CORRIGENDUM: FOURIER SPECTRAL APPROXIMATION TO A DISSIPATIVE SYSTEM MODELING THE FLOW OF LIQUID CRYSTALS*

QIANG DU ${ }^{\dagger}$, BENYU GUO ${ }^{\ddagger}$, AND JIE SHEN§

PII. S003614290241653X

The purpose of this note is to correct an error in the proof of Proposition 2.4 in [1]. The inequality $\left\|g\left(d_{M}\right)\right\|_{1} \leq c\left\|d_{M}\right\|_{L^{4}}^{2}\left|d_{M}\right|_{1}$ on line 18 of page 741 in [1] is not correct. We now revise the proof and the result of Proposition 2.4 as follows. Indeed,

$$
\left\|g\left(d_{M}\right)\right\|_{1}^{2} \leq c \int_{\Omega}\left|d_{M}\right|^{4}\left(\nabla d_{M}\right)^{2} d x
$$

By integration by parts, the Cauchy inequality, and (2.10) in [1], we obtain

$$
\left\|g\left(d_{M}\right)\right\|_{1}^{2} \leq c\left\|d_{M}\right\|_{L^{10}}^{5}\left|d_{M}\right|_{2} \leq c\left\|d_{M}\right\|_{\frac{2 n}{5}}^{5}\left|d_{M}\right|_{2} \leq c M^{2 n-5}\left\|d_{M}\right\|_{1}^{5}\left|d_{M}\right|_{2}
$$

Thus, by (2.18) of [1], we have

$$
\left\|\left(P_{M}-I\right) g\left(d_{M}\right)\right\| \leq c M^{\frac{2 n-7}{2}}\left\|d_{M}\right\|_{1}^{\frac{5}{2}}\left|d_{M}\right|_{2}^{\frac{1}{2}}
$$

Next, by virtue of the imbedding inequality and (2.10) of [1],

$$
\begin{aligned}
2 \lambda|G| & \leq 2 \lambda\left\|u_{M}\right\|_{L^{3}}\left\|\nabla d_{M}\right\|_{L^{6}}\left\|\left(P_{M}-I\right) g\left(d_{M}\right)\right\| \leq c \lambda M^{\frac{2 n-7}{2}}\left\|u_{M}\right\|_{\frac{n}{6}}\left\|d_{M}\right\|_{1}^{\frac{5}{2}}\left\|d_{M}\right\|_{2}^{\frac{3}{2}} \\
& \leq c \lambda M^{\frac{2 n-7}{2}}\left\|u_{M}\right\|_{\frac{3}{6}}^{\frac{3}{6}}\left\|u_{M}\right\|_{1}^{\frac{1}{4}}\left\|d_{M}\right\|_{1}^{\frac{5}{2}}\left\|d_{M}\right\|_{2}^{\frac{3}{2}} \\
& \leq c \lambda M^{\frac{9 n-28}{8}}\left\|u_{M}\right\|^{\frac{3}{4}}\left\|u_{M}\right\|_{1}^{\frac{1}{4}}\left\|d_{M}\right\|_{1}^{\frac{5}{2}}\left\|d_{M}\right\|_{2}^{\frac{3}{2}} \\
& \leq c \lambda M^{\frac{9 n-28}{40}}\left\|u_{M}\right\|_{1}^{\frac{1}{4}} \cdot M^{\frac{3(9 n-28)}{80}}\left\|d_{M}\right\|_{2}^{\frac{3}{2}} \cdot M^{\frac{3(9 n-28)}{160}}\left\|u_{M}\right\|^{\frac{3}{4}} \cdot M^{\frac{9 n-28}{16}}\left\|d_{M}\right\|_{1}^{\frac{5}{2}} \\
& \leq c \lambda\left(M^{\frac{9 n-28}{5}}\left\|u_{M}\right\|_{1}^{2}+M^{\frac{9 n-28}{20}}\left\|d_{M}\right\|_{2}^{2}+M^{\frac{3(9 n-28)}{10}}\left\|u_{M}\right\|^{12} \cdot M^{9 n-28}\left\|d_{M}\right\|_{1}^{40}\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
2 \lambda \int_{\Omega} F\left(d_{M}\right) d x & \geq \frac{\lambda}{2 \varepsilon^{2}}\left(\left\|d_{M}\right\|_{L^{4}}^{4}-2\left\|d_{M}\right\|^{2}+(2 \pi)^{n}\right) \\
& \geq \frac{\lambda}{2 \varepsilon^{2}}\left(\frac{1}{(2 \pi)^{n}}\left\|d_{M}\right\|^{4}-2\left\|d_{M}\right\|^{2}+(2 \pi)^{n}\right) \\
& \geq \frac{\lambda}{2 \varepsilon^{2}(2 \pi)^{n}}\left(\left\|d_{M}\right\|^{2}-(2 \pi)^{n}\left(1+\varepsilon^{2}\right)\right)^{2}+\lambda\left\|d_{M}\right\|^{2}-\frac{\lambda(2 \pi)^{n}}{2}\left(2+\varepsilon^{2}\right) \\
& \geq \lambda\left\|d_{M}\right\|^{2}-\frac{\lambda}{2}(2 \pi)^{n}\left(2+\varepsilon^{2}\right)
\end{aligned}
$$

[^0]Moreover, by (2.23) of [1],
$\lambda \gamma\left\|\Delta d_{M}-P_{M} f\left(d_{M}\right)\right\|^{2}=\lambda \gamma\left(\left|d_{M}\right|_{2}^{2}+\left\|P_{M} f\left(d_{M}\right)\right\|^{2}-\frac{2}{\varepsilon^{2}}\left|d_{M}\right|_{1}^{2}\right) \geq \lambda \gamma\left|d_{M}\right|_{2}^{2}-\frac{2 \lambda \gamma}{\varepsilon^{2}}\left|d_{M}\right|_{1}^{2}$.
Substituting the above three estimates into (2.17) of [1] and integrating the resulting inequality with respect to t, we find that for $n \leq 3$ and M sufficiently large

$$
\begin{align*}
\widetilde{E}(t) & \equiv E(t)+\int_{0}^{t}\left(\frac{\nu}{4}\left|u_{M}(s)\right|_{1}^{2}+\lambda \gamma\left\|\Delta d_{M}(s)-P_{M} f\left(d_{M}(s)\right)\right\|^{2}\right) d s \tag{1}\\
& \leq \sigma_{0}+\int_{0}^{t}\left(\frac{2 \lambda \gamma}{\varepsilon^{2}}\left\|d_{M}(s)\right\|_{1}^{2}+c_{4} M^{\frac{3}{10}(9 n-28)}\left\|u_{M}(s)\right\|^{12}+c_{4} M^{9 n-28}\left\|d_{M}(s)\right\|_{1}^{40}\right) d s
\end{align*}
$$

where

$$
\begin{align*}
& E(t)=\left\|u_{M}(t)\right\|^{2}+\lambda\left\|d_{M}(t)\right\|_{1}^{2} \\
& \sigma_{0}=\left\|u_{0}\right\|^{2}+\lambda\left|d_{0}\right|_{1}^{2}+3 \lambda \int_{\Omega} F\left(d_{0}\right) d x+\lambda(2 \pi)^{n}\left(\varepsilon^{2}+1+\varepsilon \sqrt{\varepsilon^{2}+1}\right) \tag{2}
\end{align*}
$$

Finally, we apply Lemma 2.3 of [1] to the above inequality to obtain for $n \leq 3$

$$
\begin{equation*}
\widetilde{E}(t) \leq \sigma_{0} e^{\left(\frac{2 \lambda \gamma}{\epsilon^{2}}+c_{4} M^{-\frac{3}{10}}\right) t} \tag{3}
\end{equation*}
$$

In fact, we can derive improved results for Proposition 2.4 in the two-dimensional case (i.e., $n=2$). Indeed, using the imbedding theory and (2.9) and (2.10) in [1], we obtain for any $\delta>0$

$$
\left\|g\left(d_{M}\right)\right\|_{1} \leq c\left\|d_{M}\right\|_{L^{\infty}}^{2}\left|d_{M}\right|_{1} \leq c\left\|d_{M}\right\|_{1+\frac{\delta}{2}}^{2}\left|d_{M}\right|_{1} \leq c M^{\frac{\delta}{2}}\left\|d_{M}\right\|_{1}^{3}
$$

Thus, by (2.18) of [1],

$$
\left\|\left(P_{M}-I\right) g\left(d_{M}\right)\right\| \leq c M^{\frac{\delta-2}{2}}\left\|d_{M}\right\|_{1}^{3}
$$

By virtue of imbedding theory and the Cauchy inequality,

$$
\begin{aligned}
2 \lambda|G| & \leq\left\|u_{M}\right\|_{L^{\infty}}\left\|d_{M}\right\|_{1}\left\|\left(P_{M}-I\right) g\left(d_{M}\right)\right\| \leq c M^{\delta-1}\left\|u_{M}\right\|_{1}\left\|d_{M}\right\|_{1}^{4} \\
& \leq \frac{\nu}{2}\left|u_{M}\right|_{1}^{2}+c_{4} M^{\frac{1}{2}(\delta-1)}\left\|u_{M}\right\|^{2}+c_{4} M^{\frac{3}{2}(\delta-1)}\left\|d_{M}\right\|_{1}^{8}
\end{aligned}
$$

Using the above estimate instead of (2.19) in [1] and repeating the same procedure as in the proof of Proposition 2.4, we obtain the following revised result.

Proposition 2.4 (revised). Let $\widetilde{E}(t), E(t)$, and σ_{0} be defined in (1)-(2). Then, for $n=3$, we have

$$
\widetilde{E}(t) \leq \sigma_{0} e^{\left(\frac{2 \lambda \gamma}{\epsilon^{2}}+c_{4} M^{-\frac{3}{10}}\right) t}
$$

for $n=2$, we have for any small $\delta>0$,

$$
\begin{aligned}
& E(t)+\int_{0}^{t}\left(\frac{\nu}{2}\left|u_{M}(s)\right|_{1}^{2}+2 \lambda \gamma\left\|\Delta d_{M}(s)-P_{M} f\left(d_{M}(s)\right)\right\|^{2}\right) d s \leq \sigma_{0} e^{c_{4} M^{\frac{1}{2}(\delta-1)} t} \\
& E(t)+\int_{0}^{t}\left(\frac{\nu}{2}|u(s)|_{1}^{2}+2 \lambda \gamma\left|d_{M}(s)\right|_{2}^{2}\right) d s \leq\left(1+\frac{4 \gamma}{\varepsilon^{2}}\right) \sigma_{0} e^{c_{4} M^{\frac{1}{2}(\delta-1)} t}
\end{aligned}
$$

Remark 1. The revised result improves the result of Proposition 2.4 in [1] when $n=2$. We can use the revised Proposition 2.4 to prove directly the existence of a global solution for (2.3) when $n=2$, and of a local solution for (2.3) when $n=3$. We can also use the same techniques as in [2] to prove the existence of a global solution for (2.3) when $n=3$.

Remark 2. There is a similar error in the proof of Theorem 3.1: the estimate (3.20) is not correct. However, we can revise the proof for Theorem 3.1 as above and show that the result of Theorem 3.1 still holds.

REFERENCES

[1] Q. Du, B. Guo, And J. Shen, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals, SIAM J. Numer. Anal., 39 (2001), pp. 735-762.
[2] F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), pp. 501-537.

[^0]: *Received by the editors October 20, 2002; accepted for publication November 26, 2002; published electronically May 12, 2003.
 http://www.siam.org/journals/sinum/41-2/41653.html
 ${ }^{\dagger}$ Department of Mathematics, Penn State University, 307 McAllister Bldg., State College, PA 16802 (qdu@math.psu.edu).
 ${ }^{\ddagger}$ Department of Mathematics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, People's Republic of China, (byguo@guomai.sh.cn).
 ${ }^{\S}$ Department of Mathematics, Purdue University, West Lafayette, IN 47907 (shen@math. purdue.edu).

