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The IEQ and SAV approaches and their extensions for a
class of highly nonlinear gradient flow systems

Jie Shen and Xiaofeng Yang

Abstract. The invariant energy quadratization (IEQ) and scalar auxiliary
variable (SAV) approaches are two recently proposed methods to develop linear
and unconditionally energy stable schemes for a class of dissipative/conserva-
tive systems. The essential idea of these two methods is the energy quadratiza-
tion strategy, where either the nonlinear potential or its integral is transformed
into quadratic forms of the new auxiliary variables. We present the IEQ and
SAV approaches in a unified and more general setting, show a few typical ap-
plications to problems with moderately stiff nonlinearities, and then present
the stabilized IEQ and SAV approaches to deal with several complex systems
with highly stiff nonlinear terms.

1. Introduction

The ability of fast and accurate simulation of complex phenomena governed by
highly complex nonlinear systems is central to our understanding of many important
issues in emerging research fields, such as advanced materials, quantum mechan-
ics, semiconductors, optimal transport, non-convex optimization, etc. Mathemati-
cally, these nonlinear systems often take the form of gradient flows or conservative
systems. However, it is very challenging to develop accurate and energy stable
schemes for these highly complex nonlinear systems. Simple fully-implicit or ex-
plicit type approaches to discretize the nonlinear terms will induce severe stability
conditions on time steps, so they are not efficient in practice. Many efforts had
been devoted to develop unconditionally energy stable schemes without any time
step constraints, for instance, the fully implicit methods [15,20], convex splitting
approach [1,18,19,33,45], the linear stabilization approach [29,37,38,47,65], the
IEQ method [49,50,55,58,63], the SAV method (cf. [10,35,36]), and a variety
of other type methods, see [21,22,26,32], etc. We refer to a recent review paper,
[14] and the references therein, for a detailed account on these efforts.

2010 Mathematics Subject Classification. Primary 65M12, 35K20; Secondary 35K35, 35K55,
65Z05.

Key words and phrases. Phase-field, Gradient flow, Unconditional Energy Stability, SAV,
IEQ.

The first author’s research was partially supported by NSF grants DMS-1620262, DMS-
1720442 and AFOSR grant FA9550-16-1-0102.

The second author’s research was partially supported by the U.S. National Science Foundation
under grant number DMS-1720212 and DMS-1818783.

c©2020 American Mathematical Society

217

https://www.ams.org/conm/
https://doi.org/10.1090/conm/754/15147


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

218 JIE SHEN AND XIAOFENG YANG

The IEQ and SAV approaches, which are developed very recently, overcome typ-
ical challenges and provide great flexibilities to treat complicated nonlinear terms.
Thanks to their simplicity, efficiency, and generality, these two approaches can be
applied to a large class of problems with energy dissipation/conservation. In the
last couple of years, the IEQ and SAV approaches have been successfully applied
to, for instances, the diblock copolymer model [12, 49], the molecular beam epi-
taxial thin-film model [11,57], the three components phase-field model in [58], the
phase-field surfactant model in [46,52,53], the phase-field vesicle membrane model
in [10,52], the phase-field model for moving contact lines in [54], the incompress-
ible Navier-Stokes equations in [31], the multi-component two-phase flow in [28],
the strongly anisotropic Cahn-Hilliard model in [7,48], the solidification phase-field
model with/without melt convection in [6,50], the one- and multi-component BECs
in [9], the Sine-Gordon equations in [25], and the nonlocal Cahn-Hilliard Equation
in [56], etc.

In this note, we introduce the IEQ and SAV approaches in a unified framework
with a more general setting. Then, we present a few typical applications of the
IEQ and SAV approaches to several problems with moderately stiff nonlinearities
for which the IEQ and SAV approaches can be directly applied successfully. How-
ever, complex systems with highly stiff nonlinear terms, direct application of the
IEQ and SAV approaches will need exceedingly small time steps to achieve reason-
able accuracy. For this type of problems, we need to combine the IEQ and SAV
approaches with proper stabilizations. We show that the stabilized IEQ and SAV
approaches are very effective to deal with complex systems with highly stiff non-
linear terms such as the anisotropic Cahn-Hilliard model, the anisotropic dendritic
model, the phase-field crystal model with a large vacancy potential, etc.

The rest of the paper is organized as follows. In Section 2, we present the IEQ
and SAV approaches in a unified framework with a general setting. In Section 3,
we apply these two approaches to several gradient flows with moderate nonlinear-
ities, including the phase-field crystal model, the molecular beam epitaxial model,
the three-component phase-field model. In Section 4, we introduce the stabilized
IEQ and SAV approaches to deal with several applications with highly stiff nonlin-
ear terms, including the anisotropic Cahn-Hilliard model, the anisotropic dendritic
model, the phase-field crystal model with a large vacancy potential, and present
ample numerical results to show that the stabilization is essential for these highly
stiff problems. We conclude with some remarks in Section 5.

2. The IEQ and SAV approaches

We consider the following Lyapunov energy functional,

E(φ) =

∫
Ω

(
1

2
φLφ+ F (φ))dx,(2.1)

where φ(x, t) is the unknown function, x ∈ Ω ⊆ R
d (d = 2, 3), L is a linear self-

adjoint positive definite operator, and F (φ) is the nonlinear part of the total free
energy. For instance, in the commonly used phase-field models, φL(φ) = |∇φ|2 and
F (φ) = 1

4ε2 (φ
2 − 1)2 with ε � 1 that causes stiffness.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE IEQ AND SAV APPROACHES 219

To fix the idea, we consider a general gradient flow that reads as:

φt = −Gμ,(2.2)

μ =
δE

δφ
= Lφ+ f(φ),(2.3)

subject to the periodic boundary condition or homogeneous Neumann condition
for φ and μ and initial condition φ|t=0 = φ0. In the above, G is a positive definite
operator describing the relaxation process of the gradient flow, for instances, G = I
for L2-gradient flow, or G = −Δ for H−1-gradient flow, μ is the chemical potential,
f(φ) = F ′(φ). By taking the L2-inner products of (2.2) with μ and of (2.3) with
φt, we obtain the energy law for the above system

d

dt
E(φ) = −(Gμ, μ) ≤ 0.

2.1. IEQ approach. We now present the so-called IEQ approach [49,50,55,
58,63].

We assume the nonlinear potential F (φ) is bounded from below, i.e.,

F (φ) > −C0,

for some C0 > 0, and introduce a new variable U(φ) through the following quadra-
tization formula, that is

U(φ) =
√
F (φ) + C0.

Thus the total energy in terms of φ and U turns to

E(φ, U) =

∫
Ω

(1
2
φLφ+ U2

)
dx− C0|Ω|.(2.4)

We denote H(φ) = 2 d
dφU(φ) = f(φ)√

F (φ)+C0

, then the system (2.2)-(2.3) can be

rewritten as:

φt = −Gμ,(2.5)

μ = Lφ+H(φ)U,(2.6)

Ut =
1

2
H(φ)φt,(2.7)

with the initial conditions φ|t=0 = φ0, U |t=0 =
√
F (φ0) + C0. Note (2.7) is actually

an ODE for the new variable U , therefore, no boundary conditions is needed for U .
It is rather straightforward to develop efficient linear schemes for the system

(2.5)-(2.7) with the principle of treating linear terms implicitly and all nonlinear
terms explicitly. For example, a second-order scheme based on the second-order
backward difference formula (BDF) is as follows:

Having computed φn and φn−1, we update φn+1 by solving

3φn+1 − 4φn + φn−1

2δt
= −Gμn+1,(2.8)

μn+1 = Lφn+1 +H∗,n+1Un+1,(2.9)

3Un+1 − 4Un + Un−1 =
1

2
H∗,n+1(3φn+1 − 4φn + φn−1),(2.10)

where H∗,n+1 = H(φ∗,n+1) with φ∗,n+1 = 2φn − φn−1.
It is clear that the above scheme is second-order accurate. Furthermore, taking

the L2 inner products of (2.8) with −2δtμn+1, of (2.9) with 3φn+1 − 4φn + φn−1,
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and of (2.10) with −2Un+1, respectively, summing up the results and noticing that
the two terms with H∗,n+1 cancel each other regardless the form of H(φ), we obtain
immediately the following result:

Theorem 2.1. The scheme (2.8)-(2.10) is unconditionally energy stable in the
sense that

Ēn+1
1 − Ēn

1 =− δt(Gμn+1, μn+1)

−
∫
Ω

1

4
(φn+1 − 2φn + φn−1)L(φn+1 − 2φn + φn−1)dx

+

∫
Ω

1

2
(Un+1 − 2Un + Un−1)2dx,

where

Ēn+1
1 =

∫
Ω

(
1

2
(Un+1)2 +

1

2
(2Un+1 − Un)2 +

1

4
φn+1Lφn+1

)
dx

+

∫
Ω

1

4
(2φn+1 − φn)L(2φn+1 − φn)dx.

Note that the system (2.8)-(2.10) is linear but coupled in (φ, μ, U). However,
instead of solving the coupled system (2.8)-(2.10) directly, we can eliminate U as
follows. Note the nonlinear coefficient H of the new variable U is treated explicitly
in (2.9), thus we can rewrite it as

Un+1 =
1

2
H∗,n+1φn+1 + gn1 ,(2.11)

where gn1 includes all explicit terms. Using this equality, (2.9)-(2.10) can be rewrit-
ten as

3

2δt
φn+1 + Gμn+1 =

4φn − φn−1

2δt
,(2.12)

−μn+1 + P (φn+1) = g̃n1 ,(2.13)

where g̃n1 includes all explicit terms, P (φ) is a linear and symmetric positive definite
operator that is defined as

P (φ) = Lφ+
1

2
H∗,n+1H∗,n+1φ.

Therefore, in practice one can solve φn+1 and μn+1 directly from (2.12)-(2.13). Once
φn+1 is obtained, Un+1 is automatically given by (2.11). The well-posedness of the
linear system (2.12)-(2.13) then follows directly from the Lax-Milgram Theorem
[48,54,58].

The operator P (φ) in the scheme (2.13) includes a variable-coefficient 1
2H

nHn

for the term φn+1. Explicitly building those time-dependent matrices are usually
expensive. So in practice, an efficient way is to use a preconditioned conjugate
gradient type solver which does not require building the system matrix explicitly.
An efficient time-independent preconditioner is to replace the variable coefficient
1
2H

nHnφn+1 by a suitable constant coefficient.
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2.2. SAV approach. The SAV approach [10,35,36] is inspired by the IEQ
approach, but with extended applicability and more efficient implementation. Given
a free energy in the form of (2.1), we assume

∫
Ω
F (φ)dx is bounded from below,

i.e., ∫
Ω

F (φ)dx > −C0

for some C0 > 0, and introduce a new auxiliary scalar variable u(φ) through the
following quadratization formula:

u(φ) =

√∫
Ω

F (φ)dx+ C0.(2.14)

Denoting K(φ) = f(φ)√∫
Ω
F (φ)dx+C0

, the system (2.2)-(2.3) can be rewritten as:

φt = −Gμ,(2.15)

μ = Lφ+K(φ)u,(2.16)

ut =
1

2

∫
Ω

K(φ)φtdx,(2.17)

with the initial conditions φ|t=0 = φ0, u|t=0 =
√∫

Ω
F (φ0)dx+ C0.

Then, a second-order linear scheme based on BDF2 for the above reformulated
system can be constructed as follows:

Having computed φn and φn−1, we update φn+1 by solving

3φn+1 − 4φn + φn−1

2δt
= −Gμn+1,(2.18)

μn+1 = Lφn+1 +K∗,n+1un+1,(2.19)

3un+1 − 4un + un−1 =
1

2

∫
Ω

K∗,n+1(3φn+1 − 4φn + φn−1)dx,(2.20)

where φ∗,n+1 = 2φn − φn−1 and K∗,n+1 = K(φ∗,n+1).
Similar to Theorem 2.1, we can derive the following result.

Theorem 2.2. The scheme (2.18)-(2.20) is unconditionally energy stable in
the sense that

Ēn+1
2 − Ēn

2 =− δt(Gμn+1, μn+1)

−
∫
Ω

(
1

4
(φn+1 − 2φn + φn−1)L(φn+1 − 2φn + φn−1)

)
dx

− 1

2
(un+1 − 2un + un−1)2,

where

Ēn+1
2 =

1

2
(un+1)2 +

1

2
(2un+1 − un)2

+

∫
Ω

(
1

4
φn+1Lφn+1 +

1

4
(2φn+1 − φn)L(2φn+1 − φn)

)
dx.

The main advantage of the SAV scheme is that it can be solved more efficiently.
Indeed, the above scheme is only coupled by a scalar un+1 which can be eliminated
as follows.
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We rewrite (2.20) as

un+1 =
1

2

∫
Ω

K∗,n+1φn+1dx+ gn2 ,(2.21)

where gn2 includes all explicit terms. Using this equality, (2.18)-(2.19) can be rewrit-
ten as

P(φn+1) +
1

2
GK∗,n+1

∫
Ω

K∗,n+1φn+1dx = g̃n2 ,(2.22)

where g̃n2 includes all explicit terms, and P(·) is the linear operator that is defined
as

P(ψ) = (
3

2δt
+ GL)ψ.(2.23)

Define a linear operator P−1(·), such that for any function φ ∈ L2(Ω), ψ =
P−1(φ) is the solution of the following linear system

P(ψ) = φ(2.24)

with the periodic or homogeneous Neumann boundary conditions. By applying the
operator P−1 to (2.22), then we obtain

φn+1 +
1

2
P−1(GK∗,n+1)

∫
Ω

K∗,n+1φn+1dx = P−1(g̃n2 ).(2.25)

By taking the L2 inner product of (2.25) with K∗,n+1, we obtain∫
Ω

K∗,n+1φn+1dx =

∫
Ω
K∗,n+1P−1(g̃n2 )dx

1 + 1
2

∫
Ω
K∗,n+1P−1(GK∗,n+1)dx

.(2.26)

It is easy to check the term in the denominator
∫
Ω
K∗,n+1P−1(GK∗,n+1)dx ≥ 0

since P−1(G) is a positive definite operator.
Furthermore, (2.26) actually provides an explicit formulation for the nonlocal

term
∫
Ω
K∗,n+1φn+1dx. Therefore, in computations, we first find ψ1 = P−1(g̃n2 )

and ψ2 = P−1(GK∗,n+1), that means to solve the following two linear equations,

(
3

2δt
+ GL)ψ1 = g̃n2 ,(2.27)

and

(
3

2δt
+ GL)ψ2 = GK∗,n+1,(2.28)

with the periodic or homogeneous Neumann boundary conditions. Then, we can
obtain φn+1 from (2.25) directly.

To summarize, the scheme (2.18)-(2.20) can be easily implemented in the fol-
lowing manner:

• Compute ψ1 and ψ2 by solving two linear equations with constant coeffi-
cients, (2.27) and (2.28);

• Compute
∫
Ω
K∗,n+1φn+1 from (2.26) and update un+1 from (2.21);

• Update φn+1 from (2.25).
Hence, the total cost at each time step is essentially solving two linear equations

with constant coefficients. Hence, this scheme is extremely efficient and easy to
implement.
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2.3. Some remarks. The main difference between the IEQ approach and
the SAV approach is that the auxiliary function in the IEQ approach is space-time
dependent while in the SAV approach is only time-dependent. The consequence of
this difference is that in the IEQ approach, one has to solve a linear system with
time dependent variable coefficients, while in the SAV approach, one only needs to
solve a linear system with constant coefficients which can be solved very efficiently
by fast elliptic solvers. Moreover, even for problems with multiple components,
the SAV approach leads to a sequence of decoupled linear systems with constant
coefficients. On the other hand, the IEQ approach offers stronger coupling which
can be advantageous in certain situations such as problems with local constraints,
such an example is provided in [25] where the IEQ approach applied to the sine-
Gordon equation not only conserves the global energy but also enforce a local energy
law.

We described the IEQ/SAV approaches using a second-order BDF2 method
as an example. One can also use other types of linear schemes. For example, a
second-order IEQ scheme based on the Crank-Nicolson for (2.5)-(2.7) is:

Having computed φn and φn−1, we update φn+1 by solving

φn+1 − φn

δt
= −Gμn+ 1

2 ,(2.29)

μn+ 1
2 = Lφn+1 + φn

2
+H∗,n+ 1

2
Un+1 + Un

2
,(2.30)

Un+1 − Un =
1

2
H∗,n+ 1

2 (φn+1 − φn),(2.31)

where H∗,n+ 1
2 = H(φ∗,n+ 1

2 ) with φ∗,n+ 1
2 = 3

2φ
n − 1

2φ
n−1. We can easily show that

the above scheme is unconditionally energy stable in the sense that

Ên+1
1 − Ên

1 = −δt(Gμn+ 1
2 , μn+ 1

2 ),

where

Ên+1
1 =

∫
Ω

((Un+1)2 +
1

2
φn+1Lφn+1)dx.

Similarly, we can construct kth-order schemes with BDF-k (3 ≤ k ≤ 6) formula
in the IEQ/SAV approach. While we can not prove rigorously that these high-order
BDF schemes are unconditionally energy stable, numerical results indicate that they
do achieve expected order of accuracy and enjoy excellent stability [36].

We observe that the SAV scheme based on Crank-Nicolson does not introduce
any additional dissipation so it preserves the energy if G is skew-symmetric or
energy dissipation rate if G is positive definite. In general, the SAV scheme based
on Crank-Nicolson is preferred for conservative systems while the SAV scheme based
on BDF formulae should be used for dissipative systems.

While, for the sake of simplicity, we described the IEQ/SAV schemes in semi-
discrete form, the above stability results carry over to any consistent Galerkin type
approximations, e.g. finite- elements or spectral methods, as well as finite-difference
method with proper summation-by-parts.

While the splitting of the free energy in (2.1) can be arbitrary, it is essential, for
the sake of accuracy, to have a splitting with a “dominating” operator L. Otherwise,
exceedingly small time steps may be needed to obtain accurate results. Sometimes,
the obvious splitting, e.g, E(φ) =

∫
Ω
( 12 |∇φ|2 + 1

4ε2 (φ
2 − 1)2)dx with ε � 1, may
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not be suitable. We refer to Section 3.1 in [36] for such an example and a strategy
to deal with it.

To take the full advantages of the unconditional energy stability, the IEQ/SAV
schemes should be coupled with an adaptive time-stepping scheme so that the time
step is determined by accuracy requirement only without worrying about stability.
We refer to Section 4.2 in [36] for some details in this regards.

Thanks to the unconditional energy stability, one can show that the conver-
gences of IEQ/SAV methods and establish corresponding error estimates without
assuming the uniform Lipschitz condition on f(φ). We refer to [34, 55] for the
convergence and error estimates of IEQ/SAV methods in the semi-discrete case
for the Allen-Cahn and Cahn-Hilliard equations, to [30] for error estimates of the
SAV methods with finite-differences and to [66] for error estimates of the SAV
methods with finite-elements, to [25] for error analysis of an IEQ method with
finite-difference for the sine-Gordon equation.

3. Applications of IEQ/SAV approaches to problems
with moderately stiff nonlinear terms

In this section, we consider several models with low or moderate stiff nonlinear
terms so that the IEQ/SAV approaches can be directly applied successfully.

3.1. Phase-field crystal model. In [16, 17, 44], the authors considered a
very simple phase-field crystal (PFC) model that showed great versatility to study
the dynamics of atomic-scale crystal growth on diffusive time scales. A phase-field
variable that represents the concentration field of a coarse-grained temporal aver-
age of the density of atoms, is introduced to describe the phase transition from
the liquid phase to the crystal phase. Thus, to generate the periodic structure of
a crystal lattice, by incorporating a specific form of the spatial gradients in the
free energy is postulated, the model is flexible and can be applied to simulate var-
ious phenomena, for instances, epitaxial growth, material hardness, grain growth,
reconstructive phase transitions, and crack propagations.

The PFC model is described by the following total free energy

E(φ) =

∫
Ω

(φ
2
L2
1(L2

2 + r2)φ+ F (φ)
)
dx,(3.1)

where L1 = Δ+I and L2 = Δ+q2 with Δ being the Laplace operator, F (φ) = 1
4φ

4−
η
2φ

2 is the nonlinear smoothing potential, and r, q, η are three positive constants.

By taking the variational derivative of the total free energy (3.1) in H−1, we
obtain the PDE system as

φt = MΔμ,(3.2)

μ =
δE

δφ
= L2

1(L2
2 + r2)φ+ f(φ).(3.3)

Note that free energy in (3.1) is already in the form of (2.1) so that both IEQ
and SAV approaches can be directly applied. We consider, for example, the IEQ
approach. Let U =

√
F (φ) + C0 so the equivalent system reads as

φt = MΔμ,(3.4)

μ = L2
1(L2

2 + r2)φ+HU,(3.5)

Ut =
1

2
Hφt,(3.6)
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(a) The formation of the FCC pattern structure.

(b) Time evolution of the total free energy
functional computed by using different time
steps.

(c) Time evolution of the total free energy by
using δt = 0.1.

Figure 3.1. (a) The formation of FCC pattern through the sim-
ulation of the phase separation with the initial average density
φ̄ = 0.23 and parameter η = 0.195. Snapshots of the numerical
approximation of φ are taken at t = 20, 100, 300, and 800. (b)
Time evolution of the total free energy functional computed by us-
ing nine different time steps. (c) Time evolution of the free energy
functional by using δt = 0.1.

where H = f(φ)√
F (φ)+C0

.

Based on the second-order Adam-bashforth time stepping scheme, a second-
order scheme can be constructed as follows:

Having computed φn and φn−1, we update φn+1 by solving

3φn+1 − 4φn + φn−1

2δt
= Δμn+1,(3.7)

μn+1 = L2
1(L2

2 + r2)φn+1 +H∗,n+1Un+1,(3.8)

3Un+1 − 4Un + Un−1 =
1

2
H∗,n+1(3φn+1 − 4φn + φn−1),(3.9)

where φ∗,n+1 = 2φn − φn−1 and H∗,n+1 = H(φ∗,n+1). The above scheme has
been implemented in [51,61] to study the phase transition behaviors of the PFC
model. We present below some numerical simulations with model parameters M =
1, q =

√
2, r = 0, η = 0.195. The computational domain is set as [0, 256]2, and the

initial condition is φ0 = 0.23(1+ rand(x, y)). We discretize the space by using 5132

Fourier modes. Snapshots of the phase-field variable φ are shown in Fig. 3.1(a). We
observe that the crystals transform to the face-centered-cubic (FCC) structure from
the spontaneous lattice structure. In Fig. 3.1(b), we plot the time evolution of the
total free energy for nine different time step sizes until t = 200. All energy curves
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Figure 3.2. The isolines of the numerical solutions of the height
function φ for the epitaxial thin film model without slope selection
with the random initial condition. Snapshots are taken at t =
1, 10, 100, 500.

decay monotonically for all time step sizes, which confirms that the algorithm is
unconditionally energy stable. In Fig. 3.1(c), we show the time evolution of the free
energy functional by using the time step δt = 0.1.

3.2. Molecular beam epitaxial model. The continuum model for the mole-
cular beam epitaxial model is a powerful tool to understand the mechanisms of thin
film growth, where epitaxy is referred to the deposition of a crystalline overlayer
on a substrate.

Let φ(x) be a height function, the total phenomenological free energy for the
epitaxial thin film model is as follows,

E(φ) =

∫
Ω

(ε2
2
(Δφ)2 + F (∇φ)

)
dx(3.10)

where the nonlinear potential is either Ginzburg-Landau double well potential (with
slope selection) F (∇φ) = (1−|∇φ|2)2 or a nonlinear logarithmic potential (without
slope selection) F (∇φ) = − 1

2 ln(1 + |∇φ|2).
For the slope selection case, the IEQ method can be applied since the nonlinear

potential is bounded from below, see [57]. But for the model without slope selection,
the logarithmic nonlinear potential is not bounded from below, so the IEQ method
can not be applied directly. However, with a proper splitting of the free energy, we
can apply the SAV method. The details are given below.

Note that for any ε > 0, there exists a constant c > 0 such that the following
property holds (cf. [11]),

∫
Ω

(
ε2

4
|Δφ|2 − 1

2
ln(1 + |∇φ|2)

)
dx ≥ c0,

where c0 = 1
2 (ln(

ε2

2c2 )−
ε2

2c2 + 1)|Ω|. Hence, we can split the free energy as follows:

E(φ) =

∫
Ω

{ε2

4
(Δφ)2 +

(
ε2

4
|Δφ|2 − 1

2
ln(1 + |∇φ|2)

)}
dx,

and define a SAV by

u(t) =

√∫
Ω

(ε2
4
|Δφ|2 − 1

2
ln(1 + |∇φ|2)

)
dx+ C0,(3.11)
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where C0 is a positive constant to ensure the radicands are positive. For example,
we can choose C0 = −c0 + 1. Thus the equivalent SAV system reads as

φt +M(
ε2

2
Δ2φ+K(φ)u) = 0,

ut =
1

2

∫
Ω

K(φ)φtdx,

where M is a mobility function, and

K(φ) =

ε2

2 Δ
2φ+∇ · ( ∇φ

1+|∇φ|2 )√∫
Ω
( ε

2

4 |Δφ|2 − 1
2 ln(1 + |∇φ|2))dx+ C0

.

Then a second-order BDF2 scheme for the above system reads as follows,

3φn+1 − 4φn + φn−1

2δt
+ M(ε2Δ2φn+1 +K∗,n+1un+1) = 0,(3.12)

3un+1 − 4un + un−1 =
1

2

∫
Ω

K∗,n+1(3φn+1 − 4φn + φn−1)dx,(3.13)

where φ∗,n+1 = 2φn − φn−1 and K∗,n+1 = K(φ∗,n+1).
To validate the above numerical scheme, we simulated the coarsening dynamics

in [11] by choosing a random initial condition varying from −0.001 to 0.001. The
parameters are ε = 0.03, M = 1. The computational domain is Ω = [0, 12.8]2,
and we use 513 × 513 Fourier modes in space. In [11], various numerical results
confirming unconditional energy stability are presented. As an example, we show in
Fig. 3.2 snapshots of numerical solutions of the height function φ at various times.

3.3. Three-component Cahn-Hilliard model. We consider a three-com-
ponent Cahn-Hilliard phase-field model presented in [2,3]. This model was derived
by adopting three independent phase-field variables, and postulating the nonlinear
part of the total phenomenological free energy to be a summation of the double-well
potentials for each phase. To ensure a hyperplane link condition for the three phase
variables at each point, a Lagrange multiplier term is added into the system. More
precisely, assuming a system consists of three material components, we introduce φi

(i = 1, 2, 3) to describe the volume fraction of the i-th phase such that the following
hyperplane link condition is satisfied

φ1 + φ2 + φ3 = 1.(3.14)

The total free energy for the three-phase system is postulated as:

E(φ1, φ2, φ3) =
3

8
ε

3∑
i=1

∫
Ω

Σi|∇φi|2dx+
12

ε

∫
Ω

F (φ1, φ2, φ3)dx,(3.15)

in which, the nonlinear potential F (φ1, φ2, φ3) reads as:

F (φ1, φ2, φ3) =
Σ1

2
φ2
1(1− φ1)

2 +
Σ2

2
φ2
2(1− φ2)

2 +
Σ3

2
φ2
3(1− φ3)

2 + 3Λφ2
1φ

2
2φ

2
3,

where Λ is a non-negative constant, ε is related to the interfacial width, the co-
efficients of entropic terms Σi (note Σi might be negative) are determined by the
surface tension parameters σ12, σ13, σ23, i.e.,

Σ1 = σ12 + σ13 − σ23, Σ2 = σ12 + σ23 − σ13, Σ3 = σ13 + σ23 − σ12.
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Then the three-component Cahn-Hilliard system that we consider is the H−1

gradient flow of the above free energy:

φit = MΔ
μi

Σi
,(3.16)

μi = −3

4
εΣiΔφi +

12

ε
(fi + β), i = 1, 2, 3,(3.17)

where M is the mobility constant, fi =
δF (φ1,φ2,φ3)

δφi
, and β is a Lagrange multiplier

to ensure the hyperplane link condition (3.14) which leads to

β = − 1

ΣT
(
f1
Σ1

+
f2
Σ2

+
f3
Σ3

) with
1

ΣT
=

1

Σ1
+

1

Σ2
+

1

Σ3
.

It can be shown [58, Lemma 2,2] that there exists C0>0 such that
∫
Ω
F (φ1, φ2, φ3)dx

> −C0, we can rewrite the total free energy (3.15) as

E(u, φ1, φ2, φ3) =
3

8
ε

3∑
i=1

∫
Ω

Σi|∇φi|2dx+
12

ε
(u2 − C0).

Thus we can apply IEQ and SAV approaches directly.
In [58], the IEQ method is applied to solve the above system. Below we shall

adapt the SAV approach and define

u(t) =

√∫
Ω

F (φ1, φ2, φ3)dx+ C0.

Then, the system (3.16) can be rewritten as

φit =
M

Σi
Δμi,(3.18)

μi = −3

4
εΣiΔφi +

12

ε
(Ki + α)u, i = 1, 2, 3,(3.19)

ut =
1

2

3∑
i=1

∫
Ω

Kiφitdx,(3.20)

where

Ki =
fi√∫

Ω
F (φ1, φ2, φ3)dx+ C0

, α = − 1

ΣT
(
K1

Σ1
+

K2

Σ2
+

K3

Σ3
).

A second-order SAV-BDF2 scheme for the above system is as follows.
Assuming (φ1, φ2, φ3, u)

n and (φ1, φ2, φ3, u)
n−1 are known, we update

(φ1, φ2, φ3, u)
n+1 by the following:

3φn+1
i − 4φn

i + φn−1
i

2δt
= MΔ

μn+1
i

Σi
,(3.21)

μn+1
i = −3

4
εΣiΔφn+1

i +
12

ε
(K∗,n+1

i + α∗,n+1)un+1(3.22)

3un+1 − 4un + un−1 =
1

2

3∑
i=1

∫
Ω

H∗,n+1
i (3φn+1

i − 4φn
i + φn−1

i )dx,(3.23)
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for i = 1, 2, 3, where

φ∗,n+1
i = 2φn

i − φn−1
i ,K∗,n+1

i = Ki(φ
∗,n+1
1 , φ∗,n+1

2 , φ∗,n+1
3 ),

α∗,n+1 = − 1

ΣT
(
K∗,n+1

1

Σ1
+

K∗,n+1
2

Σ2
+

K∗,n+1
3

Σ3
).

We can easily prove the solutions of the scheme (3.21)-(3.23) satisfies the hy-
perplane link condition (3.14). Thus one can first solve φ1 and φ2, and then update
φ3 by the hyperplane link condition (3.14). By rewriting (3.23) as,

un+1 =
1

2

∫
Ω

T1φ
n+1
1 dx+

1

2

∫
Ω

T2φ
n+1
2 dx+ rn,

where

T1=Ĥ∗,n+1
1 − Ĥ∗,n+1

3 , T2=Ĥ∗,n+1
2 − Ĥ∗,n+1

3 , Ĥ∗,n+1
i =H∗,n+1

i + α∗,n+1, i=1, 2, 3,

and rn includes all explicit terms. Then we can derive the following system for
(φn+1

1 , φn+1
2 ) from (3.21)-(3.22) (i = 1, 2):

P(φn+1
1 )− 6

Σ1ε2
Δ(Ĥ∗,n+1

1 )(

∫
Ω

T1φ
n+1
1 dx+

∫
Ω

T2φ
n+1
2 dx) = rn1 ,(3.24)

P(φn+1
2 )− 6

Σ2ε2
Δ(Ĥ∗,n+1

2 )(

∫
Ω

T1φ
n+1
1 dx+

∫
Ω

T2φ
n+1
2 dx) = rn2 ,(3.25)

where the operator P is defined as

P(ψ) =
3

2Mεδt
ψ +

3

4
Δ2ψ,

and rn1 , r
n
2 include all explicit terms.

Define a linear operator P−1(·), such that for any function φ ∈ L2(Ω), ψ =
P−1(φ) is the solution of the following linear system

P(ψ) = φ,

with corresponding boundary conditions, i.e., periodic boundary conditions or ho-
mogeneous Neumann boundary condition for ψ and Δψ. By applying the operator
P−1 to (3.24) and (3.25), we obtain

φn+1
1 − 6

Σ1ε2
P−1(ΔĤ∗,n+1

1 )(

∫
Ω

T1φ
n+1
1 dx+

∫
Ω

T2φ
n+1
2 dx) = P−1(rn1 ),(3.26)

φn+1
2 − 6

Σ2ε2
P−1(ΔĤ∗,n+1

2 )(

∫
Ω

T1φ
n+1
1 dx+

∫
Ω

T2φ
n+1
2 dx) = P−1(rn2 ).(3.27)

Next, taking the L2 inner product of (3.26) with T1, and of (3.27) with T2, we
obtain [

1 + a a
b 1 + b

] [ ∫
Ω
T1φ

n+1
1 dx∫

Ω
T2φ

n+1
2 dx

]
=

[ ∫
Ω
T1P−1(rn1 )dx∫

Ω
T2P−1(rn2 )dx

]
,(3.28)

where

a = − 6

Σ1ε2

∫
Ω

T1P
−1(ΔĤ∗,n+1

1 )dx, b = − 6

Σ2ε2

∫
Ω

T2P
−1(ΔĤ∗,n+1

2 )dx.

The determinant of the above system is

det = 1 + a+ b = 1−
3∑

i=1

6

Σiε2

∫
Ω

Ĥ∗,n+1
i P−1(ΔĤ∗,n+1

i )dx.
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(a) (σ12, σ13, σ23)=(1, 1, 1). (b) (σ12, σ13, σ23)=(1, 3, 1). (c) (σ12, σ13, σ23)=(1, 1, 3).

(d) Energy evolution. (e) A close-up view.

Figure 3.3. The equilibrium solution of the two close-by spheres
driven by surface tension forces for three spreading cases where
(a) (σ12, σ13, σ23)=(1, 1, 1), (b) (σ12, σ13, σ23)=(1, 1, 3), and (c)
(σ12, σ13, σ23)=(1, 3, 1), (d) Time evolution of the logarithm of the
total free energy for the three cases, and (e) A close-up view of the
energy evolution.

Since −P−1(Δ) is a positive definite operator, we have det > 0 which implies the
linear system (3.28) is uniquely solvable. Once, we obtain

∫
Ω
Tiφ

n+1
i dx from (3.28),

we can then solve φn+1
i , (i = 1, 2) from (3.27).

We performed 3D simulations to investigate the effect of surface tension forces
on two close-by spheres with different radius. The computational domain is set
to be (0, 2)3 with periodic boundary conditions. The space is discretized by using
2573 Fourier modes. The initial conditions read as

φ0
i (x) = tanh(

ri−
√

(x−xi)2+(y−yi)2+(z−zi)2

ε ), i = 1, 2; φ0
3(x) = 1− φ0

1(x)− φ0
2(x),

where ε = 0.025, r1 = 0.4, r2 = 0.3, x1 = 1.4, x2 = 0.7, and y1 = y2 = z1 = z2 = 1.
We set M = 1e−2 and δt = 1e−4. In Fig. 3.3(a-c), we plot the isosurfaces of
{φ1 = 0.5} and {φ2 = 0.5} at the steady state with surface tension parameters
of (σ12, σ13, σ23) = (1, 1, 1), (1, 3, 1), and (1, 1, 3), respectively. In Fig. 3.3(d) and
(e), we plot the time evolutions of the logarithms of the original total free energy
(3.15) for these 3D simulations. More details about these simulations can be found
in [58].
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4. Stabilized IEQ and SAV approaches for problems
with highly stiff nonlinear terms

In this section, we consider several challenging gradient flows that are not easy
to deal with by using the IEQ and SAV methods directly. These models are either
with very strong anisotropy so that spatial oscillations can induce severe constraints
on the time step, or with very high stiffness issue due to the model parameters.
While IEQ and SAV methods applied to these models are formally unconditionally
energy stable, but exceedingly small time steps are needed to achieve reasonable
accuracy. To fix such an inherent deficiency, we combine the IEQ and SAV ap-
proaches with the stabilization technique to construct stabilized-IEQ (S-IEQ) and
stabilized-SAV (S-SAV) methods. More precisely, by adding one or several suitable
linear stabilization terms and treating involved nonlinear terms in the semi-explicit
way, we can construct unconditionally energy stable schemes which are easily solv-
able and can produce accurate results with reasonable time steps.

4.1. Anisotropic Cahn-Hilliard model. In [41,43], the authors considered
an anisotropic Cahn-Hilliard model where a sufficiently big anisotropic coefficient is
introduced to allow the formation of faceted pyramids on nanoscale crystal surfaces.

Let φ be an order parameter which takes the values ±1 in the two phases with
a smooth transitional layer of thickness ε. We consider the total free energy as
follows,

(4.1) E(φ) =

∫
Ω

(
γ(n)(

1

2
|∇φ|2 + 1

ε2
F (φ)) +

β

2
(Δφ)2

)
dx,

where γ(n) is a function describing the anisotropic property, and n is the interface

normal defined by n = ∇φ
|∇φ| , F (φ) = 1

4 (φ
2 − 1)2. The anisotropic function may

takes the fourfold form that reads as

(4.2) γ(n) = 1 + α cos(4Θ) = 1 + α(4

d∑
i=1

n4
i − 3),

where Θ denotes the orientation angle of the interfacial normal to the interface.
The non-negative parameter α in (4.2) describes the intensity of anisotropy. When
α = β = 0, the system degenerates to the isotropic Cahn-Hilliard model.

The anisotropic Cahn-Hilliard system is then the H−1 gradient flow of the total
free energy E(φ):

φt = MΔμ,(4.3)

μ =
1

ε2
γ(n)f(φ)−∇ ·m+ βΔ2φ,(4.4)

where f(φ) = F ′(φ), M is the mobility parameter. The vector field m is defined as

m = γ(n)∇φ+
P∇nγ(n)

|∇φ| (
1

2
|∇φ|2 + 1

ε2
F (φ)),

where the matrix P = I− nnT .
The total free energy in (4.1) is naturally split into a linear part and a nonlinear

part so we can apply IEQ or SAV approaches based on this splitting. We take the
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SAV approach and define an auxiliary variable u(t) as follows:

u(t) =

√∫
Ω

γ(n)
(1
2
|∇φ|2 + 1

ε2
F (φ)

)
dx+ C0,

where C0 is any constant that ensures the radicand positive. Thus the total free
energy (4.14) can be rewritten as

E(u, φ) =
β

2

∫
Ω

(Δφ)2dx+ u2 − C0,(4.5)

Using the new variable u, we then have the following equivalent H−1 gradient flow:

φt = MΔμ,(4.6)

μ = H(φ)u+ βΔ2φ,(4.7)

ut =
1

2

∫
Ω

H(φ)φtdx,(4.8)

where

H(φ) =
1
ε2 γ(n)f(φ)−∇ ·m√∫

Ω
γ(n)

(
1
2 |∇φ|2 + 1

ε2F (φ)
)
dx+ C0

.

We present below the stabilized SAV scheme based on BDF2 for (4.6)-(4.8).
Assuming φn, un and φn−1, un−1 are known, we update φn+1, un+1 by solving

3φn+1 − 4φn + φn−1

2δt
= MΔμn+1,(4.9)

μn+1 = H∗,n+1un+1 + βΔ2φn+1(4.10)

+
S1

ε2
(φn+1 − 2φn + φn−1)− S2Δ(φn+1 − 2φn + φn−1),(4.11)

3un+1 − 4un + un−1 =
1

2

∫
Ω

H∗,n+1(3φn+1 − 4φn + φn−1)dx,(4.12)

whereH∗,n+1 = H(φ∗,n+1) and S1, S2 are two positive stabilizing parameters. Note
that with S1 = S2 = 0, the above scheme reduces to the usual SAV scheme based on
BDF2. Adding stabilization terms is a commonly used technique (see, for instance,
[37] for the isotropic model and [8] for the anisotropic model). The two stabilization
terms associated with S1 and S2 are of second-order so that the above scheme is
still of second-order.

Similar to the SAV scheme, we can also prove the following stability result for
the above stabilized SAV scheme [7]:

Theorem 4.1. Let S1, S2 ≥ 0. The scheme (4.9)-(4.12) is unconditionally en-
ergy stable in the sense that the following discrete energy dissipation law is satisfied:

1

δt
(En+1 − En) ≤ −M‖∇μn+1‖2 ≤ 0,

where

En+1 =
(un+1)2 + (2un+1 − un)2

2
+

β

2

(‖Δφn+1‖2 + ‖2Δφn+1 −Δφn‖2
2

)
+

S1

ε2
‖φn+1 − φn‖2

2
+ S2

‖∇φn+1 −∇φn‖2
2

.
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(a) δt = 1e−5. (b) δt = 1e−6.

(c) δt = 1e−7. (d) δt = 1e−8.

Figure 4.1. Time evolution of the total free energy functional
(4.14) for the anisotropic linear regularization model by using the
non-stabilized scheme SAV (S1 = S2 = S3 = 0) for four time steps
of 1e−5, 1e−6, 1e−7, and 1e−8.

We take Ω = [0, 2π)2 with periodic boundary conditions, and take the following
initial condition

φ0 = − tanh
(√(x− π)2 + (y − π)2 − 1.7

2ε

)
,(4.13)

with ε = 6e−2. We first examine whether the non-stabilized SAV scheme (S1 =
S2 = 0) is effective for solving the anisotropic model. In Fig. 4.1, we present the
time evolutions of the free energy (4.1) by using four time steps δt = 1e−5, 1e−6,
1e−7, and 1e−8. We observe that the free energy either increases or oscillates
even when very tiny time steps are used, which implies that the non-stabilized SAV
scheme is not effective in dealing with the anisotropic model.

Then we solve the anisotropic model by using the stabilized SAV (SSAV)
scheme. By using the time step δt = 1e−4, we test performance of three combina-
tions of stabilizers: (I) S1 = 4, S2 = 0, (II) S1 = 4, S2 = 4, and (III) S1 = 0, S2 = 4.
In Fig. 4.2(a), the evolutions of the free energy functional (4.1) are shown for these
three cases. For (I) and (III), the energies either present some non-physical oscil-
lations or increase with time. These unreasonable phenomena can be eliminated
efficiently for combination (II), that means the values in (II) can suppress high-
frequency oscillations efficiently. In Fig. 4.2(b), we show the evolution of the two
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(a) Energy evolutions with three combi-
nations of stabilizers using the stabilized
scheme SSAV.

(b) Energy evolutions with time.

(c) Snapshots of φ.

Figure 4.2. (a) Energy evolutions with three combinations of sta-
bilizers; (b) Time evolution of the two free energy functionals, the
original energy (4.1) and the modified energy (4.5); (c) the 2D
dynamical evolution of the phase variable φ by using the initial
condition (4.13) and the SSAV scheme.

free energy functionals (4.1) and (4.5) until the equilibrium. With a very slight dif-
ference, these two energy functionals decay to the equilibrium at around t = 0.01.
In Fig. 4.2(c), with the stabilizer (II) and time step δt = 1e−4, we show the dy-
namics of how a 2D circular shape interface with full orientations evolves to an
anisotropic pyramid with missing orientations at four corners. Snapshots of the
phase-field variable φ are taken at t = 5e−4, 1.5e−3, 2.5e−3, and 2e−2. More
detailed simulations can be found in [7,48].

4.2. Anisotropic dendritic model. The phase-field method, as a powerful
tool for simulating free interfacial motions, had been widely used for investigat-
ing the process of dendritic crystal growth, see the pioneering modeling work of
Halperin, Kobayashi, and Collins et. al. in[13,23,24].

Let φ(x, t) be an order parameter to label the liquid and solid phase, where
φ = 1 for the solid and φ = −1 for the fluid. Then, the total free energy describing
the anisotropic dendritic crystal growth is

(4.14) E(φ, T ) =

∫
Ω

(1
2
|κ(∇φ)∇φ|2 + F (φ)

4ε2
+

λ

2εK
T 2

)
dx,

in which, ε, λ and K are all positive parameters, T (x, t) is the temperature, F (φ) =
(φ2−1)2 is the double well potential, κ(∇φ) is a function describing the anisotropic
property that depends on the direction of the outer normal vector n which is
the interface normal defined as n = − ∇φ

|∇φ| . For the 2D system, the anisotropy
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coefficient κ(∇φ) is usually given by

κ(∇φ) = 1 + ε4 cos(mΘ),

where m is the number of folds of anisotropy, ε4 is the parameter for the anisotropy

strength, and Θ = arctan(
φy

φx
). When m = 4 (i.e., fourfold anisotropy), for instance,

κ(∇φ) can be easily reformulated in terms of the phase-field variable φ, namely, for
2D,

κ(∇φ) = (1− 3ε4)
(
1 +

4ε4
1− 3ε4

φ4
x + φ4

y

|∇φ|4
)
.

The dynamics of the anisotropic dendritic crystal growth is governed by the follow-
ing system:

τ (φ)φt = −δE

δφ
− λ

ε
p′(φ)T,(4.15)

= ∇ · (κ2(∇φ)∇φ+ κ(∇φ)|∇φ|2Ψ(φ))− f(φ)

ε2
− λ

ε
p′(φ)T,

Tt = DΔT +Kp′(φ)φt,(4.16)

where τ (φ) > 0 is the mobility function, D is the diffusion rate of the temperature,
the function p(φ) accounts for the generation of latent heat and it is a phenomeno-
logical functional taking the form preserving the minima of φ at ±1 independently of
the local value of u. For p(φ), there are two common choices: p(φ) = 1

5φ
5− 2

3φ
3+φ

and p′(φ) = (1−φ2)2 (cf. [24,27]); or p(φ) = φ− 1
3φ

3 and p′(φ) = 1−φ2 (cf. [42]),
Ψ(φ) is the variational derivative of κ(∇φ).

Note that the above system is not really a gradient flow of the free energy (4.14)
due to the two phenomenological terms associated with p′(φ). But it still satisfies
a dissipative energy law. Indeed, by taking the L2 inner product of (4.15) with φt,
and of (4.16) with λ

εKT , using the integration by parts and combining the obtained
two equalities, we obtain

d

dt
E(φ, T ) = −‖

√
τ (φ)φt‖2 −

λD

εK
‖∇T‖2 ≤ 0.

As in the case of anisotropic Cahn-Hilliard system, we can apply the stabilized
IEQ or SAV approach. Due to the terms τ (φ)φt and p′(φ)T in the system (4.15)-
(4.16) which can not be treated explicitly, the SAV approach will also lead to linear
system with variable coefficients, so we use the IEQ approach which offers stronger
coupling, and define

U =

√
1

2
|κ(∇φ)∇φ|2 + 1

4ε2
F (φ) + C0,

where C0 is any constant that can ensure the radicand positive. Thus the total free
energy (4.14) can be rewritten as

E(φ, U, u) =

∫
Ω

(U2 +
λ

2εK
T 2 − C0)dx,
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(a) Energy evolutions with various time
steps.

(b) A close-up view.

Figure 4.3. Time evolutions of the total free energy functional
using the two schemes, IEQ and SIEQ, for four different time steps
δt = 1, 1e−1, 1e−2, and 1e−3 (the IEQ scheme with δt = 1 and
1e−1 leads to totally wrong results so they are not included). The
left subfigure (a) is the energy profile for t ∈ [0, 20], and the right
subfigure (b) is a close-up view for t ∈ [3.21, 3.37].

and we can formulate an equivalent system to (4.15)-(4.16) as follows:

τ (φ)φt = −Z(φ)U − λ

ε
p′(φ)T,(4.17)

Ut =
1

2
Z(φ)φt,(4.18)

Tt = DΔT +Kp′(φ)φt,(4.19)

where

Z(φ) =
−∇ · (κ2(∇φ)∇φ+ κ(∇φ)|∇φ|2Ψ(φ)) + 1

ε2 f(φ)√
1
2 |κ(∇φ)∇φ|2 + 1

4ε2F (φ) + C0

.

Then, a second-order stabilized IEQ scheme for the above system (4.17)-(4.19) is:
Assuming φn, Tn, Un and φn−1, Tn−1, Un−1 are known, we update φn+1, Tn+1,

Un+1 by solving the following linear coupled system:

τ (φ∗,n+1)
3φn+1 − 4φn + φn−1

2δt
= −Z∗,n+1Un+1 − λ

ε
p′(φ∗,n+1)Tn+1(4.20)

+
S1

ε2
(φn+1 − 2φn + φn−1)− S2Δ(φn+1 − 2φn + φn−1),

3Un+1 − 4Un + Un−1 =
1

2
Z∗,n+1(3φn+1 − 4φn + φn−1),(4.21)

3Tn+1 − 4Tn + Tn−1

2δt
−DΔTn+1 = Kp′(φ∗,n+1)

3φn+1 − 4φn + φn−1

2δt
,(4.22)

where Z∗,n+1 = Z(φ∗,n+1), and Si (i = 1, 2) are positive stabilizing parameters.
Note that if we replace the variable coefficients τ (φ∗,n+1), p′(φ∗,n+1) and Z∗,n+1

in the above by constants, e.g., their average values, we can solve the corresponding
system easily with a Fourier-spectral method. Then, the above system can be
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Figure 4.4. The 2D dynamical evolutions of dendritic crystal
growth process with the sixfold anisotropy.

efficiently solved by using a preconditioned conjugate gradient type iteration using
the corresponding system with constant coefficients as a preconditioner.

Similarly, one can prove the following stability results [50]:

Theorem 4.2. Let S1, S2 > 0. The scheme (4.20)-(4.22) is unconditionally
energy stable in the sense that the following discrete energy dissipation law is sat-
isfied:

1

δt
(En+1 − En) ≤ −‖

√
τ (φ∗,n+1)

3φn+1 − 4φn + φn−1

2δt
‖2 − λD

εK
‖∇un+1‖2 ≤ 0,

where

En+1 =
‖Un+1‖2 + ‖2Un+1 − Un‖2

2
+

λ

2εK

(‖un+1‖2 + ‖2un+1 − un‖2
2

)
+

S1

ε2
‖φn+1 − φn‖2

2
+ S2

‖∇φn+1 −∇φn‖2
2

.

In Fig. 4.3, we compare the evolution of the free energy functionals using
the IEQ and stabilized IEQ (SIEQ) schemes with four different time steps δt =
1, 1e−1, 1e−2, and 1e−3. For larger times steps δt = 1, 1e−1, the IEQ scheme
leads to totally wrong results. But when we add two stabilizers in, all four energy
curves generated by the SIEQ scheme decay monotonically. In Fig. 4.4, we perform
a simulation with the sixfold anisotropic entropy coefficient. We observe that nu-
merous sub-branches form on each main branch, and lead eventually to a snowflake
pattern. More detailed numerical simulations can be found in [6,50,60].

4.3. Modified PFC model with a strong nonlinear vacancy potential
(VMPFC). The VMPFC model [5, 39, 40] is different from the classical PFC
model (3.4)-(3.6) in the following two aspects, (i) the second-order time derivative
is introduced into the PDE in order to include both diffusive dynamics and elastic
interactions, and (ii) a strong nonlinear penalization potential is added in the free
energy in order to induce vacancies between atoms by penalizing the negative value
of the phase-field variable.
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The total free energy of the VMPFC system is

E(φ) =

∫
Ω

(φ
2
L2
1(L2

2 + r2)φ+ F (φ) + Fvac(φ)
)
dx,(4.23)

where F (φ) = 1
4φ

4 − η
2φ

2 is the double-well potential, and

Fvac(φ) =
hvac

3
(|φ|3 − φ3),

is the vacancy potential that penalizes negative values of φ with hvac 
 1 being
the penalization parameter. It is easy to see that that F (φ) + Fvac(φ) is bounded
from below for any φ.

We consider the following H−1 pseudo-gradient flow of the above free energy:

αφtt + βφt = MΔμ,(4.24)

μ = L2
1(L2

2 + r2)φ+ f(φ) + fvac(φ),(4.25)

where M > 0 is the mobility constant, α and β are two non-negative parameters,
f(φ) = F ′(φ) = φ3− εφ and fvac(φ) = F ′

vac(φ) = hvac(|φ|−φ)φ. When α = hvac =
0, the model (4.24)-(4.25) reduces to the classical PFC model (3.2)-(3.3).

In order to fit the above model in our general setting, we introduce a new vari-
able ψ = φt, and adopt the SAV approach. More precisely, we define an auxiliary
non-local function

u(t) =

√∫
Ω

(F (φ) + Fvac(φ))dx+ C0,

where C0 is a constant such the radicand is strictly positive, and rewrite (4.24)-
(4.25) as

αψt + βψ = MΔμ,(4.26)

μ = (Δ+ 1)2φ+Ku,(4.27)

ψ = φt,(4.28)

ut =
1

2

∫
Ω

Kφtdx,(4.29)

where

K =
f(φ) + fvac(φ)√∫

Ω
(F (φ) + Fvac(φ))dx+ C0

.

Then, we can construct a second-order stabilized SAV scheme for (4.26)-(4.29) as
follows.

Having computed (φ, ψ, u)n−1 and (φ, ψ, u)n, we compute (φ, ψ, u)n+1 as fol-
lows.

α
3ψn+1 − 4ψn + ψn−1

2δt
+ βψn+1 = MΔμn+1,(4.30)

μn+1 = L2
1(L2 + r2)2φn+1 +K�,n+1un+1 + S(φn+1 − φ�,n+1),(4.31)

ψn+1 =
3φn+1 − 4φn + φn−1

2δt
,(4.32)

3un+1 − 2un + un−1 =
1

2

∫
Ω

K�,n+1(3φn+1 − 4φn + φn−1)dx,(4.33)
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(a) hvac = 100, S = 100. (b) hvac = 1000, S = 1000.

Figure 4.5. The L2 numerical errors for the phase-field variable
φ that are computed using the schemes SSAV and SAV for the
mesh refinement test in time with the initial conditions (4.34).
The penalization parameters hvac and the stabilization parameter
S are set as (a) hvac = S = 100 and (b) hvac = S = 1000.

where S is a positive stabilization parameter, andK�,n+1=K(φ�,n+1) with φ�,n+1 =
2φn − φn−1.

The above system can be efficiently solved using the same procedure for (2.18)-
(2.20) presented in Section 2, which leads to a linear system with constant coeffi-
cients that can be solved easily. We refer to [62] for more detail.

As for the stability, we can prove the following result [62]:

Theorem 4.3. Let S ≥ 0. The scheme (4.30)-(4.33) is unconditionally energy
stable in the sense that the following discrete energy dissipation law is satisfied:

En+1 ≤ En − δt
β

M
‖∇pn+1‖2,

where, for any integer k ≥ 0, the discrete energy Ek is defined as

Ek =
1

2

(
‖L1L2φ

k‖2 + ‖2L1L2φ
k − L1L2φ

k−1)‖2
2

)

+
r2

2

(
‖L1φ

k‖2 + ‖2L1φ
k − L1φ

k−1)‖2
2

)
+ S

‖φk − φk−1‖2
2

+
α

2M

(
‖∇pk‖2 + ‖2∇pk −∇pk−1‖2

2

)
+

(uk)2 + (2uk − uk−1)2

2
,

and pk is defined as pk = Δ−1ψk.

We now present some numerical results obtained using the above scheme with
S = 0 (SAV) and with S > 0 (SSAV). We take Ω = (0, 128)2 and assume the
periodic boundary conditions. We take the initial condition to be

φ0(x, y) = sin(
8π

128
x) cos(

8π

128
y), ψ0(x, y) = 0,(4.34)

and choose the solution computed by the SSAV scheme with the time step size
δt = 1e−9 as the benchmark solution. The L2 errors of the phase variable between
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(a) SSAV. (b) SAV.

Figure 4.6. Time evolution of the total free energy (4.23) com-
puted by the two schemes SSAV and SAV with various time steps.
The penalization parameter is hvac = 5e5 and the stabilization pa-
rameter is S = 500. (Note: in the subfigure (b), we use the energy
curve computed by the scheme SSAV with δt = 0.0078125 as the
reference solution.)

Figure 4.7. The dynamical behaviors of the crystal growth with
three initial crystallites arbitrarily deposited in a supercooled liq-
uid for the case of vacancies. The parameters are hvac = 3000, ε =
0.9,M = 1, α = 1, β = 1, S = 2. Snapshots of the numerical
approximation of φ are taken at t = 0, 25, 50, 75, 100, and 1000.
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the numerical solution and the exact solution at t = 2 with different time step
sizes are shown in Fig. 4.5 where hvac = S = 100 and hvac = S = 1000 are used,
respectively. We observe that (i) even though the SAV (non-stabilized) scheme is
stable for all tested time steps, it is not accurate for larger time steps, and (ii) the
stabilized scheme SSAV is stable for all tested time steps and leads to second-order
accuracy with good approximations for all time steps.

Next, we take the initial condition to be

φ0(x, y) = 0.06 + 0.001 rand(x, y), ψ0(x, y) = 0,

where rand(x, y) is the random number in the range of [−1, 1]. We set the pe-
nalization parameter to hvac = 5e5 and the stabilization parameter S = 500. the
evolution curves of the total free energy for these two schemes are plotted in Fig. 4.6.
We find that the scheme SSAV is stable and the free energy decays for all tested
time steps, but the free energy computed by using the non-stabilized scheme SAV
decays only when δt � 2.4e−4.

As the last example, we set hvac = 3000 with the three randomly deposited
crystallites as initial conditions, and plot the results in Fig. 4.7. We observe that
the atoms are formed but periodic patterns vanish and vacancies appear almost
everywhere, which can be seen clearly in the inset figures.

5. Concluding remarks

We presented in this note the IEQ and SAV approaches in a unified framework,
and show that for a large class of gradient flows or conservative systems, they lead
to linear, unconditionally energy stable and al least second-order schemes. For the
SAV schemes, these linear systems can be further decoupled into a set of linear
systems with constant coefficients so that they are extremely efficient.

We showed that the IEQ and SAV approaches can be directly applied to prob-
lems with moderately stiff nonlinear terms, but for problems with highly stiff non-
linear terms, suitable stabilizations are needed to avoid exceedingly small time
steps. While we only discussed the applications of IEQ and SAV approaches to
gradient flows, they framework presented in this note also applies to Hamiltonian
systems (cf. [4, 25]) for which the second-order IEQ and SAV schemes based on
Crank-Nicolson lead to linear and unconditionally energy-conserving schemes.

The IEQ and SAV approaches have also been extended to deal with other prob-
lems which are not driven by free energy or a Hamiltonian. For examples, a strategy
for numerical approximations of general thermodynamical systems using the energy
quadratization (EQ) approach is presented in [64], and the SAV approach is ex-
tended to construct efficient numerical schemes for incompressible Navier-Stokes
equations in [31] and for two-phase flows with different densities in [59].
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