, 15] and [24], this process is very technical
so we decided not to carry it out as our main purpose in this paper is to study
the stability properties of various schemes and to demonstrate that optimal error
estimates with spectral-Galerkin approximation in space can be derived.

2.2.2. Second-order implicit scheme. The spectral-Galerkin method for the second-
order implicit scheme (2.20) reads: Given u0

N = Π1
Nu0. for n ≥ 0, find un+1

N ∈ YN

such that

(
un+1

N − un
N

δt
, ψN ) + (∇un+1

N + un
N

2
,∇ψN )

+
1

ε2
(f̃(un+1

N , un
N), ψN ) = 0, ∀ψN ∈ YN . (2.36)

In order to carry out an error analysis, we need to first establish the Lipschitz
property for f̃(u, v). Using the definition of (2.19), we derive that for u > v,

∂f̃(u, v)

∂u
=
F ′(u)(u− v) − (F (u) − F (v))

(u− v)2

=
1

(u− v)2

∫ u

v

(F ′(u) − F ′(z))dz

=
1

(u− v)2

∫ u

v

∫ u

z

f ′(y)dydz ≤ ‖f ′‖∞ ≤ L.

(2.37)

Similarly we can show that the above is true for u < v. Thus,

|f̃(u1, v) − f̃(u2, v)| ≤ L|u1 − u2|. (2.38)

Likewise, we can prove

|f̃(u, v1) − f̃(u, v2)| ≤ L|v1 − v2|. (2.39)



NUMERICAL APPROX. OF ALLEN-CAHN & CAHN-HILLIARD EQUATIONS 1679

Next, we define the truncation error Rn+1/2 = R
n+1/2
1 +R

n+1/2
2 , where

R
n+1/2
1 := (

u(tn+1) − u(tn)

δt
− ut(t

n+1/2)), (2.40)

R
n+1/2
2 := −∆

(

u(tn+1) + u(tn)

2
− u(tn+1/2)

)

. (2.41)

By using the Taylor expansion with integral residual, it is easy to show (cf. [21])
that

‖Rn+1/2
1 ‖2

s ≤ δt3
∫ tn+1

tn

‖uttt(t)‖2
sdt, s = −1, 0, (2.42)

‖Rn+1/2
2 ‖2

s ≤ δt3
∫ tn+1

tn

‖utt(t)‖2
s+2dt, s = −1, 0. (2.43)

We are now ready for the error analysis.

Theorem 2.2. Given T > 0. we assume that for some m ≥ 1, u ∈ C(0, T ;Hm(Ω)),
ut ∈ L2(0, T ;Hm(Ω)) ∩ L2(0, T ;L4(Ω)), utt ∈ L2(0, T ;H1(Ω)) and uttt ∈ L2(0, T ;
H−1(Ω)). Then, the solution of (2.36) satisfies

E(un+1
N ) ≤ E(un

N), (2.44)

and the following error estimate holds for 0 ≤ k ≤ T
δt :

‖u(tk) − uk
N‖0

≤C(ε, T )(K3(u, ε)δt
2 +K4(u, ε)N

−m),

(

δt

k
∑

n=0

‖∇(u(tn+ 1
2
) − 1

2
(un+1

N + un
N)‖2

0

)

1
2

≤C(ε, T )(K3(u, ε)δt
2 +K4(u, ε)N

1−m),

where

C(ε, T ) ∼ exp(T/ε2);

K3(u, ε) = ‖uttt‖L2(0,T ;H−1) + ‖utt‖L2(0,T ;H1) +
1

ε
(‖ut‖L2(0,T ;L4) + ‖utt‖L2(0,T ;L2));

K4(u, ε) = ‖u0‖m + ε‖ut‖L2(0,T ;Hm) +
1

ε
‖u‖C(0,T ;Hm).

Proof. Taking ψN = un+1
N − un

N in (2.36), one derives immediately (2.44).
In addition to (2.27), we define

ẽ
n+1/2
N =

ẽn+1
N + ẽn

N

2
.

Subtracting (2.36) from (1.1) at tn+1/2, we find

(
ẽn+1

N − ẽn
N

δt
, ψ) + (∇ẽn+1/2

N ,∇ψ) = (Rn+1/2, ψN )

+
1

δt

(

(Π1
N − I)(u(tn+1) − u(tn)), ψN

)

+
1

ε2
(f̃(un+1

N , un
N) − f(u(tn+1/2)), ψN ).
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Taking ψN = 2δtẽ
n+1/2
N , we derive

‖ẽn+1
N ‖0 − ‖ẽn

N‖2
0 + 2δt‖∇ẽn+1/2

N ‖2
0

≤C0δt‖Rn+1/2‖2
−1 + δt‖∇ẽn+1/2

N ‖2
0

+ ε2
∫ tn+1

tn

‖(I − Π1
N )ut(t)‖2

0dt+
δt

ε2
‖ẽn+1/2

N ‖2
0

+
δt

ε2
‖ẽn+1/2

N ‖2
0 +

δt

ε2
‖f̃(un+1

N , un
N ) − f(u(tn+ 1

2 )‖2
0.

(2.45)

For the last term, we have

‖f̃(un+1
N , un

N ) − f(u(tn+1/2))‖0

≤‖f̃(un+1
N , un

N ) − f̃(u(tn+1), un
N)‖0

+ ‖f̃(u(tn+1), un
N ) − f̃(u(tn+1), u(tn))‖0

+ ‖f̃(u(tn+1), u(tn)) − f(
u(tn+1) + u(tn)

2
)‖0

+ ‖f(
u(tn+1) + u(tn)

2
) − f(u(tn+1/2))‖0

:= I + II + III + IV.

(2.46)

By using the Lipschitz properties (1.6) and (2.38)-(2.39), we find

I2 ≤ L2‖un+1
N − u(tn+1)‖2

0 ≤ L2(‖ẽn+1
N ‖2

0 + ‖ên+1
N ‖2

0);

II2 ≤ L2‖un
N − u(tn)‖2

0 ≤ L2(‖ẽn
N‖2

0 + ‖ên
N‖2

0);

IV2 ≤ L2‖u(t
n+1) + u(tn)

2
− u(tn+1/2)‖2

0 ≤ L2δt3
∫ tn+1

tn

‖utt(t)‖2
0dt.

(2.47)

By using the Taylor expansion and the definitions of f and f̃ , it is easy to show
that

|f̃(u, v) − f(
u+ v

2
)| ≤ 1

24
max

ξ∈[u,v]
|f ′′(ξ)||u − v|2. (2.48)

Therefore, we have

III2 ≤ C4‖(u(tn+1) − u(tn))2‖2
0 ≤ C4δt

3

∫ tn+1

tn

‖u2
t (t)‖2

0dt.

Combining these into (2.45), we arrive at

‖ẽn+1
N ‖0 − ‖ẽn

N‖2
0 + δt‖∇ẽn+1/2

N ‖2
0

≤ C0δt‖Rn+1/2‖2
−1 + ε2

∫ tn+1

tn

‖(I − Π1
N )ut(t)‖2

0dt

+
C5δt

ε2
(

‖ẽn+1
N ‖2

0 + ‖ẽn
N‖2

0 + ‖ên+1
N ‖2

0 + ‖ên+1
N ‖2

0

)

+
C6δt

4

ε2

∫ tn+1

tn

(‖u2
t (t)‖2

0 + ‖utt(t)‖2
0)dt.

(2.49)
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Summing up the above inequality for n = 0, 1, · · · , k (k ≤ T
δt − 1), and using (2.25)

and (2.42)-(2.43), we obtain

‖ẽk+1
N ‖0 − ‖ẽ0N‖2

0 + δt

k
∑

n=0

‖∇ẽn+1/2
N ‖2

0

≤C0δt
4(‖uttt‖2

L2(0,T ;H−1) + ‖utt‖2
L2(0,T ;H1)) + ε2N−2m‖ut‖2

L2(0,T ;Hm)

+
C5δt

ε2

k
∑

n=0

(

‖ẽn+1
N ‖2

0 + ‖ẽn
N‖2

0 + ‖ên+1
N ‖2

0 + ‖ên
N‖2

0

)

+
C6δt

4

ε2
(‖ut‖2

L2(0,T ;L4) + ‖utt‖2
L2(0,T ;L2)).

We can then conclude by applying the discrete Gronwall lemma to the above in-
equality, and by using the triangular inequality and (2.25).

3. Cahn-Hilliard equation. We now consider the Cahn-Hilliard equation (1.2)
which we rewrite in the following mixed formulation:

(ut, q) + (∇w,∇q) = 0, ∀q ∈ H1(Ω),

(∇u,∇ψ) +
1

ε2
(f(u), ψ) = (w,ψ), ∀ψ ∈ H1(Ω).

(3.1)

As for the Allen-Cahn equation, we shall construct semi-implicit and implicit schemes
for (3.1) and carry out stability and error analysis for them.

3.1. Stability analysis.

3.1.1. First-order semi-implicit schemes. We consider first the usual first-order semi-
implicit method

1

δt
(un+1 − un, q) + (∇wn+1,∇q) = 0, ∀q ∈ H1(Ω),

(∇un+1,∇ψ) +
1

ε2
(f(un), ψ) = (wn+1, ψ), ∀ψ ∈ H1(Ω).

(3.2)

Lemma 3.1. Under the condition

δt ≤ 4ε4

L2
, (3.3)

the solution of (3.2) satisfies

E(un+1) ≤ E(un), ∀n ≥ 0.

Proof. Taking q = δtwn+1 and ψ = un+1 − un in (3.2), and using (2.5), we find

(un+1 − un, wn+1) + δt‖∇wn+1‖2
0 = 0, (3.4)

and

1

2
(‖∇un+1‖2

0 − ‖∇un‖2
0 + ‖∇(un+1 − un)‖2

0) +
1

ε2
(F (un+1) − F (un), 1)

+
1

2ε2
(f ′(ξn)(un+1 − un), un+1 − un) = (wn+1, un+1 − un).

(3.5)

On the other hand, taking q =
√
δt(un+1 − un) in (3.2), we obtain



1682 JIE SHEN AND XIAOFENG YANG

1√
δt
‖un+1 − un‖2

0 = −
√
δt(∇wn+1,∇(un+1 − un))

≤δt
2
‖∇wn+1‖2

0 +
1

2
‖∇(un+1 − un)‖2

0. (3.6)

Summing up the above three relations and using (1.6), we arrive at

1√
δt
‖un+1 − un‖2

0 +
δt

2
‖∇wn+1‖2

0 +
1

2
(‖∇un+1‖2

0 − ‖∇un‖2
0)

+
1

ε2
(F (un+1) − F (un), 1) = − 1

2ε2
(f ′(ξn)(un+1 − un), un+1 − un)

≤ L

2ε2
‖un+1 − un‖2

0.

We then conclude that the desired result holds under the condition (3.3).

Notice that, as expected, the stability condition (3.3) for the Cahn-Hilliard equa-
tion is much severe than the condition (2.2) for the Allen-Cahn equation. However,
a condition such as δt ∼ ε4 is in fact necessary for the sake of convergence.

We now consider the following first-order stabilized semi-implicit method:

1

δt
(un+1 − un, q) + (∇wn+1,∇q) = 0, ∀q ∈ H1(Ω),

(∇un+1,∇ψ) +
S

ε2
(un+1 − un, ψ) +

1

ε2
(f(un), ψ) = (wn+1, ψ), ∀ψ ∈ H1(Ω).

(3.7)

As in the Allen-Cahn case, the extra consistency error introduced by the stabiliza-
tion term is of the same order, in terms of δt and ε, as the dominating truncation
error in (3.2).

Lemma 3.2. For S ≥ L
2 , the stabilized scheme (3.7) is unconditionally stable and

the following energy law holds for any δt:

E(un+1) ≤ E(un) ∀n ≥ 0. (3.8)

Proof. As in the proof of Lemma 3.1, taking q = δtwn+1 and ψ = un+1 − un in
(3.2), we obtain (3.4) and (3.5) with an extra term S

ε2 ‖un+1 −un‖2
0 in the left hand

side of (3.5). Therefore, summing up (3.4) and and (3.5) with this extra term, we
immediately derive the desired result.

3.1.2. Second-order semi-implicit scheme. The second-order stabilized semi-implicit
scheme reads:

1

2δt
(3un+1 − 4un + un−1, q) + (∇wn+1,∇q) = 0, ∀q ∈ H1(Ω),

(∇un+1,∇ψ) +
S

ε2
(un+1 − 2un + un−1, ψ) +

1

ε2
(2f(un) − f(un−1, ψ)

=(wn+1, ψ), ∀ψ ∈ H1(Ω).

(3.9)

Since the above scheme is a direct extension of the scheme (2.11) to the Cahn-
Hilliard case, we refer to Remark 2.1 for its theoretical and numerical stability
properties.
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3.1.3. Second-order implicit scheme.

1

δt
(un+1 − un, q) + (∇wn+1,∇q) = 0,

(
∇un+1 + ∇un

2
,∇ψ) +

1

ε2
(f̃(un, un+1), ψ) = (wn+1, ψ).

(3.10)

Taking q = δtwn+1, ψ = un+1−un, one immediately obtains the following result:

Lemma 3.3. The scheme (3.10) is unconditionally stable and its solution satisfies

E(un+1) ≤ E(un), ∀n ≥ 0. (3.11)

Note that while the scheme (3.10) is unconditionally stable, it appears that one
can only prove the existence and uniqueness of the solution to (3.10) under a con-
dition similar to (3.3) (cf. [8]).

3.2. Error analysis.

3.2.1. First-order stabilized semi-implicit scheme. The spectral-Galerkin method
for the first-order stabilized scheme (3.7) reads: Given u0

N = ΠNu0, for n ≥ 0, find

(un+1
N , wn+1

N ) ∈ YN × YN such that

1

δt
(un+1

N − un
N , qN ) + (∇wn+1

N ,∇qN ) = 0, ∀qN ∈ YN

(∇un+1
N ,∇ψN ) +

S

ε2
(un+1

N − un
N , ψN ) +

1

ε2
(f(un

N ), ψN ) = (wn+1
N , ψN ), ∀ψN ∈ YN .

(3.12)

We denote

ẽn+1
N = Π1

Nu(t
n+1) − un+1

N , ên+1
N = u(tn+1) − Π1

Nu(t
n+1),

ēn+1
N = Π1

Nw(tn+1) − wn+1
N , ěn+1

N = w(tn+1) − Π1
Nw(tn+1).

(3.13)

Theorem 3.1. Given T > 0, we assume that for some m ≥ 1, u,w ∈ C(0, T ;
Hm(Ω)), ut ∈ L2(0, T ;Hm(Ω)) and utt ∈ L2(0, T ;L2(Ω)). Then for s > L

2 , the
solution of (3.12) satisfies

E(un+1
N ) ≤ E(un

N),

and the following error estimate holds

‖u(tk) − uk
N‖0+

(

δt
k
∑

n=0

‖w(tn+1) − wn+1
N ‖2

0

)

1
2

≤ C(ε, T )(K5(u, ε)δt+K6(u, ε)N
−m), ∀0 ≤ k ≤ T

δt
,

where

C(ε, T ) ∼ exp(T/ε4);

K5(u, ε) = ε2‖utt‖L2(0,T ;L2) +
1

ε2
‖ut‖L2(0,T ;L2);

K6(u, ε) = ‖u0‖m + (ε2 +
δt

ε2
)‖ut‖L2(0,T ;Hm) +

1

ε2
‖u‖C(0,T ;Hm) + ‖w‖C(0,T ;Hm).
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Proof. Obviously, the proof of Lemma 3.2 is also valid for the fully discrete scheme
3.12. We now turn to the error estimates. Let Rn+1 be defined as in (2.28).
Subtracting (3.12) from (3.1), we obtain

1

δt
(ẽn+1

N − ẽn
N , qN ) + (∇ēn+1

N ,∇qN )

=(Rn+1, qN ) − 1

δt
((I − Π1

N )(u(tn+1) − u(tn)), qN )

(∇ẽn+1
N ,∇ψN ) +

S

ε2
(ẽn+1

N − ẽn
N , ψN ) +

1

ε2
(f(u(tn+1)) − f(un

N), ψN )

=(ēn+1
N + ěn+1

N , ψN ) +
S

ε2
(Π1

Nu(t
n+1) − Π1

Nu(t
n), ψN ).

(3.14)

Taking qN = 2δtẽn+1
N and ψN = −2δtēn+1

N and summing up the two identities, we
derive

‖ẽn+1
N ‖2

0 − ‖ẽn
N‖2

0 + ‖ẽn+1
N − ẽn

N‖2
0 + 2δt‖ēn+1

N ‖2
0 = 2δt(Rn+1, ẽn+1

N )

− 2((I − Π1
N )(u(tn+1) − u(tn)), ẽn+1

N ) +
2δtS

ε2
(ẽn+1

N − ẽn
N , ē

n+1
N )

+
2δt

ε2
(f(u(tn+1)) − f(un

N ), ēn+1
N ) − 2δt(ěn+1

N , ēn+1
N )

− 2Sδt

ε2
(Π1

N (u(tn+1) − u(tn)), ēn+1
N ) := I + II + III + IV + V + VI.

(3.15)

Similarly as in the proof of Theorem 2.1, using the Cauchy-Schwarz inequality and
(2.34), we derive

I ≤ ε4δt‖Rn+1‖2
0 +

δt

ε4
‖ẽn+1

N ‖2
0;

II ≤ 2ε4
∫ tn+1

tn

‖(I − Π1
N )ut(t)‖2

0dt+
δt

2ε4
‖ẽn+1

N ‖2
0;

III ≤ δt

4
‖ēn+1

N ‖2
0 +

4δtS2

ε4
‖ẽn+1

N − ẽn
N‖2;

IV ≤ δt

4
‖ēn+1

N ‖2
0 + C7

(

δtL2

ε4
‖ẽn+1

N − ẽn
N‖2

0 +
δt2L2

ε4

∫ tn+1

tn

‖(I − Π1
N )ut(t)‖2

0dt

+
δt2L2

ε4

∫ tn+1

tn

‖ut(·, t)‖2
0dt+

δtL2

ε4
(‖ẽn+1

N ‖2
0 + ‖ên+1

N ‖2
0)

)

;

V ≤ δt

4
‖ēn+1

N ‖2
0 + 4δt‖ěn+1

N ‖2
0;

VI ≤ δt

4
‖ēn+1

N ‖2
0 +

4S2δt2

ε4
(

∫ tn+1

tn

‖(I − Π1
N )ut(t)‖2

0dt+

∫ tn+1

tn

‖ut(t)‖2
0dt).
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Combining the above inequalities into (3.15), we arrive at

‖ẽn+1
N ‖2

0 − ‖ẽn
N‖2

0 + ‖ẽn+1
N − ẽn

N‖2
0 + δt‖ēn+1

N ‖2
0

≤δtε4‖Rn+1‖2
0 + 4δt‖ěn+1

N ‖2
0 +

C8δt

ε4
(‖ẽn+1

N ‖2
0 + ‖ẽn

N‖2
0 + ‖ên+1

N ‖2
0)

+ 2ε4
∫ tn+1

tn

‖(I − Π1
N )ut(·, t)‖2dt

+
C9δt

2

ε4
(

∫ tn+1

tn

‖(I − Π1
N )ut(·, t)‖2dt+

∫ tn+1

tn

‖ut(·, t)‖2dt).

(3.16)

Summing up the above inequality for n = 0, 1, · · · , k (k ≤ T
δt − 1) and using (2.25)

and (2.29), we obtain

‖ẽn+1
N ‖2

0 − ‖ẽn
0‖2

0 + δt

k
∑

n=0

‖ēn+1
N ‖2

0

≤ 4δt
k
∑

n=0

‖ěn+1
N ‖2

0 + δt2(ε4‖utt‖2
L2(0,T ;L2) +

C9

ε4
‖ut‖2

L2(0,T ;L2))

+
C8δt

ε4

k
∑

n=0

(‖ẽn+1
N ‖2 + ‖ẽn

N‖2
0 + ‖ên+1

N ‖2
0)

+ ε4N−2m‖ut‖2
L2(0,T ;Hm) +

C9δt
2

ε4
N−2m‖ut‖L2(0,T ;Hm).

Applying the discrete Gronwall lemma to the above inequality, we can then conclude
by using the triangular inequality, (2.24) and (4.3).

3.2.2. Second-order implicit scheme. The spectral-Galerkin method for the second-
order implicit scheme (3.10) reads: Given u0

N = Π1
Nu0, for n ≥ 0 find un+1

N , wn+1
N ∈

YN such that

1

δt
(un+1

N − un
N , qN ) + (∇wn+1

N ,∇qN ) = 0, ∀qN ∈ YN

(
∇un+1

N + ∇un
N

2
,∇ψN ) + (f̃(un

N , u
n+1
N ), ψN ) = (wn+1

N , ψN ), ∀ψN ∈ YN .

(3.17)

Theorem 3.2. Given T > 0, we assume that, for some m ≥ 1, u,w ∈ C(0, T ;
Hm(Ω)), ut ∈ L2(0, T ;Hm(Ω)) ∩ L2(0, T ;L4(Ω)), utt ∈ L2(0, T ;H2(Ω)) and uttt ∈
L2(0, T ;L2(Ω)). Then the solution of (3.17) satisfies

E(un+1
N ) ≤ E(un

N),

and the following error estimate holds

‖u(tk) − uk
N‖0+

(

δt

k
∑

n=0

‖w(tn+ 1
2 ) − 1

2
(wn+1

N + wn
N )‖2

0

)

1
2

≤ C(ε, T )(K7(u, ε)δt
2 +K8(u, ε)N

−m), ∀0 ≤ k ≤ T

δt
,
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where

C(ε, T ) ∼ exp(T/ε4);

K7(u, ε)

=ε2‖uttt‖L2(0,T ;L2) + ‖utt‖L2(0,T ;H2) +
1

ε2
(‖utt‖L2(0,T ;L2) + ‖ut‖L2(0,T ;L4));

K8(u, ε) = ‖u0‖m + ε2‖ut‖L2(0,T ;Hm) +
1

ε2
‖u‖C(0,T ;Hm) + ‖w‖C(0,T ;Hm).

Proof. The proof of Lemma 3.3 is obviously valid for the full discrete case. For the
error estimates, we denote, in addition to (3.13),

ē
n+1/2
N = Π1

Nw(tn+1/2) − wn+1
N , ě

n+1/2
N = Π1

Nw(tn+1/2) − Π1
Nw(tn+1/2).

Subtracting (3.17) from (3.1) at tn+1/2, we find

(
ẽn+1

N − ẽn
N

δt
, qN ) + (∇ēn+1/2

N ,∇qN )

=
1

δt
((Π1

N − I)(u(tn+1) − u(tn), qN ) + (R
n+1/2
1 , qN ), ∀qN ∈ YN ;

(∇ẽn+1/2
N ,∇ψN ) +

1

ε2
(f(u(tn+1/2)) − f̃(un

N , u
n+1
N ), ψN )

=(ě
n+1/2
N + ē

n+1/2
N , ψN ) + (R

n+1/2
2 , ψN ), ∀ψN ∈ YN .

(3.18)

Taking qN = 2δtẽ
n+1/2
N and ψN = −2δtē

n+1/2
N and summing up the two identities,

we derive

‖ẽn+1
N ‖2

0 − ‖ẽn
N‖2

0 + 2δt‖ēn+1/2
N ‖2

0

=2((Π1
N − I)(u(tn+1) − u(tn)), ẽ

n+1/2
N )

+ 2δt(R
n+1/2
1 , ẽ

n+1/2
N )

+
2δt

ε2
(f(u(tn+1/2)) − f̃(un

N , u
n+1
N ), ē

n+1/2
N )

− 2δt(ě
n+1/2
N , ē

n+1/2
N )

− 2δt(R
n+1/2
2 , ē

n+1/2
N ) := I + II + III + IV + V.

(3.19)
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Similarly as in the proof of Theorem 2.2, by using the Cauchy-Schwarz inequality,
(2.42), (2.43) and (2.46), we derive

I ≤ δt

ε4
‖ẽn+1/2

N ‖2
0 + ε4

∫ tn+1

tn

‖(Π1
N − I)ut(t)‖2

0dt;

II ≤ δt

ε4
‖ẽn+1/2

N ‖2
0 + δt4ε4

∫ tn+1

tn

‖uttt(t)‖2
0dt;

III ≤ δt

4
‖ēn+1/2

N ‖2
0 +

4δt

ε4
‖f(u(tn+1/2)) − f̃(un

N , u
n+1
N )‖2

0

≤ δt

4
‖ēn+1/2

N ‖2
0 +

C10δt

ε4
(‖ẽn+1

N ‖2
0 + ‖ẽn

N‖2
0 + ‖ên+1

N ‖2
0 + ‖ên

N‖2
0)

+
C11δt

4

ε4

∫ tn+1

tn

(‖utt(t)‖2
0 + ‖u2

t (t)‖2
0)dt;

IV ≤ δt

4
‖ēn+1/2

N ‖2
0 + 4δt‖ěn+1/2

N ‖2
0;

V ≤ δt

4
‖ēn+1/2

N ‖2
0 + 4δt4

∫ tn+1

tn

‖utt(t)‖2
2dt.

(3.20)

Combing the above inequalities into (3.19), we derive

‖ẽn+1
N ‖2

0 − ‖ẽn
N‖2

0 + δt‖ēn+1/2
N ‖2

0 ≤ 4δt‖ěn+1/2
N ‖2

0 + δt4ε4
∫ tn+1

tn

‖uttt(t)‖2
0

+
C12δt

ε4
(‖ẽn+1

N ‖2
0 + ‖ẽn

N‖2
0 + ‖ên+1

N ‖2
0 + ‖ên

N‖2
0)

+ ε4
∫ tn+1

tn

‖(Π1
N − I)ut(t)‖2

0dt

+
C11δt

4

ε4

∫ tn+1

tn

(‖utt(t)‖2
0 + ‖u2

t (t)‖2
0)dt

+ 4δt4
∫ tn+1

tn

‖utt(t)‖2
2dt.

(3.21)

Summing up the above inequality for n = 0, 1, · · · , k (k ≤ T
δt − 1), and using (4.3),

we arrive at

‖ẽn+1
N ‖2

0 − ‖ẽ0N‖2
0 + δt

k
∑

n=0

‖ēn+1/2
N ‖2

0 ≤ C12δt

ε4

k
∑

n=0

(‖ẽn+1
N ‖2

0 + ‖ẽn
N‖2

0)

+
δt4

ε4
(‖utt‖2

L2(0,T ;L2) + ‖ut‖2
L2(0,T ;L4)) + δt4‖utt‖2

L2(0,T ;H2) + δt4ε4‖uttt‖2
L2(0,T ;L2)

+N−2m(‖w‖2
C(0,T ;Hm) +

1

ε4
‖u‖2

C(0,T ;Hm) + ε4‖ut‖2
L2(0,T ;Hm)).

We can then conclude by applying the discrete Gronwall lemma to the above in-
equality, and by using the triangular inequality and (2.25).
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4. Miscellaneous remarks.

4.1. Generalizations. The stability results in Sections 2 and 3 are obtained for
(semi-discretized) time discretization schemes. Since all the stability results are
proved from a weak formulation, it is obvious that these results are also valid for
any spatial discretization whose weak formulation is simply the restriction of the
continuous-in-space weak formulation onto a finite dimensional subspace, including
in particular Galerkin finite-element methods and spectral-Galerkin methods.

Similarly, while we only considered error estimates with a spectral-Galerkin ap-
proximation, it is clear that these error estimates can also be directly extended to
Galerkin finite-element methods, except that the spatial convergence order m in the
error estimates will be fixed to be the order of the finite element approximation.

Often times, it is computationally more efficient to use, instead of YN , the space
(cf. [20])

Y 0
N = {u ∈ YN :

∂u

∂n
|∂Ω = 0}. (4.1)

With this approximation space, we can construct special basis functions in Y 0
N such

that the stiffness and mass matrices are very sparse and can be efficiently solved
by using a matrix diagonalization method, we refer to [20] for more detail on this
matter.

Introducing the corresponding projection operator Π̂1
N : Y 2(Ω) := {u ∈ H2(Ω) :

∂u
∂n |∂Ω = 0} → Y 0

N defined by

(∇(Π̂1
Nv − v),∇ψ) = 0, ∀ψ ∈ Y 0

N , (4.2)

it is an easy matter to show that

‖u− Π̂1
Nu‖k . Nk−m‖u‖m, k = 0, 1, 2;

∀u ∈ Y m(Ω) := {v ∈ Hm(Ω) :
∂v

∂n
|∂Ω = 0}, m ≥ 2.

(4.3)

Then, if we replace the approximation space YN by Y 0
N in Sections 2 and 3, all the

error estimates are still valid for m ≥ 2.

4.2. Effect of spatial accuracy. It has been observed that for interface problems
governed by Allen-Cahn or Cahn-Hilliard type equation, spectral methods usually
provide much more accurate results using fewer points than lower order methods
like finite elements or finite differences. We now give a heuristic argument based on
our error estimates.

To fix the idea, let us consider the Allen-Cahn equation (1.1) and its error esti-
mate in (2.31). It is well-known that the solution of the Allen-Cahn equation will
develop an interface with thickness of order ε. Therefore, it is reasonable to assume
that ∂m

x u ∼ ε−m, ∀m ≥ 0. Hence, the error estimate (2.31) indicates that

‖u(tn) − un
N‖0 . C(ε, T )(K1(u, ε)δt+N−mε−1−m).

Since the solution is usually smooth around the interfacial area, it can be expected
that the above estimate is valid for all m. Let us ignore for the moment C(ε, T )
(see Remark 2.3). Then, as soon as N > O(ε−1), it can be expected that the
error due to the spatial discretization will decay very fast, in fact faster than any
algebraic order, as N increases. In practice, it has been found that having 5 − 8
points inside the trasitional region is sufficient to represent the interface accurately.
On the other hand, for a lower order method, the corresponding error estimate is
similar to (2.31) with N replaced by h−1, but only with a fixed m, e.g., m = 2
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for piece-wise linear finite elements or second-order finite differences. Hence, for
m = 2, one needs to have h << ε3/2 for the scheme to be convergent, and h ∼ ε3

for the spatial error to be of order O(h). Therefore, an adaptive procedure is almost
necessary for low-order methods to have a desirable accuracy with reasonable cost.

It is clear that similar arguments can be applied to other schemes for the Allen-
Cahn and Cahn-Hilliard equations. In fact, the situation is even worse for Cahn-
Hilliard equation.

4.3. Numerical tests. In this section, we compare the accuracy of various schemes
for a classical benchmark problem (cf. [7]) we describe below.

At the initial state, there is a circular interface boundary with a radius of R0 =
100 in the rectangular domain of (0, 256) × (0, 256). Such a circular interface is
unstable and the driving force will shrink and eventually disappear. It is shown,
as the ratio between the radius of the circle and the interfacial thickness goes to
infinity, the velocity of the moving interface V approaches to

V =
dR

dt
− 1

R
, (4.4)

where R is the radius of the circle at a given time t. After taking the integration,
we obtain

R =
√

R2
0 − 2t. (4.5)

After mapping the domain to (−1, 1) × (−1, 1), we obtain the following Allen-
Cahn equation

φt = γ(∆φ− f(φ)

ε2
), (4.6)

with γ = 6.10351×10−5 and ε = 0.0078. We solved this equation using the second-
order semi-implicit scheme (2.11) with S = 1 and the implicit scheme (2.20). The
spectral approximation space Y 0

N is used. For the scheme (2.11), we only have to
solve a Poisson-type equation at each time step so it is computationally very efficient
since the Poisson-type equation can be solved efficiently (cf. [20]). For the scheme
(2.20), a Newton iteration is required to deal with the nonlinear system at each time
step. At each Newton iteration, we need to solve a non-constant coefficient elliptic
equation which we solve by a preconditioner CG iteration with a constant-coefficient
Poisson-type equation as a preconditioner. In the computations presented below,
only 2-4 Newton’s iterations are needed and each Newton’s iteration requires a few
PCG iterations. So the cost of one step for the scheme (2.20) is usually more than
10 times of the cost for one step of (2.11).

In all computations, we used 513×513 points to ensure that the error is dominated
by time discretization errors. In Figure 4.1, we plot the evolution of the radius
obtained by the second-order implicit scheme (I2), stabilized first-order and second-
order semi-implicit schemes (SSI1 and SSI2) with the stabilization constant S = 1.
Four different time step sizes δt = 0.1, 0.01, 0.005, 0.001 are used. We observe that
all three schemes perform quite well for this problem. The scheme SSI1 has the
largest error while the schemes SSI2 and I2 have similar accuracy. Note that the
scheme I2 is an order of magnitude more expensive than the scheme SSI2.

4.4. Concluding remarks. We presented in this paper stability analyses and error
estimates for a number of commonly used numerical schemes for the Allen-Cahn
and Cahn-Hilliard equations.
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(b) δt = 0.01
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(c) δt = 0.005
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(d) δt = 0.001

Figure 4.1. Comparison between the second-order implicit
scheme (I2), stabilized second-order semi-implicit scheme (SSI2)
and stabilized first-order semi-implicit scheme (SSI1).

We showed that the semi-implicit schemes without stabilization are energy stable
under reasonable conditions; we also shown that, at least in the first-order case, the
stabilized version is unconditionally energy stable. Since the stabilized schemes only
requires solving a constant-coefficient second-order (resp. fourth-order) equation
for the Allen-Cahn (resp. Cahn-Hilliard) problem, they are computationally very
efficient. On the other hand, the implicit schemes are obviously unconditionally
stable but requires solving a nonlinear system at each time step.

We also carried out an error analysis for selected schemes with a spectral-Galerkin
approximation, as an example. The error estimates reveal that high-order methods,
such as spectral methods, are preferable for interface problems governed by Allen-
Cahn and Cahn-Hilliard equations, and that an adaptive procedure is probably
necessary for low order methods to achieve desired accuracy with reasonable cost.

The stability results and error estimates derived in this paper are based on a
weak formulation so they can be applied to other spatial discretizations, such as
Galerkin finite element methods, which are based on a weak formulation.
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