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Abstract

An efficient direct parallel elliptic solver based on the spectral element discretization is developed. The direct solver is
based on a matrix decomposition approach which reduces multi-dimensional separable problems to a sequence of one-
dimensional problems that can be efficiently handled by a static condensation process. Thanks to the spectral accuracy
and the localized nature of a spectral element discretization, this elliptic solver is spectrally accurate and can be efficiently
parallelized, and it can serve as an essential building block for large scale high-performance solvers in computational fluid
dynamics and computational materials science.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, spectral and spectral-element methods have enjoyed an increased popularity among com-
putational scientists who value accurate and reliable numerical approximations. In particular, the spectral-
element method (cf. [15]), which combines the advantages of the high accuracy of the spectral method and
the geometric flexibility of the finite-element method, has been used successfully in many large scale compu-
tations for real life applications (see, for instance, [8,12] and the references therein).

For obvious reasons, well-developed spectral-element codes such as NEK5000 (cf. [23]) and NEKTAR (cf.
[11]) do not really take advantage of the situations where the domains are simple separable domains, and use
in general a suitable iterative procedure to solve the underlying linear systems. However, there are many
emerging applications which are set on simple domains but require integrating PDEs with very large numbers
of degree of freedoms for a very long time interval. In these situations, it is desirable to have an accurate, fast
and direct parallel solver. The goal of this paper is to develop such an elliptic solver based on a spectral-
element discretization. We recall that such elliptic solvers based on a (one-element) spectral discretization
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are well developed (cf., for instance, [3,10,18,19,25]), but they are not particularly tuned for parallel
computations due to the global nature of the (one-element) spectral method. On the other hand, many appli-
cations have some localized features, such as layered materials, thin interfaces, that can be better treated by a
spectral-element discretization.

In practice, a spectral-element discretization is often combined with a domain decomposition approach (cf.
[7]). In particular, the technique of static condensation (also known as sub-structuring) is often used to decou-
ple the interior unknowns from the interface ones, making direct solvers affordable in one- and two-space
dimensions (see, for instance, [5,15]). Nevertheless, for three-dimensional problems, the size of the interface
unknowns become prohibitively large to allow a direct method so an iterative technique become necessary
(see, e.g., [17,22]). Although optimal preconditioners are available for finite element discretizations, only
sub-optimal (with respect to the polynomial degree used in each element) preconditioners are available for
a spectral-element discretization (cf. [1,16,22]), making the spectral element solvers (particularly when high-
order polynomials are used) considerably more expensive than finite element solvers in three-space dimension.
This is one of the reasons why usually relatively low degrees of polynomials (�12) are used in a spectral-ele-
ment discretization.

We develop in this paper a direct, parallel spectral-element solver for separable elliptic problems. The solver
is based on a matrix decomposition approach [6,13,25] which reduces multi-dimensional problems to a
sequence of one-dimensional problems that can be efficiently handled by a static condensation process. The
advantages of this solver include: (i) it is a direct solver for both two and three dimensions with a competitive
computational complexity; (ii) it can be efficiently parallelized thanks to the localized nature of the spectral-
element discretization; and (iii) it allows for larger time step for time-dependent problems since the collocation
points are not as close together as in the global spectral methods.

The paper is organized as follows. In Section 2, we describe the algorithm and its extension to multi-dimen-
sional problems. The parallel implementation is discussed in Section 3. In Section 4, we illustrate the efficiency
of the algorithm with several numerical examples. Finally, some concluding remarks are given in Section 5.
2. Description of the algorithm

To simplify the notation, we consider the Poisson-type equation with homogeneous Dirichlet boundary
conditions
au� Du ¼ f ; in X; ujoX ¼ 0; ð2:1Þ

where a is a non-negative constant and X is a two- or three-dimensional separable domain. For the purpose of
illustration, we shall describe in some detail the solution procedures for two particular cases: (i) X being a 3-D
rectangular box, i.e.
X ¼ ðx�; xþÞ � ðy�; yþÞ � ðz�; zþÞ; ð2:2Þ

and (ii) X being the region between two concentric cylinders, i.e.
X ¼ fðr; h; zÞ : r� < r < rþ; 0 6 h < 2p; z� < z < zþg: ð2:3Þ

Extensions to other separable elliptic equations with more general and/or non-homogeneous boundary con-
ditions are quite straightforward and will be discussed along the way. As the finite element methods, the spec-
tral-element method for (2.1) is based on a variational formulation. Let us denote V ¼ H 1

0ðXÞ. Then, the
variational formulation for (2.1) is: Find u 2 V such that
Aðu; vÞ ¼FðvÞ 8v 2 V ; ð2:4Þ
where
Aðu; vÞ :¼ aðu; vÞ þ ðru;rvÞ;
FðvÞ :¼ ðf ; vÞ;

ð2:5Þ
and (Æ, Æ) represents the inner-product in L2(X).
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Our basic strategy is to use the matrix diagonalization method (cf. [13]), which is a discrete version of sep-

aration of variables, to reduce the multi-dimensional problem to a sequence of one-dimensional problems.
Hence, we shall start with the one-dimensional case.

2.1. One-dimensional case

Let X = (x�,x+) and DK be a partition of (x�,x+) with K elements:
DK : x� ¼ x0 < x1 < � � � < xK�1 < xK ¼ xþ:
and set Xk ¼ ðxk�1; xkÞ; k ¼ 1; . . . ;K. We now describe the spectral-element method (see, for instance, Chapter
22 in [5] for a similar description). We define the spectral-element space
V K
N :¼ fu 2 V : ujXk

2 PN ; k ¼ 1; . . . ;Kg;
where PN is the space of polynomials of degree less than or equal to N. Then the spectral-element method for
(2.4) in the one-dimensional case is to find uK

N 2 V K
N such that
AðuK
N ; vÞ ¼FðvÞ 8v 2 V K

N : ð2:6Þ

Let f/k

i ; i ¼ 1; . . . ;N � 1g be a set of basis functions (to be specified later) for V k ¼ PN \ H 1
0ðXkÞ, and

fwk; k ¼ 1; . . . ;K � 1g be the piecewise linear hat functions based on the grid fxk; k ¼ 0; . . . ;Kg. Then
V K
N ¼ spanf/k

i ; k ¼ 1; . . . ;K; i ¼ 1; . . . ;N � 1; wk; k ¼ 1; . . . ;K � 1g: ð2:7Þ

Let us denote by Ak, Bk (k = 1, . . .,K) and C the matrices with the elements
Ak
i;j ¼Að/k

j ;/
k
i Þ; i; j ¼ 1; . . . ;N � 1;

Bk
i;j ¼Aðwj;/

k
i Þ; i ¼ 1; . . . ;N � 1; j ¼ 1; . . . ;K � 1;

Ci;j ¼Aðwj;wiÞ; i; j ¼ 1; . . . ;K � 1;
and set
A ¼ diagðA1; . . . ;AkÞ; B ¼ ðB1; . . . ;BkÞT:

Writing uK

N as an expansion in the basis functions, i.e.
uK
N ¼

XK

k¼1

XN�1

i¼1

u1
k;i/

k
i þ

XK�1

k¼1

u2
kwk
and denoting
u1 ¼ ðu1
1;1; . . . ; u1

1;N�1; . . . ; u1
K;1; . . . ; u1

K;N�1Þ
T
;

u2 ¼ ðu2
1; . . . ; u2

K�1Þ
T
;

f 1 ¼ ðf 1
1;1; . . . ; f 1

1;N�1; . . . ; f 1
K;1; . . . ; f 1

K;N�1Þ
T with f 1

k;i ¼Fð/k
i Þ;

f 2 ¼ ðf 2
1 ; . . . ; f 2

K�1Þ
T with f 2

k ¼FðwkÞ;
where the inner-products Fð/k
i Þ and FðwkÞ are computed with Gauss–Lobatto rule or other numerical inte-

gration. Then (2.6) is reduced to the linear system
A B

BT C

� �
u1

u2

� �
¼

f 1

f 2

" #
: ð2:8Þ
2.1.1. Static condensation

To solve the linear system (2.8), we first compute the Cholesky factorization of A. As we shall demonstrate
below, we can choose suitable basis functions such that fAk; k ¼ 1; . . . ;Kg are banded symmetric matrices, so
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the Cholesky factorization of A can be computed in OðNKÞ operations. With a block Gaussian elimination,
(2.8) can be transformed to
I eB
0 eC
" #

u1

u2

� �
¼

g1

g2

" #
; ð2:9Þ
where eB ¼ A�1B, eC ¼ C � BTA�1B is the Schur complement, and
g1 ¼ A�1f 1; g2 ¼ f 2 � BTg1:
Note that Bk
i;j is nonzero only when j = k � 1 and j = k. Hence eB can be computed in OðNKÞ operations. Note

that both C and eC are symmetric tridiagonal so u2 can be solved in OðKÞ operations, and then, u1 can be com-
puted as
u1 ¼ g1 � eBu2:
We summarize below the steps and operation counts for solving (2.6), assuming that the input is the vectors
f 1, f 2, and the output is the vectors u1, u2.
Step
 Operation count
Preprocessing
Compute A
 OðNKÞ

Cholesky factorization of A
 OðNKÞ

Compute B
 OðNKÞ

Compute eB ¼ A�1B
 OðNKÞ

Compute C
 OðKÞ

Compute eC ¼ C � BTeB
 OðNKÞ
Solving
Compute g1 ¼ A�1f 1
 OðNKÞ

Compute f 2
 OðKÞ

Compute g2 ¼ f 2 � BTg1
 OðKÞ

Compute u2 ¼ eC�1g2
 OðKÞ

Compute u1 ¼ g1 � eBu2
 OðNKÞ
2.1.2. Basis functions

We now introduce the basis functions f/k
i ; k ¼ 1; . . . ;K; i ¼ 1; . . . ;N � 1g that would result in banded

matrices Ak (k = 1, . . .,K).
Let us consider first the 1D equation reduced from (2.1):
au� uxx ¼ f ; in ðx�; xþÞ; uðx�Þ ¼ uðxþÞ ¼ 0: ð2:10Þ

Introducing the local coordinate
~xk ¼ 2 � x� xk�1

xk � xk�1

� 1; x 2 Xk; ð2:11Þ
which transforms the physical domain Xk to the reference domain (�1,1). Following [18] we define
/k
i ðxÞ ¼

Li�1ð~xkÞ � Liþ1ð~xkÞ; x 2 Xk;

0; otherwise;

�
i ¼ 1; . . . ;N � 1; ð2:12Þ
where Li is the Legendre polynomial of degree i. Then, the elements of Ak are
Ak
i;j ¼

ahk

2

Z 1

�1

/k
j ðxÞ/

k
i ðxÞdxþ 2

hk

Z 1

�1

ox/
k
j ðxÞox/

k
i ðxÞdx; i; j ¼ 1; . . . ;N � 1;
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where hk ¼ xk � xk�1. Thanks to the orthogonality of the Legendre polynomials, one finds that Ak is symmetric
with three nonzero diagonals [18].

Next we consider the following 1D equation which, as we shall we later, appears after applying the matrix
diagonalization method to the problem (2.1) in the domain (2.3):
au� 1

r
ðrurÞr þ

c
r2

u ¼ f ; in X ¼ ðr�; rþÞ; uðr�Þ ¼ uðrþÞ ¼ 0: ð2:13Þ
Here c is a non-negative integer. Treating the variable r in the same way as we treat x, the spectral-element
approximation to (2.13) is still (2.6) with the bilinear form Aðu; vÞ and FðvÞ
Aðu; vÞ ¼ aðu; vÞr þ ður; vrÞr þ c
u
r
;
v
r

� �
r
; FðvÞ ¼ ðf ; vÞr;
where the inner product is: ðu; vÞr ¼
R rþ

r�
uvr dr. Note that the basis functions (2.12) will lead to full matrices Ak

due to the term u
r ;

v
r

� �
r
. Hence, we shall use
/k
1ðrÞ ¼

L0ð~rkÞ � L2ð~rkÞ; r 2 Xk ¼ ðrk�1; rkÞ;
0; otherwise;

�
/k

i ðrÞ ¼
ð~rk þ ckÞðLi�2ð~rkÞ � Lið~rkÞÞ; r 2 Xk;

0; otherwise;

�
i ¼ 2; . . . ;N � 1;

ð2:14Þ
where ~rk ¼ 2 � r�rk�1

rk�rk�1
� 1; r 2 Xk, and ck ¼ rk�1þrk

2
. Therefore, the elements of Ak are
Ak
i;j ¼

ahk

2

Z 1

�1

/k
j ðrÞ/

k
i ðrÞðr þ ckÞdr þ 2

hk

Z 1

�1

or/
k
j ðrÞor/

k
i ðrÞðr þ ckÞdr þ 2c

hk

Z 1

�1

1

r þ ck
/k

j ðrÞ/
k
i ðrÞdx;

i; j ¼ 1; . . . ;N � 1;
where hk ¼ rk � rk�1. Then, it can be easily verified that Ak is symmetric with 11 nonzero diagonals.

2.1.3. Some immediate extensions

Equations with variable coefficients. It is clear that we can replace Eq. (2.10) by the more general equation:
aðxÞu� ðbðxÞuxÞx ¼ f ; in ðx�; xþÞ; uðx�Þ ¼ uðxþÞ ¼ 0; ð2:15Þ

where b(x) > 0 and a(x) P 0 could be piecewise continuous. The only difference is that in case a(x) and b(x)
are not constants or piecewise constants, the matrices Ak should be computed with a discrete inner product
based on the local Gauss–Lobatto quadrature and Ak will be in general full.

By the same token, Eq. (2.13) can also be replaced by the more general equation:
aðrÞu� 1

r
ðbðrÞurÞr þ

c
r2

u ¼ f ; in X ¼ ðr�; rþÞ; uðr�Þ ¼ uðrþÞ ¼ 0: ð2:16Þ
More general boundary conditions. First of all, non-homogeneous boundary conditions can be easily treated by
subtracting a suitable simple function satisfying the non-homogeneous boundary condition from the solution,
so we shall only deal with homogeneous boundary conditions in this paper.

Consider for instance the following general boundary conditions for (2.10) or (2.13):
uxðx�Þ þ a�uðx�Þ ¼ 0; uxðxþÞ þ aþuðxþÞ ¼ 0: ð2:17Þ

Although in general such boundary conditions are usually handled weakly, as showed in [20], it is, however,
beneficial and possible to treat them strongly in a spectral approximation to achieve sparsity for the stiffness
and mass matrices. It is clear that one only needs to change the basis functions supported in the two elements
which include a boundary point. For example, the basis function /1

i ðxÞ with support in (x�,x1) should satisfy
ox/
1
i ðx�Þ þ a�/

1
i ðx�Þ ¼ 0; /1

i ðx1Þ ¼ 0; i ¼ 1; 2; � � � ;N � 1: ð2:18Þ
It is shown in [20] that one can uniquely determine ai and bi such that /1
i ðxÞ ¼ Li�1ð~x1Þ þ aiLið~x1Þ þ biLiþ1ð~x1Þ

(where ~x1 is the local variable defined in (2.11)) satisfies (2.18).



1726 Y.-Y. Kwan, J. Shen / Journal of Computational Physics 225 (2007) 1721–1735
2.2. Multi-dimensional case

For the sake of simplicity, we shall start with solving (2.1) in the rectangle X ¼ Xx � Xy ¼ ðx�; xþÞ�
ðy�; yþÞ. The three-dimensional cases (2.2) and (2.3) will be treated afterwards. Eq. (2.1) now reads
au� uxx � uyy ¼ f ; in X;

ujoX ¼ 0:
ð2:19Þ
We now describe the spectral-element approximation for (2.19). Given a rectangular grid on X with nodes
fðxi; yjÞ : 0 6 i 6 Kx; 0 6 j 6 Kyg, we set
V M ¼ fv 2 H 1
0ðXÞ : vjðxi�1;xiÞ�ðyj�1;yjÞ 2 PNx � PNy ; 1 6 i 6 Kx; 1 6 j 6 Kyg; ð2:20Þ
where M ¼ ðMx;MyÞ ¼ ðN xKx � 1;NyKy � 1Þ. Then, the spectral-element approximation to (2.19) is: find
uM 2 V M such that
AðuM; vMÞ ¼FðvMÞ 8vM 2 V M: ð2:21Þ

Let f/x

i g
Mx
i¼1 and f/y

i g
My

i¼1 be, respectively, the set of one-dimensional basis functions in the x- and y-direction
(described previously for (2.10)). Let us define Ax and Bx, matrices of size Mx, and Ay and By, matrices of size
My, with elements
Ax
ij ¼ ð/

x
j ;/

x
i Þ; Bx

ij ¼ ðox/
x
j ; ox/

x
i Þ;

Ay
ij ¼ ð/y

j ;/
y
i Þ; By

ij ¼ ðoy/
y
j ; oy/

y
i Þ:

ð2:22Þ
Then, writing
uM ¼
XMx

i¼1

XMy

j¼1

uij/
x
i ðxÞ/

y
jðyÞ;
Eq. (2.21) reduces to the linear system
Lu :¼ ððaAx þ BxÞ � ðAy þ Ax � ByÞÞu ¼ f ; ð2:23Þ
where u and f are vectors with elements ðuÞðj�1ÞMyþi ¼ uij and ðf Þðj�1ÞMyþi ¼ ðf ;/
x
i ðxÞ/

y
jðyÞÞX.
2.2.1. Matrix diagonalization method

We shall use the matrix diagonalization method (cf. [13]) to solve the linear system (2.23). Recall that A and
B are symmetric matrices so there exists a diagonal matrix K and an orthonormal matrix E which solve the
generalized eigenvalue problem
ByE ¼ AyEK: ð2:24Þ

Then,
I � ET
� �

�L� ðI � EÞ ¼ ðaAx þ BxÞ � I þ Ax � K:
It follows that
L�1 ¼ I � E�T
� �

� ððaAx þ BxÞ � I þ Ax � KÞ � ðI � E�1Þ
� ��1

¼ ðI � EÞ � ððaAx þ BxÞ � I þ Ax � KÞ�1 � I � ET
� �

:

Let
v ¼ ðI � E�1Þ � u; g ¼ I � ET
� �

� f ;
Then the linear system (2.23) becomes
ððaAx þ BxÞ � I þ Ax � KÞv ¼ g: ð2:25Þ
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Let V and G be Mx · My matrices formed by reshaping the vectors v and g. Then the linear system (2.25) is
equivalent to the linear systems
ððaþ kjÞAx þ BxÞvj ¼ gj; j ¼ 1; . . . ;My ; ð2:26Þ
where vj and gj are the columns of V and G. Note that (2.26) corresponds to the linear system resulted from
the spectral-element approximation of the one-dimensional equation
ðaþ kjÞvj � oxxvj ¼ gj; j ¼ 1; . . . ;My :
We summarize below the steps and operation counts to solve the linear system (2.23).
Step
 Operation count
Preprocessing
Preparation for solving 1D problem
 OðMxÞ

Solve generalized eigenvalue problem
 OðM3

yÞ
Solving
Multiply by I � ET
 OðMxM2
yÞ
Solve 1D problems
 OðMxMyÞ

Multiply by I � E
 OðMxM2

yÞ
Note that we can choose to diagonalize in the direction with fewer points so that the cost of solving above
becomes of order OðMxMy minðMx;MyÞÞ.

Finally, the complete procedure for solving (2.21) from the input function f at the collocation points to the
approximation uM at the collocation points also involve, in addition to the solution of (2.23), the computation
of f and the evaluation of uM at the collocation points from the coefficients uij. These two procedures, which
are essentially the transformation between the physical values at collocation points and vice versa, involve
basically two matrix multiplications which can be performed efficiently in parallel thanks to the localized
structure. Note also that after including the costs of these two matrix multiplications, the cost of the whole
solver (excluding preprocessing) is still of the order estimated above.

When comparing to the domain decomposition method usually used with spectral-element discretization,
the new approach results in 1D problems of much smaller size. The size of the Schur complement in the
domain decomposition method is of order OðKxKyðNx þ NyÞÞ, while the new approach results in
OðminðMx;MyÞÞ decoupled tridiagonal systems each of size OðmaxðMx;MyÞÞ.
2.2.2. Three-dimensional rectangular box

The 3D Helmholtz equation
au� uxx � uyy � uzz ¼ f
in a rectangular box can be handled similarly. In this case the Galerkin method reduces to the linear system
Lu :¼ ðaAx � Ay � Az þ Bx � Ay � Az þ Ax � By � Az þ Ax � Ay � BzÞu ¼ f ; ð2:27Þ
where the A-matrices and B-matrices are, respectively, the mass and stiffness matrices in the corresponding
directions (see (2.22)). Assume K and E solve the generalized eigenvalue problem
BzE ¼ AzEK:
Then
I � I � ET
� �

�L� ðI � I � EÞ ¼ ðaAx � Ay þ Bx � Ay þ Ax � ByÞ � I þ Ax � Ay � K:
It follows that
L�1 ¼ ðI � I � EÞ � ððaAx � Ay þ Bx � Ay þ Ax � ByÞ � I þ Ax � Ay � KÞ�1 � I � I � ET
� �

:
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Hence the linear system (2.27) reduces to a set of decoupled linear system of the form
ððaþ kjÞAx � Ay þ Bx � Ay þ Ax � ByÞvj ¼ gj;
which corresponds to the 2D Helmholtz equations
ðaþ kjÞvj � o
2
xvj � o

2
y vj ¼ gj
in a rectangle.

2.2.3. Cylindrical case

Consider now the domain between two concentric cylinders described in (2.3). Writing Eq. (2.1) in the
cylindrical-polar coordinates and applying a Fourier transform to (2.1) in the h direction, we find that each
Fourier coefficient of the solution will satisfy the following two dimensional equation (see, for instance,
[21] for more details):
au� 1

r
ðrurÞr þ

c
r2

u� uzz ¼ f ; in X ¼ Xr � Xz ¼ ðr�; rþÞ � ðz�; zþÞ;

ujoX ¼ 0;
ð2:28Þ
where c is a non-negative constant related to the Fourier mode. Then, the variational formulation for (2.28) is
still (2.4) with
Aðu; vÞ :¼ aðu; vÞr þ ður; vrÞr þ c
u
r
;
v
r

� �
r
þ ðuz; vzÞr;

FðvÞ :¼ ðf ; vÞr;
where ðu; vÞr ¼
R

X uvr dr dz.

Let f/z
ig

Mz
i¼1 and f/r

ig
Mr
i¼1 be, respectively, the set of one-dimensional basis functions described previously for

(2.10) and (2.13). Let us define Ar and Br, matrices of size Mr, and Az and Bz, matrices of size Mz, with
elements
Ar
ij ¼ ð/

r
j;/

r
i Þr; Br

ij ¼ ðor/
r
j; or/

r
i Þr þ c

/r
j

r
;
/r

i

r

	 

r

; Az
ij ¼ ð/

z
j;/

z
i Þ; Bz

ij ¼ ðoz/
z
j; oz/

z
i Þ: ð2:29Þ
Then the Galerkin method reduces to the linear system
Lu :¼ ððaAr þ BrÞ � Az þ Ar � BzÞu ¼ f ; ð2:30Þ
which is ready to be solved by the matrix diagonalization method. Here, one can choose to diagonalize in
either the r- or z-direction. Diagonalizing in the r-direction results in linear systems correspond to 1D equa-
tions of the form
ðaþ kÞv� vzz ¼ g:
Since the constant c present in the matrix Br is related to the Fourier mode, solving the full 3D problem will
involve solving an eigenvlaue problem for each Fourier mode. On the other hand, diagonalizing in the z-direc-
tion results in linear systems correspond to one-dimensional equations of the form
ðaþ kÞv� 1

r
ðrvrÞr þ

c
r2

v ¼ g:
In this case the same eigen-pair can be used for all Fourier modes.
3. Parallel implementation

Consider first the 1D case. We use K processors (P1 to PK) to solve the 1D problem (2.1), where processor k

works on the interval Xk. In other words, processor k has f jXk
on input, and computes

fu1
k;i; i ¼ 1;N � 1g and u2

k�1; u2
k . Each processor can compute Ak, Bk and eBk :¼ ðAkÞ�1Bk independently.
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Hence communication between processors is needed only in forming and solving the tridiagonal systemeCu2 ¼ g2. Define the inner-product
ðu; vÞk ¼
Z

Xk

uvdx 8u; v 2 L2ðXkÞ;
and let Ak, Fk be defined as in (2.5) with the inner-product (Æ, Æ) replaced by (Æ, Æ)k. The quantities that proces-
sor k can compute with information on hand are
ck
1 ¼Akðwk�1;wk�1Þ; ck

2 ¼Akðwk�1;wkÞ; ck
3 ¼Akðwk;wkÞ;

f 1;k ¼ ðf 1
k;1; . . . ; f 1

k;N�1Þ
T
; g1;k ¼ ðAkÞ�1f 1;k;

~f k
1 ¼Fkðwk�1Þ; ~f k

2 ¼FkðwkÞ:
The relationships between these quantities and the entries of C and f 2 are
ck;k ¼ ck
3 þ ckþ1

1 ; k ¼ 1; . . . ;K � 1;

ck�1;k ¼ ck;k�1 ¼ ck
2; k ¼ 1; . . . ;K;

f 2
k ¼ ~f k

2 þ ~f kþ1
1 ; k ¼ 1; . . . ;K � 1:
Let bk
1, bk

2 be the nonzero columns of Bk. Recall that
eC ¼ C � BTA�1B; g2 ¼ f 2 � BTf 1;
the entries of eC and g2 are hence
~ck;k ¼ ~ck
1 þ ~ckþ1

2 ; k ¼ 1; . . . ;K � 1;

~ck�1;k ¼ ~ck;k�1 ¼ ck�1;k � ðbk
1Þ

TðAkÞ�1bk
2; k ¼ 1; . . . ;K;

g2
k ¼ ~gk

1 þ ~gkþ1
2 ; k ¼ 1; . . . ;K � 1;
where
~ck
1 ¼ ck

3 � ðbk
2Þ

TðAkÞ�1bk
2; ~ck

2 ¼ ck
1 � ðbk

1Þ
TðAkÞ�1bk

1;

~gk
1 ¼ ~f k

2 � ðbk
2Þ

Tg1;k; ~gk
2 ¼ ~f k

1 � ðbk
1Þ

Tg1;k:
Note that the superscripts on the right-hand sides also denote the precessor in which the value is stored. Hence
the coefficients and right-and side of the equation
~ck�1;ku2
k�1 þ ~ck;ku2

k þ ~cu2
kþ1 ¼ g2

k

are stored partly ð~ck�1;k; ~ck
1 and ~gk

1Þ in processor k and partly ð~ckþ1
2 ; ~ckþ1;k and ~gkþ1

2 Þ in processor k + 1. In
other words, processors 1 and K have part of one equation, while the other processors have part of two
equations.

In the multi-dimensional case, assume that the processors are mapped onto a Cartesian grid. We can solve
the eigenvalue problem (2.24) and perform the matrix-matrix multiplications in parallel easily with, for exam-
ple, the ScaLAPACK [4]. If one of the dimensions is periodic, the Fourier transform can be performed in par-
allel through a parallel matrix transposition. Hence the main issue is to solve the tridiagonal systems
(corresponds to the 1D problems resulted from matrix diagonalization, see (2.26)) in parallel.

3.1. Solving the tridiagonal systems

A standard algorithm to solve the tridiagonal system is to perform reduction in a top-down fashion (for-
ward sweep) followed by a backward substitution in a bottom-up fashion (backward sweep). However, a par-
allel code using the above algorithm would require 2K � 2 (K being the number of processors) parallel
communications and can be very slow on clusters. While there are parallel tridiagonal solvers that only require
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Oðlog2KÞ parallel communications, they are not directly applicable to our case, since the processors do not
store full equations on input. In the following, we develop algorithms specially designed for our situation.

For the sake of simplicity (in describing the algorithms), we add two more equations (0 and K) to the tri-
diagonal system, so that there are K + 1 equations to solve and processor k has some information of equations
k � 1 and k. We discuss here two methods to solve the tridiagonal systems in parallel. For simplicity, we only
illustrate the case with only one system, i.e. the 1D case. The multi-dimensional case can be easily handled by
extending the messages in communications to M times longer. We also assume that K is an integral power of 2.

We describe the two methods below. The first one is suitable in case the communication between processors
is bidirectional, while the second one is preferable if the communication between processors is multi-port
bidirectional.

The first method uses a recursive algorithm as follows:

1. For k odd, PK sends its part of equation k (i.e., ~ck�1;k; ~ck
1 and ~gk

1) to Pk+1; Pk+1 sends its parts of equations k

(i.e., ~ckþ1
2 ; ~ckþ1;k and ~gkþ1

2 ) and k + 1 (i.e., ~ck;kþ1; ~ckþ1
1 and ~gkþ1

1 ) to PK.

2. For k odd, PK uses the full equation k to eliminate unknown u2
k in equations k � 1 and k + 1; Pk+1 keeps the

full equation k.
3. The odd-numbered processors altogether now contains the whole system of even-numbered equations. The

problem is now reduced to one with half size. The recursion ends when processors 1 and K/2 + 1 altogether
contains the whole system involving u2

0; u2
K=2 and u2

K . In this case the two processors exchange information.
Processor 1 solve for u2

0 and u2
K=2. Processor K/2 + 1 solves for u2

K=2 and u2
K .

4. For k odd, PK sends the values of u2
k�1 and u2

kþ1 to Pk+1; Pk+1 sends the full equation k to PK.

5. For k odd, PK solves the full equation k and keep u2
k�1, u2

k ; Pk+1 solves the full equations k and keep u2
k , u2

kþ1.

Fig. 1 shows the flow of communication with K = 8, in which an arrow denotes a communication and the
number above or below an arrow is the length of the message.

Assume that the communication is bidirectional. Let ts be the start-up time for a communication and tw be
the time for a message of unit length to be sent over the network. Then the parallel run time for the above
algorithm is
T K ¼ ðts þ tw � 5MÞ þ T K=2 þ ðts þ tw � 4MÞ:
Solve the above recursive relation with
Fig. 1. Flow of communication for the first method.



Y.-Y. Kwan, J. Shen / Journal of Computational Physics 225 (2007) 1721–1735 1731
T 2 ¼ ts þ tw � 2M
gives
T K ¼ ð2ts þ 9MtwÞlog2K � ðts þ 7MtwÞ:

The second method is the same as the first one up to step 3. The modification is as follows. Note that after step
3, except for P1 and P K=2 þ 1, all processors contain an equation involving three unknowns. Thus these pro-
cessors only need two solved unknowns to solve for another unknown. This cuts the message size to two (in-
stead of four when sending the full equation, see step 4 of the first method). The algorithm is quite complicated
and is best described by the flow of communication, which is shown in Fig. 2 in the case K = 8. Note that in
the lower part of the figure, the numbers above an arrow is the indices of the solved unknowns being sent in-
stead of the size of the message. Note that in the second-last step, the processors P3 and P7 send solved un-
knowns to two other processors. Hence the methods work best when the communication is multi-port.

Assume that the communication is multi-port and bidirectional. Then the parallel run time of this algorithm
for K > 2 is
T K ¼ ðts þ 5MtwÞðlog2K � 1Þ þ ðtsþ 2MtwÞ þ ðts þ 2MtwÞðlog2K � 1Þ þ ðts þMtwÞ
¼ ð2ts þ 7MtwÞlog2K � 4Mtw:
4. Numerical results

We now present several examples which illustrate some of the advantages of this algorithm. All numerical
experiments are performed on the IBM-SP2 cluster in Purdue University. The cluster contains 320–375 MHz
POWER3-II processors. All codes are written in Fortran77 with MPI.

Example 1. We consider the Poisson equation in a layered medium
�ðaðxÞuxÞx � uyy ¼ 1; 0 < x < 4; 0 < y < 1 ð4:1Þ

with homogeneous Dirichlet boundary conditions, where
Fig. 2. Flow of communication for the second method.
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Nx = N
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aðxÞ ¼

1:0; 0 < x < 1;

1:5; 1 < x < 2;

2:0; 2 < x < 3;

2:5; 3 < x < 4;

8>>><>>>:

is a piecewise constant function. It is clear that a direct spectral approximation will lead to an inaccurate result
with large oscillations around the discontinuities of a(x). This difficulty can be easily overcome by using a
spectral-element method such that the coefficients are smooth within each element, for it has been shown
(cf., for instance, [2]) that the convergence rate of the spectral-element method is affected by the ‘‘local
smoothness’’ of the coefficients a(x), not the ‘‘global smoothness’’. Here, we implemented a spectral-element
method with four equally spaced intervals in the x-direction and one single interval in the y-direction. In Table
1, we list the ‘2-errors of the spectral-element approximation with different resolutions. The ‘‘exact’’ solution is
computed with a high resolution Nx = Ny = 256. It is clear that the convergence rate of the approximate solu-
tion is not affected by the discontinuities of a(x), it is, however, limited by the corner singularity.

Example 2. To illustrate the efficiency of the parallel implementation, the 3D Helmholtz equation in a rect-
angular box is solved using different number of processors. In the parallel run, the number of processors used
is equal to the number of elements K in the x-direction. We fix Ny = Nz = 48 while Nx is chosen such that the
total degree of freedom is constant. The serial and parallel runtimes (excluding preprocessing time) for differ-
ent number of processors are shown in Table 2. We observe from the table that the parallel efficiency is essen-
tially 75% or above for all cases.

Example 3. To further investigate the parallel efficiency, we solve the axi-symmetric Helmholtz equation in a
cylinder (2.28) by subdividing the domain into a 2D grid and using one processor on each subdomain. For
each subdomain, we fix Nr = Nz = 64 and report in Table 3 the serial and parallel runtimes (excluding time
to solve the eigenvalue problem (2.24)) for different number of processors. We observe again from the table
that high parallel efficiency (>80%) is achieved for all cases. The preprocessing time on a serial processor is
also reported and is roughly the same as the serial runtime for the solver. Note that the computational com-
plexities for the solver and the preprocessing are OðK2

r N 2
r KzN zÞ and OðK3

z N 3
z Þ, respectively.

Example 4. The goal of this last example is to validate this spectral-element solver in a complex computational
situation and set the stage for future large scale parallel computations.

We consider the retraction of a cylindrical filament of radius R = 0.25 and height H = 5.5 placed at the axis
of a cylinder of radius R = 1 and height H = 6 filled with another ambient fluid, where the two fluids are
incompressible and have the same density and viscosity, we refer to [14] for more detail on the background of
this problem. Using the phase-field model, the system governing the mixture of the two fluids can be written as
ut þ ðu � rÞu� mDuþrp þ kr � ðr/�r/Þ ¼ f;

r � u ¼ 0;
ð4:2Þ
and
/t þ ðu � rÞ/ ¼ cðD/� f ð/Þ þ nðtÞÞ;
d

dt

Z
X

/dx ¼ 0;
ð4:3Þ
1
rs for Example 1

y 8 16 32 64

r 9.41E�6 2.24E�7 4.43E�9 7.82E�11



Table 2
Parallel efficiencies for different K in Example 2

Nx K Serial runtime Parallel runtime Parallel efficiency

1024 1 23.7534 – –
512 2 10.9372 5.7433 0.9522
256 4 7.2480 2.4007 0.7548
128 8 5.7776 0.9698 0.7447
64 16 7.0883 0.4522 0.9796
32 32 6.8300 0.2692 0.7928

Table 3
Parallel efficiencies for different K in Example 3

Kr · Kz Serial runtime (preprocessing) Parallel runtime Parallel efficiency

2 · 2 0.1866 (0.1271) 0.04777 0.9766
4 · 4 0.9138 (0.8127) 0.06149 0.9288
8 · 8 5.1930 (6.0020) 0.08863 0.9155

16 · 16 32.8372 (43.8713) 0.1569 0.8175
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where / is the phase function (/ = 1 inside the filament and / = �1 in the ambient fluid), k is the ratio be-
tween the kinetic energy and the elastic energy, c is the elastic relaxation time, n(t) is the Lagrange multiplier
corresponding to the constant volume constraint in the last equation, and
f ð/Þ ¼ 1

g2
/ð/2 � 1Þ ð4:4Þ
with g the thickness of the transition layer. We refer to [24] for a detailed discussion of this model and its
numerical method. It is shown in [24] that using a combination of a consistent splitting scheme [9] and a sta-
bilized semi-implicit discretization for the phase equation, one only needs to solve a sequence of Poisson-type
equations at each time step. While a spectral-Galerkin method was used in [24], we implemented the spectral-
element algorithm for the same problem.

The parameters used are
c ¼ 0:02; k ¼ 0:01; g ¼ 0:02; m ¼ 0:02; dt ¼ 0:005:
The computation is carried out with 6 equally spaced elements in the z-direction and 1 element in the r-direc-
tion. The resolution used is Nx = Ny = 64. Fig. 3 shows the contours of the phase function / with values �0.5
and 0.5 at different times. These results are in good agreement with those reported in [24].
t = 0.0 t = 1.0 t = 1.8 t = 2.4 t = 3.0t = 2.6

Fig. 3. Contours of the phase function / at different time.
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5. Concluding remarks

We presented an efficient, direct, and highly parallel spectral-element algorithm for elliptic equations in sep-
arable domains. The solver is particular suitable for domains with large aspect ratio and for problems with
layer structures/discontinuous coefficients. Ample numerical experiments indicates that our algorithm
achieves very high parallel efficiency (P75%) for all tested cases which use up to 256 (the largest number
of nodes that we have access to) processors. It is expected that this parallel solver can be used as an essential
building block for large-scale computations with implicit or semi-implicit schemes on massively parallel
computers.
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