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The purpose of this note is to correct an error in the proof of Proposition 2.4 in
[1]. The inequality ||g(dM )||1 ≤ c||dM ||2L4 |dM |1 on line 18 of page 741 in [1] is not
correct. We now revise the proof and the result of Proposition 2.4 as follows. Indeed,

||g(dM )||21 ≤ c

∫
Ω

|dM |4(∇dM )2dx.

By integration by parts, the Cauchy inequality, and (2.10) in [1], we obtain

||g(dM )||21 ≤ c||dM ||5L10 |dM |2 ≤ c||dM ||52n
5

|dM |2 ≤ cM2n−5||dM ||51|dM |2.

Thus, by (2.18) of [1], we have

||(PM − I)g(dM )|| ≤ cM
2n−7

2 ||dM || 521 |dM | 122 .
Next, by virtue of the imbedding inequality and (2.10) of [1],

2λ|G| ≤ 2λ||uM ||L3 ||∇dM ||L6 ||(PM − I)g(dM )|| ≤ cλM
2n−7

2 ||uM ||n
6
||dM || 521 ||dM || 322

≤ cλM
2n−7

2 ||uM || 34n
6
||uM || 141 ||dM || 521 ||dM || 322

≤ cλM
9n−28

8 ||uM || 34 ||uM || 141 ||dM || 521 ||dM || 322

≤ cλM
9n−28

40 ||uM || 141 ·M 3(9n−28)
80 ||dM || 322 ·M 3(9n−28)

160 ||uM || 34 ·M 9n−28
16 ||dM || 521

≤ cλ(M
9n−28

5 ||uM ||21 +M
9n−28

20 ||dM ||22 +M
3(9n−28)

10 ||uM ||12 ·M9n−28||dM ||401 ).

On the other hand, we have

2λ

∫
Ω

F (dM )dx ≥ λ

2ε2
(||dM ||4L4 − 2||dM ||2 + (2π)n)

≥ λ

2ε2

(
1

(2π)n
||dM ||4 − 2||dM ||2 + (2π)n

)

≥ λ

2ε2(2π)n
(||dM ||2 − (2π)n(1 + ε2))2 + λ||dM ||2 − λ(2π)n

2
(2 + ε2)

≥ λ||dM ||2 − λ
2 (2π)

n(2 + ε2).
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Moreover, by (2.23) of [1],

λγ||∆dM−PMf(dM )||2 = λγ

(
|dM |22+||PMf(dM )||2− 2

ε2
|dM |21

)
≥ λγ|dM |22−

2λγ

ε2
|dM |21.

Substituting the above three estimates into (2.17) of [1] and integrating the resulting
inequality with respect to t, we find that for n ≤ 3 and M sufficiently large

Ẽ(t) ≡ E(t) +

∫ t

0

(
ν

4
|uM (s)|21 + λγ||∆dM (s)− PMf(dM (s))||2

)
ds

≤ σ0 +

∫ t

0

(
2λγ

ε2
||dM (s)||21 + c4M

3
10 (9n−28)||uM (s)||12 + c4M

9n−28||dM (s)||401
)
ds,

(1)

where

E(t) = ||uM (t)||2 + λ||dM (t)||21,
σ0 = ||u0||2 + λ|d0|21 + 3λ

∫
Ω

F (d0)dx+ λ(2π)n(ε2 + 1 + ε
√

ε2 + 1).
(2)

Finally, we apply Lemma 2.3 of [1] to the above inequality to obtain for n ≤ 3

Ẽ(t) ≤ σ0e

(
2λγ

ε2
+c4M

− 3
10

)
t
.(3)

In fact, we can derive improved results for Proposition 2.4 in the two-dimensional
case (i.e., n = 2). Indeed, using the imbedding theory and (2.9) and (2.10) in [1], we
obtain for any δ > 0

||g(dM )||1 ≤ c||dM ||2L∞ |dM |1 ≤ c||dM ||2
1+ δ

2
|dM |1 ≤ cM

δ
2 ||dM ||31.

Thus, by (2.18) of [1],

||(PM − I)g(dM )|| ≤ cM
δ−2
2 ||dM ||31.

By virtue of imbedding theory and the Cauchy inequality,

2λ|G| ≤ ||uM ||L∞ ||dM ||1||(PM − I)g(dM )|| ≤ cMδ−1||uM ||1||dM ||41

≤ ν

2
|uM |21 + c4M

1
2 (δ−1)||uM ||2 + c4M

3
2 (δ−1)||dM ||81.

Using the above estimate instead of (2.19) in [1] and repeating the same procedure as
in the proof of Proposition 2.4, we obtain the following revised result.

Proposition 2.4 (revised). Let Ẽ(t), E(t), and σ0 be defined in (1)–(2). Then,
for n = 3, we have

Ẽ(t) ≤ σ0e

(
2λγ

ε2
+c4M

− 3
10

)
t
;

for n = 2, we have for any small δ > 0,

E(t) +

∫ t

0

(
ν

2
|uM (s)|21 + 2λγ||∆dM (s)− PMf(dM (s))||2

)
ds ≤ σ0e

c4M
1
2
(δ−1)t,

E(t) +

∫ t

0

(
ν

2
|u(s)|21 + 2λγ|dM (s)|22

)
ds ≤

(
1 +

4γ

ε2

)
σ0e

c4M
1
2
(δ−1)t.
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Remark 1. The revised result improves the result of Proposition 2.4 in [1] when
n = 2. We can use the revised Proposition 2.4 to prove directly the existence of a
global solution for (2.3) when n = 2, and of a local solution for (2.3) when n = 3. We
can also use the same techniques as in [2] to prove the existence of a global solution
for (2.3) when n = 3.

Remark 2. There is a similar error in the proof of Theorem 3.1: the estimate
(3.20) is not correct. However, we can revise the proof for Theorem 3.1 as above and
show that the result of Theorem 3.1 still holds.
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