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A new fast Chebyshev–Fourier algorithm for Poisson-type
equations in polar geometries✩
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Abstract

A fast Chebyshev–Fourier algorithm for Poisson-type equations in polar geometries is presented in this paper.
The new algorithm improves upon the algorithm of Jie Shen (1997), by taking advantage of the odd–even parity of
the Fourier expansion in the azimuthal direction, and it is shown to be more efficient in terms of CPU and memory.
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Keywords:Chebyshev–Fourier expansion; Polar coordinates; Spectral–Galerkin

1. Introduction

In a recent paper [5], the author introduced an efficient spectral–Galerkin algorithm, for solving elliptic
equations in polar geometries, which has quasi-optimal computational complexity while being spectrally
accurate. However, it does not take into account the odd–even parity of the Fourier expansion in the
azimuthal direction, and consequently, it uses collocation points which are unnecessarily clustered near
the origin. The aim of this paper is to develop a more efficient Chebyshev–Fourier algorithm for the
Poisson-type equations in polar geometries by taking advantage of the odd–even parity in the Fourier
expansion. Note that there are several very good algorithms (cf. [2–4]) which preserve the odd–even
parity, but the new algorithm in this paper appears to be more efficient.

2. A Chebyshev–Fourier interpolation operator on a disk

A key aspect of spectral methods is to find an appropriate transform between the values of a function
at a set of collocation points to the spectral representation of its interpolating function. Thus, we describe

✩ This work was supported in part by NSF grants DMS-9623020, DMS-9706951 and by a research fellowship at the Texas
Institute of Computational and Applied Mathematics.

1 E-mail: shen@math.psu.edu

0168-9274/00/$20.00 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
PII: S0168-9274(99)00082-3



184 J. Shen / Applied Numerical Mathematics 33 (2000) 183–190

first a Chebyshev–Fourier interpolation operator on the disk to be used in our Chebyshev–Fourier
algorithm.

LetV (x, y) be a continuous function on the unit diskΩ = {(x, y): x2+ y2< 1}. We denotev(r, θ) :=
V (r cosθ, r sinθ) to be the function inD = (0,1) × (0,2π) after the polar transformx = r cosθ ,
y = r sinθ . Sincev is periodic inθ , we may write

v(r, θ)=
∞∑
|m|=0

vm(r)e
imθ with v−m(r)= v̄m(r) for all m, (2.1)

wherev̄m is the complex conjugate ofvm. We emphasize that the expansion coefficients in (2.1) cannot
be arbitrary. In fact, it is well known (see, for instance, [1,3,4]) thatvm(r) has the same parity asm and
can be expandedsmoothlyto the interval(−1,0), i.e., if vm is inHk(0,1) then the expanded function is
in Hk(−1,1). In particular, forv ∈C(Ω) we have

vm ∈ Y (m) := {v ∈C(−1,1): v(−r)= (−1)mv(r), r ∈ (0,1)},
and consequently,

v ∈ Y :=
{
v ∈

∞∑
|m|=0

vm(r)e
imθ : v−m(r)= v̄m(r), vm ∈ Y (m)

}
.

Note thatY (m) (andX(m) defined later) are complex spaces whileY (andX defined below) are real spaces.
We define below approximations ofY (m) andY which preserve the odd–even parity.

Given a pair of even integers(N,M), we denotePN to be the space of polynomials of degree less than
or equal toN , and let

ψ
(m)
j (r)=

{
T2j (r), if m is even,
T2j+1(r), if m is odd, (2.2)

whereTk(r) is thekth-degree Chebyshev polynomial. We define respectively approximation ofY (m) and
Y by

Y
(m)
N :=

{
v =

N/2−mod(m,2)∑
j=0

vjψ
(m)
j (r): vj are complex numbers

}
, (2.3)

and

YNM :=
{
v =

M∑
|m|=0

vm(r)e
imθ : vm ∈ Y (m)N , v is real

}
. (2.4)

We define a set of collocation points inD associated toYNM by

ΣNM :=
{
(rk, θj ):

k = 0,1, . . . ,N/2− 1, j = 0,1, . . . ,2M − 1
k =N/2, j = 0,1, . . . ,M − 1

}
, (2.5)

whererk = cos(kπ/N) andθj = jπ/M . Note that forv ∈ Y or YNM , v(0, θ) = v(0, π + θ) for all θ .
Hence, the points(rk, θj ) with k =N/2 andj =M,M + 1, . . . ,2M − 1 are excluded fromΣNM .



J. Shen / Applied Numerical Mathematics 33 (2000) 183–190 185

Fig. 1. Distribution of collocation points: first row—ΣNM ; second row—̃ΣNM .

One can now readily check that a unique interpolation operatorINM from Y ∩C(D) to YNM is defined
by

INMg(r, θ)=
M∑
|m|=0

N/2−mod(m,2)∑
n=0

gnmψ
(m)
n (r)eimθ ∈ YNM,

INMg(rk, θj )= g(rk, θj ), (rk, θj ) ∈ΣNM.

(2.6)

Remark 1. A different interpolation operator was used in [5]. More precisely, the change of variable
r = (t + 1)/2 is applied so that the functions in the transformed spaces no longer satisfy the odd–even
parity condition and that the corresponding set of collocation points inD is

Σ̃NM := {((tk + 1)/2, θj
)
: k = 0,1, . . . ,N, j = 0,1, . . . ,2M − 1

}
with tk = cos(kπ/N) and θj = jπ/M . Not only Σ̃NM has twice as many points asΣNM , but also its
points are unnecessarily clustered in the radial direction near the pole(r = 0), see Fig. 1. Indeed, the
smallest distance in the Cartesian coordinates between two adjacent points inΣ̃NM (respectively inΣNM)

near the pole is of order O(N−2M−1) (respectively O(N−1M−1)).

3. Description of the algorithm

Consider the Poisson type equation on the unit disk

−1U + αU = F in Ω = {(x, y): x2+ y2 < 1
}
,

U = 0 on∂Ω.
(3.1)
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Applying the polar transformationx = r cosθ , y = r sinθ to (3.1), and settingu(r, θ) = U(r cosθ,
r sinθ), f (r, θ)= F(r cosθ, r sinθ), we obtain

−1

r

d

dr

(
r

d

dr
u

)
− 1

r2

d2

dθ2
u+ αu= f, (r, θ) ∈D,

u(1, θ)= 0, θ ∈ [0,2π), u periodic inθ.
(3.2)

Writing

u(r, θ)=
∞∑
|m|=0

um(r)e
imθ with u−m(r)= ūm(r) for all m, (3.3)

(likewise forf ), and substituting the expansions in (3.2), we find

−1

r

d

dr

(
r

d

dr
um

)
+
(
m2

r2
+ α

)
um = fm, r ∈ (0,1), um(1)= 0. (3.4)

Below we develop an algorithm which takes advantage of the odd–even parity by seeking approximation
of um in the space

X
(m)
N :=

{
v ∈ Y (m)N : v(1)= 0

}
. (3.5)

Given a pair of even integers(N,M), we consider the following weighted (the weight function isr2ω(r))
spectral–Galerkin approximation to (3.4) form= 0,1, . . . ,M : find u(m)N ∈X(m)

N such that

−
1∫

0

d

dr

(
r

d

dr
u
(m)
N

)
rvωdr +m2

1∫
0

u
(m)
N vωdr + α

1∫
0

r2u
(m)
N vωdr =

1∫
0

r2f
(m)
N vωdr

∀v ∈X(m)
N , (3.6)

whereω(r)= (1− r2)−1/2 is the Chebyshev weight, andf (m)N is themth component of

INMf =
M∑
|m|=0

N/2−mod(m,2)∑
n=0

fnmψ
(m)
n (r)eimθ,

namely,

f
(m)
N =

N/2−mod(m,2)∑
n=0

fnmψ
(m)
n (r).

Then, the approximation tou is given by

uNM(r, θ)=
M∑
|m|=0

u
(m)
N (r)eimθ, u(−m)

N
= ū(m)

N
.

Note that the approximate solutionuNM does not satisfy the pole conditions “u(m)
N
(0)= 0 form 6= 0”,

hence,uNM is neither necessarily single valued nor differentiable at the pole in the Cartesian coordinates.
However,uNM still converges tou exponentially provided thatf is smooth in the Cartesian coordinates
(see [6] for a related discussion and on how to extract fromuNM an approximate function which is single
valued and differentiable at the pole).
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It is clear thatX(m)
N is aN/2 (respectivelyN/2− 1) dimensional space ifm is even (respectively odd)

and that

φ
(m)
j (r) := (1− r2)ψ(m)

j (r) ∈X(m)
N . (3.7)

Therefore,

X
(m)
N = span

{
φ
(m)
j : j = 0,1, . . . ,N/2− 1−mod(m,2)

}
. (3.8)

Thus, letting

u
(m)
N =

N/2−1−mod(m,2)∑
k=0

x
(m)
k φ

(m)
k , x(m) = (x(m)k

)
,

a
(m)
kj := −

1∫
0

d

dr

(
r

d

dr
φ
(m)
j

)
rφ

(m)
k ωdr, A(m) = (a(m)kj

)
,

b
(m)
kj :=

1∫
0

φ
(m)
j φ

(m)
k ωdr, B(m) = (b(m)kj

)
,

c
(m)
kj :=

1∫
0

r2φ
(m)
j φ

(m)
k ωdr, C(m) = (c(m)kj

)
,

f
(m)
k :=

1∫
0

r2f
(m)
N φ

(m)
k ωdr, f(m) = (f (m)k

)
,

(3.9)

the formulation (3.6) is reduced to the linear system(
A(m) +m2B(m) + αC(m))x(m) = f(m). (3.10)

Note that although an indexm is used inA(m), B(m), C(m) andX(m)
N , these matrices only depend on the

parity ofm, rather than the actual value ofm.

Proposition 2. Form even or odd,A(m),B(m) are penta-diagonal matrices, andC(m) are seven-diagonal
matrices.

Proof. Notice that all the integrands ina(m)kj , b(m)kj andc(m)kj are even functions. Therefore, we can replace∫ 1
0 by 1

2

∫ 1
−1. Then, thanks to the orthogonality relation of the Chebyshev polynomials and the special

form of the basis functions (3.7), one derives immediately thatB(m) andC(m) are respectively penta- and
seven-diagonal symmetric matrix. By the same argument, we have

a
(m)
kj =−

1∫
0

d

dr

(
r

d

dr
φ
(m)
j

)
rφ

(m)
k ωdr

=−1

2

1∫
−1

d

dr

(
r

d

dr
φ
(m)
j

)
rφ

(m)
k ωdr = 0 for j < k − 2.
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On the other hand, integrating by parts twice, using (3.7) and the identityω′(r)= (r/(1− r2))ω(r), we
have

a
(m)
kj =

1

2

1∫
−1

(
r

d

dr
φ
(m)
j

)
d

dr

(
rφ

(m)
k ω

)
dr

= 1

2

1∫
−1

d

dr
φ
(m)
j

(
r2 d

dr
φ
(m)
k +

r

1− r2
φ
(m)
k

)
ωdr

=−1

2

1∫
−1

φ
(m)
j

{
d

dr

(
r2 d

dr
φ
(m)
k +

r

1− r2
φ
(m)
k

)
+
(
r2 d

dr
φ
(m)
k +

r

1− r2
φ
(m)
k

)
r

1− r2

}
ωdr

=−1

2

1∫
−1

ψ
(m)
j

{(
1− r2) d

dr

(
r2 d

dr
φ
(m)
k + rψ(m)

k

)
+
(
r2 d

dr
φ
(m)
k + rψ(m)

k

)
r

}
ωdr.

Then, thanks to the special form of the basis function (3.7), we find that the function between the pair of
brackets is a polynomial of degree 2k+4 (respectively 2k+5) form even (respectively odd). Therefore,
we havea(m)kj = 0 if k < j − 2. 2

The entries ofA(m), B(m) andC(m) can be evaluated analytically, but this process can be quite tedious.
Alternatively, one can compute these entries automatically by using the Chebyshev–Gauss–Lobatto
quadrature of degreeN + 2.

In summary, the new Chebyshev–Fourier algorithm for solving (3.2) consists of three steps:
(1) ComputeINMf from the values off onΣNM—O(NM log(NM)) operations;
(2) Solveu(m)N from (3.10) form= 0,1, . . . ,M—O(NM) operations;
(3) ComputeuNM(r, θ)=∑M

|m|=0u
(m)
N (r)eimθ onΣNM—O(NM log(NM)) operations.

Hence, the overall computational complexity is O(NM log(NM)) which is quasi-optimal.

Remark 3. Although we have only described the algorithm for Poisson-like equations with homoge-
neous Dirichlet boundary conditions on a disk, it can be readily extended, as in [5], to problems with
more general boundary conditions, to three-dimensional cylindrical domains, to problems with variable
coefficients and to higher-order elliptic equations, we refer to [5] for more details.

4. Numerical results

We now present some numerical results using the new algorithm. Since the Chebyshev–Fourier–
Galerkin (CFG) algorithm in [5] is already shown to be more efficient and more accurate than those
in [2,7] (see [5]), we shall only compare the new CFG algorithm with that in [5].

We consider the Poisson equation on a unit disk with the exact solution

U(x, y)= (x2+ y2− 1
)(

cos
(
β(x + y))+ sin

(
β(x + y))). (4.1)

The maximum errors of the two algorithms for the exact solution (4.1) withβ = 16 are listed in Table 1,
where new CFG stands for the new Chebyshev–Fourier–Galerkin algorithm described above. This exact
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Table 1
Maximum errors: exact solution being (4.1) withβ = 16

N =M 32 36 40 44 48 52

New CFG 1.98E−2 3.98E−4 4.63E−6 3.34E−8 1.59E−10 4.58E−13

N =M 22 26 30 34 38 42

CFG in [5] 8.68E−3 3.55E−4 8.52E−6 1.17E−7 9.99E−10 5.52E−12

Table 2
Resolution needed for six-digit accuracy: exact solution being (4.1) with differentβ

β 20 30 40 50 60

New CFG,N =M 48 64 80 96 112

CFG in [5],N =M 38 52 66 82 98

solution is smooth in both the Cartesian and polar coordinates, so both algorithms converge exponentially
fast. Note that to achieve the same accuracy as the CFG in [5] with the pair(N,N), the new CFG should
be used, roughly speaking, with the pair(N + 10,N + 10). We recall thatfor a fixed pair of(N,M), the
number of unknowns and the CPU time of the new algorithm is about half of the algorithm in[5]. Thus,
the new algorithm is still significantly more efficient, in terms of CPU and memory, than the algorithm
in [5].

In Table 2, we list the resolution, in terms of(N,M), required to have six-digit accuracy for different
values ofβ in the exact solution (4.1). The results in Table 2 indicates again that to achieve the same
accuracy as the CFG in [5] with the pair(N,N), we need to use about(N + 14,N + 14) in the new
CFG. Therefore,asymptoticallyspeaking, for a fixed pair of(N,M), the new CFG provides about the
same accuracy as the CFG in [5] while costing half of the CPU and memory.

5. Concluding remarks

We have presented a new fast Chebyshev–Fourier–Galerkin method for Poisson-type equations in
polar geometries. The new algorithm improves upon the algorithm in [5] by taking advantage of the
odd–even parity of the Fourier expansion in the zimuthal direction. It is shown that the new algorithm is
significantly more efficient in terms of CPU and memory than the algorithm in [5]. Another advantage
of the new algorithm is that the collocation points are not unnecessarily clustered in the radial direction
near the pole so that a semi-implicit or explicit time marching scheme based on this set of collocation
points would not be affected by a unreasonably restrictive CFL stability condition.
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