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Abstract

A new class of splitting schemes for incompressible flows is introduced. The new schemes are based on a weak form

of the pressure Poisson equation and, at each time step, only require to solve a set of Helmholtz-type equations for the

velocity and a Poisson equation (in the weak form) for the pressure, just as pressure-correction and velocity-correction

schemes. However, unlike pressure-correction and velocity-correction schemes, the new splitting schemes are free of

splitting errors and deliver full accuracy on the vorticity and the pressure.
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1. Introduction

We consider in this paper the time discretization of the unsteady incompressible Navier–Stokes equa-

tions in primitive variables. For a given body force f , we look for u and p such that

ut � mr2uþ u � ruþrp ¼ f in X� ð0; T �;
r � u ¼ 0 in X� ½0; T �;

�
ð1:1Þ
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subject to appropriate initial and boundary conditions for u. X is an open and bounded domain in Rd

(d ¼ 2 or 3 in practical situations) and ½0; T � is the time interval.

Since the introduction of the concept of projection methods by Chorin [5] and Temam [24] in the late

1960s, there have been an enormous body of work devoted to the analysis and implementation of various

versions of these techniques. The various improvements on the original scheme by Chorin and Temam can

be roughly classified into two broad categories, namely the pressure-correction techniques and the velocity-

correction techniques.

• The idea of pressure-correction methods can be traced back to [8] in the form of a first-order scheme.
Pressure-correction schemes are time marching algorithms with two substeps. The pressure is made explicit

in the first sub-step, and is corrected in the second sub-step by projecting the intermediate velocity onto the

space of divergence-free vector field. This strategy became a popular choice after Van Kan (cf. [27]) pro-

posed a (formally) second-order version which dramatically improved the accuracy. This second-order

pressure-correction scheme is further improved by adding a divergence correction to the pressure [26]. This

improved version is classified in [15] as the rotational form of the pressure-correction schemes. This class of

schemes are now widely used in practice and have been rigorously analyzed in [4,6,11,22,23]. In passing we

want to point out that the scheme proposed by Kim and Moin (cf. [18]) can also be reformulated as the
pressure-correction scheme in the rotational form. This fact does not seem to be well-known.

• The notion of velocity-correction schemes was first introduced by the authors in [13]. In a velocity-

correction scheme, the viscous term is made explicit in the first sub-step and the velocity is corrected in the

second sub-step. It is shown in [13] that the class of fractional step schemes introduced by Orszag et al. [19]

and Karniadakis et al. [16] can be reformulated as a velocity-correction scheme in rotational form. The

notion of third-order BDF and higher-order splitting scheme has been introduced in [16]. We note in

passing that while third or higher-order pressure-correction schemes become unstable (cf. [20]), ample

numerical evidences (cf. [16,17]) indicate that third or higher-order velocity-correction schemes in rota-
tional form are stable. This behavior has yet to be fully explain.

The main advantage of projection-type algorithms is that the computations of the velocity and the

pressure are decoupled. More precisely, assuming that the nonlinear terms are made explicit, then at each

time step, one only has to solve a set of Helmholtz-type equations for the velocity and a scalar Poisson

equation (with a homogeneous Neumann boundary condition) for the pressure. This strategy is compu-

tationally very efficient when compared with the coupled approach, especially when a fast Poisson solver is

available. However, the price for the decoupling is some loss of accuracy on the pressure and the vorticity.

More precisely, the so-called second-order projection schemes provide second-order accuracy on the ve-
locity in the L2-norm, while the convergence rates of the pressure and the vorticity in the L2-norm are either

first-order or 3=2-order depending on whether it is the standard form or the rotational form which is used

(cf. [13,15]). Since the vorticity (and oftentimes the pressure) plays a very important role in applications, it is

highly desirable to have a decoupled scheme which is unconditionally stable (for the time-dependent Stokes

equations) and provides full second-order accuracy for both the vorticity and the pressure. The aim of this

paper is to introduce such a scheme. We note that the gauge method introduced by E and Liu [7] with a

finite difference discretization is reported to numerically achieve full second-order accuracy on the velocity

and the gauge variable, but the proof of this conjecture is still missing. Moreover, when needed, the
pressure is computed by using p ¼ ot/� lD/, where / is the gauge variable. Hence, it is not easy to obtain

an accurate pressure approximation, especially in the context of finite-elements.

The rest of the paper is organized as follows. In Section 2 we define some notations, and we introduce the

new class of splitting techniques. Two variants are considered; these variants are hereafter called the

standard formulation and the rotational formulation. We analyze the stability and the convergence

properties of the standard and rotational variants in Section 3. In Section 4, we briefly explain the role of

the inf-sup condition when these schemes are discretized in space. Convergence tests and various numerical

experiments are reported in Section 5.
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2. A new class of splitting schemes

2.1. Some notations

Let Dt > 0 be a time step and set tk ¼ kDt for 06 k6K ¼ ½T=Dt�. Let /0;/1; . . . ;/K be a sequence of

functions in some Banach space E with norm k � kE. We denote by /Dt this sequence, and we shall use the

following discrete norms:

k/Dtk‘2ðEÞ :¼ Dt
XK
k¼0

k/kk2E

 !1=2

; k/Dtk‘1ðEÞ :¼ max
06 k6K

k/kk2E
� �

: ð2:1Þ

Let L2ðXÞ (resp. L2ðXÞd) be the set of square integrable scalar-valued (resp. vector-valued) functions. We
denote the scalar product in L2ðXÞ and L2ðXÞd by ð�; �Þ without making a distinction between scalar- and

vector-valued functions. We will denote k � kE by k � k when E ¼ L2ðXÞ.
We denote by C a generic constant which is independent Dt but possibly depends on the data and the

solution. We shall also use the expression AKB to say that there exists a generic constant c such that

A6 cB.
To avoid unnecessary technical difficulties associated with non-homogeneous Dirichlet conditions, we

assume that u is zero at the boundary of the domain, henceforth denoted by C.

2.2. The key idea

The key idea behind the new class of splitting schemes is to evaluate the pressure by testing the mo-
mentum equation against gradients. By taking the L2-inner product of the momentum equation in (1.1) with

rq and noticing that ðut;rqÞ ¼ �ðr � ut; qÞ ¼ 0, we obtainZ
X
rp � rq ¼

Z
X
ðf þr2u� u � ruÞ � rq; 8q 2 H 1ðXÞ: ð2:2Þ

Note that if u is known, (2.2) is simply the weak form of a Poisson equation for the pressure. So, the

principle we shall follow is to compute the velocity and the pressure in two consecutive steps: First, we

compute the velocity by making explicit the pressure, then we update the pressure by making use of (2.2).
Following [16], we use the qth-order backward difference formula (BDFq) to approximate otvðtkþ1Þ and

the qth order extrapolation to approximate pðtkþ1Þ. These approximations are denoted by

1

Dt
bqv

kþ1

 
�
Xq�1

j¼0

bjv
k�j

!

and

pH;kþ1 ¼
Xq�1

j¼0

cjp
k�j;

respectively. Of course, the present theory is not restricted to these choices. Any implicit consistent ap-

proximation of otvðtkþ1Þ and any explicit consistent approximation of pðtkþ1Þ is acceptable; see scheme

(2.13)–(2.15) for instance. To simplify the notation, for any sequence /Dt :¼ ð/0;/1; . . .Þ, we set

D/kþ1 ¼ bq/
kþ1 �

Xq�1

j¼0

bj/
k�j:
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For instance, we have

q ¼ 1 : Dvkþ1 ¼ vkþ1 � vk; pH;kþ1 ¼ pk;
q ¼ 2 : Dvkþ1 ¼ 3

2
vkþ1 � 2vk þ 1

2
vk�1; pH;kþ1 ¼ 2pk � pk�1:

ð2:3Þ
2.3. Standard splitting scheme

A qth order decoupled approximation to (1.1) is defined as follows: Let u0 ¼ ujt¼0 and p0 ¼ pjt¼0 (which can

be obtained by solving (2.2) at t ¼ 0). If qP 2, then for 16 k6 q� 1, let ðuk; pkÞ be the kth order approxi-

mation to ðuðkDtÞ; pðkDtÞÞ (which can be obtained recursively by using the scheme described below using
BDFk and the kth order extrapolation of the pressure). Let us denote by gkþ1 the difference between f ðtkþ1Þ
and an appropriate q-th order approximation of the nonlinear term, say gkþ1 ¼ f ðtkþ1Þ � ðu � ruÞH;kþ1

. Then,

for kP q� 1, find ukþ1 and pkþ1 such that

Dukþ1

Dt
� mr2ukþ1 þrpH;kþ1 ¼ gkþ1; ukþ1jC ¼ 0; ð2:4Þ

ðrpkþ1;rqÞ ¼ ðgkþ1 þ mr2ukþ1;rqÞ; 8q 2 H 1ðXÞ: ð2:5Þ

Note that in the second step we need to compute r2ukþ1 which may not be well defined in a finite element

discretization. Hence, we shall derive an alternative formulation which does not require computing r2ukþ1

and is more suitable for finite element discretizations. To this end, we take the inner product of the first step

with rq and we subtract the result from the second step. Then, we obtain the following equivalent for-
mulation of (2.4) and (2.5):

Dukþ1

Dt
� mr2ukþ1 þrpH;kþ1 ¼ gkþ1; ukþ1jC ¼ 0; ð2:6Þ
ðrðpkþ1 � pH;kþ1Þ;rqÞ ¼ Dukþ1

Dt
;rq

� �
; 8q 2 H 1ðXÞ: ð2:7Þ

At this stage, several remarks are in order.
• The two schemes (2.4) and (2.5) and (2.6) and (2.7) are strictly equivalent in the space continuous case

but they yield two different series of implementations when the space variables are discretized (see Sec-

tion 4 for further details).

• Neither scheme (2.4) and (2.5) nor (2.6) and (2.7) is a projection scheme, for the velocity approximation

ukþ1 is not divergence-free.

• As in a projection scheme, one only needs to solve a set of Helmholtz-type equations for ukþ1 and a Pois-

son equation (2.5) or (2.7) (in the weak form) for pkþ1.

• Just as in a pressure-correction scheme in standard form [15], the Eq. (2.7) implies that
o
on
ðpkþ1 � pH;kþ1ÞjoX ¼ 0 which is an artificial Neumann boundary condition not satisfied by the exact

pressure. This boundary condition will induce a numerical boundary layer which, in turn, will result

in a loss of accuracy.
2.4. Consistent splitting scheme

Similarly to pressure-correction and velocity-correction schemes (cf. [13–16,19,26]), the accuracy of the

above splitting schemes can be improved by replacing r2ukþ1 in (2.5) by �r�r� ukþ1, leading to the

following algorithm:
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Dukþ1

Dt
� mr2ukþ1 þrpH;kþ1 ¼ gkþ1; ukþ1jC ¼ 0; ð2:8Þ
ðrpkþ1;rqÞ ¼ ðgkþ1 � mr�r� ukþ1;rqÞ; 8q 2 H 1ðXÞ: ð2:9Þ

Owing to the identity r2ukþ1 ¼ rr � ukþ1 �r�r� ukþ1, this procedure amounts to removing the term
rr � ukþ1 in (2.5). It is shown in [13,15] that when this strategy is applied to pressure-correction and ve-

locity-correction schemes, it yields an a priori control on the divergence of ukþ1, which in turn leads to

improved accuracy on the vorticity and the pressure. Once again, to avoid computing r�r� ukþ1 ex-

plicitly in the second step, we take the inner product of (2.8) with rq and we subtract the result from (2.9).

This leads to an equivalent alternative form of (2.8) and (2.9) (the equivalence holds only in the space

continuous case):

Dukþ1

Dt
� mr2ukþ1 þrpH;kþ1 ¼ gkþ1; ukþ1jC ¼ 0; ð2:10Þ
ðrwkþ1;rqÞ ¼ Dukþ1

Dt
;rq

� �
; 8q 2 H 1ðXÞ: ð2:11Þ
pkþ1 ¼ wkþ1 þ pH;kþ1 � mr � ukþ1: ð2:12Þ

Note that the numerical complexity of the schemes (2.8) and (2.9) and (2.10)–(2.12) is the same as that of

(2.4) and (2.5) or (2.6) and (2.7). However, as ample numerical results indicate, the pressure approximation

pkþ1 is no longer plagued by an artificial Neumann boundary condition and, consequently, these schemes

provide truly qth order accuracy (at least for q ¼ 1 and 2) for the velocity, vorticity and pressure. Thus, we

shall henceforth refer to the schemes (2.8) and (2.9) and (2.10)–(2.12) as the consistent splitting schemes.

As already mentioned in Section 2.2, the use of a BDF approximation for otu and of an extrapolation for
p is not really a key issue. In fact, one can build another truly second-order consistent splitting scheme by

using the Crank–Nicolson and leap-frog strategy as follows: first compute ukþ1 such that

ukþ1 � uk�1

2Dt
� m
2
r2ðukþ1 þ uk�1Þ þ rpk ¼ gk; ukþ1jC ¼ 0;

then compute the pressure by testing the momentum equation against gradients

r 1

2
ðpkþ1

�
þ pk�1Þ;rq

�
¼ gk
�

� m
2
r�r� ðukþ1 þ uk�1Þ;rq

�
; 8q 2 H 1ðXÞ:

We can avoid having to test gradients against second-order derivatives by testing the equation controlling

ukþ1 against gradients and subtracting the result from the above equation. The resulting algorithm is as

follows:

ukþ1 � uk�1

2Dt
� m
2
r2ðukþ1 þ uk�1Þ þ rpk ¼ gk; ukþ1jC ¼ 0; ð2:13Þ
rwkþ1;rq
� �

¼ ukþ1 � uk�1

2Dt
;rq

� �
; 8q 2 H 1ðXÞ; ð2:14Þ
pkþ1 ¼ 2wkþ1 þ 2pk � pk�1 � mr � ðukþ1 þ ukÞ: ð2:15Þ
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3. Stability and convergence results

Since the nonlinear term does not contribute in any essential way to the error analysis of projection

methods, we shall carry out our analysis for the linearized equations only so as to avoid technicalities which

may obscure the essential ideas in the proof. Our proofs can be adapted to account for the nonlinearity

using standard techniques (cf. [11,22,25]).
3.1. Standard splitting schemes

Let us first show that the solution of the second-order version of (2.6) and (2.7) is unconditionally

bounded. Since the use of second-order BDF in (2.6) does not affect the stability in an essential manner and

the additional technicalities involved with the second-order BDF have already been addressed in [13,15], for
the sake of simplicity, we will replace the second-order BDF in (2.6) by the backward Euler approximation,

i.e., we consider

ukþ1 � uk

Dt
� mr2ukþ1 þrð2pk � pk�1Þ ¼ gkþ1; ukþ1jC ¼ 0; ð3:1Þ
ðrðpkþ1 � 2pk þ pk�1Þ;rqÞ ¼ ukþ1 � uk

Dt
;rq

� �
; 8q 2 H 1ðXÞ: ð3:2Þ

Let us denote the backward difference operator by d, i.e., dukþ1 ¼ ukþ1 � uk and dpkþ1 ¼ pkþ1 � pk. The
operators d2; d3 are defined accordingly.

Lemma 3.1. There exists a positive constant C such that the solution of (3.1) and (3.2) is bounded in the

following sense:

kdunþ1k2 þ Dt2krdpnþ1k2 þ Dt
Xn
k¼1

ðmkrdukþ1k2 þ Dtkrd2pkk2Þ6C:
Proof. Applying the operator d to (3.1) and (3.2), we find

d2ukþ1

Dt
� mr2dukþ1 þrðdpk þ d2pkÞ ¼ dgkþ1; dukþ1jC ¼ 0; ð3:3Þ

and

ðrd3pkþ1;rqÞ ¼ d2ukþ1

Dt
;rq

� �
; 8q 2 H 1ðXÞ: ð3:4Þ

Taking the inner product of (3.3) with 2Dtdukþ1 in L2ðXÞ, using the identity ða� b; 2aÞ ¼ jaj2�
jbj2 þ ja� bj2, and integrating by parts, we obtain

kdukþ1k2 � kdukk2 þ kd2ukþ1k2 þ 2mDtkrdukþ1k2 þ 2Dtðrðdpk þ d2pkÞ; dukþ1Þ ¼ 2Dtðdgkþ1; dukþ1Þ:
ð3:5Þ

Next, we take q ¼ 2Dt2dpk in (3.2) to get

Dt2ðkrdpkþ1k2 � krdpkk2 � krd2pkþ1k2Þ ¼ 2Dtðdukþ1;rdpkÞ: ð3:6Þ
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Similarly, by taking q ¼ 2Dt2d2pk in (3.2), we obtain

Dt2ðkrd2pkþ1k2 þ krd2pkk2 � krd3pkþ1k2Þ ¼ 2Dtðdukþ1;rd2pkÞ: ð3:7Þ

On the other hand, we derive from (3.4) that

Dt2krd3pkþ1k2 6 kd2ukþ1k2: ð3:8Þ

Summing up the last four relations (3.5)–(3.8), we obtain

kdukþ1k2 � kdukk2 þ 2mDtkrdukþ1k2 þ Dt2ðkrd2pkk2 þ krdpkþ1k2 � krdpkk2Þ

6 2Dtðdgnþ1; dunþ1Þ6 mDtkrdukþ1k2 þ c21
m
Dtkdgnþ1k2: ð3:9Þ

The last inequality in the above relation is the result of the Poincar�ee inequality kdukþ1k6 c1krdukþ1k and

the Cauchy–Schwarz inequality.

Finally, we take the sum of (3.9) for k ¼ 1 to n to arrive at

kdunþ1k2 þ Dt2krdpnþ1k2 þ Dt
Xn
k¼1

ðmkrdukþ1k2 þ Dtkrd2pkk2Þ

6
c21
m
Dt
Xn
k¼1

kdgnþ1k2 þ kdu1k2 þ krdp1k2 6C:

This completes the proof. �

The above lemma shows that the solution of the algorithms (2.6) and (2.7) with q ¼ 2 is unconditionally
bounded. In fact, we can prove the following error estimates for (2.6) and (2.7) with q ¼ 2 (cf. [12]).

Theorem 3.1. Provided that the solution to (1.1) is smooth enough in time and space, the solution ðuDt; pDtÞ to
(2.6) and (2.7) satisfies the estimates:

kuDt � uDtk‘2ðL2ðXÞd Þ KDt2;

kuDt � uDtk‘1ðH1ðXÞd Þ þ kpDt � pDtk‘1ðL2ðXÞÞ KDt:

We note that the above error estimates are of the same order as those from the second-order pressure-

correction scheme in standard form (cf. [11,22]), but they are less accurate than those from the second-order

pressure-correction scheme in rotational form (cf. [13]).

3.2. Consistent splitting schemes

The analysis of the stability and the convergence of the consistent splitting scheme is more involved than

that of the standard form. For the time being, we are only able to prove optimal convergence results with

q ¼ 1 (cf. [12]).

Theorem 3.2. Provided that the solution to (1.1) is smooth enough in time and space, the solution ðuDt; pDtÞ of
(2.10)–(2.12) with q ¼ 1 is unconditionally bounded and satisfies the following error estimates

kuDt � uDtk‘1ðH1ðXÞd Þ þ kpDt � pDtk‘1ðL2ðXÞÞ KDt:
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Since a complete proof of this theorem is beyond the scope of this paper, we only give a proof for the

stability. Heuristically speaking, a combination of the stability result proved below and the consistency

error of the scheme (easily available from a Taylor expansion) implies the above error estimates.

Proof (Proof of stability). For q ¼ 1, the scheme (2.10)–(2.12) reads

ukþ1 � uk

Dt
� mDukþ1 þrpk ¼ gkþ1; ukþ1jC ¼ 0; ð3:10Þ
ðrwkþ1;rqÞ ¼ ukþ1 � uk

Dt
;rq

� �
; 8q 2 H 1ðXÞ; ð3:11Þ
pkþ1 ¼ wkþ1 þ pk � mr � ukþ1: ð3:12Þ

Applying the operator d to (3.10) and using the identity �Du ¼ r�r� u�rr � u, we obtain

d2ukþ1

Dt
þ mr�r� dukþ1 � mrr � ukþ1 þrwk ¼ dgkþ1: ð3:13Þ

Taking the inner product of (3.13) with 2Dtdukþ1 and integrating by parts, we have

kdukþ1k2 � kdukk2 þ kd2ukþ1k2 þ mDtðkr � ukþ1k2 � kr � ukk2 þ kr � dukþ1k2Þ
þ 2mDtkr � dukþ1k2 þ 2Dtðrwk; dukþ1Þ

¼ 2Dtðdgkþ1; dukþ1Þ: ð3:14Þ

We then apply the operator d to (3.11) and take the scalar product with gradients to obtain

ðrdwkþ1;rqÞ ¼ dukþ1 � duk

Dt
;rq

� �
; 8q 2 H 1ðXÞ: ð3:15Þ

Taking q ¼ 2Dt2wk in the above relation, we find

Dt2ðkrwkþ1k2 � krwkk2 � krdwkþ1k2Þ ¼ 2Dtðdukþ1 � duk;rwkÞ: ð3:16Þ

We now take q ¼ 2Dt2wkþ1 in (3.11), and we replace k þ 1 by k to obtain

2Dt2krwkk2 ¼ 2Dtðduk;rwkÞ: ð3:17Þ

Next, we take q ¼ Dt2dwkþ1 in (3.15), and we use the Cauchy–Schwarz inequality to find

Dt2krdwkþ1k2 6 kd2ukþ1k2: ð3:18Þ

Summing up (3.14) and (3.16)–(3.18), and using the identity kruk2 ¼ kr � uk2 þ kr � uk2, which holds for

all u 2 H 1
0 ðXÞ

d
, we obtain

kdukþ1k2 � kdukk2 þ mDtðkr � ukþ1k2 � kr � ukk2Þ þ mDtðkrdukþ1k2 þ kr � dukþ1k2Þ
þ Dt2ðkrwkþ1k2 þ krwkk2Þ

¼ 2Dtðdgkþ1; dukþ1Þ6 mDt
2

krdukþ1k2 þ 4c21Dt
m

kdgkþ1k2: ð3:19Þ
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Finally, taking the sum of the above relation from k ¼ 1 to n, we obtain

kdunþ1k2 þ Dtkr � unþ1k2 þ Dt
Xn
k¼1

m
2
krdukþ1k2

�
þ Dtkrwkþ1k2

�

6
4c21
m

Dt
Xn
k¼1

kdgnþ1k2 þ kdu1k2 þ Dtkr � u1k2 6C:

Hence, the solution of (3.10)–(3.12) is unconditionally bounded. �

Numerical results reported in Section 5 clearly indicate that the scheme with q ¼ 2 is unconditionally

stable and fully second-order for the velocity in the H 1-norm and the pressure in the L1-norm. However, a

rigorous proof of this fact is still elusive.
4. Role of inf-sup conditions

Let ðXh;MhÞ be respectively the approximation spaces for the velocity and the pressure. In this frame-

work, the mixed approximation of the Stokes equations

�Duþrp ¼ f ; r � u ¼ 0; ujC ¼ 0; ð4:1Þ
is as follows: Find ðuh; phÞ 2 Xh �Mh such that

ðruh;rvhÞ � ðph;r � vhÞ ¼ ðf ; vhÞ; 8vh 2 Xh;
ðr � uh; qhÞ ¼ 0; 8qh 2 Mh:

ð4:2Þ

It is now a well-known fact that a necessary condition for the above discrete problem to be well-posed is

that the following inf-sup condition holds (cf. [2,3]):

9ch > 0; inf
qh2Mh

sup
vh2Xh

ðqh;r � vhÞ
krvhk kqhk

P ch > 0: ð4:3Þ

Furthermore, if ch is not uniformly bounded from below w.r.t h, a loss of accuracy of order ch may occur on

the velocity and a loss of order c2h may occur on the pressure. On the other hand, if (4.3) is not satisfied, then

the space of spurious pressure modes

Qh ¼ fqh 2 Mh : ðqh;r � vhÞ ¼ 0; 8vh 2 Xhg ð4:4Þ

is not empty.

Since the computations of the velocity and the pressure approximations are decoupled in projection-type

schemes, it is tempting to speculate, and it has been claimed by many, that the inf-sup condition between
the velocity and the pressure approximation spaces is not mandatory for projection-type algorithms to

work properly. In general, this intuitive argument is wrong. For instance, it is shown in [1,9] that the inf-sup

condition is required to obtain optimal (in space) pressure error estimates in pressure-correction schemes.

As for velocity-correction schemes, the situation is slightly more subtle and depends on how the scheme is

implemented in practice.

The goal of this section is to elucidate the role of the inf-sup condition for the consistent splitting schemes.

4.1. Full discretization of (2.10)–(2.12)

Let us first consider the scheme (2.10)–(2.12). Let Xh � H 1
0 ðXÞ

d
, Wh � H 1ðXÞ, and Mh � L2ðXÞ be the

approximation spaces for ukþ1
h , wkþ1

h , and pkþ1
h , respectively. Then, a fully discretized version of (2.10)–(2.12)

is: Find ðukþ1
h ;wkþ1

h ; pkþ1
h Þ 2 Xh � Wh �Mh such that
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Dukþ1
h

Dt
; vh

� �
þ m rukþ1

h ;rvh

� �
� pH;kþ1

h ;r � vh
� �

¼ ðgkþ1; vhÞ; 8vh 2 Xh; ð4:5Þ

rwkþ1
h ;r/h

� �
¼ Dukþ1

h

Dt
;r/h

� �
; 8/h 2 Wh; ð4:6Þ

pkþ1
h ; qh

� �
¼ wkþ1

h

�
þ pH;kþ1

h � mr � ukþ1
h ; qh

�
; 8qh 2 Mh: ð4:7Þ

To investigate the compatibility between Xh and Mh, one only has to look at steady state solutions of the

above algorithm. It is clear that any steady-state solution is such that Dukþ1
h ¼ 0, wkþ1 ¼ 0 and pH;kþ1

h ¼ pkþ1
h ;

as a result, the quantity ðr � ukþ1
h ; qhÞ is zero for all qh inMh. In other words, the couple ðukþ1

h ; pkþ1
h Þ is solution

to the steady-state Stokes problem (4.2). Thus, although one can always determine a unique approximate

solution ðukþ1
h ;wkþ1

h ; pkþ1
h Þ from (4.5)–(4.7) with any triplet ðXh;Wh;MhÞ, there is no guaranty that the pressure

approximation pkþ1
h does not contain any spurious mode in Qh. In conclusion, for the schemes (2.10)–(2.12),

the pair of spaces ðXh;MhÞ has to satisfy the inf-sup condition for the pressure approximation to be free of
spurious modes, and (except for spectral approximations, [1]) the inf-sup constant ch should preferably be

uniformly bounded from below for the pressure approximation to have optimal accuracy in space.

4.2. Full discretization of (2.8) and (2.9)

We now consider the schemes (2.8) and (2.9). Let Xh � H 2ðXÞ \ H 1
0 ðXÞ

d
and Mh � H 1ðXÞ be respectively

the approximation spaces for ukþ1
h and pkþ1

h . Then, a fully discretized version of (2.8) and (2.9) is: Find

ðukþ1
h ; pkþ1

h Þ 2 Xh �Mh such that

Dukþ1
h

Dt
; vh

� �
þ m rukþ1

h ;rvh
� �

� pH;kþ1
h ;Bhvh

� �
¼ gkþ1; vh
� �

; 8vh 2 Xh; ð4:8Þ

rpkþ1
h ;rqh

� �
¼ g
�

� mr�r� ukþ1
h ;rqh

�
; 8qh 2 Wh: ð4:9Þ

Thus, the steady-state solution ðukþ1
h ; pkþ1

h Þ ! ðuh; phÞ satisfies the following coupled system:

mðruh;rvÞ � ðph;r � vÞ ¼ ðg; vÞ; 8v 2 Xh;

ðrph;rqhÞ ¼ ðg � mr�r� uh;rqhÞ; 8qh 2 Mh:
ð4:10Þ

Numerical experiments with Legendre–Galerkin approximations [21] suggest that this system is well-posed

for two set of spaces Xh �Mh such that one satisfies the inf-sup condition while the other does not (see

Section 5). In other words, (4.10) does not seem to require a non trivial inf-sup condition to be satisfied for
a unique solution to exist. In conclusion, we conjecture that the scheme (2.8) and (2.9) does not require the

inf-sup condition to be satisfied.
5. Numerical experiments

To demonstrate the accuracy of the new splitting schemes, we perform convergence tests with respect to

Dt with finite elements [10] and Legendre–Galerkin approximations [21].

5.1. Convergence tests with finite elements

We first test the finite element approximation on the time-dependent problem 1.1 in X ¼�0; 1½2. We set

the source term so that the exact solution is
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pðx; y; tÞ ¼ cosðpxÞ sinðpyÞ sin t;
uðx; y; tÞ ¼ ðp sinð2pyÞ sin2ðpxÞ sin t;�p sinð2pxÞ sin2ðpyÞ sin tÞ:

ð5:1Þ

We use mixed P2=P1 finite elements. The mesh used in the tests is composed of 14774 triangles so that the

mesh size is h � 1=80. There are 7548 P1-nodes and 29869 P2-nodes. We make the tests on the range

5:10�4
6Dt6 10�1 so that the approximation error in space is far smaller than the time splitting error.

We have tested the algorithms (2.4)–(2.7) and (2.10)–(2.12) with q ¼ 2.

The error on the velocity in the L2-norm and in the H 1-norm at the final time, T ¼ 1, is reported in Fig. 1

as a function of Dt. The results corresponding to the standard form of the algorithm are reported in the left

panel of the figure, and those corresponding to the rotational form are in the right panel. The standard

form of the algorithm is second-order accurate in the L2-norm, but the convergence rate in the H 1-norm is
roughly 3=2. One clearly observes in the right panel of the figure that the rotational form of the algorithm is

second-order accurate both in the L2-norm and the H 1-norm. Note that the saturations observed for very

small time steps is due to the approximation error in space which becomes dominant for very small time

steps.

We show in Fig. 2 the error on the pressure measured in the L1-norm for both versions of the al-

gorithm. The results clearly show that the pressure approximation in standard form is only first-order,

whereas in the rotational formulation it is truly second-order. The poor convergence rate in the standard

form can be attributed to the presence of numerical boundary layers which are induced by the fact that
the boundary condition enforced by the approximate pressure, namely onðpkþ1 � 2pk þ pk�1ÞjC ¼ 0, is not

consistent.

This convergence test is a compelling evidence that the rotational form of the new scheme is truly

second-order is time, although the proof of this result is still out of reach.
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Fig. 1. Convergence tests with BDF2 and Finite elements. Error on the velocity in the L2-norm and in the H 1-norm at T ¼ 1. Standard

formulation vs. consistent splitting scheme.
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Fig. 2. Convergence tests with BDF2 and Finite elements. Error on the pressure in the L1-norm at T ¼ 1. Standard formulation vs.

rotational formulation.
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5.2. Convergence tests with a Legendre–Galerkin approximation

We now present some tests using the Legendre–Galerkin method introduced in [21]. Let us denote by PN

the space of polynomials of degree less than or equal to N and XN ¼ fv 2 PN � PN : vjC ¼ 0g.
We have implemented both schemes (2.8) and (2.9) and (2.10)–(2.12) in XN � PN�2 and in XN � PN . Note

that the set XN � PN does not satisfy the inf-sup condition 4.3 of the Stokes problem while XN � PN�2 does.

We have observed that the scheme (2.8) and (2.9) yields almost identical results with these two sets of

spaces, whereas the scheme (2.10)–(2.12) yields spurious modes with XN � PN but gives the same results as

the other scheme with XN � PN�2. This set of tests confirms the observation made in Section 4, that is, the

inf-sup condition (4.3) is needed for the scheme (2.10)–(2.12) to work properly, whilst it is not necessary for

the scheme (2.8) and (2.9).

We now report convergence tests made with (2.10)–(2.12) in the polynomial setting XN � PN�2. We take
the reference solution (5.1) in X ¼ ð�1; 1Þ2. We fix N ¼ 40 so that the spatial discretization error is neg-

ligible when compared with the time discretization error.

In Fig. 3, we plot the errors on the pressure and the velocity measured in various norms as functions of

the time step Dt. In the left panel we show the results form the splitting scheme in standard from, and in the

right panel we show those from the consistent splitting scheme. These tests leave no doubts that

the consistent splitting scheme provides full second-order accuracy for the velocity and the pressure in both

the L2- and H 1-norms. The results from the standard form of the splitting scheme are in full agreement with

Theorem 3.1.
In Fig. 4, we plot the error field on the pressure at t ¼ 1 using Dt ¼ 0:01. On the left panel we show the

error produced by the standard form of our splitting scheme, and in the right panel we show the field

produced by the consistent splitting scheme. We observe that the error field produced by the standard form
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of the algorithm exhibits a numerical boundary layer. The presence of this numerical boundary layer is

responsible for the loss of accuracy on the pressure and the vorticity. This phenomenon is comparable with

what is observed for the standard form of pressure-correction schemes. Note that the error on the pressure

produced by the consistent splitting scheme is smooth.
To complete this set of comparisons, we show in Fig. 5 the convergence rates and the error field on the

pressure obtained by using the pressure-correction scheme in rotational form [13]. A comparison of these

convergence rates illustrates clearly the significant improvement provided by the consistent splitting scheme

over the rotational pressure-correction scheme. The lack of optimality of the rotational pressure-correction

scheme is illustrated on the pressure error field by large spikes at the four corners of the domain.
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6. Concluding remarks

We have presented in this paper a new class of splitting schemes for incompressible flows. The new

schemes are based on a weak form of the pressure Poisson equation, and at each time step, only require to

solve a set of Helmholtz-type equations for the velocity and a Poisson equation (in the weak form) for the

pressure.

Preliminary analysis and extensive numerical experiments have shown that the first-order (resp. second-

order) consistent splitting schemes are unconditionally stable and yield full first-order (resp. second-order)

accuracy for the velocity and the pressure in both L2- and H 1-norms. Furthermore, if a discretization pair
ðXh;MhÞ, e.g. a spectral or spectral-element discretization, allows for the implementation of the scheme (2.8)

and (2.9), then optimal accuracy in space can be achieved even if ðXh;MhÞ does not satisfy the inf-sup

condition of the Stokes problem.

Thus, the second-order consistent splitting scheme enjoys many desirable properties such as decoupling,

unconditionally stability, truly second-order accuracy (for the velocity and the pressure in both L2 and H 1

norms), and when it is possible to implement the scheme in the form of (2.8) and (2.9), the inf-sup condition

is not required.

To conclude, the second-order consistent splitting scheme appears to be a promising tool for numerical
simulations of incompressible flows.
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