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Abstract. We propose a new numerical technique to deal with nonlinear terms in gradient flows.
By introducing a scalar auxiliary variable (SAV), we construct efficient and robust energy
stable schemes for a large class of gradient flows. The SAV approach is not restricted to
specific forms of the nonlinear part of the free energy and only requires solving decoupled
linear equations with constant coefficients. We use this technique to deal with several
challenging applications which cannot be easily handled by existing approaches, and we
present convincing numerical results to show that our schemes are not only much more
efficient and easy to implement, but can also better capture the physical properties in
these models. Based on this SAV approach, we can construct unconditionally second-order
energy stable schemes, and we can easily construct even third- or fourth-order BDF schemes
which, although not unconditionally stable, are very robust in practice. In particular, when
coupled with an adaptive time stepping strategy, the SAV approach can be extremely
efficient and accurate.
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1. Introduction. Gradient flows are dynamics driven by a free energy. Many
physical problems can be modeled by PDEs taking the form of gradient flows, which
are often derived from the second law of thermodynamics. Examples of these problems
include interface dynamics [4, 42, 46, 52, 53, 76], crystallization [27, 26, 28], thin films
[38, 58], polymers [56, 34, 35, 36], and liquid crystals [49, 23, 47, 48, 33, 32, 60, 75].

A gradient flow is determined by not only the driving free energy, but also the
dissipation mechanism. Given a free energy functional E [φ(x)] bounded from below,
denote its variational derivative as µ = δE/δφ. The general form of the gradient flow
can be written as

(1.1)
∂φ

∂t
= Gµ,

supplemented with suitable boundary conditions. To simplify the presentation, we
assume throughout the paper that the boundary conditions are chosen such that all
boundary terms will vanish when integration by parts is performed. This is true with
periodic boundary conditions or homogeneous Neumann boundary conditions.

In the above, a nonpositive symmetric operator G gives the dissipation mechanism.
Commonly adopted dissipation mechanisms include L2 gradient flow where G = −I,
H−1 gradient flow where G = ∆, or more generally nonlocal H−α gradient flow where
G = −(−∆)α (0 < α < 1) (cf. [1]). For more complicated dissipation mechanisms,
G may be nonlinear and may depend on φ. An example of this is the Wasserstein
gradient flow for φ > 0, where Gµ = ∇ · (φ∇µ) (cf. [23, 44]). As long as G is
nonpositive, the free energy is nonincreasing,

(1.2)
dE [φ]

dt
=
δE
δφ
· ∂φ
∂t

= (µ,Gµ) ≤ 0,

where (φ, ψ) =
∫

Ω
φψdx. In this paper, we will focus on the case where G is nonposi-

tive, linear, and independent of φ.
Although gradient flows take various forms, from the numerical perspective a

scheme is generally evaluated by considering the following aspects:
(i) whether the scheme keeps the energy dissipation;

(ii) whether the scheme is convergent, and if error bounds can be established;
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476 JIE SHEN, JIE XU, AND JIANG YANG

(iii) its efficiency;
(iv) whether the scheme is easy to implement.

Among these the first aspect is particularly important and is crucial to eliminate
numerical results that are not physical. Often, if this is not thoroughly considered
when constructing the scheme, it may require a time step that is extremely small to
maintain the energy dissipation.

Usually, the free energy functional contains a quadratic term, which we write
explicitly as

(1.3) E [φ] =
1

2
(φ,Lφ) + E1[φ],

where L is a symmetric nonnegative linear operator (also independent of φ), and
E1[φ] are nonlinear but usually with only derivatives of lower order than L. To obtain
an energy dissipative scheme, the linear term is usually treated implicitly in some
manner, while different approaches have to be used for the nonlinear terms. In the
next few paragraphs, we briefly review the existing approaches for dealing with the
nonlinear terms.

The first approach is the convex splitting method, which was perhaps first intro-
duced in [29] but popularized by [31, 8, 9]. If we can express the free energy as the
difference of two convex functionals, namely, E = Ec − Ee, where both Ec and Ee are
convex about φ, then a simple convex splitting scheme reads

(1.4)
φn+1 − φn

∆t
= G

(
δEc
δφ

[φn+1]− δEe
δφ

[φn]

)
.

Using the property of the convex functional

Ec[φ2]− Ec[φ1] ≥ δEc
δφ

[φ1](φ2 − φ1),

and multiplying (1.4) with (δEc/δφ)[φn+1]− (δEe/δφ)[φn], it is easy to check that the
scheme satisfies the discrete energy law E [φn+1] ≤ E [φn] unconditionally. Because
the implicit part δEc/δφ is usually nonlinear about φ, we need to solve nonlinear
equations at each time step, which can be expensive. The scheme (1.4) is only first
order. While it is possible to construct second-order convex splitting schemes for
certain situations on a case-by-case basis (see, for instance, [65, 10, 72]), a general
formulation of second-order convex splitting schemes is not available.

The second approach is the so-called stabilization method, which treats the non-
linear terms explicitly and adds a stabilization term to avoid strict time step con-
straints [79, 69]. More precisely, if we can find a simple linear operator L̃ such that
both L̃ and L̃ − (δ2E1/δφ2)[φ] are positive, then we may choose a particular convex
splitting,

Ec =
1

2
(φ,Lφ) +

1

2
(φ, L̃φ), Ee =

1

2
(φ, L̃φ)− E1[φ],

which leads to the following unconditionally energy stable scheme:

(1.5)
φn+1 − φn

∆t
= G

(
Lφn+1 +

δE1
δφ

[φn] + L̃(φn+1 − φn)

)
.

Hence, the stabilization method is in fact a special class of convex splitting method.
A common choice of L̃ is

L̃ = a0 + a1(−∆) + a2(−∆)2 + · · · .
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The advantage of the stabilization method is that when the dissipation operator G
is also linear, we only need to solve a linear system like (1 −∆tG(L + L̃))φn+1 = bn

at each time step. However, it is not always the case that L̃ can be found. The
stabilization method can be extended to second-order schemes, but in general it cannot
be unconditionally energy stable; see, however, the recent work in [51]. On the other
hand, a related method is the exponential time differencing (ETD) approach in which
the operator L̃ is integrated exactly (see, for instance, [45] for an example on related
applications).

The third approach is the method of invariant energy quadratization (IEQ), which
was proposed very recently in [74, 77]. This method is a generalization of the method
of Lagrange multipliers or of auxiliary variables, originally proposed in [6, 41]. In
this approach, E1 is assumed to take the form E1[φ] =

∫
Ω
g(φ)dx, where g ∈ C1(R)

and g(s) > −C0 ∀s ∈ R for some C0 > 0. The IEQ also allows us to deal with
g = g(φ,∇φ), where g ∈ C1(R4) and g > −C0, or it involves higher-order derivatives.
For simplicity, we only present the case where g = g(φ). One then introduces an
auxiliary variable q =

√
g + C0 and transforms (1.1) into an equivalent system,

∂φ

∂t
= G

(
Lφ+

q√
g(φ) + C0

g′(φ)

)
,(1.6a)

∂q

∂t
=

g′(φ)

2
√
g(φ) + C0

∂φ

∂t
.(1.6b)

Using the fact that E1[φ] =
∫

Ω
q2dx is convex about q, we can easily construct simple

and linear energy stable schemes. For instance, a first-order scheme is given by

φn+1 − φn
∆t

= Gµn+1,(1.7a)

µn+1 = Lφn+1 +
qn+1√

g(φn) + C0

g′(φn),(1.7b)

qn+1 − qn
∆t

=
g′(φn)

2
√
g(φn) + C0

φn+1 − φn
∆t

.(1.7c)

One can easily show that the above scheme is unconditionally energy stable. Further-
more, eliminating qn+1 and µn+1, we obtain a linear system for φn+1 in the following
form:

(1.8)

(
1

∆t
− GL − G (g′(φn))2

2g(φn)

)
φn+1 = bn.

Similarly, one can also construct unconditionally energy stable second-order schemes.
The IEQ approach is remarkable as it allows us to construct linear, unconditionally
stable, and second-order unconditionally energy stable schemes for a large class of
gradient flows. However, it still suffers from the following drawbacks:

• Although one only needs to solve a linear system at each time step, the linear
system usually involves variable coefficients which change at each time step.

• For gradient flows with multiple components, the IEQ approach will lead to
coupled systems with variable coefficients.

• It requires that E1 has the form
∫

Ω
g(φ)dx, or more generally

∫
Ω
g(φ,∇φ, . . . ,

∇mφ)dx, where the energy density g is bounded from below. However, in
some cases, E1 does not take such a form. Even if one can find such a g, it
might be unbounded from below while E1[φ] is bounded from below.
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In [68], we introduced the so-called scalar auxiliary variable (SAV) approach, which
inherits all the advantages of the IEQ approach but also overcomes most of its short-
comings. More precisely, using the Cahn–Hilliard equation and a system of Cahn–
Hilliard equations as examples, we showed that the SAV approach has the following
advantages:

(i) For single-component gradient flows, at each time step it leads to linear equa-
tions with constant coefficients, so it is remarkably easy to implement.

(ii) For multicomponent gradient flows, at each time step it leads to decoupled
linear equations with constant coefficients, one for each component.

The main goals of this paper are (i) to expand the SAV approach to a more general
setting and apply it to several challenging applications, such as nonlocal phase field
crystals, a molecular beam epitaxial without slope section, and a Q-tensor model for
liquid crystals; (ii) to show numerically that, besides their simplicity and efficiency,
the novel schemes present better accuracy compared with other schemes for many
equations; and (iii) to validate the effectiveness and robustness of the SAV approach
coupled with high-order BDF schemes and adaptive time stepping.

We emphasize that the schemes are formulated in a general form that is applicable
to a large class of gradient flows. We also suggest some criteria on the choice of L and
E1, which is useful when attempting to construct numerical schemes for particular
gradient flows.

The rest of the paper is organized as follows. In section 2, we describe the con-
struction of SAV schemes for gradient flows in a general form. In section 3, we present
several numerical examples to validate the SAV approach. In section 4, we describe
how to construct higher-order SAV schemes and how to implement adaptive time
stepping. We then apply the SAV approach to construct second-order uncondition-
ally stable, decoupled linear schemes for several challenging situations in section 5,
followed by some concluding remarks in section 6.

2. SAV Approach for Constructing Energy Stable Schemes. In this section,
we formulate the SAV approach introduced in [68] for a class of general gradient flows.

2.1. Gradient Flows of a Single Function. We consider the gradient flow (1.1)
with free energy in the form of (1.3) such that E1[φ] is bounded from below. Without
loss of generality, we assume that E1[φ] ≥ C0 > 0, otherwise we may add a constant
to E1 without altering the gradient flow. We introduce an SAV r =

√E1 and rewrite
the gradient flow (1.1) as

∂φ

∂t
= Gµ,(2.1a)

µ = Lφ+
r√
E1[φ]

U [φ],(2.1b)

dr

dt
=

1

2
√
E1[φ]

∫
Ω

U [φ]
∂φ

∂t
dx,(2.1c)

where

(2.2) U [φ] =
δE1
δφ

.

Taking the inner products of the above with µ, ∂φ
∂t , and 2r, respectively, we obtain

the following energy dissipation law for (2.1):

(2.3)
dE [φ(t)]

dt
=

d

dt

[
1

2
(φ,Lφ) + r2

]
= (µ,Gµ).
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Note that this equivalent system (2.1) is similar to the system (1.6a) and (1.6b) in
the IEQ approach, except that an SAV r is introduced instead of a function q(φ). To
illustrate the advantage of SAV over IEQ, we start with the first-order scheme

φn+1 − φn
∆t

= Gµn+1,(2.4a)

µn+1 = Lφn+1 +
rn+1√
E1[φn]

U [φn],(2.4b)

rn+1 − rn
∆t

=
1

2
√
E1[φn]

∫
Ω

U [φn]
φn+1 − φn

∆t
dx.(2.4c)

Multiplying the three equations with µn+1, (φn+1 − φn)/∆t, and 2rn+1, integrating
the first two equations, and adding them together, we obtain the discrete energy law

1

∆t

[
Ẽ [φn+1, rn+1]− Ẽ [φn, rn]

]
+

1

∆t

[1

2
(φn+1 − φn,L(φn+1 − φn)) + (rn+1 − rn)2

]
= (µn+1,Gµn+1),

where we have defined the modified energy

(2.5) Ẽ [η, s] =
1

2
(η,Lη) + s2.

Thus, the scheme is unconditionally energy stable with the modified energy. Note
that, while r =

√
E1[φ], we do not have rn =

√
E1[φn], so the modified energy

Ẽ [φn, rn] is different from the original energy E [φn].

Remark 2.1. Notice that the SAV scheme (2.4) is unconditionally energy stable
(with a modified energy) for arbitrary energy splitting in (1.3) as long as E1 is bounded
from below. One might wonder, why not take L = 0? Then the scheme (2.4) would
be totally explicit, i.e., without the need to solve any equation, but unconditionally
energy stable (with a modified energy Ẽ [η, s] = 1

2 (η,Lη) + s2 = s2)! However, energy
stability alone is not sufficient for convergence. Such a scheme could not produce
meaningful results, since the modified energy (2.5) reduces to s2 which cannot control
any oscillation due to derivative terms. Hence, it is necessary that L contains enough
dissipative terms (with at least linearized highest derivative terms).

An important fact is that the SAV scheme (2.4) is easy to implement. To this
end, we write (2.4) in the form

(2.6)

 1
∆tI −G 0
−L I ∗
∗ 0 1

∆t

φn+1

µn+1

rn+1

 = b̄n,

where b̄n is the vector with known quantities, and ∗ is some vector with variable
coefficients. Hence, we can solve rn+1 with a block Gaussian elimination, which
requires solving a system with constant coefficients of the form

(2.7)

(
1

∆tI −G
−L I

)(
φ
µ

)
= b̄.

Once rn+1 is known, we can obtain (φn+1, µn+1) by solving one more equation in the
above form.
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For the readers’ convenience, we give below another explicit procedure for solving
(2.4). Substituting (2.4b) and (2.4c) into (2.4a), we obtain

φn+1 − φn
∆t

= G
[
Lφn+1 +

U [φn]√
E1[φn]

(
rn +

∫
Ω

U [φn]

2
√
E1[φn]

(φn+1 − φn)dx

)]
.(2.8)

Denote

bn = U [φn]/
√
E1[φn].

Then the above equation can be written as

(2.9) (I −∆tGL)φn+1 − ∆t

2
Gbn(bn, φn+1) = φn + ∆trnGbn − ∆t

2
(bn, φn)Gbn.

Denote the right-hand side of (2.9) by cn. Multiplying (2.9) with (I−∆tGL)−1, then
taking the inner product with bn, we obtain

(2.10) (bn, φn+1) +
∆t

2
γn(bn, φn+1) = (bn, (I −∆tGL)−1cn),

where γn = −(bn, (I − ∆tGL)−1Gbn) = (bn, (−G−1 + ∆tL)−1bn) > 0, if we assume
that G is negative definite and L is nonnegative. Hence,

(2.11) (bn, φn+1) =
(bn, (I −∆tGL)−1cn)

1 + ∆tγn/2
.

To summarize, we implement (2.4) as follows:
(i) Compute bn and cn (the right-hand side of (2.9)).
(ii) Compute (bn, φn+1) from (2.11).
(iii) Compute φn+1 from (2.9).

Note that in steps (ii) and (iii) of the above procedure, we only need to solve, twice,
a linear equation with constant coefficients of the form

(2.12) (I −∆tGL)x̄ = b̄,

which is exactly (2.7) with µ eliminated. Therefore, the above procedure is extremely
efficient. In particular, if L = −∆ and G = −1 or −∆, with a tensor-product domain
Ω, fast solvers are available. In contrast, convex splitting schemes usually require
solving a nonlinear system, while the IEQ scheme requires solving (1.8), which involves
variable coefficients.

A main advantage of the SAV approach (as well as the IEQ approach) is that
linear second- or even higher-order energy stable schemes can be easily constructed.
We start with a semi-implicit second-order scheme based on Crank–Nicolson, which
we denote as SAV/CN:

φn+1 − φn
∆t

= Gµn+1/2,(2.13a)

µn+1/2 = L1

2
(φn+1 + φn) +

rn+1 + rn

2
√
E1[φ̄n+1/2]

U [φ̄n+1/2],(2.13b)

rn+1 − rn =

∫
Ω

U [φ̄n+1/2]

2
√
E1[φ̄n+1/2]

(φn+1 − φn)dx.(2.13c)
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In the above, φ̄n+1/2 can be any explicit approximation of φ(tn+1/2) with an error of
O(∆t2). For instance, we may let

(2.14) φ̄n+1/2 =
1

2
(3φn − φn−1)

be the extrapolation, or we can use a simple first-order scheme to obtain it, such as
the semi-implicit scheme

(2.15)
φ̄n+1/2 − φn

∆t/2
= G

(
Lφ̄n+1/2 + U [φn]

)
,

which has a local truncation error of O(∆t2).
Just as in the first-order scheme, one can eliminate µn+1 and rn+1 from the

second-order schemes (2.13) to obtain a linear equation for φ similar to (2.9), which
can be solved using the Sherman–Morrison–Woodbury formula (2.26) that only in-
volves two linear equations with constant coefficients of the form (2.12).

Regardless of how we obtain φ̄n+1/2, multiplying the three equations with µn+1/2,
(φn+1 − φn)/∆t, and (rn+1 + rn)/∆t, we derive the following theorem.

Theorem 2.1. The scheme (2.13) is second-order accurate and unconditionally
energy stable in the sense that

1

∆t

(
Ẽ [φn+1, rn+1]− Ẽ [φn, rn]

)
= (µn+1/2,Gµn+1/2),

where Ẽ is the modified energy defined in (2.5), and one can obtain (φn+1, µn+1, rn+1)
by solving two linear equations with constant coefficients of the form (2.12).

We can also construct a semi-implicit second-order scheme based on the BDF
formula, which we denote as SAV/BDF:

3φn+1 − 4φn + φn−1

2∆t
= Gµn+1,(2.16a)

µn+1 = Lφn+1 +
rn+1√
E1[φ̄n+1]

U [φ̄n+1],(2.16b)

3rn+1 − 4rn + rn−1 =

∫
Ω

U [φ̄n+1]

2
√
E1[φ̄n+1]

(3φn+1 − 4φn + φn−1)dx.(2.16c)

Here, φ̄n+1 can be any explicit approximation of φ(tn+1) with an error of O(∆t2).
Multiplying the three equations with µn+1, (3φn+1 − 4φn + φn−1)/∆t, and rn+1/∆t,
integrating the first two equations, and using the identity

2(ak+1, 3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2 + |ak+1 − 2ak + ak−1|2

− |ak|2 − |2ak − ak−1|2,

(2.17)

we obtain the following theorem.
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Theorem 2.2. The scheme (2.16) is second-order accurate and unconditionally
energy stable in the sense that

1

∆t

{
Ẽ [(φn+1, rn+1), (φn, rn)]− Ẽ [(φn, rn), (φn−1, rn−1)]

}
+

1

∆t

{1

4

(
φn+1 − 2φn + φn−1,L(φn+1 − 2φn + φn−1)

)
+

1

2
(rn+1 − 2rn + rn−1)2

}
= (µn+1,Gµn+1),

where the modified discrete energy is defined as

Ẽ [(φn+1, rn+1), (φn, rn)] =
1

4

(
(φn+1,Lφn+1) +

(
2φn+1 − φn,L(2φn+1 − φn)

))
+

1

2

(
(rn+1)2 + (2rn+1 − rn)2

)
,

and one can obtain (φn+1, µn+1, rn+1) by solving two linear equations with constant
coefficients of the form (2.12).

We observe that the modified energy Ẽ [(φn+1, rn+1), (φn, rn)] is an approximation
of the original energy E [φn+1] if (rn+1)2 is an approximation of E1[φn+1].

2.2. Gradient Flows of Multiple Functions. We describe below the SAV ap-
proach for gradient flows of multiple functions φ1, . . . , φk,

E [φ1, . . . , φk] =
1

2

k∑
i,j=1

dij(φi,Lφj) + E1[φ1, . . . , φk],(2.18)

where L is a self-adjoint nonnegative linear operator, and the constant matrix
(dij)i,j=1,...,k, is symmetric positive definite. Also, we assume that E1 ≥ C1 > 0.
We consider the gradient flow that contains linear couplings between µi = δE/δφi.
Let G be a nonpositive dissipation operator and (gij)i,j=1,...,k be another symmetric
positive definite constant matrix. Denote Ui = δE1/δφi, and introduce r(t) =

√E1 as
the SAV. The gradient flow is then given by

∂φi
∂t

=

k∑
l=1

gilGµl,(2.19a)

µi =

k∑
j=1

dijLφj +
r√E1
Ui,(2.19b)

dr

dt
=

1

2
√E1

∫
Ω

Ui
∂φi
∂t

dx.(2.19c)

Taking the inner products of the above three equations with µi,
∂φi

∂t , and 2r, summing
over i, and using the facts that L is self-adjoint and that dij = dji, we obtain the
energy law
(2.20)

d

dt
E [φ1, . . . , φk] =

d

dt

1

2

k∑
i,j=1

dij(φi,Lφj) + E1[φ1, . . . , φk]

 =

k∑
i,l=1

gil(Gµi, µl).

A simple case with decoupled linear terms, i.e., dij = gij = δij , is considered in [68].
However, some applications (cf., for example, [30, 8, 9, 16, 11, 57, 24]) involve coupled
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linear operators which render the problem very difficult to solve numerically using
existing methods. However, we can easily construct simple and accurate schemes using
the SAV approach, an example being the following second-order SAV/CN scheme:

φn+1
i − φni

∆t
=

k∑
l=1

gilGµn+1/2
l ,

(2.21a)

µ
n+1/2
i =

1

2

k∑
j=1

dijL(φn+1
j + φnj ) +

Ui[φ̄
n+1/2
1 , . . . , φ̄

n+1/2
k ]

2

√
E1[φ̄

n+1/2
1 , . . . , φ̄

n+1/2
k ]

(rn+1 + rn),(2.21b)

rn+1 − rn =

∫
Ω

k∑
j=1

Uj [φ̄
n+1/2
1 , . . . , φ̄

n+1/2
k ]

2

√
E1[φ̄

n+1/2
1 , . . . , φ̄

n+1/2
k ]

(φn+1
j − φnj )dx,

(2.21c)

where φ̄
n+1/2
j can be any second-order explicit approximation of φj(t

n+1/2). We

multiply the above three equations with ∆tµ
n+1/2
i , φn+1

i − φni , and rn+1 + rn and
take the sum over i. Since L is self-adjoint and dij = dji, we have

1

2

( k∑
j=1

dijL(φn+1
j + φnj ), φn+1

i − φni
)

=
1

2

k∑
j=1

dij [(Lφn+1
j , φn+1

i )− (Lφnj , φni )],

which immediately leads to energy stability. Next, we describe how to implement
(2.21) efficiently.

Denoting

pni =
Ui[φ̄

n+1/2
1 , . . . , φ̄

n+1/2
k ]√

E1[φ̄
n+1/2
1 , . . . , φ̄

n+1/2
k ]

,

and substituting (2.21b) and (2.21c) into (2.21a), we can eliminate µ
n+1/2
i and rn+1

to obtain a coupled linear system of k equations of the form

φn+1
i − ∆t

2

k∑
l,j=1

gildljGLφn+1
j − ∆t

4

k∑
j=1

(φn+1
j , pnj )

k∑
l=1

gilGpnl = bni , i = 1, . . . , k,

(2.22)

where bni includes all known terms in the previous time steps. Let us denote D =
(∆t

2 dij)i,j=1,...,k, G = (gij)i,j=1,...,k, and

φ̄n+1 = (φn+1
1 , . . . , φn+1

k )T , b̄n = (bn1 , . . . , b
n
k )T ,

ū =
∆t

4

( k∑
l=1

g1lGpn1 , . . . ,
k∑
l=1

gklGpnk
)
, v̄ = (pn1 , . . . , p

n
k ).

(2.23)

The above system can be written in the matrix form

(2.24) (A+ ūv̄T )φ̄n+1 = b̄n,

where the operator A is defined by

(2.25) Aφ̄n+1 = φ̄n+1 − GLGDφ̄n+1.
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The above equation can be solved using the Sherman–Morrison–Woodbury formula
[39],

(2.26) (A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1,

where A is an n× n matrix, U and V are n× k matrices, and I is the k × k identity
matrix. We note that if k � n and A can be inverted efficiently, the Sherman–
Morrison–Woodbury formula provides an efficient algorithm to invert the perturbed
matrix A+ UV T . The system (2.24) corresponds to a case where U and V are n× 1
vectors, so it can be efficiently solved using (2.26).

It remains to describe how to solve the linear system Aφ̄ = b̄ efficiently. Since
D and G are both symmetric positive definite, we first compute the eigendecompo-
sition of G as G = E1ΓET1 , where E1 is orthogonal and Γ is diagonal, and obtain
G1/2 = E1Γ1/2ET1 . Then, we write GD = G1/2(G1/2DG1/2)G−1/2 and compute
another eigendecomposition of the symmetric positive definite matrix G1/2DG1/2 =
E2ΛET2 , where E2 is orthogonal and Λ = diag(λ1, . . . , λk). Let E = G1/2E2. The
eigendecomposition of GD is thus written as GD = EΛE−1. Setting ψ̄ = E−1φ̄, we
have

Aφ̄ = φ̄− GLEΛE−1φ̄ = E(I − GLΛ)ψ̄.

Hence, Aφ̄ = b̄ decouples into a sequence of elliptic equations:

(2.27) ψi − λiGLψi = (E−1b̄)i, i = 1, . . . , k.

To summarize, Aφ̄ = b̄ can be efficiently solved as follows:
• Compute the eigendecomposition G = E1ΓET1 , followed by G1/2. Then com-

pute another eigendecomposition G1/2DG1/2 = E2ΛET2 .
• Compute E = G1/2E2 and E−1b̄.
• Solve the decoupled equations (2.27).
• Finally, the solution is φ̄ = Eψ̄.

In summary, we have the following theorem.

Theorem 2.3. The scheme (2.21) is second-order accurate and unconditionally
energy stable in the sense that

1

∆t

[
1

2

k∑
i,j=1

dij(Lφn+1
j , φn+1

i ) + (rn+1)2

]
− 1

∆t

[
1

2

k∑
i,j=1

dij(Lφnj , φni ) + (rn)2

]

=

k∑
i=1

(Gµi, µi),

and one can obtain rn+1 and (φn+1
j , µn+1

j )1≤j≤k by solving two sequences of decoupled
linear equations with constant coefficients of the form (2.27).

2.3. Full Discretization. To simplify the presentation, we have only discussed
the time discretization above. However, since the stability proofs of SAV schemes are
all variational, they can be straightforwardly extended to fully discrete SAV schemes
with Galerkin finite element methods or Galerkin spectral methods, or even finite
difference methods with summation by parts.

3. Numerical Validation. In this section, we apply the SAV/CN and SAV/BDF
schemes to several gradient flows to demonstrate the efficiency and accuracy of the
SAV approach. In all examples, we assume periodic boundary conditions and use a
Fourier spectral method for space variables.
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3.1. Allen–Cahn, Cahn–Hilliard, and Fractional Cahn–Hilliard Equations. The
Allen–Cahn [2] and Cahn–Hilliard equations [13, 14] are widely used in the study of
interfacial dynamics [2, 62, 4, 42, 46, 52, 53, 76, 1]. They are built with the free energy

(3.1) E [φ] =

∫
1

2
|∇φ|2 +

1

4ε2
(1− φ2)2dx.

We consider the H−α gradient flow, which leads to the fractional Cahn–Hilliard
equation

(3.2)
∂φ

∂t
= −γ(−∆)α

(
−∆φ− 1

ε2
φ(1− φ2)

)
, 0 ≤ s ≤ 1.

Here, the fractional Laplacian operator (−∆)α is defined via Fourier expansion. More
precisely, if Ω = (0, 2π)2, then we can express u ∈ L2(Ω) as

u =
∑
m,n

ûmne
imx+iny,

so the fractional Laplacian is defined as

(−∆)αu =
∑

(m2 + n2)αûmne
imx+iny.

When α = 0 (L2 gradient flow), (3.2) is the standard Allen–Cahn equation; when
α = 1, it becomes the standard Cahn–Hilliard equation.

To apply our schemes (2.13) or (2.16) to (3.2), we specify the operators L, G and
the energy E1 as

(3.3) L = −∆ +
β

ε2
, G = −(−∆)α, E1 =

1

4ε2

∫
Ω

(φ2 − 1− β)2dx;

then we have

U [φ] =
δE1
δφ

=
1

ε2
φ(φ2 − 1− β).

Remark 3.1. In the above, β is a suitable parameter to ensure that there is
enough dissipation in the implicit part of the scheme. The effect of using β > 0 is
similar to the stabilization in the usual semi-implicit scheme [69]. For problems with
free energy dominated by the nonlinear part such as the case above, a suitable splitting
is very important to ensure the accuracy of SAV schemes without using exceedingly
small time steps.

We illustrate this by a typical example. Consider the standard Cahn–Hilliard
equation using the SAV/CN scheme in [0, 2π]. The parameters in the equation are
chosen as ε = 0.1, γ = 1. The initial condition is φ(x, 0) = 0.2 sinx. The space is
discretized by a Fourier Galerkin method with N = 211.

Let us compare the results of β = 0 (without stabilization) and β = 1 (with
stabilization) with two different time steps ∆t = 10−4 and ∆t = 4 × 10−3. The
solution at T = 0.1 is plotted in Figure 1. It is clear that with small ∆t, the solutions
are indistinguishable, regardless of whether we incorporate stabilization. However,
with large ∆t, the scheme with stabilization leads to the correct solution, but the
scheme without stabilization does not.
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small time step
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large time step
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SAVwithSTA

Fig. 1 (Effect of stabilization.) The solution at T = 0.1. Left: ∆t = 10−4. Right: ∆t = 4 × 10−3.
The red dashed lines represent solutions with stabilization, while the black solid lines represent
solutions without stabilization.

Table 1 (Example 1.) Errors and convergence rates of the SAV/CN and SAV/BDF schemes for
the Cahn–Hilliard equation.

Scheme ∆t=1.6e-4 ∆t=8e-5 ∆t=4e-5 ∆t=2e-5 ∆t=1e-5

SAV/CN
Error 1.74e-7 4.54e-8 1.17e-8 2.94e-9 2.01e-10
Rate - 1.93 1.96 1.99 2.01

SAV/BDF
Error 1.38e-6 3.72e-7 9.63e-8 2.43e-8 5.98e-9
Rate - 1.89 1.95 1.99 2.02

Example 1. (Convergence rate of the SAV/CN scheme for the standard Cahn–
Hilliard equation.) We choose the computational domain as [0, 2π]2, ε = 0.1, and
γ = 1. The initial data is chosen to be smooth: φ(x, y, 0) = 0.05 sin(x) sin(y).

We use the Fourier Galerkin method for spatial discretization with N = 27, and
choose β = 1. To compute a reference solution, we use the fourth-order exponential
time differencing Runge–Kutta method (ETDRK4)∗ [21] with ∆t sufficiently small.
The numerical errors at t = 0.032 for SAV/CN and SAV/BDF are shown in Table 1,
where we can observe the second-order convergence for both schemes.

Example 2. We solve a benchmark problem for the Allen–Cahn equation (see
[17]). Consider a two-dimensional domain (−128, 128)2 with a circle of radius R0 =
100. In other words, the initial condition is given by

(3.4) φ(x, y, 0) =

{
1, x2 + y2 < 1002,
0, x2 + y2 ≥ 1002.

By mapping the domain to (−1, 1)2, the parameters in the Allen–Cahn equation are
given by γ = 6.10351× 10−5 and ε = 0.0078.

∗Although ETDRK4 has higher order of accuracy, it does not guarantee energy stability, and the
implementation can be difficult since it requires us to calculate the matrix exponential.

D
ow

nl
oa

de
d 

08
/1

3/
19

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ENERGY STABLE SCHEME FOR GRADIENT FLOWS 487

970 975 980 985 990 995 1000

89.45

89.5

89.55

89.6

89.65

89.7

89.75

t

R

 

 
Exact
∆t = 0.01
∆t = 0.02
∆t = 0.05
∆t = 0.1
∆t = 0.2
∆t = 0.5

0 200 400 600 800 1000

115

120

125

130

t

E
n

e
rg

y

 

 
Modified
Original

Fig. 2 (Example 2.) The evolution of radius R(t) and the free energy (both original and modified).
For the free energy, ∆t = 0.5.

In the sharp interface limit (ε → 0, which is suitable because the chosen ε is
small), the radius at time t is given by

(3.5) R =
√
R2

0 − 2t.

We use the Fourier Galerkin method to express φ as

(3.6) φ =
∑

n1,n2≤N

φ̂n1n2
eiπ(n1x+n2y),

with N = 29. We choose β = 1 and let the time step ∆t vary. The computed radius
R(t) using the SAV/CN scheme is plotted in Figure 2. We observe that R(t) keeps
monotonically decreasing and is very close to the sharp interface limit value, even
when we choose a relatively large ∆t. In [69] this benchmark problem is solved using
different stabilization methods. Our result proves to be much better than the result
in that work, where the oscillation around the limit value is apparent, even though
the time step is reduced to ∆t = 10−3. We also plot the original energy and the
modified energy 1

2 (φn,Lφn) + (rn)2 in Figure 2 for ∆t = 0.5, and find that they are
very close.

Example 3. (Comparison of the SAV/CN and IEQ/CN schemes for the Allen–
Cahn equation in one dimension.) The parameters are the same as in the first exam-
ple. The domain is chosen as [0, 2π], discretized by the finite difference method with
N = 210. The initial condition φ(x, 0) is now a randomly generated function. The
reference solution is also obtained using ETDRK4.

We plot the numerical results at T = 0.1 and T = 1 using the SAV/CN and
IEQ/CN schemes in Figure 3. We used two different time steps ∆t = 10−4, 10−3.
We observe that with ∆t = 10−4, both the SAV/CN scheme and the IEQ/CN scheme
agree well with the reference solution. However, with ∆t = 10−3, the solution using
the SAV/CN scheme still agrees well with the reference solution at both T = 0.1
and T = 1, while the solution obtained by the IEQ/CN scheme has visible differences
with the reference solution and violates the maximum principle |φ| ≤ 1. This example
clearly indicates that the SAV/CN scheme is more accurate than the IEQ/CN scheme,
in addition to its easy implementation.
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Fig. 3 (Example 3.) Comparison of the SAV/CN and IEQ/CN schemes.

Example 4. We examine the effect of the fractional dissipation mechanism on
the phase separation and coarsening process. Consider the fractional Cahn–Hilliard
equation in [0, 2π]2. We fix ε = 0.04 and take the fractional power α to be 0.1, 0.5,
1, respectively. We use the Fourier Galerkin method with N = 27, and the time step
∆t = 8×10−6. The initial value is the sum of a randomly generated function φ0(x, y)
with the average of φ,

φ̄ =
1

4π2

∫
0≤x,y≤2π

φdxdy,

chosen as 0.25, 0, and −0.25, respectively.

We used the SAV/BDF scheme to compute the configuration at T = 0.032, which
is shown in Figure 4. We observe that regardless of φ̄, when α is smaller, the phase
separation and coarsening process is slower, which is consistent with the results in [1].

3.2. Phase Field Crystals. We now consider gradient flows of φ(x) that describe
modulated structures. Free energy of this kind was first found in Brazovskii’s work
[12], known as the Landau–Brazovskii model. Since then, the free energy, including
many variants, has been adopted to study various physical systems (see, for example,
[37, 3, 40, 73]). A usual free energy takes the form

(3.7) E(φ) =

∫
Ω

{
1

4
φ4 +

1− ε
2

φ2 − |∇φ|2 +
1

2
(∆φ)2

}
dx,

subject to a constraint that the average φ̄ remains constant. This constraint can be
automatically satisfied with an H−1 gradient flow, which is also referred to as a phase
field crystals model because it is widely adopted in the dynamics of crystallization
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φ̄ = 0.25 φ̄ = 0 φ̄ = -0.25

α=0.1

α=0.5

α=1.0

Fig. 4 (Example 4.) Configurations at time T = 0.032 with random initial condition for different
values of fractional order α and mean φ̄.

[27, 26, 28]. To demonstrate the flexibility of the SAV approach, we will focus on a
free energy with a nonlocal kernel. Specifically, we replace the Laplacian by a nonlocal
linear operator Lδ [71],

Lδφ(x) =

∫
B(x,δ)

ρδ(|y − x|)
(
φ(y)− φ(x)

)
dy,

leading to the free energy

(3.8) E(φ) =

∫
Ω

{
1

4
φ4 +

1− ε
2

φ2 + φLδφ+
1

2
(Lδφ)2

}
dx.

Let the dissipation mechanism be given by G = Lδ. Then we obtain the following
gradient flow:

(3.9)
∂φ

∂t
= Lδ(L2

δφ+ 2Lδφ+ (1− ε)φ+ φ3).

For the above problem, it is difficult to solve the linear system resulting from the IEQ
approach, but it can be easily implemented with the SAV approach.
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Let Ω be a rectangular domain [0, 2π)2 with periodic boundary conditions; the
eigenvalues of L can be expressed explicitly. In fact, it is easy to check that for any
integers m and n, eimx+iny is an eigenfunction of Lδ and the corresponding eigenvalue
is given by

λδ(m,n) =

∫ δ

0

rρδ(r)

∫ 2π

0

(cos (r (m cos θ + n cos θ))− 1) dθdr,

which can be evaluated efficiently using a hybrid algorithm [25]. We choose

ρδ(|x− x′|) = c1
2(4− α1)

π

1

δ4−α1rα1
− c2

2(4− α2)

π

1

δ4−α2rα2
,

with c1 = 20, c2 = 19, α1 = 3, α2 = 0, and δ = 2. Numerical results indicate
that all eigenvalues are negative, which ensures the nonlocal operator Lδ is negative-
semidefinite.

We have applied the SAV/CN and SAV/BDF schemes to (3.9). As a comparison,
we also implemented the following stabilized semi-implicit (SSI) scheme used in [19]:

φn+1 − φn
∆t

= (1− ε)Lδφn+1 + 2L2
δφ
n+1 + L3

δφ
n+1 + (φn)3

+ a1(1− ε)Lδ(φn+1 − φn)− 2a2L2
δ(φ

n+1 − φn) + a3L3
δ(φ

n+1 − φn).

Specifically, we choose a1 = 0, a2 = 1, and a3 = 0 which satisfy the parameter
constraints provided in [19].

For the SAV schemes, we specify the linear nonnegative operator as L = L2
δ +

2Lδ + I. The time step is fixed at ∆t = 1.

Example 5. We consider (3.9) in the two-dimensional domain [0, 50]× [0, 50] with
periodic boundary conditions. Fix ε = 0.025 and φ̄ = 0.07. The Fourier Galerkin
method is used for spatial discretization with N = 27.

The residual of (3.9) is defined so that it measures how far the solution is away
from the steady state,

residual =
∥∥Lδ(L2

δφ+ 2Lδφ+ (1− ε)φ+ φ3)
∥∥2

2
.

The initial value possesses a square structure, drawn in the first row in Figure 5, and
the configurations at T = 2400 and 4800 are shown in the other two rows. There is
no visible difference among the results for all three schemes at T = 2400. However,
for both SAV schemes, the system eventually evolves to a stable hexagonal structure,
while for the SSI scheme it remains as the unstable square structure. We also plot
the free energy and residual as functions of time for the three schemes (see Figure 6).
For the SSI scheme, the residue starts to increase when T > 3000, and the free energy
eventually increases, violating the energy law. On the other hand, the free energy
curves for both SAV schemes remain dissipative, with no visible difference between
them. This example clearly shows that our SAV schemes have much better stability
and accuracy than the SSI scheme for the nonlocal model (3.9).
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T=4800

T=0

T=2400

SAV/BDF SAV/CNSSI

Fig. 5 (Example 5.) Configuration evolutions for nonlocal phase field crystals (NPFC) model by
three schemes.
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Fig. 6 (Example 5.) Energy evolutions and residual evolutions for NPFC models using three
schemes.

4. Higher-Order SAV Schemes and Adaptive Time Stepping. We describe
below how to construct higher-order schemes for gradient flows by combining the
SAV approach with higher-order BDF schemes, and also how to implement adaptive
time stepping to further increase the computational efficiency.
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4.1. Higher-Order SAV Schemes. For the reformulated system (2.1c)–(2.1b),
we can easily use the SAV approach to construct BDF-k (k ≥ 3) schemes. Since
BDF-k (k ≥ 3) schemes are not A-stable for ODEs, they will not be unconditionally
stable. We will focus on BDF3 and BDF4 schemes below, since for k > 4, the resulting
BDF-k schemes do not appear to be stable.

The SAV/BDF3 scheme is given by

11φn+1 − 18φn + 9φn−1 − 2φn−2

6∆t
= Gµn+1,

µn+1 = Lφn+1 +
rn+1√
E1[φ̄n+1]

U [φ̄n+1],

11rn+1 − 18rn + 9rn−1 − 2rn−2

=

∫
Ω

U [φ̄n+1]

2
√
E1[φ̄n+1]

(11φn+1 − 18φn + 9φn−1 − 2φn−2)dx,

where φ̄n+1 is a third-order explicit approximation to φ(tn+1). The SAV/BDF4
scheme is given by

25φn+1 − 48φn + 36φn−1 − 16φn−2 + 3φn−3

12∆t
= Gµn+1,

µn+1 = Lφn+1 +
rn+1√
E1[φ̄n+1]

U [φ̄n+1],

25rn+1 − 48rn + 36rn−1 − 16rn−2 + 3rn−3

=

∫
Ω

U [φ̄n+1]

2
√
E1[φ̄n+1]

(25φn+1 − 48φn + 36φn−1 − 16φn−2 + 3φn−3)dx,

where φ̄n+1 is a fourth-order explicit approximation to φ(tn+1).
To obtain φ̄n+1 in BDF3, we can use the extrapolation (BDF3A),

φ̄n+1 = 3φn − 3φn−1 + φn−2,

or prediction by one BDF2 step (BDF3B),

φ̄n+1 = BDF2{φn, φn−1,∆t}.

Similarly, to obtain φ̄n+1 in BDF4, we can do the extrapolation (BDF4A)

φ̄n+1 = 4φn − 6φn−1 + 4φn−2 − φn−3,

or prediction with one step of BDF3A (BDF4B),

φ̄n+1 = BDF3{φn, φn−1, φn−2,∆t}.

It can be seen that using the prediction with a lower-order BDF step will double the
total computation cost.

Example 6. We take the Cahn–Hilliard equation as an example to demonstrate
the numerical performance of the SAV/BDF3 and SAV/BDF4 schemes. We fix the
computational domain as [0, 2π)2 and ε = 0.1. We use the Fourier Galerkin method
for spatial discretization with N = 27. The initial data is u0(x, y) = 0.05 sin(x) sin(y).
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Fig. 7 (Example 6.) Energy evolution for BDF3 and BDF4 schemes.
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Fig. 8 (Example 6.) Numerical convergence of BDF3 and BDF4.

We first examine the energy evolution of BDF3A, BDF3B, BDF4A, and BDF4B
with ∆t = 10−3 and ∆t = 10−4, respectively. The numerical results are shown in
Figure 7. We find that BDF4A is unstable and BDF3A shows oscillations in energy
with ∆t = 10−3. Hence, in what follows, we will focus on BDF3B and BDF4B, which
are abbreviated by BDF3 and BDF4.

Next, we examine the numerical errors of BDF3 and BDF4, plotted in Figure 8.
The reference solution is obtained by ETDRK4 with a sufficiently small time step. It
can be observed that BDF3 and BDF4 schemes achieve third-order and fourth-order
convergence rates, respectively.

We then compare the numerical results of BDF2, BDF3, and BDF4.
The energy evolution and the configuration at t = 0.016 are shown in Figure 9

(for the first row ∆t = 10−3, and for the second row ∆t = 10−4). We observe that
at ∆t = 10−4, all schemes lead to the correct solution although there is some visible
difference in the energy evolution between BDF2 and the other higher-order schemes,
but at ∆t = 10−3, only BDF4 leads to the correct solution. The above results indicate
that higher-order SAV schemes can be used to improve accuracy.
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Fig. 9 (Example 6.) Comparison of BDF2, BDF3, and BDF4. Upper: ∆t = 10−3. Lower: ∆t =
10−4. The line graphs give the energy evolution. All the snapshots are taken at t = 0.016.

4.2. Adaptive Time Stepping. In many situations, the energy and solution of
gradient flows can vary drastically in a certain time interval, but only slightly else-
where. One main advantage of unconditional energy stable schemes is that they can
be easily implemented with an adaptive time stepping strategy so that the time step
is dictated only by accuracy rather than by stability as with conditionally stable
schemes.

There are several adaptive strategies for the gradient flows. Here, we follow the
adaptive time stepping strategy in [64] summarized in Algorithm 1, which has been
shown to be effective for Allen–Cahn equations. In Step 4 and Step 6 of Algorithm 1,
the formula for updating the time step size is given by

(4.1) Adp(e, τ) = ρ

(
tol

e

)1/2

τ,

along with restriction of the minimum and maximum time steps. In the above, ρ is
a default safety coefficient, tol is a reference tolerance, and e is the relative error at
each time level computed in Step 3 in Algorithm 1. In the following example, we
choose ρ = 0.9 and tol = 10−3. The minimum and maximum time steps are taken as
τmin = 10−5 and τmax = 10−2, respectively. The initial time step is taken as τmin.

Algorithm 1 Time step adaptive procedure.

Given: Un, τn.

Step 1. Compute Un+1
1 by the first-order SAV scheme with τn.

Step 2. Compute Un+1
2 by the second-order SAV scheme with τn.

Step 3. Calculate en+1 =
||Un+1

1 −Un+1
2 ||

||Un+1
2 || .

Step 4. if en+1 > tol, then
Recalculate time step τn ← max{τmin,min{Adp(en+1, τn), τmax}}.

Step 5. goto Step 1
Step 6. else

Update time step τn+1 ← max{τmin,min{Adp(en+1, τn), τmax}}.
Step 7. endif
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Fig. 10 (Example 7.) Numerical comparisons among small time steps, adaptive time steps, and
large time steps.

We use the two-dimensional Cahn–Hilliard equation as an example to demonstrate
the performance of the time adaptivity.

Example 7. Consider the two-dimensional Cahn–Hilliard equation on [0, 2π] ×
[0, 2π] with periodic boundary conditions and random initial data. We take ε = 0.1
and use the Fourier-spectral method with Nx = Ny = 256.

As comparison, we compute a reference solution using the SAV/CN scheme with a
small uniform time step τ = 10−5 and a large uniform time step τ = 10−3. Snapshots
of phase evolutions, original energy evolutions, and modified energy evolution, and
the size of time steps in the adaptive experiment, are shown in Figure 10. It can
be observed that the adaptive time solutions given in the middle row are in good
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agreement with the reference solution presented in the top row. However, the solutions
with large time step are far away from the reference solution. This is also indicated
by both the original energy evolutions and the modified energy evolutions. Note also
that the time step changes accordingly with the energy evolution. There are almost
three orders of magnitude variation in the time step, which indicates that the adaptive
time stepping for the SAV schemes is very effective.

5. Various Applications of the SAV Approach. We emphasize that the SAV
approach can be applied to a large class of gradient flows. In this section, we shall
apply the SAV approach to several challenging gradient flows with different charac-
teristics and show that the SAV approach leads to very efficient and accurate energy
stable numerical schemes for these problems and for those with similar characteristics.

5.1. Gradient Flows with Nonlocal Free Energy. In most gradient flows, the
governing free energy is local, i.e., can be written as an integral of functions about
order parameters and their derivatives on a domain Ω. In fact, many of these models
can be derived as approximations of density functional theory (DFT) (see, for example,
[54]) that take a nonlocal form. Recently, there has been growing interest in using
nonlocal models to describe phenomena that are difficult to capture in local models.
Examples include peridynamics [71] and quasi-crystals [5, 7, 43].

Although more complicated forms are possible, we consider the following free
energy functional that covers those in the models mentioned above,

E [φ] =

∫
Ω

(
F (φ) +

1

2
φLφ

)
dx +

1

2

∫
Ω

∫
Ω

K(|x− x′|)φ(x)φ(x′)dx′dx

:= (F (φ), 1) +
1

2
(Lφ, φ) +

1

2
(φ,Lnφ),(5.1)

where L is a local symmetric positive differential operator, K(|x − x′|) is a kernel
function, F (φ) is a nonlinear (local) free energy density, and the operator Ln is given
by

(5.2) (Lnφ)(x) =

∫
K(|x− x′|)φ(x′)dx′.

Then, the corresponding gradient flow associated with energy dissipation G is

(5.3)
∂φ

∂t
= G (Lφ+ Lnφ+ f(φ)) ,

where f(φ) = F ′(φ).
In general, L may not be positive and can be controlled by the nonlinear term

F (φ), as in the nonlocal models we mentioned above. In this case, we may place part
of the nonlocal term together with the nonlinear term, and then handle the nonlocal
term explicitly in the SAV approach. More precisely, we split Ln = Ln1 + Ln2 and
set

El(φ) =
1

2
(Lφ, φ) +

1

2
(φ,Ln1φ), En(φ) =

1

2
(φ,Ln2φ) + (F (φ), 1),

where we assume that Ln1 is positive and En(φ) ≥ C0 > 0. We introduce an SAV

r(t) =
√
En(φ),

and rewrite the gradient flow (5.3) as

∂φ

∂t
= G

(
(L+ Ln1)φ+

r√
En(φ)

(Ln2φ+ f(φ))

)
,(5.4a)
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dr

dt
=

1

2
√
En(φ)

(
∂φ

∂t
,Ln2φ+ f(φ)

)
.(5.4b)

Then the second-order BDF scheme based on the SAV approach is

3φn+1 − 4φn + φn−1

2∆t
= Gµn+1,

(5.5a)

µn+1 = (L+ Ln1)φn+1 +
rn+1√
En[φ̄n+1]

(
Ln2φ̄

n+1 + f(φ̄n+1)
)
,

(5.5b)

3rn+1 − 4rn + rn−1 =
1

2
√
En[φ̄n+1]

(
Ln2φ̄

n+1 + f(φ̄n+1), 3φn+1 − 4φn + φn−1
)
.

(5.5c)

Similarly, it is easy to show that the above scheme is unconditionally energy stable
and that the scheme only requires, at each time step, solving two linear systems of
the form

(5.6) (I − λ∆tG(L+ Ln1))φ = f.

In particular, if L > Ln, a good choice can be Ln1 = 0 and Ln2 = Ln, and we only
need to solve equations with common differential operators. Note also that the phase
field crystal model considered in section 3.2 is a special case with L = 0 and Ln2 = 0.

Note that the above problem cannot be easily treated with convex splitting or
IEQ approaches.

5.2. Molecular Beam Epitaxial (MBE) without Slope Selection. The energy
functional for molecular beam epitaxial (MBE) without slope selection is given by
[50]

(5.7) E [φ] =

∫
Ω

[
−1

2
ln(1 + |∇φ|2) +

η2

2
|∆φ|2

]
dx.

In [18], a first-order linear scheme is proposed, where a stabilized term is added to
maintain the energy decaying property. A main difficulty is that the first part of
the energy density, − 1

2 ln(1 + |∇φ|2), is unbounded from below, so the IEQ approach
cannot be applied. However, the SAV approach is still applicable, and it is analyzed
and implemented in [20]. Below we summarize the main points of that work to show
how the SAV approach works.

One can show (see [20, Lemma 3.1]) for any α0 > 0, there exists C0 > 0 such that

(5.8) E1[φ] =

∫
Ω

[
−1

2
ln(1 + |∇φ|2) +

α

2
|∆φ|2

]
dx ≥ −C0 ∀α ≥ α0 > 0.

Hence, we can choose α0 < α < η2 and split E [φ] as

E [φ] = E1[φ] +

∫
Ω

η2 − α
2
|∆φ|2dx.

Now we introduce an SAV

r(t) =

√∫
Ω

α

2
|∆φ|2 − 1

2
ln(1 + |∇φ|2)dx + C0
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and rewrite the gradient flow for MBE as

∂φ

∂t
+ (η2 − α)∆2φ+G(φ)r(t) = 0,(5.9a)

dr

dt
=

1

2

∫
Ω

G(φ)
∂φ

∂t
dx,(5.9b)

where G(φ) is given following (2.1c),

G(φ) =

δE1[φ]
δφ√
E1[φ]

=
α∆2φ+∇ ·

(
∇φ

1+|∇φ|2

)
√∫

Ω
α
2 |∆φ|2 − 1

2 ln(1 + |∇φ|2)dx + C0

.

Therefore, we can use the SAV approach to construct, for (5.9), second-order linear,
unconditionally energy stable schemes which only require, at each time step, solving
two linear equations of the form

(I + ∆t∆2)φ = f.

It is clear that the SAV approach is more efficient and easier to implement than exist-
ing energy stable schemes that involve solving nonlinear equations (cf., for instance,
[50, 65, 61]). We refer the reader to [20] for more detail on SAV schemes and their
numerical validation.

5.3. Q-Tensor Model for Rod-Like Liquid Crystals. In many liquid crystal
models, a symmetric traceless second-order tensor Q ∈ R3×3 is used to describe the
orientational order. We consider the Landau–de Gennes free energy [22] that has been
applied to study various phenomena, both analytically (see, for example, [55, 59]) and
numerically (see, for example, [70, 63, 78]). It can be written as E [Q(x)] = Eb + Ee,
where

Eb =

∫
Ω

fb(Q)dx =

∫
Ω

[
a

2
trQ2 − b

3
trQ3 +

c

4
(trQ2)2

]
dx,(5.10)

Ee =

∫
Ω

[
L1

2
|∇Q|2 +

L2

2

3∑
k=1

∂iQik∂jQjk +
L3

2

3∑
k=1

∂iQjk∂jQik

]
dx.(5.11)

Ensuring the lower-boundedness requires c > 0, L1, L1 +L2 +L3 > 0, so that we have
Eb, Ee ≥ 0.

We consider the L2 gradient flow

∂Qij
∂t

= −
(
δE
δQ

[Q]

)
ij

, 1 ≤ i, j ≤ 3,(5.12)

with

(
δEb
δQ

[Q]

)
ij

= aQij − b
(
QikQkj −

1

3
trQ2 · δij

)
+ ctrQ2 ·Qij ,

(5.13)

(
δEe
δQ

[Q]

)
ij

= −L1∆Qij −
L2 + L3

2

 3∑
k=1

(∂ikQjk + ∂jkQik)− 2

3

3∑
k,l=1

∂klQklδij

 .

(5.14)
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We can see that the components of Q are coupled both in Eb and Ee, which makes it
difficult to deal with numerically.

Since we have a positive quartic term c(trQ2)2, we can choose a1, C0 ≥ 0 such
that fb(Q)− a1trQ2/2 + C0 > 0. We introduce an SAV

r(t) =
√
E1 :=

√
Eb(Q)−

∫
Ω

a1

2
trQ2dx + C0.

Let L be defined as

LQ = a1Q+
δEe
δQ

[Q],

where (δEe/δQ)[Q] defines a linear operator on Q. Hence, we can rewrite (5.12) as

∂Q

∂t
= −µ,

µ = LQ+
r(t)√E1

δE1
δQ

[Q],

dr

dt
=

1

2
√E1

(
δE1
δQ

[Q],
∂Q

∂t

)
.

(5.15)

where we define the inner product as (A,B) =
∫

Ω

∑3
i,j=1AijBijdx. Then the SAV/CN

scheme for (5.15) is

Qn+1 −Qn
∆t

= −µn+1/2,(5.16a)

µn+1/2 = L1

2
(Qn+1 +Qn) +

rn+1 + rn

2
√
E1[Q̄n+1/2]

δE1
δQ

[Q̄n+1/2],(5.16b)

rn+1 − rn =
1

2
√
E1[Q̄n+1/2]

(δE1
δQ

[Q̄n+1/2], Qn+1 −Qn
)
.(5.16c)

One can easily show that the above scheme is unconditionally energy stable. Below,
we describe how to implement it efficiently.

Denoting

S =
1

2
√
E1[Q̄n+1/2]

δE1
δQ

[Q̄n+1/2],

we can rewrite (5.16) as a coupled linear system of the form

(1 + λL)Qn+1 +
λ

2
S(S,Qn+1) = bn, 1 ≤ i, j ≤ 3,(5.17)

where λ = ∆t
2 , and the scalar αn+1 = (S,Qn+1) can be solved explicitly as follows.

Multiplying (5.17) with (1 + λL)−1, we find

Qn+1 +
λ

2
· αn+1(I + λL)−1S = (1 + λL)−1bn.(5.18)

Taking the inner product of the above with S, we then obtain

αn+1
(

1 +
λ

2

(
S,
(
1 + λL)−1S

))
=
(
S, (I + λL)−1bn

)
.(5.19)
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Thus, we can find αn+1 by solving two equations of the form

(5.20) (I + λL)Q = g,

which can be efficiently solved since they are simply coupled second-order equations
with constant coefficients. For example, in the case of periodic boundary conditions,
we can write down the solution explicitly as follows. Because Q is symmetric and
traceless, we choose x = (Q11, Q22, Q12, Q13, Q23)T as independent variables. We
expand the above five variables using Fourier series,

Qij =
∑

k1,k2,k3

Q̂k1k2k3ij exp(i(k1x1 + k2x2 + k3x3)).

Then, when solving the linear equation (5.20), only the Fourier coefficients with the
same indices (k1, k2, k3) are coupled. More precisely, for each (k1, k2, k3), the coeffi-
cient matrix for the unknowns Q̂k1k2k3ij with (ij = 11, 22, 12, 13, 23) is given by

Ak1k2k3 = 1 + λ(a1 + L1(k2
1 + k2

2 + k2
3))I

− λ(L2 + L3)


− 2

3k
2
1 − 1

3k
2
3

1
3k

2
2 − 1

3k
2
3 − 1

3k1k2 − 1
3k1k3

2
3k2k3

1
3k

2
1 − 1

3k
2
3 − 2

3k
2
2 − 1

3k
2
3 − 1

3k1k2
2
3k1k3 − 1

3k2k3

− 1
2k1k2 − 1

2k1k2 − 1
2k

2
1 − 1

2k
2
2 − 1

2k2k3 − 1
2k1k3

0 1
2k1k3 − 1

2k2k3 − 1
2k

2
1 − 1

2k
2
3 − 1

2k1k2

1
2k2k3 0 − 1

2k1k3 − 1
2k1k2 − 1

2k
2
2 − 1

2k
2
3

 .

Hence, we can obtain the Fourier coefficients Q̂k1k2k3ij for each i, j by inverting the
above 5× 5 matrix.

Example 8. We use SAV/CN to solve (5.12) in [0, L]2, L = 2π, with periodic
boundary conditions, discretized with 64 × 64 Fourier series and ∆t = 10−3. The
parameters are chosen as a = −1/25, b = c = 1, L1 = L2 + L3 = 1, and a1 = 0,
C0 = 10.

With these parameters, the global minimizers of the bulk energy density fb(Q)
can be written as

(5.21) Q =
3

5
(n⊗ n− 1

3
I),

where n is arbitrary unit vector. We choose the initial value such that Q(x, y) has
this form at each point, with

(5.22) n(x, y) =

{
(1, 0, 0)T , |x− L

2 | ≤ L
4 and |y − L

2 | ≤ L
4 ,

(0, 1, 0)T , |x− L
2 | > L

4 or |y − L
2 | > L

4 .

To present the result, we draw the field of the principal eigenvector of Q(x, y)
(see Figure 11), representing the direction along which liquid crystalline molecules
accumulate. Initially, the principal eigenvector is along the x-direction in a square
region, while it is along the y-direction elsewhere. The square region is first driven
into a circle by the gradient flow, then shrinks until it vanishes. The energy evolution,
with the original and modified energies indistinguishable, is shown in Figure 12. We
observe that the energy dissipation is satisfied.
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Fig. 11 (Example 8.) Evolution of the principal eigenvector.

6. Conclusion. We have proposed a new SAV approach for dealing with a large
class of gradient flows. This approach keeps all the advantages of the IEQ approach,
namely, the schemes are unconditionally stable about a modified energy and are linear
and second-order accurate, while it offers the following additional advantages:
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Fig. 12 (Example 8.) Energy evolution.

• It greatly simplifies the implementation and is much more efficient: at each
time step of the SAV schemes, the computations of the SAV rn+1 and that of
the original unknowns are totally decoupled and only require solving linear
systems with constant coefficients.

• It only requires that E1[φ] =
∫

Ω
g(φ, . . . ,∇mφ)dx, rather than g(φ, . . . ,∇mφ),

is bounded from below. It also allows us to deal with nonlinear energy func-
tionals without the above form, for example, those containing multiple in-
tegrals. Thus, it applies to a larger class of gradient flows. In particular,
it offers an effective approach to deal with gradient flows with nonlocal free
energy.

Furthermore, we can even construct higher-order stiffly stable schemes with all the
above attributes by combining the SAV approach with higher-order BDF schemes.
Also, when coupled with a suitable time adaptive strategy, the SAV schemes are
extremely efficient and applicable to a large class of gradient flows.

Although the SAV approach appears to be applicable for a large class of gradient
flows, an essential requirement for it to produce physically consistent results is that
L in the energy splitting (1.3) contains sufficient dissipative terms (with at least
linearized highest derivative terms) such that E1[φ] is not “dominant.” This can
usually be achieved with a clever splitting of the free energy; (3.3) is such an example.
A better splitting can lead to better accuracy. The splitting of energy relies on an
understanding of the free energy and needs to be discussed case by case. Thus, it is
a problem that requires further study.

We have focused in this paper on gradient flows with linear dissipative mech-
anisms. For problems with highly nonlinear dissipative mechanisms, e.g., Gµ =
∇ · (a(φ)∇µ) with degenerate or singular a(φ), such as in Wasserstein gradient flows
or gradient flows with strong anisotropic free energy [15], the direct application of
the SAV approach may not be the most efficient as it leads to degenerate or singu-
lar nonlinear equations to solve at each time step. In [67], we developed an efficient
predictor-corrector strategy to deal with this type of problem without the need to
solve nonlinear equations.

There may also be obstacle potentials, such as logarithmic potentials, in the non-
linear free energy that impose constraints on the unknown functions. In some PDEs,
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these constraints are also crucial for the dissipative operators to be nonpositive. The
SAV approach does not provide a mechanism that keeps these constraints in the time-
discretized schemes. To ensure that the numerical solutions satisfy these constraints,
one may need to add restrictions on the time step or find alternative approaches.

While it is important that numerical schemes for gradient flows obey a discrete
energy dissipation law, the energy dissipation itself does not guarantee the conver-
gence. In another work [66], convergence and error analysis for the SAV approach is
carried out. It is proved that with mild conditions on the nonlinear term E1, the SAV
schemes converge to the exact solution of the original problem at a rate identical to
the truncation error. This applies to most of the equations discussed in this paper.
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[6] S. Badia, F. Guillén-González, and J. V. Gutiérrez-Santacreu, Finite element approx-
imation of nematic liquid crystal flows using a saddle-point structure, J. Comput. Phys.,
230 (2011), pp. 1686–1706. (Cited on p. 477)

[7] K. Barkan, M. Engel, and R. Lifshitz, Controlled self-assembly of periodic and aperiodic
cluster crystals, Phys. Rev. Lett., 113 (2014), art. 098304. (Cited on p. 496)

[8] J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase sepa-
ration of a multi-component alloy with non-smooth free energy, Numer. Math., 77 (1997),
pp. 1–34. (Cited on pp. 476, 482)

[9] J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase sep-
aration of a multi-component alloy with a concentration-dependent mobility matrix, IMA
J. Numer. Anal., 18 (1998), pp. 287–328. (Cited on pp. 476, 482)

[10] A. Baskaran, J. S. Lowengrub, C. Wang, and S. M. Wise, Convergence analysis of a
second order convex splitting scheme for the modified phase field crystal equation, SIAM
J. Numer. Anal., 51 (2013), pp. 2851–2873, https://doi.org/10.1137/120880677. (Cited on
p. 476)

[11] F. Boyer and S. Minjeaud, Hierarchy of consistent n-component Cahn-Hilliard systems,
Math. Models Methods Appl. Sci., 24 (2014), pp. 2885–2928. (Cited on p. 482)

[12] S. Brazovskii, Phase transition of an isotropic system to a nonuniform state, Soviet JETP,
41 (1975), pp. 85–89. (Cited on p. 488)

[13] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,
J. Chem. Phys., 28 (1958), pp. 258–267. (Cited on p. 485)

[14] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a
two-component incompressible fluid, J. Chem. Phys., 31 (1959), pp. 688–699. (Cited on
p. 485)

[15] F. Chen and J. Shen, Efficient energy stable schemes with spectral discretization in space for
anisotropic Cahn-Hilliard systems, Commun. Comput. Phys., 13 (2013), pp. 1189–1208.
(Cited on p. 502)

[16] L. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mat. Res., 32 (2002),
pp. 113–140. (Cited on p. 482)

[17] L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field
equations, Comput. Phys. Commun., 108 (1998), pp. 147–158. (Cited on p. 486)

[18] W. Chen, S. Conde, C. Wang, X. Wang, and S. Wise, A linear energy stable scheme for a
thin film model without slope selection, J. Sci. Comput., 52 (2012), pp. 546–562. (Cited on
p. 497)

D
ow

nl
oa

de
d 

08
/1

3/
19

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/16M1075302
https://doi.org/10.1137/16M1075302
https://doi.org/10.1137/120880677


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

504 JIE SHEN, JIE XU, AND JIANG YANG

[19] M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model,
J. Comput. Phys., 227 (2008), pp. 6241–6248. (Cited on p. 490)

[20] Q. Cheng, J. Shen, and X. Yang, Highly efficient and accurate numerical schemes for the
epitaxial thin film growth models by using the SAV approach, J. Sci. Comput., 78 (2019),
pp. 1467–1487, https://doi.org/10.1007/s10915-018-0832-5. (Cited on pp. 497, 498)

[21] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput.
Phys., 176 (2002), pp. 430–455. (Cited on p. 486)

[22] P. De Gennes, Short range order effects in the isotropic phase of nematics and cholesterics,
Molecular Crystals Liquid Crystals, 12 (1971), pp. 193–214. (Cited on p. 498)

[23] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, 1988.
(Cited on p. 475)

[24] S. Dong, An efficient algorithm for incompressible N-phase flows, J. Comput. Phys., 276
(2014), pp. 691–728. (Cited on p. 482)

[25] Q. Du and J. Yang, Fast and accurate implementation of Fourier spectral approximations of
nonlocal diffusion operators and its applications, J. Comput. Phys., 332 (2017), pp. 118–
134. (Cited on p. 490)

[26] K. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium pro-
cessing using phase field crystals, Phys. Rev. E, 70 (2004), art. 051605. (Cited on pp. 475,
489)

[27] K. Elder, M. Katakowski, M. Haataja, and M. Grant, Modeling elasticity in crystal
growth, Phys. Rev. Lett., 88 (2002), art. 245701. (Cited on pp. 475, 489)

[28] K. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, Phase-field crystal model-
ing and classical density functional theory of freezing, Phys. Rev. B, 75 (2007), art. 064107.
(Cited on pp. 475, 489)

[29] C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equa-
tions, SIAM J. Numer. Anal., 30 (1993), pp. 1622–1663, https://doi.org/10.1137/0730084
(Cited on p. 476)

[30] D. J. Eyre, Systems of Cahn–Hilliard equations, SIAM J. Appl. Math., 53 (1993), pp. 1686–
1712, https://doi.org/10.1137/0153078. (Cited on p. 482)

[31] D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, in MRS
Proc. 529, Cambridge University Press, 1998, p. 39. (Cited on p. 476)

[32] M. G. Forest, Q. Wang, and R. Zhou, The flow-phase diagram of Doi-Hess theory for
sheared nematic polymers II: Finite shear rates, Rheologica Acta, 44 (2004), pp. 80–93.
(Cited on p. 475)

[33] M. G. Forest, Q. Wang, and R. Zhou, The weak shear kinetic phase diagram for nematic
polymers, Rheologica Acta, 43 (2004), pp. 17–37. (Cited on p. 475)

[34] J. Fraaije, Dynamic density functional theory for microphase separation kinetics of block
copolymer melts, J. Chem. Phys., 99 (1993), pp. 9202–9212. (Cited on p. 475)

[35] J. Fraaije and G. Sevink, Model for pattern formation in polymer surfactant nanodroplets,
Macromolecules, 36 (2003), pp. 7891–7893. (Cited on p. 475)

[36] J. Fraaije, B. Van Vlimmeren, N. Maurits, M. Postma, O. Evers, C. Hoffmann, P. Al-
tevogt, and G. Goldbeck-Wood, The dynamic mean-field density functional method
and its application to the mesoscopic dynamics of quenched block copolymer melts, J.
Chem. Phys., 106 (1997), pp. 4260–4269. (Cited on p. 475)

[37] T. Garel and S. Doniach, Phase transitions with spontaneous modulation—the dipolar Ising
ferromagnet, Phys. Rev. B, 26 (1982), pp. 325–329. (Cited on p. 488)

[38] L. Giacomelli and F. Otto, Variational formulation for the lubrication approximation of the
Hele-Shaw flow, Calc. Var. Partial Differential Equations, 13 (2001), pp. 377–403. (Cited
on p. 475)

[39] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Studies in
the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. (Cited
on p. 484)

[40] G. Gompper and M. Schick, Correlation between structural and interfacial properties of
amphiphilic systems, Phys. Rev. Lett., 65 (1990), pp. 1116–1119. (Cited on p. 488)
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